1
|
Yang X, Leng M, Yang L, Peng Y, Wang J, Wang Q, Wu K, Zou J, Wan W, Li L, Ye Y, Meng Z. Effect of Evodiamine on Collagen-Induced Platelet Activation and Thrombosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4893859. [PMID: 35937403 PMCID: PMC9348926 DOI: 10.1155/2022/4893859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Evodia rutaecarpa has multiple pharmacological effects and is widely used in the prevention and treatment of migraine, diabetes, cardiovascular disease, cancer, and other chronic diseases; however, the pharmacological effects of its active compound evodiamine (Evo) have not been thoroughly investigated. The purpose of this study was to investigate the effects of Evo on antiplatelet activation and thrombosis. We discovered that Evo effectively inhibited collagen-induced platelet activation but had no effect on platelet aggregation caused by activators such as thrombin, ADP, and U46619. Second, we found that Evo effectively inhibited the release of platelet granules induced by collagen. Finally, evodiamine inhibits the transduction of the SFKs/Syk/Akt/PLCγ2 activation pathway in platelets. According to in vivo studies, Evo significantly prolonged the mesenteric thromboembolism induced by ferric chloride and had no discernible effect on the coagulation function of mice. In conclusion, the antiplatelet and thrombotic effects of Evo discovered in this study provide an experimental basis for the investigation of the pharmacological mechanisms of Evo and the development of antiplatelet drugs.
Collapse
Affiliation(s)
- Xiaona Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Leng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wu
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junhua Zou
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Zhi Z, Jooss NJ, Sun Y, Colicchia M, Slater A, Moran LA, Cheung HYF, Di Y, Rayes J, Poulter NS, Watson SP, Iqbal AJ. Galectin-9 activates platelet ITAM receptors glycoprotein VI and C-type lectin-like receptor-2. J Thromb Haemost 2022; 20:936-950. [PMID: 34936188 DOI: 10.1111/jth.15625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelets are multifunctional cellular mediators in many physiological and pathophysiological processes such as thrombosis, angiogenesis, and inflammation. Several members of galectins, a family of carbohydrate-binding proteins with a broad range of immunomodulatory actions, have been reported to activate platelets. OBJECTIVE In this study, we investigated the role of galectin-9 (Gal-9) as a novel ligand for platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2). METHODS Platelet spreading, aggregation, and P-selectin expression in response to Gal-9 were measured in washed platelet suspensions via static adhesion assay, light transmission aggregometry, and flow cytometry, respectively. Solid-phase binding assay and protein phosphorylation studies were utilized to validate the interaction between Gal-9 and GPVI, and immunoprecipitation for detecting CLEC-2 phosphorylation. Wild-type (WT), GPVI-knockout (Gp6-/- ), and GPVI and CLEC-2-double knockout (Gp6-/- /Gp1ba-Cre-Clec1bfl/fl ) mice were used. RESULTS We have shown that recombinant Gal-9 stimulates aggregation in human and mouse washed platelets dose-dependently. Platelets from both species adhere and spread on immobilized Gal-9 and express P-selectin. Gal-9 competitively inhibited the binding of human recombinant D1 and D2 domains of GPVI to collagen. Gal-9 stimulated tyrosine phosphorylation of CLEC-2 and proteins known to lie downstream of GPVI and CLEC-2 including spleen tyrosine kinase and linker of activated T cells in human platelets. GPVI-deficient murine platelets exhibited significantly impaired aggregation in response to Gal-9, which was further abrogated in GPVI and CLEC-2-double-deficient platelets. CONCLUSIONS We have identified Gal-9 as a novel platelet agonist that induces activation through interaction with GPVI and CLEC-2.
Collapse
Affiliation(s)
- Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Natalie J Jooss
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Yi Sun
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Martina Colicchia
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Luis A Moran
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Hilaire Yam Fung Cheung
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ying Di
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev 2021; 46:100733. [PMID: 32682574 PMCID: PMC7354275 DOI: 10.1016/j.blre.2020.100733] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Haemostasis stops bleeding at the site of vascular injury and maintains the integrity of blood vessels through clot formation. This regulated physiological process consists of complex interactions between endothelial cells, platelets, von Willebrand factor and coagulation factors. Haemostasis is initiated by a damaged vessel wall, followed with a rapid adhesion, activation and aggregation of platelets to the exposed subendothelial extracellular matrix. At the same time, coagulation factors aggregate on the procoagulant surface of activated platelets to consolidate the platelet plug by forming a mesh of cross-linked fibrin. Platelets and coagulation mutually influence each other and there are strong indications that, thanks to the interplay between platelets and coagulation, haemostasis is far more effective than the two processes separately. Clinically this is relevant because impaired interaction between platelets and coagulation may result in bleeding complications, while excessive platelet-coagulation interaction induces a high thrombotic risk. In this review, platelets, coagulation factors and the complex interaction between them will be discussed in detail.
Collapse
Affiliation(s)
- Yaqiu Sang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Mark Roest
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | | | - Dana Huskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Maternal and offspring high-fat diet leads to platelet hyperactivation in male mice offspring. Sci Rep 2021; 11:1473. [PMID: 33446734 PMCID: PMC7809045 DOI: 10.1038/s41598-020-80373-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
Maternal over-nutrition increases the risk of diabetes and cardiovascular events in offspring. While prominent effects on cardiovascular health are observed, the impact on platelet physiology has not been studied. Here, we examined whether maternal high-fat diet (HF) ingestion affects the platelet function in lean and obese offspring. C57BL6/N mice dams were given a HF or control (C) diet for 8 weeks before and during pregnancy. Male and female offspring received C or HF diets for 26 weeks. Experimental groups were: C/C, dam and offspring fed standard laboratory diet; C/HF dam fed standard laboratory diet and offspring fed HF diet; HF/C and HF/HF. Phenotypic and metabolic tests were performed and blood collected for platelet studies. Compared to C/C, offspring HF groups were obese, with fat accumulation, hyperglycaemia and insulin resistance. Female offspring did not present platelet hyperactivity, hence we focused on male offspring. Platelets from HF/HF mice were larger, hyperactive and presented oxidative stress when compared to C/C. Maternal and offspring HF diet results in platelet hyperactivation in male mouse offspring, suggesting a novel ‘double-hit’ effect.
Collapse
|
6
|
Montague SJ, Hicks SM, Lee CSM, Coupland LA, Parish CR, Lee WM, Andrews RK, Gardiner EE. Fibrin exposure triggers αIIbβ3-independent platelet aggregate formation, ADAM10 activity and glycoprotein VI shedding in a charge-dependent manner. J Thromb Haemost 2020; 18:1447-1458. [PMID: 32198957 DOI: 10.1111/jth.14797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Collagen and fibrin engagement and activation of glycoprotein (GP) VI induces proteolytic cleavage of the GPVI ectodomain generating shed soluble GPVI (sGPVI). Collagen-mediated GPVI shedding requires intracellular signalling to release the sGPVI, mediated by A Disintegrin And Metalloproteinase 10 (ADAM10); however, the precise mechanism by which fibrin induces GPVI shedding remains elusive. Plasma sGPVI levels are elevated in patients with coagulopathies, sepsis, or inflammation and can predict onset of sepsis and sepsis-related mortality; therefore, it is clinically important to understand the mechanisms of GPVI shedding under conditions of minimal collagen exposure. OBJECTIVES Our aim was to characterize mechanisms by which fibrin-GPVI interactions trigger GPVI shedding. METHODS Platelet aggregometry, sGPVI ELISA, and an ADAM10 fluorescence resonance energy transfer assay were used to measure fibrin-mediated platelet responses. RESULTS Fibrin induced αIIbβ3-independent washed platelet aggregate formation, GPVI shedding, and increased ADAM10 activity, all of which were insensitive to pre-treatment with inhibitors of Src family kinases but were divalent cation- and metalloproteinase-dependent. In contrast, treatment of washed platelets with other GPVI ligands, collagen, and collagen-related peptide caused αIIbβ3-dependent platelet aggregation and GPVI release but did not increase constitutive ADAM10 activity. CONCLUSIONS Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrin-induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.Fibrin engages GPVI in a manner that differs from other GPVI ligands. Inclusion of polyanionic molecules disrupted fibrin-induced platelet aggregate formation and sGPVI release, suggesting that electrostatic charge may play a role in fibrin/GPVI engagement. It may be feasible to exploit this property and specifically disrupt GPVI/fibrin interactions whilst sparing GPVI/collagen engagement.
