1
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Sheikh SY, Hassan F, Khan MF, Ahamad T, Ansari WA, Akhter Y, Khafagy ES, Khan AR, Nasibullah M. Drug Repurposing to Discover Novel Anti-Inflammatory Agents Inhibiting JAK3/STAT Signaling. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202205020x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Chen F, Fang J. Benefits of Targeted Molecular Therapy to Immune Infiltration and Immune-Related Genes Predicting Signature in Breast Cancer. Front Oncol 2022; 12:824166. [PMID: 35317079 PMCID: PMC8934425 DOI: 10.3389/fonc.2022.824166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to investigate the tumor-related infiltrating lymphocytes (TILs) affecting the response of trastuzumab and identify potential biomarkers based on immune-related genes to improve prognosis and clinical outcomes of targeted therapies in breast cancer. Methods Estimation of stromal and immune cells in malignant tumors using expression data (ESTIMATE) was adopted to infer the fraction of stromal and immune cells through utilizing gene expression signatures in breast tumor samples. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) algorithm was applied to characterize cell composition of 22 lymphocytes from breast cancer tissues using their gene expression profiles. Immune-related genes were collected from the Immunology Database and Analysis (ImmPort). Univariate and multivariate Cox regression analyses were performed to identify the significant independent risk factors associated with poor overall survival (OS) and breast cancer-specific survival (BCSS) of breast cancer patients. Hub genes were identified based on the protein–protein interaction (PPI) network analysis. Results Based on the ESTIMATE algorithm, a significant reduction of stromal scores was observed in tumor tissues and pretreated tumor tissues compared with nontumor and posttreated tumor tissues, respectively, while immune scores failed to present notably statistical differences between both groups. However, from the results of the univariate Cox regression analysis, the immune score was identified to be remarkably associated with the poor OS for breast cancer patients. Subsequently, the infiltrating lymphocytes were evaluated in tumor tissues based on the CIBERSORT algorithm. Furthermore, significance analysis identified 1,244 differentially expressed genes (DEGs) from the GSE114082 dataset, and then 91 overlapping immune-related DEGs were screened between GSE114082 and ImmPort datasets. Subsequently, 10 top hub genes were identified and five (IGF1, ADIPOQ, PPARG, LEP, and NR3C1) significantly correlated with worse OS and BCSS on response to trastuzumab in breast cancer patients. Conclusions This study provided an insight into the immune score based on the tumor-related infiltrating lymphocytes in breast cancer tissues and demonstrates the benefits of immune infiltration on the treatment of trastuzumab. Meanwhile, the study established a novel five immune-related gene signature to predict the OS and BCSS of breast cancer treated by trastuzumab.
Collapse
Affiliation(s)
- Fahai Chen
- CEO Office, RemeGen Co. Ltd., Yantai, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianmin Fang,
| |
Collapse
|
4
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
5
|
Lu T, Chen L, Mansour AG, Yu MJ, Brooks N, Teng KY, Li Z, Zhang J, Barr T, Yu J, Caligiuri MA. Cbl-b Is Upregulated and Plays a Negative Role in Activated Human NK Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:677-685. [PMID: 33419766 PMCID: PMC8184061 DOI: 10.4049/jimmunol.2000177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The E3 ubiquitin ligase Cbl-b has been characterized as an intracellular checkpoint in T cells; however, the function of Cbl-b in primary human NK cells, an innate immune anti-tumor effector cell, is not well defined. In this study, we show that the expression of Cbl-b is significantly upregulated in primary human NK cells activated by IL-15, IL-2, and the human NK cell-sensitive tumor cell line K562 that lacks MHC class I expression. Pretreatment with JAK or AKT inhibitors prior to IL-15 stimulation reversed Cbl-b upregulation. Downregulation of Cbl-b resulted in significant increases in granzyme B and perforin expression, IFN-γ production, and cytotoxic activity against tumor cells. Collectively, we demonstrate upregulation of Cbl-b and its inhibitory effects in IL-15/IL-2/K562-activated human NK cells, suggesting that Cbl-b plays a negative feedback role in human NK cells.
Collapse
Affiliation(s)
- Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Li Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Anthony G Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Melissa J Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Noah Brooks
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010
- Department of Immuno-Oncology, Duarte, CA 91010; and
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010;
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010
- Department of Immuno-Oncology, Duarte, CA 91010; and
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| |
Collapse
|
6
|
Hong SH, Kim HJ, Kang SJ, Park CG. Novel Immunomodulatory Approaches for Porcine Islet Xenotransplantation. Curr Diab Rep 2021; 21:3. [PMID: 33433735 DOI: 10.1007/s11892-020-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Porcine islet xenotransplantation is a promising alternative to overcome the shortage of organ donors. For the successful application of islet xenotransplantation, robust immune/inflammatory responses against porcine islets should be thoroughly controlled. Over the last few decades, there have been numerous attempts to surmount xenogeneic immune barriers. In this review, we summarize the current progress in immunomodulatory therapy for the clinical application of porcine islet xenotransplantation. RECENT FINDINGS Long-term graft survival of porcine islets was achieved by using anti-CD154 Ab-based regimens in a preclinical non-human primate (NHP) model. However, owing to a serious complication of thromboembolism in clinical trials, the development of an anti-CD154 Ab-sparing immunosuppressant procedure is required. The efficacy of new immunosuppressive practices that employ anti-CD40 Abs or other immunosuppressive reagents has been tested in a NHP model to realize their utility in porcine islet xenotransplantation. The recent progress in the development of immunomodulatory approaches, including the immunosuppressive regimen, which enables long-term graft survival in a pig-to-non-human primate islet xenotransplantation model, with their potential clinical applicability was reviewed.
Collapse
Affiliation(s)
- So-Hee Hong
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea
| | - Seong-Jun Kang
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea.
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea.
- Xenotransplantation Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
7
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways. Unmet medical needs in the treatment of autoimmune and inflammatory diseases still exist. This Review discusses the activity of kinases that regulate production of inflammatory mediators and the recent advances in developing inhibitors to target such kinases.
Collapse
|
8
|
Bach J, Eastwood P, González J, Gómez E, Alonso JA, Fonquerna S, Lozoya E, Orellana A, Maldonado M, Calaf E, Albertí J, Pérez J, Andrés A, Prats N, Carreño C, Calama E, De Alba J, Calbet M, Miralpeix M, Ramis I. Identification of 2-Imidazopyridine and 2-Aminopyridone Purinones as Potent Pan-Janus Kinase (JAK) Inhibitors for the Inhaled Treatment of Respiratory Diseases. J Med Chem 2019; 62:9045-9060. [PMID: 31609613 DOI: 10.1021/acs.jmedchem.9b00533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Janus kinases (JAKs) have a key role in regulating the expression and function of relevant inflammatory cytokines involved in asthma and chronic obstructive pulmonary disease. Herein are described the design, synthesis, and pharmacological evaluation of a series of novel purinone JAK inhibitors with profiles suitable for inhaled administration. Replacement of the imidazopyridine hinge binding motif present in the initial compounds of this series with a pyridone ring resulted in the mitigation of cell cytotoxicity. Further systematic structure-activity relationship (SAR) efforts driven by structural biology studies led to the discovery of pyridone 34, a potent pan-JAK inhibitor with good selectivity, long lung retention time, low oral bioavailability, and proven efficacy in the lipopolysaccharide-induced rat model of airway inflammation by the inhaled route.