Collapse
Affiliation(s)
- Samantha J Montague
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah M Hicks
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christine S-M Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Lucy A Coupland
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Woei M Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Robert K Andrews
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Role of Platelet Glycoprotein VI and Tyrosine Kinase Syk in Thrombus Formation on Collagen-Like Surfaces. Int J Mol Sci 2019; 20:ijms20112788. [PMID: 31181592 PMCID: PMC6600290 DOI: 10.3390/ijms20112788] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023] Open
Abstract
Platelet interaction with collagens, via von Willebrand factor, is a potent trigger of shear-dependent thrombus formation mediated by subsequent engagement of the signaling collagen receptor glycoprotein (GP)VI, enforced by integrin α2β1. Protein tyrosine kinase Syk is central in the GPVI-induced signaling pathway, leading to elevated cytosolic Ca2+. We aimed to determine the Syk-mediated thrombogenic activity of several collagen peptides and (fibrillar) type I and III collagens. High-shear perfusion of blood over microspots of these substances resulted in thrombus formation, which was assessed by eight parameters and was indicative of platelet adhesion, activation, aggregation, and contraction, which were affected by the Syk inhibitor PRT-060318. In platelet suspensions, only collagen peptides containing the consensus GPVI-activating sequence (GPO)n and Horm-type collagen evoked Syk-dependent Ca2+ rises. In whole blood under flow, Syk inhibition suppressed platelet activation and aggregation parameters for the collagen peptides with or without a (GPO)n sequence and for all of the collagens. Prediction models based on a regression analysis indicated a mixed role of GPVI in thrombus formation on fibrillar collagens, which was abolished by Syk inhibition. Together, these findings indicate that GPVI-dependent signaling through Syk supports platelet activation in thrombus formation on collagen-like structures regardless of the presence of a (GPO)n sequence.
Collapse
|
8
|
Voors-Pette C, Lebozec K, Dogterom P, Jullien L, Billiald P, Ferlan P, Renaud L, Favre-Bulle O, Avenard G, Machacek M, Plétan Y, Jandrot-Perrus M. Safety and Tolerability, Pharmacokinetics, and Pharmacodynamics of ACT017, an Antiplatelet GPVI (Glycoprotein VI) Fab. Arterioscler Thromb Vasc Biol 2019; 39:956-964. [DOI: 10.1161/atvbaha.118.312314] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective—
ACT017 is a novel, first in class, therapeutic antibody to platelet GPVI (glycoprotein VI) with potent and selective antiplatelet effects. This first-in-human, randomized, placebo-controlled phase 1 study was conducted to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of ACT017 in healthy subjects.
Approach and Results—
Six cohorts of 8 healthy male and female subjects each received ascending single doses of ACT017 (n=6) or placebo (n=2) as a 6-hour intravenous infusion, with ¼ of the total dose administered within 15 minutes and the rest of the dose (¾ of the total dose) administered within 5 hours and 45 minutes. The 6 investigated doses ranged from 62.5 to 2000 mg. All doses of ACT017 were well tolerated, and no serious adverse events occurred during the study. None of the subjects reported an infusion site reaction. Template bleeding time was not affected in a clinically significant manner by any of the ACT017 doses. Plasma concentrations, determined by liquid chromatography-tandem mass spectrometry, increased linearly with the dose received as were the established pharmacokinetics values. There was no change in the platelet count, platelet GPVI expression assessed by flow cytometry, or plasma levels of soluble GPVI assessed by ELISA. In contrast, administration of ACT017 inhibited collagen-induced platelet aggregation measured by light transmission aggregometry on platelet-rich plasma, and the extent and duration of the effect were dose-dependent.
Conclusions—
The novel antiplatelet agent ACT017 has consistent pharmacokinetic/pharmacodynamic properties and favorable safety and tolerability profiles warranting further clinical development.
Collapse
Affiliation(s)
| | - Kristell Lebozec
- Acticor-Biotech, Paris, France (K.L., L.J., P.B., P.F., O.F-B., G.A., Y.P., M.J-P.)
- University Paris Sud, School of Pharmacy, Inserm-S 1193, Châtenay Malabry, France (K.L., P.B.)
| | - Peter Dogterom
- From the QPS Holdings LLC, Groningen, the Netherlands (C.V.-P., P.D.)
| | - Laurie Jullien
- Acticor-Biotech, Paris, France (K.L., L.J., P.B., P.F., O.F-B., G.A., Y.P., M.J-P.)
| | - Philippe Billiald
- Acticor-Biotech, Paris, France (K.L., L.J., P.B., P.F., O.F-B., G.A., Y.P., M.J-P.)
- University Paris Sud, School of Pharmacy, Inserm-S 1193, Châtenay Malabry, France (K.L., P.B.)
| | - Pauline Ferlan
- Acticor-Biotech, Paris, France (K.L., L.J., P.B., P.F., O.F-B., G.A., Y.P., M.J-P.)
| | | | - Olivier Favre-Bulle
- Acticor-Biotech, Paris, France (K.L., L.J., P.B., P.F., O.F-B., G.A., Y.P., M.J-P.)
- 3Biotech, Paris, France (O.F-B.)
| | - Gilles Avenard
- Acticor-Biotech, Paris, France (K.L., L.J., P.B., P.F., O.F-B., G.A., Y.P., M.J-P.)
| | | | - Yannick Plétan
- Acticor-Biotech, Paris, France (K.L., L.J., P.B., P.F., O.F-B., G.A., Y.P., M.J-P.)
- ULTRACE, Orsay, France (Y.P.)
| | - Martine Jandrot-Perrus
- Acticor-Biotech, Paris, France (K.L., L.J., P.B., P.F., O.F-B., G.A., Y.P., M.J-P.)
- Inserm, Université Paris Sorbonne Cité, UMR_S1148, Paris, France (M.J-P.)
| |
Collapse
|
9
|
Badolia R, Inamdar V, Manne BK, Dangelmaier C, Eble JA, Kunapuli SP. G q pathway regulates proximal C-type lectin-like receptor-2 (CLEC-2) signaling in platelets. J Biol Chem 2017; 292:14516-14531. [PMID: 28705934 DOI: 10.1074/jbc.m117.791012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/09/2017] [Indexed: 11/06/2022] Open
Abstract
Platelets play a key role in the physiological hemostasis or pathological process of thrombosis. Rhodocytin, an agonist of the C-type lectin-like receptor-2 (CLEC-2), elicits powerful platelet activation signals in conjunction with Src family kinases (SFKs), spleen tyrosine kinase (Syk), and phospholipase γ2 (PLCγ2). Previous reports have shown that rhodocytin-induced platelet aggregation depends on secondary mediators such as thromboxane A2 (TxA2) and ADP, which are agonists for G-protein-coupled receptors (GPCRs) on platelets. How the secondary mediators regulate CLEC-2-mediated platelet activation in terms of signaling is not clearly defined. In this study, we report that CLEC-2-induced Syk and PLCγ2 phosphorylation is potentiated by TxA2 and that TxA2 plays a critical role in the most proximal event of CLEC-2 signaling, i.e. the CLEC-2 receptor tyrosine phosphorylation. We show that the activation of other GPCRs, such as the ADP receptors and protease-activated receptors, can also potentiate CLEC-2 signaling. By using the specific Gq inhibitor, UBO-QIC, or Gq knock-out murine platelets, we demonstrate that Gq signaling, but not other G-proteins, is essential for GPCR-induced potentiation of Syk phosphorylation downstream of CLEC-2. We further elucidated the signaling downstream of Gq and identified an important role for the PLCβ-PKCα pathway, possibly regulating activation of SFKs, which are crucial for initiation of CLEC-2 signaling. Together, these results provide evidence for novel Gq-PLCβ-PKCα-mediated regulation of proximal CLEC-2 signaling by Gq-coupled receptors.
Collapse
Affiliation(s)
- Rachit Badolia
- From the Department of Physiology.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Vaishali Inamdar
- From the Department of Physiology.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Bhanu Kanth Manne
- From the Department of Physiology.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Carol Dangelmaier
- From the Department of Physiology.,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| | - Johannes A Eble
- the Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Satya P Kunapuli
- From the Department of Physiology, .,Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and
| |
Collapse
|
10
|
Huang SW, Kuo HL, Hsu MT, Tseng YJ, Lin SW, Kuo SC, Peng HC, Lien JC, Huang TF. A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models. Thromb Haemost 2016; 116:285-99. [PMID: 27173725 DOI: 10.1160/th15-12-0993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/26/2016] [Indexed: 12/27/2022]
Abstract
A novel benzimidazole derivative, nstpbp5185, was discovered through in vitro and in vivo evaluations for antiplatelet activity. Thromaboxane receptor (TP) is important in vascular physiology, haemostasis and pathophysiological thrombosis. Nstpbp5185 concentration-dependently inhibited human platelet aggregation caused by collagen, arachidonic acid and U46619. Nstpbp5185 caused a right-shift of the concentration-response curve of U46619 and competitively inhibited the binding of 3H-SQ-29548 to TP receptor expressed on HEK-293 cells, with an IC50 of 0.1 µM, indicating that nstpbp5185 is a TP antagonist. In murine thrombosis models, nstpbp5185 significantly prolonged the latent period in triggering platelet plug formation in mesenteric and FeCl3-induced thrombi formation, and increased the survival rate in pulmonary embolism model with less bleeding than aspirin. This study suggests nstpbp5185, an orally selective anti-thrombotic agent, acting through blockade of TXA2 receptor, may be efficacious for prevention or treatment of pathologic thrombosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin-Cherng Lien
- Dr. Jin-Cherng Lien, School of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan, Tel.: +886 4 22053366 ext 5609, E-mail:
| | - Tur-Fu Huang
- Dr. Tur-Fu Huang, Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No.1, Section 1, Jen Ai Road, Taipei, Taiwan, Tel.: + 886 2 23123456 ext 88332, Fax: + 886 2 23417930, E-mail:
| |
Collapse
|
11
|
Shiraishi M, Tamura K, Egoshi M, Miyamoto A. Cholesterol enrichment of rabbit platelets enhances the Ca(2+) entry pathway induced by platelet-derived secondary feedback agonists. Life Sci 2013; 92:838-44. [PMID: 23499558 DOI: 10.1016/j.lfs.2013.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 01/15/2023]
Abstract
AIMS Hypersensitivity of platelets due to increased platelet cholesterol levels has been reported in hypercholesterolemia. However, the signaling pathways linking increased platelet reactivity and cholesterol contents are not fully understood. This study aims to determine the direct effect of cholesterol enrichment of platelets on the pathways including Ca(2+) mobilization and secondary feedback agonists such as adenosine diphosphate (ADP) and thromboxane A2 (TXA2). MAIN METHODS In vitro cholesterol enrichment of rabbit platelets was performed by incubation with cholesterol complexed with methyl-β-cyclodextrin. Ca(2+) mobilization was monitored using platelets loaded with fura-PE3/AM, a fluorescent calcium indicator. Released ATP and TXB2 from platelets were measured by a luciferin-luciferase ATP assay system and a TXB2 ELISA Kit, respectively. KEY FINDINGS Cholesterol enrichment of rabbit platelets significantly enhanced Ca(2+) mobilization induced by thrombin, accompanying an augmented Ca(2+) entry. The augmentation of Ca(2+) entry by cholesterol enrichment was significantly suppressed by treatment with inhibitors for secondary feedback agonists. In cholesterol-enriched platelets, the amount of released ATP or TXB2 induced by thrombin was not significantly altered in comparison with control platelets, whereas an increase in [Ca(2+)]i induced by ADP or U46619, a TXA2 mimetic, was significantly enhanced. SIGNIFICANCE These results suggest that cholesterol enrichment of rabbit platelets results in enhanced Ca(2+) mobilization via ADP/TXA2-dependent augmentation of the Ca(2+) entry pathway. The results reveal a novel mechanism by which platelet hypersensitivity is regulated by cholesterol contents.
Collapse
Affiliation(s)
- Mitsuya Shiraishi
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | |
Collapse
|
12
|
Jarvis GE, Bihan D, Hamaia S, Pugh N, Ghevaert CJG, Pearce AC, Hughes CE, Watson SP, Ware J, Rudd CE, Farndale RW. A role for adhesion and degranulation-promoting adapter protein in collagen-induced platelet activation mediated via integrin α(2) β(1). J Thromb Haemost 2012; 10:268-77. [PMID: 22103309 PMCID: PMC3791415 DOI: 10.1111/j.1538-7836.2011.04567.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Collagen-induced platelet activation is a key step in the development of arterial thrombosis via its interaction with the receptors glycoprotein (GP)VI and integrin α(2) β(1) . Adhesion and degranulation-promoting adapter protein (ADAP) regulates α(IIb) β(3) in platelets and α(L) β(2) in T cells, and is phosphorylated in GPVI-deficient platelets activated by collagen. OBJECTIVES To determine whether ADAP plays a role in collagen-induced platelet activation and in the regulation and function of α(2) β(1). METHODS Using ADAP(-/-) mice and synthetic collagen peptides, we investigated the role of ADAP in platelet aggregation, adhesion, spreading, thromboxane synthesis, and tyrosine phosphorylation. RESULTS AND CONCLUSIONS Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP(-/-) platelets. However, aggregation and signaling induced by collagen-related peptide (CRP), a GPVI-selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α(2) β(1) -selective ligand GFOGER and to a peptide (III-04), which supports adhesion that is dependent on both GPVI and α(2) β(1), was reduced in ADAP(-/-) platelets. An impedance-based label-free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non-fluorescent differential-interference contrast microscopy, which revealed reduced filpodia formation in ADAP(-/-) platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen-binding integrin α(2) β(1). In addition, we found that ADAP(-/-) mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild-type animals. This may reflect increased removal of platelets from the circulation.
Collapse
Affiliation(s)
- G E Jarvis
- School of Pharmacy, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kuo HL, Lien JC, Chang CH, Chung CH, Kuo SC, Hsu CC, Peng HC, Huang TF. NP-313, 2-acetylamino-3-chloro-1,4-naphthoquinone, a novel antithrombotic agent with dual inhibition of thromboxane A(2) synthesis and calcium entry. Br J Pharmacol 2011; 162:1871-83. [PMID: 21232029 DOI: 10.1111/j.1476-5381.2011.01200.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE 1,4-Naphthoquinones exhibit antiplatelet activity both in vivo and in vitro. In the present study, we investigated the antiplatelet effect of a novel naphthoquinone derivative NP-313, 2-acetylamino-3-chloro-1,4-naphthoquinone and its mechanism of action. EXPERIMENTAL APPROACH We measured platelet aggregation, Ca(2+) mobilization, thromboxane B2 formation and P-selectin expression and examined several enzymatic activities. Furthermore, we used the irradiated mesenteric venules in fluorescein sodium-treated mice to monitor the antithrombotic effect of NP-313 in vivo. KEY RESULTS NP-313 concentration-dependently inhibited human platelet aggregation induced by collagen, arachidonic acid, thapsigargin, thrombin and A23187. NP-313 also inhibited P-selectin expression, thromboxane B(2) formation and [Ca(2+) ](i) elevation in platelets stimulated by thrombin and collagen. NP-313 at 10 µM inhibited cyclooxygenase, thromboxane A(2) synthase, and protein kinase Cα, whereas it did not affect phospholipase A(2) or phospholipase C activity. In the presence of indomethacin and an adenosine 5-diphosphate scavenger, NP-313 concentration-dependently inhibited thrombin- and A23187-induced [Ca(2+)](i) increase through its inhibitory effects on Ca(2+) influx, rather than blocking Ca(2+) release from intracellular stores. NP-313 also inhibited thapsigargin-mediated Ca(2+) influx through store-operated calcium channel but had no effect on Ca(2+) influx through store-independent calcium channel evoked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol. Nevertheless, it had little effect on cyclic AMP and cyclic GMP levels. Also, intravenously administered NP-313 dose-dependently inhibited the thrombus occlusion of the irradiated mesenteric vessels of fluorescein-pretreated mice. CONCLUSIONS AND IMPLICATIONS Taken together, these results indicate that NP-313 exerts its antithrombotic activity through dual inhibition of thromboxane A(2) synthesis and Ca(2+) influx through SOCC.