Collapse
|
9
|
Tofacitinib Halts Progression of Graft Dysfunction in a Rat Model of Mixed Cellular and Humoral Rejection. Transplantation 2019; 102:1075-1084. [PMID: 29620612 DOI: 10.1097/tp.0000000000002204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The progression from acute to chronic antibody-mediated rejection in kidney transplant recipients is usually not prevented by current therapeutic options. Here, we investigated whether the use of tofacitinib (TOFA), a Janus kinase 3 inhibitor, was capable of preventing the progression of allograft dysfunction in a Fisher-to-Lewis rat model of kidney transplantation. METHODS Rats were treated from the third week after transplantation to allow the development of rejection. Treatment was based on cyclosporin A, rapamycin or TOFA. Renal function was assessed at 1, 4, 8, and 12 weeks after transplantation, whereas rat survival, histological lesions, and infiltrating lymphocytes were analyzed at 12 weeks. RESULTS Tofacitinib prolonged graft survival, preserved tubular and glomerular structures and reduced humoral damage characterized by C4d deposition. Tofacitinib was able to reduce donor-specific antibodies. In addition, T and natural killer cell graft infiltration was reduced in TOFA-treated rats. Although rapamycin-treated rats also showed prolonged graft survival, glomerular structures were more affected. Moreover, only TOFA treatment reduced the presence of T, B and natural killer cells in splenic parenchyma. CONCLUSIONS Tofacitinib is able to reduce the immune response generated in a rat model of kidney graft rejection, providing prolonged graft and recipient survival, better graft function, and less histological lesions.
Collapse
|
10
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
PURPOSE OF REVIEW Given the recent increase in the profile and use of Janus kinase inhibitors (JAKinibs) in adult patients with rheumatic diseases, we aimed to review the current evidence accruing for use in paediatric rheumatology patients. RECENT FINDINGS Significant advances have been made in the management of rheumatic diseases in the past two decades. The introduction of biologic agents in both adults and children has provided significant improvements to patient outcomes and led to better quality of life. Moreover, responses to similar agents allude to common effector pathways operating across juvenile and adult synovitis especially. However, inefficacy and intolerance of these agents leads to a subset of children with limited treatment options. Since 2012, Janus kinase (JAK) inhibitors (JAKinibs), a novel group of oral small molecule inhibitors, have demonstrated their efficacy in several forms of adult inflammatory arthritis, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). There are hopes that these successes will be transferable to the paediatric population. In the following review, we discuss the development and progress of JAKinibs in this regard.
Collapse
Affiliation(s)
- S. A. Kerrigan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UG12 8TA UK
| | - I. B. McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UG12 8TA UK
| |
Collapse
|
12
|
Collinge M, Ball DJ, Bowman CJ, Nilson AL, Radi ZA, Vogel WM. Immunologic effects of chronic administration of tofacitinib, a Janus kinase inhibitor, in cynomolgus monkeys and rats - Comparison of juvenile and adult responses. Regul Toxicol Pharmacol 2018; 94:306-322. [PMID: 29454012 DOI: 10.1016/j.yrtph.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/25/2023]
Abstract
Tofacitinib, an oral Janus kinase (JAK) inhibitor for treatment of rheumatoid arthritis, targets JAK1, JAK3, and to a lesser extent JAK2 and TYK2. JAK1/3 inhibition impairs gamma common chain cytokine receptor signaling, important in lymphocyte development, homeostasis and function. Adult and juvenile cynomolgus monkey and rat studies were conducted and the impact of tofacitinib on immune parameters (lymphoid tissues and lymphocyte subsets) and function (T-dependent antibody response (TDAR), mitogen-induced T cell proliferation) assessed. Tofacitinib administration decreased circulating T cells and NK cells in juvenile and adult animals of both species. B cell decreases were observed only in rats. These changes and decreased lymphoid tissue cellularity are consistent with the expected pharmacology of tofacitinib. No differences were observed between juvenile and adult animals, either in terms of doses at which effects were observed or differential effects on immune endpoints. Lymphomas were observed in three adult monkeys. Tofacitinib impaired the primary TDAR in juvenile monkeys, although a recall response was generated. Complete or partial reversal of the effects on the immune system was observed.
Collapse
Affiliation(s)
- Mark Collinge
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA.
| | - Douglas J Ball
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Christopher J Bowman
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Andrea L Nilson
- Pfizer Worldwide Research and Development, Drug Safety R&D, Eastern Point Road, Groton, CT 06340, USA
| | - Zaher A Radi
- Pfizer Worldwide Research and Development, Drug Safety R&D, One Portland Street, Cambridge, MA 02139, USA
| | - W Mark Vogel
- Pfizer Worldwide Research and Development, Drug Safety R&D, One Portland Street, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Zhan Y, Han Y, Sun H, Liang T, Zhang C, Song J, Hou G. Down-regulating cyclin-dependent kinase 9 of alloreactive CD4+ T cells prolongs allograft survival. Oncotarget 2018; 7:24983-94. [PMID: 27102157 PMCID: PMC5041884 DOI: 10.18632/oncotarget.8804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/06/2016] [Indexed: 01/27/2023] Open
Abstract
CDK9 (Cyclin-dependent kinase 9)/Cyclin T1/RNA polymerase II pathway has been demonstrated to promote the development of several inflammatory diseases, such as arthritis or atherosclerosis, however, its roles in allotransplantation rejection have not been addressed. Here, we found that CDK9/Cyclin T1 were apparently up-regulated in the allogeneic group, which was positively correlated with allograft damage. CDK9 was inhibited obviously in naive splenic CD4+ T cells treated 6 h with 3 μM PHA767491 (a CDK9 inhibitor), and adoptive transfer of these CD4+ T cells into allografted SCID mice resulted in prolonged survival compared with the group without PHA767491 pretreated. Decelerated rejection was correlated with enhanced IL-4 and IL-10 production and with decreased IFN-γ production by alloreactive T cells. More interestingly, we found that CDK942, not CDK955, was high expressed in allorejection group, which could be prominently dampened with PHA767491 treatment. The expression of CDK942 was consistent with its downstream molecule RNA polymerase II. Altogether, our findings revealed the crucial role of CDK9/Cyclin T1/Pol II pathway in promoting allorejection at multiple levels and may provide a new approach for transplantation tolerance induction through targeting CDK9.