Collapse
Affiliation(s)
- Heng-Lan Kuo
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev 2011; 25:155-67. [PMID: 21496978 DOI: 10.1016/j.blre.2011.03.002] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When platelet numbers are low or when their function is disabled, the risk of bleeding is high, which on the one hand indicates that in normal life vascular damage is a rather common event and that hence the role of platelets in maintaining a normal hemostasis is a continuously ongoing physiological process. Upon vascular injury, platelets instantly adhere to the exposed extracellular matrix resulting in platelet activation and aggregation to form a hemostatic plug. This self-amplifying mechanism nevertheless requires a tight control to prevent uncontrolled platelet aggregate formation that eventually would occlude the vessel. Therefore endothelial cells produce inhibitory compounds such as prostacyclin and nitric oxide that limit the growth of the platelet thrombus to the damaged area. With this review, we intend to give an integrated survey of the platelet response to vascular injury in normal hemostasis.
Collapse
Affiliation(s)
- Katleen Broos
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kortrijk, Belgium.
| | | | | | | | | |
Collapse
|
15
|
The human megakaryocytic cell line UT-7/TPO expresses functional platelet agonist signals mediated through GPVI and thromboxane receptor. Cell Biol Int 2010; 34:943-9. [DOI: 10.1042/cbi20090491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Kuo HL, Lien JC, Chung CH, Chang CH, Lo SC, Tsai IC, Peng HC, Kuo SC, Huang TF. NP-184[2-(5-methyl-2-furyl) benzimidazole], a novel orally active antithrombotic agent with dual antiplatelet and anticoagulant activities. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:495-505. [DOI: 10.1007/s00210-010-0505-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/22/2010] [Indexed: 11/28/2022]
|
17
|
Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood 2010; 115:2938-46. [PMID: 20154214 DOI: 10.1182/blood-2009-12-257212] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The C-type lectin-like receptor 2 (CLEC-2) activates platelets through Src and Syk tyrosine kinases via a single cytoplasmic YxxL motif known as a hem immunoreceptor tyrosine-based activation motif (hemITAM). Here, we demonstrate using sucrose gradient ultracentrifugation and methyl-beta-cyclodextrin treatment that CLEC-2 translocates to lipid rafts upon ligand engagement and that translocation is essential for hemITAM phosphorylation and signal initiation. HemITAM phosphorylation, but not translocation, is also critically dependent on actin polymerization, Rac1 activation, and release of ADP and thromboxane A(2) (TxA(2)). The role of ADP and TxA(2) in mediating phosphorylation is dependent on ligand engagement and rac activation but is independent of platelet aggregation. In contrast, tyrosine phosphorylation of the GPVI-FcRgamma-chain ITAM, which has 2 YxxL motifs, is independent of actin polymerization and secondary mediators. These results reveal a unique series of proximal events in CLEC-2 phosphorylation involving actin polymerization, secondary mediators, and Rac activation.
Collapse
|
18
|
Navarro-Núñez L, Lozano ML, Martínez C, Vicente V, Rivera J. Effect of quercetin on platelet spreading on collagen and fibrinogen and on multiple platelet kinases. Fitoterapia 2009; 81:75-80. [PMID: 19686810 DOI: 10.1016/j.fitote.2009.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 07/22/2009] [Accepted: 08/08/2009] [Indexed: 10/20/2022]
Abstract
alpha(2)beta(1) and alpha(IIb)beta(3) integrins, that support platelet adhesion to collagen and fibrinogen, respectively, share common signaling molecules. The effect of quercetin on platelet static adhesion to collagen and fibrinogen was assessed and correlated with its kinase inhibitory activity. Quercetin strongly abrogated PI3K and Src kinases, mildly inhibited Akt1/2, and slightly affected PKC, p38 and ERK1/2. Quercetin or the combined use of adenosine diphosphate and thromboxane A(2) inhibitors abrogated platelet spreading on these surfaces to a similar extent. We suggest that the inhibitory effect of quercetin on platelet kinases blocks early signaling events preventing a complete platelet spreading.
Collapse
Affiliation(s)
- Leyre Navarro-Núñez
- Unit of Haematology and Medical Oncology, Centro Regional de Hemodonación, University of Murcia, Spain.
| | | | | | | | | |
Collapse
|
19
|
Fung CYE, Marcus AJ, Broekman MJ, Mahaut-Smith MP. P2X(1) receptor inhibition and soluble CD39 administration as novel approaches to widen the cardiovascular therapeutic window. Trends Cardiovasc Med 2009; 19:1-5. [PMID: 19467446 DOI: 10.1016/j.tcm.2009.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/26/2009] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
Abstract
Thrombus formation at sites of disrupted atherosclerotic plaques is a leading cause of death and disability worldwide. Although the platelet is now recognized to be a central regulator of thrombus formation, development of antiplatelet reagents that selectively target thrombosis over hemostasis represents a challenge. Existing prophylactic antiplatelet therapies are centered on the use of aspirin, an irreversible cyclooxygenase inhibitor, and a thienopyridine such as clopidogrel, which inactivates the adenosine diphosphate-stimulated P2Y(12) receptor. Although these compounds are widely used and have beneficial effects for patients, their antithrombotic benefit is complicated by an elevated bleeding risk and substantial or partial "resistance." Moreover, combination therapy with these two drugs increases the hemorrhagic risk even further. This review explores the possibility of inhibiting the platelet-surface ionotropic P2X(1) receptor and/or elevating CD39/NTPDase1 activity as new therapeutic approaches to reduce overall platelet reactivity and recruitment of surrounding platelets at prothrombotic locations. Because both proteins affect platelet activation at an early stage in the events leading to thrombosis but are less crucial in hemostasis, they provide new strategies to widen the cardiovascular therapeutic window without compromising safety.
Collapse
Affiliation(s)
- C Y E Fung
- Department of Cell Physiology and Pharmacology, University of Leicester, LE19HN Leicester, United Kingdom
| | | | | | | |
Collapse
|
20
|
Munnix ICA, Gilio K, Siljander PRM, Raynal N, Feijge MAH, Hackeng TM, Deckmyn H, Smethurst PA, Farndale RW, Heemskerk JWM. Collagen-mimetic peptides mediate flow-dependent thrombus formation by high- or low-affinity binding of integrin alpha2beta1 and glycoprotein VI. J Thromb Haemost 2008; 6:2132-42. [PMID: 18826391 DOI: 10.1111/j.1538-7836.2008.03167.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Collagen acts as a potent surface for platelet adhesion and thrombus formation under conditions of blood flow. Studies using collagen-derived triple-helical peptides have identified the GXX'GER motif as an adhesive ligand for platelet integrin alpha2beta1, and (GPO)(n) as a binding sequence for the signaling collagen receptor, glycoprotein VI (GPVI). OBJECTIVE The potency was investigated of triple-helical peptides, consisting of GXX'GER sequences within (GPO)(n) or (GPP)(n) motifs, to support flow-dependent thrombus formation. RESULTS At a high-shear rate, immobilized peptides containing both the high-affinity alpha2beta1-binding motif GFOGER and the (GPO)(n) motif supported platelet aggregation and procoagulant activity, even in the absence of von Willebrand factor (VWF). With peptides containing only one of these motifs, co-immobilized VWF was needed for thrombus formation. The (GPO)(n) but not the (GPP)(n) sequence induced GPVI-dependent platelet aggregation and procoagulant activity. Peptides with intermediate affinity (GLSGER, GMOGER) or low-affinity (GASGER, GAOGER) alpha2beta1-binding motifs formed procoagulant thrombi only if both (GPO)(n) and VWF were present. At a low-shear rate, immobilized peptides with high- or low-affinity alpha2beta1-binding motifs mediated formation of thrombi with procoagulant platelets only in combination with (GPO)(n). CONCLUSIONS Triple-helical peptides with specific receptor-binding motifs mimic the properties of native collagen I in thrombus formation by binding to both platelet collagen receptors. At a high-shear rate, either GPIb or high-affinity (but not low-affinity) GXX'GER mediates GPVI-dependent formation of procoagulant thrombi. By extension, high-affinity binding for alpha2beta1 can control the overall platelet-adhesive activity of native collagens.
Collapse
Affiliation(s)
- I C A Munnix
- Department of Biochemistry, CARIM, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Honda N, Ohnishi K, Fujishiro T, Ikeda M, Ito K. Alteration of release and role of adenosine diphosphate and thromboxane A2 during collagen-induced aggregation of platelets from cattle with Chediak-Higashi syndrome. Am J Vet Res 2008; 68:1399-406. [PMID: 18052747 DOI: 10.2460/ajvr.68.12.1399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the interaction of endogenous ADP with collagen and thromboxane A(2) (TXA(2)) during collagen-induced platelet aggregation between platelets from healthy cattle and those with Chediak-Higashi syndrome (CHS). POPULATION SAMPLE: Platelets harvested from blood samples from healthy Japanese Black cattle and those with CHS. PROCEDURES Aggregation of gel-filtered platelets; release of ATP-ADP; and generation of thromboxane B(2) (TXB(2)), a metabolite of TXA(2), were measured. RESULTS The potency of collagen to induce aggregation in platelets of cattle with CHS (ie, CHS platelets) was less than a tenth of that in platelets of healthy cattle (ie, control platelets). Platelet aggregation induced by collagen at an intermediate concentration depended on the coexistence of ADP and TXA(2), suggesting that released ADP cannot cause platelet aggregation by itself. Collagen-induced ADP release was markedly decreased, whereas TXB(2) production was slightly low in CHS platelets, compared with that in control platelets. A combination of subthreshold amounts of ADP and 9,11-dideoxy-9alpha, 11alpha-methano-epoxy-prostaglandin F(2) (U46619), a TXA(2) analogue, caused platelet aggregation. Similarly, a combination of subthreshold amounts of collagen and ADP caused platelet aggregation, whereas collagen and U46619 were not synergistic. CONCLUSIONS AND CLINICAL RELEVANCE Deficient ADP release ensuing from the delta-storage pool deficiency in platelets from cattle with CHS resulted in reduction of collagen-induced platelet aggregation, through attenuation of synergism between TXA(2) and ADP and between ADP and collagen. Furthermore, results of the study reported here indicated that TXA(2) was important for aggregation of bovine platelets.
Collapse
Affiliation(s)
- Naofumi Honda
- Department of Veterinary Pharmacology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | |
Collapse
|
22
|
Frelinger AL, Jakubowski JA, Li Y, Barnard MR, Linden MD, Tarnow I, Fox ML, Sugidachi A, Winters KJ, Furman MI, Michelson AD. The active metabolite of prasugrel inhibits adenosine diphosphate- and collagen-stimulated platelet procoagulant activities. J Thromb Haemost 2008; 6:359-65. [PMID: 18021304 DOI: 10.1111/j.1538-7836.2008.02838.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND Prasugrel is a novel antiplatelet prodrug of the same thienopyridine class as clopidogrel and ticlopidine. Metabolism of prasugrel generates the active metabolite R-138727, an antagonist of the platelet P2Y(12) adenosine diphosphate (ADP) receptor, leading to inhibition of ADP-mediated platelet activation and aggregation. ADP also enhances the platelet response to collagen, and these two agonists contribute to the generation of platelet procoagulant activity. We therefore examined whether R-138727 inhibits ADP- and collagen-triggered platelet procoagulant activities. METHODS AND RESULTS As shown by whole blood flow cytometry, R-138727 inhibited surface phosphatidylserine expression on ADP plus collagen-stimulated platelets and tissue factor (TF) expression on ADP-, collagen-, and ADP plus collagen-stimulated monocyte-platelet aggregates. R-138727 reduced monocyte-platelet aggregate formation, thereby further inhibiting TF expression. ADP, collagen, and ADP plus collagen accelerated the kinetics of thrombin generation in recalcified whole blood and R-138727 significantly inhibited this acceleration. Clot strength in a modified thromboelastograph system was also inhibited by R-138727 (IC50 0.7 +/- 0.1 microM). CONCLUSIONS In addition to its previously known inhibitory effects on platelet activation and aggregation, the active metabolite of prasugrel, R-138727, inhibits platelet procoagulant activity in whole blood (as determined by phosphatidylserine expression on platelets and TF expression on monocyte-platelet aggregates), resulting in the functional consequences of delayed thrombin generation and impaired clot development.
Collapse
Affiliation(s)
- A L Frelinger
- Center for Platelet Function Studies, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Surin WR, Barthwal MK, Dikshit M. Platelet collagen receptors, signaling and antagonism: Emerging approaches for the prevention of intravascular thrombosis. Thromb Res 2008; 122:786-803. [DOI: 10.1016/j.thromres.2007.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 10/17/2007] [Accepted: 10/21/2007] [Indexed: 02/02/2023]
|
24
|
Frelinger AL, Jakubowski JA, Li Y, Barnard MR, Linden MD, Tarnow I, Fox ML, Sugidachi A, Winters KJ, Furman MI, Michelson AD. The active metabolite of prasugrel inhibits adenosine diphosphate- and collagen-stimulated platelet procoagulant activities. J Thromb Haemost 2007; 6:359-65. [PMID: 18021304 DOI: 10.1111/j.1538-7836.2007.02838.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Prasugrel is a novel antiplatelet prodrug of the same thienopyridine class as clopidogrel and ticlopidine. Metabolism of prasugrel generates the active metabolite R-138727, an antagonist of the platelet P2Y(12) adenosine diphosphate (ADP) receptor, leading to inhibition of ADP-mediated platelet activation and aggregation. ADP also enhances the platelet response to collagen, and these two agonists contribute to the generation of platelet procoagulant activity. We therefore examined whether R-138727 inhibits ADP- and collagen-triggered platelet procoagulant activities. METHODS AND RESULTS As shown by whole blood flow cytometry, R-138727 inhibited surface phosphatidylserine expression on ADP plus collagen-stimulated platelets and tissue factor (TF) expression on ADP-, collagen-, and ADP plus collagen-stimulated monocyte-platelet aggregates. R-138727 reduced monocyte-platelet aggregate formation, thereby further inhibiting TF expression. ADP, collagen, and ADP plus collagen accelerated the kinetics of thrombin generation in recalcified whole blood and R-138727 significantly inhibited this acceleration. Clot strength in a modified thromboelastograph system was also inhibited by R-138727 (IC50 0.7 +/- 0.1 microM). CONCLUSIONS In addition to its previously known inhibitory effects on platelet activation and aggregation, the active metabolite of prasugrel, R-138727, inhibits platelet procoagulant activity in whole blood (as determined by phosphatidylserine expression on platelets and TF expression on monocyte-platelet aggregates), resulting in the functional consequences of delayed thrombin generation and impaired clot development.
Collapse
Affiliation(s)
- A L Frelinger
- Center for Platelet Function Studies, and Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tomlinson MG, Calaminus SD, Berlanga O, Auger JM, Bori-Sanz T, Meyaard L, Watson SP. Collagen promotes sustained glycoprotein VI signaling in platelets and cell lines. J Thromb Haemost 2007; 5:2274-83. [PMID: 17764536 DOI: 10.1111/j.1538-7836.2007.02746.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glycoprotein (GP)VI is the major signaling receptor for collagen on platelets and signals via the associated FcRgamma-chain, which has an immunoreceptor tyrosine-containing activation motif (ITAM). OBJECTIVE To determine why GPVI-FcRgamma signals poorly, or not at all, in response to collagen in hematopoietic cell lines, despite robust responses to the GPVI-reactive snake venom toxin convulxin. METHODS AND RESULTS Using a nuclear factor of activated T-cells (NFAT) transcriptional reporter assay, a sensitive readout for sustained ITAM signaling, we demonstrate collagen-induced GPVI-FcRgamma signaling in hematopoietic cell lines. This is accompanied by relatively weak but sustained protein tyrosine phosphorylation, in contrast to the stronger but transient response to convulxin. Sustained signaling by collagen is also observed in platelets and is necessary for the maintenance of spreading on collagen. Finally, in cell lines, the inhibitory collagen receptor leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), which is not expressed on platelets but is present on most hematopoietic cells, inhibits GPVI responses to collagen but not convulxin. CONCLUSION The inability of previous studies to readily detect GPVI collagen signaling in cell lines is probably because of the weak but sustained nature of the signal and the presence of the inhibitory collagen receptor LAIR-1. In platelets, we propose that GPVI-FcRgamma has evolved to transmit sustained signals in order to maintain spreading over several hours, as well as facilitating rapid activation through release of feedback agonists and integrin activation. The establishment of a cell line NFAT assay will facilitate the molecular dissection of GPVI signaling and the identification of GPVI antagonists in drug discovery.