Collapse
Affiliation(s)
- Yang Zhan
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yeming Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hukui Sun
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Liang
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chao Zhang
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Song
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Guihua Hou
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 2017; 17:78. [PMID: 29282366 PMCID: PMC6168198 DOI: 10.1038/nrd.2017.267] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This corrects the article DOI: 10.1038/nrd.2017.201.
Collapse
|
15
|
JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 2017; 16:843-862. [PMID: 29104284 DOI: 10.1038/nrd.2017.201] [Citation(s) in RCA: 644] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of cytokines as key drivers of immune-mediated diseases has spurred efforts to target their associated signalling pathways. Janus kinases (JAKs) are essential signalling mediators downstream of many pro-inflammatory cytokines, and small-molecule inhibitors of JAKs (jakinibs) have gained traction as safe and efficacious options for the treatment of inflammation-driven pathologies such as rheumatoid arthritis, psoriasis and inflammatory bowel disease. Building on the clinical success of first-generation jakinibs, second-generation compounds that claim to be more selective are currently undergoing development and proceeding to clinical trials. However, important questions remain about the advantages and limitations of improved JAK selectivity, optimal routes and dosing regimens and how best to identify patients who will benefit from jakinibs. This Review discusses the biology of jakinibs from a translational perspective, focusing on recent insights from clinical trials, the development of novel agents and the use of jakinibs in a spectrum of immune and inflammatory diseases.
Collapse
|
16
|
Lai Y, Kuang F, Shan Z, Liu H. A New Concept of the Old Inhibitor NSC 74859 in Alleviating Cardiac Allograft Rejection and Extending Allograft Survival in Mice. Ann Transplant 2017; 22:656-662. [PMID: 29097651 PMCID: PMC6248023 DOI: 10.12659/aot.905688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background STAT1/4 has been suggested to be involved in cardiac allograft rejection. However, no direct evidence regarding STAT3 has been established in cardiac allograft rejection. Here, we hypothesized that inhibition of STAT3 attenuates cardiac allograft rejection. Material/Methods To test our hypothesis, homotopic mouse heart transplantation was carried out in syngeneic C57BL/6 to C57BL/6 strain mice with or without oral gavage with NSC 74859, an inhibitor of STAT3. The immune response was investigated using real-time PCR for CD4 and CD8 surface makers of T cells and CD14 of monocytes and cytokines, including IL-2, IL-15, and IL-6 of allografts at 3, 6, and 9 days after transplantation. Prognosis was also evaluated. Results We found that allografts with oral gavage of NSC 74859 whose CD4, CD8 T, and CD14 monocytes were significantly lower than that of allograft without oral gavage of NSC 74859, and the same was true for the expression of IL-2, IL-15, and IL-6. Immunohistochemical analysis of grafts showed reduced infiltration of monocytes/macrophages into the graft myocardium. Survival was also markedly extended in the NSC 74859 group. Conclusions Inhibition of IL-6/STAT3 using NSC 74859 was shown to remarkably alleviate cardiac allograft rejection in mice, indicating that the target against IL-6/STAT3 pathway might be clinically used as an alternative therapy for cardiac allograft rejection.
Collapse
Affiliation(s)
- Yiquan Lai
- Department of Cardiac Surgery, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| | - Feng Kuang
- Department of Cardiac Surgery, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| | - Zhonggui Shan
- Department of Cardiac Surgery, First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| | - Huaqing Liu
- Department of Neurology, People's Hospital of Zhangqiu, Jinan, Shandong, China (mainland)
| |
Collapse
|
17
|
Shimaoka H, Takeno S, Maki K, Sasaki T, Hasegawa S, Yamashita Y. A cytokine signal inhibitor for rheumatoid arthritis enhances cancer metastasis via depletion of NK cells in an experimental lung metastasis mouse model of colon cancer. Oncol Lett 2017; 14:3019-3027. [PMID: 28928840 DOI: 10.3892/ol.2017.6473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/31/2017] [Indexed: 01/18/2023] Open
Abstract
Current therapy for rheumatoid arthritis (RA) relies on global suppression of the immune response or specific blockade of inflammatory cytokines. However, it is unclear how immunosuppressants affect patients with cancer. Therefore, in the present study, the effect of three biological agents, tofacitinib, anti-mouse IL-6 receptor antibody (MR16-1) and etanercept, which are used for the treatment of RA diseases, on a tumor-bearing mouse model was investigated. The effect of the three agents was examined using a mouse lung-metastasis model with the murine colon 26 cancer cell line. Lymphocyte subsets and natural killer (NK) cells in peripheral blood and spleen were analyzed using fluorescence-activated cell sorting, and the number of lung surface nodules was examined. In the continuous tofacitinib administration (15 mg/kg/day) group, the number of lung surface nodules was significantly increased compared with that of the vehicle-treated group (vehicle, 1.20±0.58; tofacitinib, 35.6±10.81; P<0.01). NK cell number in the blood and spleen of tofacitinib-treated mice was decreased 10-fold, and the percentage of cluster of differentiation (CD)11+CD27- NK cells was significantly reduced. MR16-1 [8 mg/mouse; once a week; intraperitoneal (i.p.)] or etanercept (1 mg/mouse; 3 times a week; i.p.) treatment did not affect the number of NK cells or lung metastasis. In the present study, immunosuppressants that target cytokines, including tofacitinib, were demonstrated to inhibit the proliferation and differentiation of NK cells, and exhibit the potential to promote cancer metastasis using a mouse model of lung metastasis.
Collapse
Affiliation(s)
- Hideki Shimaoka
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Jyounan, Fukuoka 814-0180, Japan
| | - Shinsuke Takeno
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Jyounan, Fukuoka 814-0180, Japan.,Department of Surgery, Miyazaki University Faculty of Medicine, Miyazaki, Miyazaki 889-1692, Japan
| | - Kenji Maki
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Jyounan, Fukuoka 814-0180, Japan
| | - Takahide Sasaki
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Jyounan, Fukuoka 814-0180, Japan
| | - Suguru Hasegawa
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Jyounan, Fukuoka 814-0180, Japan
| | - Yuichi Yamashita
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Jyounan, Fukuoka 814-0180, Japan
| |
Collapse
|
18
|
The Selective JAK1/3-Inhibitor R507 Mitigates Obliterative Airway Disease Both With Systemic Administration and Aerosol Inhalation. Transplantation 2017; 100:1022-31. [PMID: 26910327 DOI: 10.1097/tp.0000000000001110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The efficacy of selective Janus kinase 1/3 inhibitor R507 to prevent obliterative airway disease was analyzed in preclinical airway transplantation models. METHODS Orthotopic trachea transplantations were performed between Lewis donors and Brown Norway rat recipients. Oral everolimus (4 mg/kg once per day) or oral respective inhaled R507 (60 mg/kg twice per day, each) was used for immunosuppression. Grafts were retrieved after 6 or 60 days. Toxicity and anti-inflammatory effects of R507 were analyzed on human airway epithelial cells. RESULTS In 6-day animals, oral and inhaled R507 more potently diminished mononuclear graft infiltration than everolimus and preserved ciliated pseudostratified columnar respiratory epithelium. Everolimus and R507 similarly suppressed systemic cellular and humoral immune activation. In untreated rats, marked obliterative airway disease developed over 60 days. Oral and inhaled R507 was significantly more effective in reducing airway obliteration and preserved the morphology of the airway epithelium. Luciferase-positive donors revealed that a substantial amount of smooth muscle cells within the obliterative tissue was of donor origin. Only everolimus but not R507, adversely altered kidney function and lipid profiles. The R507 aerosol did not show airway toxicity in vitro but effectively suppressed activation of inflammatory signaling pathways induced by IL-1β. CONCLUSIONS The Janus kinase 1/3 inhibitor R507 is a very well-tolerated immunosuppressant that similarly diminished obliterative airway disease with systemic or inhaled administration.