Collapse
Affiliation(s)
- M G Tomlinson
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Stable platelet adhesion to extracellular matrices and the formation of a hemostatic or pathological thrombus are dependent on integrin alphaIIbbeta3, also known as GPIIb-IIIa. However, maximal platelet responses to vascular injury may involve the participation of other integrins expressed in platelets (alphaVbeta3, alpha2beta1, alpha5beta1, and alpha6beta1). Platelet membrane 'immunoreceptors' contain at least one subunit with an extracellular immunoglobulin superfamily domain and/or an intracellular stimulatory immunoreceptor tyrosine-based activation motif (ITAM) or immunoreceptor tyrosine-based inhibitory motif (ITIM). Platelet ITAM receptors, such as FcgammaRIIA and the GPVI-FcRgamma complex, promote activation of integrins, while ITIM receptors, such as platelet-endothelial cell adhesion molecule-1, may promote their inhibition. This review summarizes the structure and function of platelet integrins and immunoreceptors, the emerging functional relationships between these receptor classes, and the consequences of their interaction for platelet function in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Ana Kasirer-Friede
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0726, USA.
| | | | | |
Collapse
|
27
|
Calvo E, Tokumasu F, Marinotti O, Villeval JL, Ribeiro JMC, Francischetti IMB. Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin alpha2beta1, and von Willebrand factor. J Biol Chem 2007; 282:26928-26938. [PMID: 17650501 PMCID: PMC2913440 DOI: 10.1074/jbc.m705669200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Blood-sucking arthropods have evolved a number of inhibitors of platelet aggregation and blood coagulation. In this study we have molecularly and functionally characterized aegyptin, a member of the family of 30-kDa salivary allergens from Aedes aegypti, whose function remained elusive thus far. Aegyptin displays a unique sequence characterized by glycine, glutamic acid, and aspartic acid repeats and was shown to specifically block collagen-induced human platelet aggregation and granule secretion. Plasmon resonance experiments demonstrate that aegyptin binds to collagen types I-V (K(d) approximately 1 nm) but does not interact with vitronectin, fibronectin, laminin, fibrinogen, and von Willebrand factor (vWf). In addition, aegyptin attenuates platelet adhesion to soluble or fibrillar collagen. Furthermore, aegyptin inhibits vWf interaction with collagen type III under static conditions and completely blocks platelet adhesion to collagen under flow conditions at high shear rates. Notably, aegyptin prevents collagen but not convulxin binding to recombinant glycoprotein VI. These findings suggest that aegyptin recognizes specific binding sites for glycoprotein VI, integrin alpha2beta1, and vWf, thereby preventing collagen interaction with its three major ligands. Aegyptin is a novel tool to study collagen-platelet interaction and a prototype for development of molecules with antithrombotic properties.
Collapse
Affiliation(s)
- Eric Calvo
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-8132
| | - Fuyuki Tokumasu
- Biochemical and Biophysical Parasitology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-8132
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900
| | - Jean-Luc Villeval
- INSERM, U790, Université Paris XI, Institut Gustave Roussy, 94805 Villejuif, France
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-8132
| | - Ivo M B Francischetti
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-8132.
| |
Collapse
|
28
|
White TC, Berny MA, Robinson DK, Yin H, DeGrado WF, Hanson SR, McCarty OJT. The leech product saratin is a potent inhibitor of platelet integrin α2β1 and von Willebrand factor binding to collagen. FEBS J 2007; 274:1481-91. [PMID: 17489103 DOI: 10.1111/j.1742-4658.2007.05689.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Subendothelial collagen plays an important role, via both direct and indirect mechanisms, in the initiation of thrombus formation at sites of vascular injury. Collagen binds plasma von Willebrand factor, which mediates platelet recruitment to collagen under high shear. Subsequently, the direct binding of the platelet receptors glycoprotein VI and alpha2beta1 to collagen is critical for platelet activation and stable adhesion. Leeches, have evolved a number of inhibitors directed towards platelet-collagen interactions so as to prevent hemostasis in the host during hematophagy. In this article, we describe the molecular mechanisms underlying the ability of the leech product saratin to inhibit platelet binding to collagen. In the presence of inhibitors of ADP and thromboxane A2, both saratin and 6F1, a blocking alpha2beta1 mAb, abrogated platelet adhesion to fibrillar and soluble collagen. Additionally, saratin eliminated alpha2beta1-dependent platelet adhesion to soluble collagen in the presence of an Src kinase inhibitor. Moreover, saratin prevented platelet-rich plasma adhesion to fibrillar collagen, a process dependent upon both alpha2beta1 and von Willebrand factor binding to collagen. Furthermore, saratin specifically inhibited the binding of the alpha2 integrin subunit I domain to collagen, and prevented platelet adhesion to collagen under flow to the same extent as observed in the presence of a combination of mAbs to glycoprotein Ib and alpha2beta1. These results demonstrate that saratin interferes with integrin alpha2beta1 binding to collagen in addition to inhibiting von Willebrand factor-collagen binding, presumably by binding to an overlapping epitope on collagen. This has significant implications for the use of saratin as a tool to inhibit platelet-collagen interactions.
Collapse
Affiliation(s)
- Tara C White
- Department of Biomedical Engineering, Oregon Health & Science University, 13B-CHH, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Hughan SC, Watson SP. Differential regulation of adapter proteins Dok2 and Dok1 in platelets, leading to an association of Dok2 with integrin alphaIIbbeta3. J Thromb Haemost 2007; 5:387-94. [PMID: 17092301 DOI: 10.1111/j.1538-7836.2007.02307.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND We previously demonstrated that Dok2 is rapidly phosphorylated on tyrosine residues in platelets in response to thrombin, the immunoreceptor tyrosine-based activation motif-coupled collagen receptor glycoprotein (GP) VI, and by integrin alphaIIbbeta3. OBJECTIVES AND METHODS In this study we further delineate the regulation of phosphorylation of Dok2 and compare this to the related adapter Dok1. RESULTS We demonstrate expression of Dok1 in platelets and the unexpected observation that the adapter protein undergoes tyrosine phosphorylation in response to thrombin but not to GPVI or integrin alphaIIbbeta3. Furthermore, Dok1 phosphorylation is transient, peaking at 30 s and returning to basal by 5 min, whereas Dok2 phosphorylation is delayed but sustained. Dok2 phosphorylation, but not that of Dok1, is inhibited by Src kinase inhibitors and by chelation of intracellular calcium. Further, phosphorylation of Dok2 by thrombin and integrin alphaIIbbeta3 in mouse platelets is independent of Syk and phospholipase Cgamma2. Additionally, Dok2 coimmunoprecipitates with integrin alphaIIbbeta3 downstream of Src kinases. CONCLUSIONS These results demonstrate differential modes of regulation of Dok1 and Dok2 in platelets. Further, they raise the interesting possibility that Dok2 plays an important role in integrin outside-in signaling through a physical and functional interaction with integrin alphaIIbbeta3.
Collapse
Affiliation(s)
- S C Hughan
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
30
|
Nesbitt WS, Jackson SP. Imaging signaling processes in platelets. Blood Cells Mol Dis 2006; 36:139-44. [PMID: 16497522 DOI: 10.1016/j.bcmd.2005.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/19/2005] [Indexed: 01/22/2023]
Abstract
Unraveling the complex signaling processes regulating platelet adhesion has been a longstanding goal for those in the field of platelet research. Advances in high-speed live cell imaging techniques, taking advantage of developments in the area of fluorescent probe design hold considerable promise for the investigation of the dynamic signaling processes governing platelet activation and function, both physiologically and pathologically. This review broadly covers the application of existing imaging techniques to the investigation of platelet function and examines new developments in the area of live cell imaging that may have future applications in the field.