Collapse
|
19
|
Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G. Synthesis and antitumor activities of 1,2,3-triazines and their benzo- and heterofused derivatives. Eur J Med Chem 2017; 142:74-86. [PMID: 28615111 DOI: 10.1016/j.ejmech.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
1,2,3-Triazines are a class of biologically active compounds that exhibit a broad spectrum of activities, including antibacterial, antifungal, antiviral, antiproliferative, analgesic and anti-inflammatory properties. This review, which covers the literature from the end of last century to 2016, treats, through a comprehensive, systematic approach, the 1,2,3-triazine and related benzo- and hetero-fused derivatives possessing antitumor activity. Their efficacy, combined with a simple synthesis confers to these molecules a great potential as scaffold for the development of antitumor compounds.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
20
|
Calama E, Ramis I, Domènech A, Carreño C, De Alba J, Prats N, Miralpeix M. Tofacitinib ameliorates inflammation in a rat model of airway neutrophilia induced by inhaled LPS. Pulm Pharmacol Ther 2017; 43:60-67. [DOI: 10.1016/j.pupt.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023]
|
21
|
Galluzzo M, D'Adamio S, Servoli S, Bianchi L, Chimenti S, Talamonti M. Tofacitinib for the treatment of psoriasis. Expert Opin Pharmacother 2017; 17:1421-33. [PMID: 27267933 DOI: 10.1080/14656566.2016.1195812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The identification of a number of psoriasis-susceptibility genes and a better understanding of the pathogenesis of the intracellular metabolic pathways, have generated new perspectives on psoriasis treatment, in particular new compounds that inhibit certain intracellular proteins involved in the immune response. In contrast to biologic agents, these compounds block intracellular targets such as transcriptional factors or enzymes. AREAS COVERED Tofacitinib is a small molecule that acts as a reversible, competitive inhibitor of ATP in the ATP binding site of JAK proteins, determining their inactivation, thus prevents the downstream activation of the STAT proteins, which are then unable to up-regulate the pro-inflammatory genes implicated in psoriasis. The authors present an overview of Phases I - III clinical trials of tofacitinib for psoriasis based on peer-reviewed literature. EXPERT OPINION In clinical practice, it is important to assess the response of psoriasis to tofacitinib and identify possible clinical, genetic, and immune biomarkers to predict the response. Comorbidities associated with psoriasis, in particular metabolic syndrome and obesity, are also an important aspect of using tofacitinib in clinical practice. There are some evidences that a drug such as tofacitinib could be used to improve not only psoriasis, but also some of its important comorbidities.
Collapse
Affiliation(s)
- M Galluzzo
- a Department of Dermatology , University of Rome 'Tor Vergata' , Rome , Italy
| | - S D'Adamio
- a Department of Dermatology , University of Rome 'Tor Vergata' , Rome , Italy
| | - S Servoli
- a Department of Dermatology , University of Rome 'Tor Vergata' , Rome , Italy
| | - L Bianchi
- a Department of Dermatology , University of Rome 'Tor Vergata' , Rome , Italy
| | - S Chimenti
- a Department of Dermatology , University of Rome 'Tor Vergata' , Rome , Italy
| | - M Talamonti
- a Department of Dermatology , University of Rome 'Tor Vergata' , Rome , Italy
| |
Collapse
|
22
|
Moore CA, Iasella CJ, Venkataramanan R, Lakkis FG, Smith RB, McDyer JF, Zeevi A, Ensor CR. Janus kinase inhibition for immunosuppression in solid organ transplantation: Is there a role in complex immunologic challenges? Hum Immunol 2016; 78:64-71. [PMID: 27998802 DOI: 10.1016/j.humimm.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 01/02/2023]
Abstract
Inhibition of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway for immunosuppression in solid organ transplantation is appealing due to its specificity for immune cell function, particularly for JAK3. This is due to its unique association with only the common gamma chain (γc). The γc is an appealing immunosuppression target in transplantation because of the critically important lymphokines that act at it, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Tofacitinib was initially purported to selectively inhibit solely JAK3, but subsequent analyses have also demonstrated its activity at the other members of the JAK family. Clinical outcomes have validated tofacitinib's pan-JAK activity in kidney transplantation after demonstrating an increased risk of infection and malignancy as compared to CNI-based regimens. After these trials, tofacitinib investigation for use in transplantation has effectively ceased. However, a post-hoc analysis has shed new light on the monitoring of tofacitinib exposure in order to predict infection and oncologic events. With new methods to monitor tofacitinib exposure, clinicians may be able to effectively reduce toxicities while providing a high level of immunosuppression. The purpose of this review to identify when, and for whom, JAK inhibitors may provide benefit in solid organ transplantation.
Collapse
Affiliation(s)
- Cody A Moore
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Carlo J Iasella
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fadi G Lakkis
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Thomas E. Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Randall B Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adriana Zeevi
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher R Ensor
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Abdelhameed AS, Nusrat S, Ajmal MR, Zakariya SM, Zaman M, Khan RH. A biophysical and computational study unraveling the molecular interaction mechanism of a new Janus kinase inhibitor Tofacitinib with bovine serum albumin. J Mol Recognit 2016; 30. [DOI: 10.1002/jmr.2601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy; King Saud University; Riyadh Saudi Arabia
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| | | | | | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| |
Collapse
|
24
|
Buetti-Dinh A, O’Hare T, Friedman R. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy. PLoS One 2016; 11:e0163011. [PMID: 27669408 PMCID: PMC5036789 DOI: 10.1371/journal.pone.0163011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (ABD); (RF)
| | - Thomas O’Hare
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, United States of America
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, United States of America
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- * E-mail: (ABD); (RF)
| |
Collapse
|
25
|
|
26
|
Llop-Guevara A, Porras M, Cendón C, Di Ceglie I, Siracusa F, Madarena F, Rinotas V, Gómez L, van Lent PL, Douni E, Chang HD, Kamradt T, Román J. Simultaneous inhibition of JAK and SYK kinases ameliorates chronic and destructive arthritis in mice. Arthritis Res Ther 2015; 17:356. [PMID: 26653844 PMCID: PMC4675041 DOI: 10.1186/s13075-015-0866-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Despite the broad spectrum of antirheumatic drugs, RA is still not well controlled in up to 30-50 % of patients. Inhibition of JAK kinases by means of the pan-JAK inhibitor tofacitinib has demonstrated to be effective even in difficult-to-treat patients. Here, we discuss whether the efficacy of JAK inhibition can be improved by simultaneously inhibiting SYK kinase, since both kinases mediate complementary and non-redundant pathways in RA. METHODS Efficacy of dual JAK + SYK inhibition with selective small molecule inhibitors was evaluated in chronic G6PI-induced arthritis, a non-self-remitting and destructive arthritis model in mice. Clinical and histopathological scores, as well as cytokine and anti-G6PI antibody production were assessed in both preventive and curative protocols. Potential immunotoxicity was also evaluated in G6PI-induced arthritis and in a 28-day TDAR model, by analysing the effects of JAK + SYK inhibition on hematological parameters, lymphoid organs, leukocyte subsets and cell function. RESULTS Simultaneous JAK + SYK inhibition completely prevented mice from developing arthritis. This therapeutic strategy was also very effective in ameliorating already established arthritis. Dual kinase inhibition immediately resulted in greatly decreased clinical and histopathological scores and led to disease remission in over 70 % of the animals. In contrast, single JAK inhibition and anti-TNF therapy (etanercept) were able to stop disease progression but not to revert it. Dual kinase inhibition decreased Treg and NK cell counts to the same extent as single JAK inhibition but overall cytotoxicity remained intact. Interestingly, treatment discontinuation rapidly reversed such immune cell reduction without compromising clinical efficacy, suggesting long-lasting curative effects. Dual kinase inhibition reduced the Th1/Th17 cytokine cascade and the differentiation and function of joint cells, in particular osteoclasts and fibroblast-like synoviocytes. CONCLUSIONS Concurrent JAK + SYK inhibition resulted in higher efficacy than single kinase inhibition and TNF blockade in a chronic and severe arthritis model. Thus, blockade of multiple immune signals with dual JAK + SYK inhibition represents a reasonable therapeutic strategy for RA, in particular in patients with inadequate responses to current treatments. Our data supports the multiplicity of events underlying this heterogeneous and complex disease.
Collapse
Affiliation(s)
| | - Mónica Porras
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| | - Carla Cendón
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
- Deutsches Rheuma-Forschungszentrum, Berlin, Germany.
| | | | | | | | - Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.
| | - Lluís Gómez
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| | | | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | | | | | - Juan Román
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| |
Collapse
|
27
|
Losdyck E, Hornakova T, Springuel L, Degryse S, Gielen O, Cools J, Constantinescu SN, Flex E, Tartaglia M, Renauld JC, Knoops L. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities. J Biol Chem 2015; 290:29022-34. [PMID: 26446793 DOI: 10.1074/jbc.m115.670224] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 01/22/2023] Open
Abstract
JAK1 and JAK3 are recurrently mutated in acute lymphoblastic leukemia. These tyrosine kinases associate with heterodimeric cytokine receptors such as IL-7 receptor or IL-9 receptor, in which JAK1 is appended to the specific chain, and JAK3 is appended to the common gamma chain. Here, we studied the role of these receptor complexes in mediating the oncogenic activity of JAK3 mutants. Although JAK3(V674A) and the majority of other JAK3 mutants needed to bind to a functional cytokine receptor complex to constitutively activate STAT5, JAK3(L857P) was unexpectedly found to not depend on such receptor complexes for its activity, which was induced without receptor or JAK1 co-expression. Introducing a mutation in the FERM domain that abolished JAK-receptor interaction did not affect JAK3(L857P) activity, whereas it inhibited the other receptor-dependent mutants. The same cytokine receptor independence as for JAK3(L857P) was observed for homologous Leu(857) mutations of JAK1 and JAK2 and for JAK3(L875H). This different cytokine receptor requirement correlated with different functional properties in vivo and with distinct sensitivity to JAK inhibitors. Transduction of murine hematopoietic cells with JAK3(V674A) led homogenously to lymphoblastic leukemias in BALB/c mice. In contrast, transduction with JAK3(L857P) induced various types of lymphoid and myeloid leukemias. Moreover, ruxolitinib, which preferentially blocks JAK1 and JAK2, abolished the proliferation of cells transformed by the receptor-dependent JAK3(V674A), yet proved much less potent on cells expressing JAK3(L857P). These particular cells were, in contrast, more sensitive to JAK3-specific inhibitors. Altogether, our results showed that different JAK3 mutations induce constitutive activation through distinct mechanisms, pointing to specific therapeutic perspectives.
Collapse
Affiliation(s)
- Elisabeth Losdyck
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Tekla Hornakova
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Lorraine Springuel
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sandrine Degryse
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Olga Gielen
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Jan Cools
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Stefan N Constantinescu
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | - Marco Tartaglia
- the Genetic Disorders and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesu' IRCCS, Viale di San Paolo 15, 00146 Rome, Italy
| | - Jean-Christophe Renauld
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laurent Knoops
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium, the Hematology Unit, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium, and
| |
Collapse
|
28
|
Fukuyama T, Tschernig T, Qi Y, Volmer DA, Bäumer W. Aggression behaviour induced by oral administration of the Janus-kinase inhibitor tofacitinib, but not oclacitinib, under stressful conditions. Eur J Pharmacol 2015; 764:278-282. [DOI: 10.1016/j.ejphar.2015.06.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
|
29
|
Cohen MD, Keystone EC. JAK Inhibitors for Rheumatoid Arthritis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2015. [DOI: 10.1007/s40674-015-0030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Fukuyama T, Ehling S, Cook E, Bäumer W. Topically Administered Janus-Kinase Inhibitors Tofacitinib and Oclacitinib Display Impressive Antipruritic and Anti-Inflammatory Responses in a Model of Allergic Dermatitis. J Pharmacol Exp Ther 2015; 354:394-405. [DOI: 10.1124/jpet.115.223784] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022] Open
|
31
|
Abstract
Natural killer (NK) cells are effector cells of the innate immune system that can lyse target cells without prior sensitization and have an important role in host defense to pathogens and transformed cells. A balance between negative and positive signals transmitted via germ line-encoded inhibitory and activating receptors controls the function of NK cells. Although the concept of "missing-self" would suggest that NK cells could target foreign allografts, the prevailing dogma has been that NK cells are not active participants in the mechanisms that culminate in the rejection of solid organ allografts. Recent studies, however, challenge this conclusion and instead implicate NK cells in contributing to both graft rejection and tolerance to an allograft. In this review, we highlight recent studies with the goal of understanding the complex NK cell interactions that impact alloimmunity.