Collapse
Affiliation(s)
- Warwick S Nesbitt
- The Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Educational Precinct, Prahran, Victoria 3181, Australia
| | | |
Collapse
|
31
|
Riondino S, Pulcinelli FM. Further evidence that fibrillar collagen is unable to promote platelet shape change and aggregation in the absence of secondary agonists. A rebuttal. J Thromb Haemost 2006; 4:291-2; author reply 292-3. [PMID: 16409498 DOI: 10.1111/j.1538-7836.2005.01707.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
Jararhagin is a 52 kDa hemorrhagic P-III metalloproteinase isolated from the venom of the medically important Brazilian pit-viper Bothrops jararaca. It is a member of the reprolysin family of zinc metalloproteinases containing a catalytic metalloproteinase domain followed by a disintegrin-like and a cysteine-rich domain. The impact of jararhagin on hemostasis has been extensively studied using in vitro and in vivo model systems as well as in clinical studies. Jararhagin-induced hemorrhage is the result of the degradation of sub-endothelial matrix proteins leading to the disruption of the blood vessel endothelium, with accompanying disturbances in platelet function. The versatility of jararhagin is further demonstrated by its direct action on von Willebrand factor, the degradation of fibrinogen, by its inhibition of platelet adhesion to collagen and by its inability to be affected by the plasma inhibitor alpha(2)-macroglobulin. Collagen-induced platelet aggregation is inhibited by jararhagin though the binding of the molecule to the alpha(2) subunit I domain of the platelet surface alpha(2)beta(1) integrin (collagen receptor). Jararhagin also cleaves the beta(1) subunit of the same integrin, inhibiting platelet interaction and ultimately causing impairment of signal transduction. The effect of jararhagin on cell systems other than platelets is evaluated; in fibroblasts, jararhagin functions as a collagen-mimetic substrate and, in endothelial cells, it causes apoptosis and indirectly inhibits cell proliferation by release of angiostatin-like compounds. Jararhagin induces a strong pro-inflammatory response characterized by intense leukocyte accumulation at the site of the injection. Although hemorrhage and edema are a response to the direct effect of jararhagin, jararhagin-induced inflammation and necrosis are dependent on macrophages and key pro-inflammatory cytokines or their receptors. Some data also indicate that the toxin possesses anti-tumorgenic properties. Methods for inhibiting jararhagin are reviewed; this encompasses the use of synthetic peptides to the isolation of naturally occurring mammalian peptides and the development of toxin-specific antibodies through DNA immunisation and monoclonal antibody technologies. The availability of jararhagin makes it an important tool for research into the mechanisms of action of similar toxins, for insights into cellular interactions and for clinical investigations into the treatment of envenomings from B. jararaca.
Collapse
Affiliation(s)
- Gavin D Laing
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | | |
Collapse
|
33
|
Jarvis GE, Best D, Watson SP. Glycoprotein VI/Fc receptor gamma chain-independent tyrosine phosphorylation and activation of murine platelets by collagen. Biochem J 2005; 383:581-8. [PMID: 15283702 PMCID: PMC1133752 DOI: 10.1042/bj20040654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated the ability of collagen to induce signalling and functional responses in suspensions of murine platelets deficient in the FcRgamma (Fc receptor gamma) chain, which lack the collagen receptor GPVI (glycoprotein VI). In the absence of the FcRgamma chain, collagen induced a unique pattern of tyrosine phosphorylation which was potentiated by the thromboxane analogue U46619. Immunoprecipitation studies indicated that neither collagen alone nor the combination of collagen plus U46619 induced phosphorylation of the GPVI-regulated proteins Syk and SLP-76 (Src homology 2-containing leucocyte protein of 76 kDa). A low level of tyrosine phosphorylation of phospholipase Cgamma2 was observed, which was increased in the presence of U46619, although the degree of phosphorylation remained well below that observed in wild-type platelets (approximately 10%). By contrast, collagen-induced phosphorylation of the adapter ADAP (adhesion- and degranulation-promoting adapter protein) was substantially potentiated by U46619 to levels equivalent to those observed in wild-type platelets. Collagen plus U46619 also induced significant phosphorylation of FAK (focal adhesion kinase). The functional significance of collagen-induced non-GPVI signals was highlighted by the ability of U46619 and collagen to induce the secretion of ATP in FcRgamma chain-deficient platelets, even though neither agonist was effective alone. Protein tyrosine phosphorylation and the release of ATP were abolished by the anti-(alpha2 integrin) antibodies Ha1/29 and HMalpha2, but not by blockade of alphaIIbbeta3. These results illustrate a novel mechanism of platelet activation by collagen which is independent of the GPVI-FcRgamma chain complex, and is facilitated by binding of collagen to integrin alpha2beta1.
Collapse
Affiliation(s)
- Gavin E Jarvis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | |
Collapse
|
34
|
Jarvis GE, Best D, Watson SP. Differential roles of integrins alpha2beta1 and alphaIIbbeta3 in collagen and CRP-induced platelet activation. Platelets 2005; 15:303-13. [PMID: 15370101 DOI: 10.1080/09537100410001710254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Collagen and collagen-related peptide (CRP) activate platelets by interacting with glycoprotein (GP)VI. In addition, collagen binds to integrin alpha2beta1 and possibly to other receptors. In this study, we have compared the role of integrins alpha2beta1 and alphaIIbbeta3 in platelet activation induced by collagen and CRP. Inhibitors of ADP and thromboxane A2 (TxA2) substantially attenuated collagen-induced platelet aggregation and dense granule release, whereas CRP-induced responses were only partially inhibited. Under these conditions, a proportion of platelets adhered to the collagen fibres resulting in dense granule release and alphaIIbbeta3 activation. This adhesion was substantially mediated by alpha2beta1. The alphaIIbbeta3 antagonist lotrafiban potentiated CRP-induced dense granule release, suggesting that alphaIIbbeta3 outside-in signalling may attenuate GPVI signals. By contrast, lotrafiban inhibited collagen-induced dense granule release. These results emphasise the differential roles of alpha2beta1 and alphaIIbbeta3 in platelet activation induced by collagen and CRP. Further, they show that although ADP and TxA2 greatly facilitate collagen-induced platelet activation, collagen can induce full activation of those platelets to which it binds in the absence of these mediators, via a mechanism that is dependent on adhesion to alpha2beta1.
Collapse
|
35
|
McCarty OJT, Zhao Y, Andrew N, Machesky LM, Staunton D, Frampton J, Watson SP. Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. J Thromb Haemost 2004; 2:1823-33. [PMID: 15456495 DOI: 10.1111/j.1538-7836.2004.00925.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent studies have shown that platelet adhesion and subsequent aggregation can occur in vivo in the absence of the two principal platelets adhesive ligands, von Willebrand factor and fibrinogen. These results highlight a possible role for fibronectin in supporting thrombus formation. OBJECTIVE AND METHODS To evaluate the platelet integrins and subsequent activation pathways associated with fibronectin-dependent platelet adhesion utilizing both human and murine platelets. RESULTS Platelets can adhere to fibronectin via the integrin alpha(IIb)beta(3), leading to formation of lamellipodia. This is mediated through an interaction with the tenth type III domain in fibronectin. Spreading on fibronectin promotes alpha(IIb)beta(3)-mediated Ca(2+) mobilization and tyrosine phosphorylation of focal adhesion kinase and phospholipase C gamma2. In contrast, studies with blocking antibodies and mice demonstrate that alpha(5)beta(1) and alpha(v)beta(3) support adhesion and promote formation of filopodia but not lamellipodia or tyrosine phosphorylation of these proteins. Further, neither alpha(5)beta(1) nor alpha(v)beta(3) is able to induce formation of lamellipodia in the presence of platelets agonists, such as collagen-related-peptide (CRP). CONCLUSIONS These observations demonstrate that integrins alpha(5)beta(1) and alpha(v)beta(3) support platelet adhesion and the generation of filopodia but that, in contrast to the integrin alpha(IIb)beta(3), are unable to promote formation of lamellipodia.