Collapse
Affiliation(s)
- Uzi Hadad
- Division of Abdominal Transplantation, Department of Surgery and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
32
|
O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66:311-28. [PMID: 25587654 PMCID: PMC5634336 DOI: 10.1146/annurev-med-051113-024537] [Citation(s) in RCA: 1020] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Janus kinase (JAK)-signal transducer of activators of transcription (STAT) pathway is now recognized as an evolutionarily conserved signaling pathway employed by diverse cytokines, interferons, growth factors, and related molecules. This pathway provides an elegant and remarkably straightforward mechanism whereby extracellular factors control gene expression. It thus serves as a fundamental paradigm for how cells sense environmental cues and interpret these signals to regulate cell growth and differentiation. Genetic mutations and polymorphisms are functionally relevant to a variety of human diseases, especially cancer and immune-related conditions. The clinical relevance of the pathway has been confirmed by the emergence of a new class of therapeutics that targets JAKs.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | | | | | | | |
Collapse
|
33
|
Goedken ER, Argiriadi MA, Banach DL, Fiamengo BA, Foley SE, Frank KE, George JS, Harris CM, Hobson AD, Ihle DC, Marcotte D, Merta PJ, Michalak ME, Murdock SE, Tomlinson MJ, Voss JW. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. J Biol Chem 2014; 290:4573-4589. [PMID: 25552479 DOI: 10.1074/jbc.m114.595181] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Eric R Goedken
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605.
| | | | - David L Banach
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | - Bryan A Fiamengo
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | - Sage E Foley
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | - Kristine E Frank
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | | | | | - Adrian D Hobson
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | - David C Ihle
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | - Douglas Marcotte
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | - Philip J Merta
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | - Mark E Michalak
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | - Sara E Murdock
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| | | | - Jeffrey W Voss
- From the AbbVie Bioresearch Center, Worcester, Massachusetts 01605
| |
Collapse
|
34
|
Liu J, Huang N, Li N, Liu SN, Li MH, Li H, Luo XY, Wang YT, Li LM, Zou Q, Liu Y, Yang T. 2-(1H-Benzimidazol-2-yl)-4,5,6,7-tetrahydro-2H-indazol-3-ol, a benzimidazole derivative, inhibits T cell proliferation involving H+/K+-ATPase inhibition. Molecules 2014; 19:17173-86. [PMID: 25347460 PMCID: PMC6271770 DOI: 10.3390/molecules191117173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/18/2023] Open
Abstract
In this study, a benzimidazole derivative named BMT-1 is revealed as a potential immunomodulatory agent. BMT-1 inhibits the activity of H+/K+-ATPases from anti-CD3/CD28 activated T cells. Furthermore, inhibition the H+/K+-ATPases by use of BMT-1 should lead to intracellular acidification, inhibiting T cell proliferation. To explore this possibility, the effect of BMT-1 on intracellular pH changes was examined by using BCECF as a pH-dependent fluorescent dye. Interestingly, increases in the pHi were observed in activated T cells, and T cells treated with BMT-1 showed a more acidic intracellular pH. Finally, BMT-1 targeted the H+/K+-ATPases and inhibited the proliferative response of anti-CD3/CD28-stimulated T cells. A cell cycle analysis indicated that BMT-1 arrested the cell cycle progression of activated T cells from the G1 to the S phase without affecting CD25 expression or interleukin-2 (IL-2) production; treating IL-2-dependent PBMCs with BMT-1 also led to the inhibition of cell proliferation. Taken together, these findings demonstrate that BMT-1 inhibits the proliferation of T cells by interfering with H+/K+-ATPases and down-regulating intracellular pHi. This molecule may be an interesting lead compound for the development of new immunomodulatory agents.
Collapse
Affiliation(s)
- Jin Liu
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Ning Huang
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Ning Li
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Si-Nian Liu
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Min-Hui Li
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Hua Li
- Department of Oncology, Chengdu Military General Hospital, Chengdu 610083, China.
| | - Xing-Yan Luo
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Yan-Tang Wang
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Li-Mei Li
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Qiang Zou
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Yang Liu
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| | - Tai Yang
- Department of Immunology, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
35
|
Thoma G, Drückes P, Zerwes HG. Selective inhibitors of the Janus kinase Jak3—Are they effective? Bioorg Med Chem Lett 2014; 24:4617-4621. [DOI: 10.1016/j.bmcl.2014.08.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/21/2023]
|
36
|
Onda M, Ghoreschi K, Steward-Tharp S, Thomas C, O'Shea JJ, Pastan IH, FitzGerald DJ. Tofacitinib suppresses antibody responses to protein therapeutics in murine hosts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:48-55. [PMID: 24890727 PMCID: PMC4106678 DOI: 10.4049/jimmunol.1400063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunogenicity remains the "Achilles' heel" of protein-based therapeutics. Anti-drug Abs produced in response to protein therapeutics can severely limit both the safety and efficacy of this expanding class of agent. In this article, we report that monotherapy of mice with tofacitinib (the JAK inhibitor) quells Ab responses to an immunotoxin derived from the bacterial protein Pseudomonas exotoxin A, as well as to the model Ag keyhole limpet hemocyanin. Thousand-fold reductions in IgG1 titers to both Ags were observed 21 d post immunization. In fact, suppression was evident for all IgG isotypes and IgM. A reduction in IgG3 production was also noted with a thymus-independent type II Ag. Mechanistic investigations revealed that tofacitinib treatment led to reduced numbers of CD127+ pro-B cells. Furthermore, we observed fewer germinal center B cells and the impaired formation of germinal centers of mice treated with tofacitinib. Because normal Ig levels were still present during tofacitinib treatment, this agent specifically reduced anti-drug Abs, thus preserving the potential efficacy of biological therapeutics, including those used as cancer therapeutics.
Collapse
Affiliation(s)
- Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Scott Steward-Tharp
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Craig Thomas
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ira H Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David J FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
Patterson H, Nibbs R, McInnes I, Siebert S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin Exp Immunol 2014; 176:1-10. [PMID: 24313320 PMCID: PMC3958149 DOI: 10.1111/cei.12248] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 12/12/2022] Open
Abstract
Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- H Patterson
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - R Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - I McInnes
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - S Siebert
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| |
Collapse
|
38
|
Rajeswari M, Santhi N, Bhuvaneswari V. Pharmacophore and Virtual Screening of JAK3 inhibitors. Bioinformation 2014; 10:157-63. [PMID: 24748756 PMCID: PMC3974243 DOI: 10.6026/97320630010157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 12/18/2022] Open
Abstract
Janus kinase 3 (JAK3) is a non-receptor tyrosine kinases family of protein which is comprised of JAK1, JAK2, JAK3 and TYK2. It plays an important role in immune function and lymphoid development and it only resides in the hematopoietic system. Therefore, selective targeting JAK3 is a rational approach in developing new therapeutic molecule. In this study, about 116 JAK3 inhibitors were collected from the literature and were used to build four-point pharmacophore model using Phase (Schrodinger module). The statistically significant pharmacophore hypothesis of AAHR.92 with r2 value of 0.942 was used as 3D query to search against 3D database namely Zincpharmer. A total of 2, 27,483 compounds obtained as hit were subjected to high throughput virtual screening (HTVS module of Schrodinger). Among the hits, ten compounds with good G-score ranging from -12.96 to -11.18 with good binding energy to JAK3 were identified.