Collapse
Affiliation(s)
- O J T McCarty
- Centre for Cardiovascular Sciences, The Institute of Biomedical Research, Division of Medical Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kuijpers MJE, Schulte V, Oury C, Lindhout T, Broers J, Hoylaerts MF, Nieswandt B, Heemskerk JWM. Facilitating roles of murine platelet glycoprotein Ib and alphaIIbbeta3 in phosphatidylserine exposure during vWF-collagen-induced thrombus formation. J Physiol 2004; 558:403-15. [PMID: 15155790 PMCID: PMC1664961 DOI: 10.1113/jphysiol.2004.062414] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/08/2004] [Accepted: 05/14/2004] [Indexed: 12/18/2022] Open
Abstract
Vessel wall damage exposes collagen fibres, to which platelets adhere directly via the collagen receptors glycoprotein (GP) VI and integrin alpha(2)beta(1) and indirectly by collagen-bound von Willebrand factor (vWF) via the GPIb-V-IX and integrin alphaIIbbeta3 receptor complexes. Platelet-collagen interaction under shear stimulates thrombus formation in two ways, by integrin-dependent formation of platelet aggregates and by surface exposure of procoagulant phosphatidylserine (PS). GPVI is involved in both processes, complemented by alpha2beta1. In mouse blood flowing over collagen, we investigated the additional role of platelet-vWF binding via GPIb and alphaIIbbeta3. Inhibition of GPIb as well as blocking of vWF binding to collagen reduced stable platelet adhesion at high shear rate. This was accompanied by delayed platelet Ca(2+) responses and reduced PS exposure, while microaggregates were still formed. Inhibition of integrin alphaIIbbeta3 with JON/A antibody, which blocks alphaIIbbeta3 binding to both vWF and fibrinogen, reduced PS exposure and aggregate formation. The JON/A effects were not enhanced by combined blocking of GPIb-vWF binding, suggesting a function for alphaIIbbeta3 downstream of GPIb. Typically, with blood from FcR gamma-chain +/- mutant mice, expressing 50% of normal platelet GPVI levels, GPIb blockage almost completely abolished platelet adhesion and PS exposure. Together, these data indicate that, under physiological conditions of flow, both adhesive receptors GPIb and alphaIIbbeta3 facilitate GPVI-mediated PS exposure by stabilizing platelet binding to collagen. Hence, these glycoproteins have an assistant procoagulant role in collagen-dependent thrombus formation, which is most prominent at reduced GPVI activity and is independent of the presence of thrombin.
Collapse
Affiliation(s)
- Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bernardo A, Bergeron AL, Sun CW, Guchhait P, Cruz MA, López JA, Dong JF. Von Willebrand factor present in fibrillar collagen enhances platelet adhesion to collagen and collagen-induced platelet aggregation. J Thromb Haemost 2004; 2:660-9. [PMID: 15102023 DOI: 10.1111/j.1538-7836.2004.00661.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined the basis of the differences observed between different collagen preparations in their ability to aggregate platelets and support their adhesion under flow. As in previous studies, we found fibrillar collagen to be 10-fold more potent than acid-soluble collagen in inducing platelet aggregation and found that acid-soluble collagen did not support the adhesion of washed platelets under flow. Further, platelets in whole blood adhered to surfaces coated with either fibrillar or acid-soluble collagen, but thrombi formed faster and grew larger on fibrillar collagen. As a possible basis for this difference, we found that fibrillar collagen, but not acid-soluble collagen, contains a substantial quantity of von Willebrand factor (VWF), as demonstrated by enzyme-linked immunosorbent assay and by the ability of fibrillar collagen to support the adhesion of VWF antibody-coated beads and to agglutinate GPIb-IX-V complex-expressing Chinese hamster ovary cells. Supporting a role for VWF in collagen-induced platelet aggregation, aggregation induced by acid-soluble collagen was greatly enhanced by added VWF. Further, platelet aggregation by fibrillar collagen was partially blocked by a GPIbalpha antibody that inhibits the GPIb-VWF interaction. Taken together, these results suggest that much of the difference in prothrombotic potency of different collagens is directly related to their differences in VWF content. This probably accounts for the different conclusions made regarding the relative importance of different direct and indirect collagen receptors in collagen-dependent platelet functions and further emphasizes the close synergistic roles of the GPIb-IX-V complex and the collagen receptors GPVI and alpha2beta1 in supporting platelet adhesion.
Collapse
Affiliation(s)
- A Bernardo
- Section of Thrombosis Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Marshall SJ, Senis YA, Auger JM, Feil R, Hofmann F, Salmon G, Peterson JT, Burslem F, Watson SP. GPIb-dependent platelet activation is dependent on Src kinases but not MAP kinase or cGMP-dependent kinase. Blood 2003; 103:2601-9. [PMID: 14684423 DOI: 10.1182/blood-2003-09-3319] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein Ib-IX-V (GPIb-IX-V) mediates platelet tethering to von Willebrand factor (VWF), recruiting platelets into the thrombus, and activates integrin alphaIIbbeta3 through a pathway that is dependent on Src kinases. In addition, recent reports indicate that activation of alphaIIbbeta3 by VWF is dependent on protein kinase G (PKG) and mitogen-activated protein (MAP) kinases. The present study compares the importance of these signaling pathways in the activation of alphaIIbbeta3 by GPIb-IX-V. In contrast to a recent report, VWF did not promote an increase in cyclic guanosine monophosphate (cGMP), while agents that elevate cGMP, such as the nitrous oxide (NO) donor glyco-SNAP-1 (N-(beta-D-glucopyranosyl)-N2-acetyl-S-nitroso-D,L-penicillaminamide) or the type 5 phosphosdiesterase inhibitor, sildenafil, inhibited rather than promoted activation of alphaIIbbeta3 by GPIb-IX-V and blocked aggregate formation on collagen at an intermediate rate of shear (800 s(-1)). Additionally, sildenafil increased blood flow in a rabbit model of thrombus formation in vivo. A novel inhibitor of the MAP kinase pathway, which is active in plasma, PD184161, had no effect on aggregate formation on collagen under flow conditions, whereas a novel inhibitor of Src kinases, which is also active in plasma, PD173952, blocked this response. These results demonstrate a critical role for Src kinases but not MAP kinases in VWF-dependent platelet activation and demonstrate an inhibitory role for cGMP-elevating agents in regulating this process.
Collapse
|
39
|
Abstract
The Tec family kinase Btk plays an important role in the regulation of phospholipase C gamma 2 (PLC gamma 2) downstream of the collagen receptor glycoprotein VI (GPVI) in human platelets. Platelets also express a second member of this family, Tec; however, its function has not been analyzed. To address the role of Tec, we analyzed Btk-/-, Tec-/-, and Btk/Tec double-deficient (Btk-/-/Tec-/-) platelets. Tec-/- platelets exhibit a minor reduction in aggregation to threshold concentrations of collagen or the GPVI-specific agonist collagen-related peptide (CRP), whereas responses to higher concentrations are normal. Tyrosine phosphorylation of PLC gamma 2 by collagen and CRP is not altered in Tec-/- platelets. However, Btk-/-/Tec-/- platelets exhibit a greater reduction in PLC gamma 2 phosphorylation than is seen in the absence of Btk, thus revealing an important role for Tec in this situation. Furthermore, Btk-/-/Tec-/- platelets fail to undergo an increase in Ca2+, aggregation, secretion, and spreading in response to collagen or CRP, whereas they aggregate normally to adenosine diphosphate (ADP) and spread on fibrinogen. A residual GPVI signal exists in the Btk-/-/Tec-/- platelets as CRP synergizes with ADP to mediate aggregation. These results demonstrate an essential requirement for Tec and Btk in platelet activation by GPVI and reveal a functional role for Tec in the regulation of PLC gamma 2 in the absence of Btk.
Collapse
Affiliation(s)
- Ben T Atkinson
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT, United Kingdom.
| | | | | |
Collapse
|
40
|
Abstract
At sites of vascular injury, platelets come into contact with subendothelial collagen, which triggers their activation and the formation of a hemostatic plug. Besides glycoprotein Ib (GPIb) and alphaIIbbeta3 integrin, which indirectly interact with collagen via von Willebrand factor (VWF), several collagen receptors have been identified on platelets, most notably alpha2beta1 integrin and the immunoglobulin (Ig) superfamily member GPVI. Within the last few years, major advances have been made in understanding platelet-collagen interactions including the molecular cloning of GPVI, the generation of mouse strains lacking individual collagen receptors, and the development of collagen receptor-specific antibodies and synthetic peptides. It is now recognized that platelet adhesion to collagen requires prior activation of integrins through "inside-out" signals generated by GPVI and reinforced by released second-wave mediators adenosine diphosphate (ADP) and thromboxane A2. These developments have led to revision of the original "2-site, 2-step" model, which now places GPVI in a central position in the complex processes of platelet tethering, activation, adhesion, aggregation, degranulation, and procoagulant activity on collagen. This review discusses these recent developments and proposes possible mechanisms for how GPVI acts in concert with other receptors and signaling pathways to initiate hemostasis and arterial thrombosis.
Collapse
Affiliation(s)
- Bernhard Nieswandt
- Department of Vascular Biology, Rudolf Virchow Center for Experimental Biomedicine Versbacher, Würzburg, Germany.
| | | |
Collapse
|