Collapse
Affiliation(s)
- Murugesan Rajeswari
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore – 641 043, Tamil Nadu, India
| | - Natchimuthu Santhi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore – 641 043, Tamil Nadu, India
| | - Vembu Bhuvaneswari
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore – 641 043, Tamil Nadu, India
| |
Collapse
|
39
|
Gomez-Puerta JA, Mócsai A. Tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Curr Top Med Chem 2014; 13:760-73. [PMID: 23574525 PMCID: PMC3796894 DOI: 10.2174/15680266113139990094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/26/2012] [Accepted: 11/09/2012] [Indexed: 12/12/2022]
Abstract
Tyrosine kinases (TK) are enzymes capable of transferring phosphate groups to tyrosine residues in cytoplasmic proteins or the intracellular domains of transmembrane receptors. TK play critical roles in diverse biological functions including cellular processes such as adhesion, motility, proliferation, cell cycle control, cell death, as well as biological functions at the whole-organism level such as growth and development, metabolism or immune defense. TK inhibitors including spleen TK (fostamatinib) and Janus kinases (tofacitinib) inhibitors are two novel oral therapies that have demonstrated short-term good clinical responses in active rheumatoid arthritis patients with and inadequate responses to methotrexate or other traditional (non-biologic) disease-modifying antirheumatic drugs (DMARDs). Those responses are comparable to responses rates from pivotal trials of TNF inhibitors. TK inhibitors are generally well tolerated but not free of adverse effects. Several side effects had been described including gastrointestinal symptoms, neutropenia, hypertension, elevated liver function test and lipid alterations among others. Owing to the limited duration of follow-up of patients treated with TK inhibitors, the long term safety profile of these drugs are unknown.
Collapse
Affiliation(s)
- Jose A Gomez-Puerta
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
40
|
Chiricozzi A, Chimenti S. Effective topical agents and emerging perspectives in the treatment of psoriasis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Stepkowski SM, Kirken RA. Unique advantage of Janus kinase 3 as a target for selective and nontoxic immunosupression. Expert Rev Clin Immunol 2014; 1:307-10. [DOI: 10.1586/1744666x.1.3.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Abstract
Tofacitinib (Xeljanz(®)) is the first approved drug in a new class of disease modifying antirheumatic drugs (DMARDs), the Janus kinase (JAK) inhibitors. JAKs have a pivotal role in triggering cytokine-induced signal transduction pathways that influence normal and pathological cellular processes of haematopoiesis and immune cell function, including pathogenic mechanisms involved in rheumatoid arthritis (RA). Selective inhibition of JAKs by tofacitinib potentially modulates inflammatory processes and provides a novel approach for the treatment of RA. Oral tofacitinib is indicated for the treatment of adult patients with active RA who have had an inadequate response to methotrexate and/or other DMARDs. In several large well designed trials, tofacitinib, in combination with methotrexate or other nonbiological DMARDs or as monotherapy, was an effective and generally well tolerated DMARD for the treatment of adult patients with moderately to severely active RA who had had an inadequate response to previous DMARDs, including tumour necrosis factor-α inhibitors. Direct head-to-head trials and/or further clinical experience (including long-term safety data), along with robust pharmacoeconomic studies, are required to more definitively position tofacitinib relative to other currently available DMARDs. In the meantime, tofacitinib (alone or in combination with nonbiological DMARDs) is an emerging option for the treatment of DMARD-experienced adult patients with moderately to severely active RA who have had an inadequate response to or are intolerant of methotrexate or other DMARDs.
Collapse
Affiliation(s)
- Lesley J Scott
- Adis, 41 Centorian Drive, Private Bag 65901, Mairangi Bay, North Shore 0754, Auckland, New Zealand.
| |
Collapse
|
43
|
|
44
|
Oh K, Seo MW, Kim IG, Hwang YI, Lee HY, Lee DS. CP-690550 Treatment Ameliorates Established Disease and Provides Long-Term Therapeutic Effects in an SKG Arthritis Model. Immune Netw 2013; 13:257-63. [PMID: 24385944 PMCID: PMC3875784 DOI: 10.4110/in.2013.13.6.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/15/2023] Open
Abstract
Although pathogenesis of human rheumatoid arthritis (RA) remains unclear, arthritogenic T cells and downstream signaling mediators have been shown to play critical roles. An increasing numbers of therapeutic options have been added for the effective control of RA. Nevertheless, there is still a category of patients that fails treatment and suffers from progressive disease. The recently developed immunosuppressant CP-690550, a small molecule JAK kinase inhibitor, has been implicated as an important candidate treatment modality for autoimmune arthritis. In this study, we evaluated the therapeutic effect of CP-690550 on established arthritis using an SKG arthritis model, a pathophysiologically relevant animal model for human RA. CP-690550 treatment revealed remarkable long-term suppressive effects on SKG arthritis when administered to the well-advanced disease (clinical score 3.5~4.0). The treatment effect lasted at least 3 more weeks after cessation of drug infusion, and suppression of disease was correlated with the reduced pro-inflammatory cytokines, including IL-17, IFN-γ, and IL-6 and increased level of immunoregulatory IL-10.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Myung Won Seo
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - In Gyu Kim
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Young-Il Hwang
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Hee-Yoon Lee
- Department of Chemistry, KAIST, Daejeon 305-701, Korea
| | - Dong-Sup Lee
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| |
Collapse
|
45
|
Reversal of CD8 T-cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib. J Invest Dermatol 2013; 134:992-1000. [PMID: 24213371 PMCID: PMC3961527 DOI: 10.1038/jid.2013.476] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/13/2022]
Abstract
The utility of allogeneic hematopoietic stem cell transplantation is limited by graft-versus-host disease (GVHD), a significant cause of morbidity and mortality. Patients with GVHD exhibit cutaneous manifestations with histological features of interface dermatitis followed by scleroderma-like changes. JAK inhibitors represent a class of immunomodulatory drugs that inhibit signaling by multiple cytokines. Herein we report the effects of tofacitinib in a murine model of GVHD. Oral administration of tofacitinib prevented GVHD-like disease manifested by weight loss and mucocutaneous lesions. More importantly, tofacitinib was also effective in reversing established disease. Tofacitinib diminished the expansion and activation of murine CD8 T cells in this model, and had similar effects on IL-2-stimulated human CD8 T cells. Tofacitinib also inhibited the expression of IFN-γ-inducible chemoattractants by keratinocytes, and IFN-γ-inducible cell death of keratinocytes. Tofacitinib may be an effective drug for treatment against CD8 T-cell-mediated mucocutaneous diseases in patients with GVHD.
Collapse
|
46
|
Savage LJ, McGonagle DG. The Role of Biological and Small Molecule Therapy in the Management of Psoriatic Arthritis. BIOLOGICS IN THERAPY 2013. [PMCID: PMC4079095 DOI: 10.1007/s13554-013-0010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The therapy of psoriatic arthritis (PsA) has blossomed in the past decade. Inhibition of tumor necrosis factor (TNF) has been at the fore of this approach and has paved the way for the investigation of many other potential pro-inflammatory and signaling pathways. Most of the initial studies of TNF inhibitors in PsA have been conducted in specific populations, largely focusing on those with established, peripheral joint disease. That said, in excess of 10 years’ worth of real world clinical experience has led to increased confidence in the wider use of these agents. We are now faced with an exciting time of discovery of many new molecules; these not only include new, large protein biological agents, but also smaller synthetic chemical molecules, many of which can be administered orally. Those currently under development are discussed within this article. Whilst there is scarce data about their real world efficacy and safety profile, it is evident that the therapeutic armamentarium for treating PsA will greatly increase in the foreseeable future and this is anticipated to improve patient outcomes.
Collapse
Affiliation(s)
- Laura J. Savage
- Leeds Institute for Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, West Yorkshire UK
| | - Dennis G. McGonagle
- Leeds Institute for Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, West Yorkshire UK
| |
Collapse
|
47
|
Halleck F, Friedersdorff F, Fuller T, Matz M, Huber L, Dürr M, Schütz M, Budde K. New Perspectives of Immunosuppression. Transplant Proc 2013; 45:1224-31. [DOI: 10.1016/j.transproceed.2013.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Simmons DL. Targeting kinases: a new approach to treating inflammatory rheumatic diseases. Curr Opin Pharmacol 2013; 13:426-34. [PMID: 23523202 DOI: 10.1016/j.coph.2013.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 12/22/2022]
Abstract
After two decades of research and development activity focussed on orally active kinase inhibitors, the first such drug (the JAK inhibitor Xeljanz, tofacitinib) was approved by the FDA in November 2012 for the treatment of rheumatoid arthritis (RA). There is an intense activity in many companies both on expanding the utility of JAK inhibitors in other auto-immune indications and in discovering inhibitors of the JAK family with different and more selective profiles. Progress is also being made with orally active Syk inhibitors. One such inhibitor (fostamatinib) is currently in large-scale phase 3 trials, and there are others in clinical development. The last two to three years have been transformative for kinase inhibitors in auto-immune diseases, as several inhibitors have finally progressed beyond phase 2 trials after so many failures on other targets. Thus, there are new treatment options for RA patients beyond existing oral DMARDs and parenteral biologics.
Collapse
Affiliation(s)
- David L Simmons
- School of Immunity and Inflammation, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2WD, United Kingdom.
| |
Collapse
|
49
|
Xie A, Buras ED, Xia J, Chen W. The Emerging Role of Interleukin-21 in Transplantation. ACTA ACUST UNITED AC 2013; Suppl 9:1-7. [PMID: 23828737 DOI: 10.4172/2155-9899.s9-002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since its discovery in 2000, IL-21 has been shown to play critical roles in the regulation of both innate and adaptive immune responses. IL-21 is produced predominantly by multiple effector CD4+ T-cell types [T helper 17 (Th17), follicular helper T (TFH), and other activated CD4+ cells] and NKT cells. In addition to T cell receptor (TCR) signals, the production of IL-21 by activated CD4+ T cells is intricately regulated by various extrinsic factors and intrinsic molecules, such as IL-6, IL-21, ICOS, Stat3, IRF4, and Batf. Because IL-21 receptor (IL-21R) is broadly expressed on T, B, NK, and dentritic cells (DCs), IL-21 signaling via Jak-Stat and other pathways has direct pleiotropic effects on their proliferation, differentiation, and effector function. For instance, while Th17 and TFH cells produce IL-21, IL-21 also facilitates the development of these cells. IL-21-producing TFH cells are important for the generation and maintenance of germinal centers, and control the differentiation of germinal center B cells and immunoglobulin production. Thus, IL-21R deficiency or IL-21 neutralization with IL-21R-Fc fusion protein prevents B cell-mediated autoimmunity in lupus-prone BXSB.B6-Yaa+ or MRL-Faslpr mouse models, respectively. IL-21 also enhances expansion and cytotoxicity of CD8+ effector T cells. During chronic lymphocytic choriomeningitis viral infection, chronic IL-21 production by antigen-specific CD4+ T cells is needed to sustain CD8+ T cell function for viral control. IL-21 is also required for the development of T cell-mediated type 1 diabetes in NOD mice, possibly through sustaining effector T cell function in a similar manner. Recently, two papers have shown that IL-21R-Fc prevents both auto- and allo-immune responses after islet transplantation. A timely discussion is thus needed to address the immune actions of IL-21 as well as the therapeutic potential of targeting IL-21 in transplantation.
Collapse
Affiliation(s)
- Aini Xie
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA ; Department of Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | | | | | | |
Collapse
|
50
|
Yarilina A, Xu K, Chan C, Ivashkiv LB. Regulation of inflammatory responses in tumor necrosis factor-activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. ARTHRITIS AND RHEUMATISM 2012; 64:3856-66. [PMID: 22941906 PMCID: PMC3510320 DOI: 10.1002/art.37691] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVE JAK inhibitors have been developed as antiinflammatory and immunosuppressive agents and are currently undergoing testing in clinical trials. The JAK inhibitors CP-690,550 (tofacitinib) and INCB018424 (ruxolitinib) have demonstrated clinical efficacy in rheumatoid arthritis (RA). However, the mechanisms that mediate the beneficial actions of these compounds are not known. The purpose of this study was to examine the effects of both JAK inhibitors on inflammatory and tumor necrosis factor (TNF) responses in human macrophages. METHODS In vitro studies were performed using peripheral blood macrophages derived from healthy donors and treated with TNF and using synovial fluid macrophages derived from patients with RA. Levels of activated STAT proteins and other transcription factors were detected by Western blotting, and gene expression was measured by real-time polymerase chain reaction analysis. The in vivo effects of JAK inhibitors were evaluated in the K/BxN serum-transfer model of arthritis. RESULTS JAK inhibitors suppressed the activation and expression of STAT-1 and downstream inflammatory target genes in TNF-stimulated and RA synovial macrophages. In addition, JAK inhibitors decreased nuclear localization of NF-κB subunits in TNF-stimulated and RA synovial macrophages. CP-690,550 significantly decreased the expression of interleukin-6 in synovial macrophages. JAK inhibitors augmented nuclear levels of NF-ATc1 and cJun, followed by increased formation of osteoclast-like cells. CP-690,550 strongly suppressed K/BxN serum-transfer arthritis, which is dependent on macrophages, but not lymphocytes. CONCLUSION Our findings demonstrate that JAK inhibitors suppress macrophage activation and attenuate TNF responses and further suggest that suppression of cytokine/chemokine production and innate immunity contribute to the therapeutic efficacy of JAK inhibitors.
Collapse
Affiliation(s)
- Anna Yarilina
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| | | | | | | |
Collapse
|