1
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
2
|
Camerin L, Maleeva G, Gomila AMJ, Suárez-Pereira I, Matera C, Prischich D, Opar E, Riefolo F, Berrocoso E, Gorostiza P. Photoswitchable Carbamazepine Analogs for Non-Invasive Neuroinhibition In Vivo. Angew Chem Int Ed Engl 2024; 63:e202403636. [PMID: 38887153 DOI: 10.1002/anie.202403636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.
Collapse
Affiliation(s)
- Luisa Camerin
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Doctorate program in organic chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Department of Pharmaceutical Sciences, University of Milan, Milan, 20133, Italy
| | - Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, SW120BZ, United Kingdom
| | - Ekin Opar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Teamit Institute, Partnerships, Barcelona Health Hub, Barcelona, 08025, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
3
|
de Melo PS, Pacheco-Barrios K, Marduy A, Vasquez-Avila K, Simis M, Imamura M, Cardenas-Rojas A, Navarro-Flores A, Batistella L, Fregni F. The Endogenous Pain Modulatory System as a Healing Mechanism: A Proposal on How to Measure and Modulate It. NEUROSCI 2024; 5:230-243. [PMID: 39483278 PMCID: PMC11469741 DOI: 10.3390/neurosci5030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Chronic pain is highly burdening and multifactorial in etiology. The endogenous-pain-healing system restores body tissue to a non-painful state after an injury leading to pain, and its disruption could represent a relevant mechanism, especially for nursing interventions. AIM To review the literature and summarize the results that support this hypothesis. METHODS We hypothesized that the mechanism behind this system mainly depends on the endogenous pain modulatory system (EPMS), which is responsible for inhibiting pain after tissue healing is complete and facilitating it when tissue damage is still present. Different biomarkers can quantify EPMS functioning. We reviewed the literature and included relevant information regarding this hypothesis. RESULTS First, conditioned pain modulation (CPM) measures pain inhibition and is a possible predictor for pain chronification. Second, motor cortex excitability measures the cortical control of the EPMS, which can be assessed through transcranial magnetic stimulation (using intracortical inhibition) or electroencephalography. Modifiable factors disrupt its functioning, such as sleep deprivation, medication overuse, and mental health status, but could be protective, such as exercise, certain medications, mind-body techniques, and non-invasive neuromodulation therapies. The acquisition of neurophysiological knowledge of how the chronicity of pain occurs and the EPMS involvement in this process may allow for better management of these patients. CONCLUSIONS We raised the hypothesis that the impairment of the EPMS (altered cortical excitability and descendent pain modulation pathways) seems to be related to the disruption of the pain healing process and its chronicity. Further longitudinal studies evaluating the relationship between these biomarkers and chronic pain development are necessary.
Collapse
Affiliation(s)
- Paulo S. de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| | - Karen Vasquez-Avila
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| | - Marcel Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
| | - Marta Imamura
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| | | | - Linamara Batistella
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-060, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02141, USA
| |
Collapse
|
4
|
Brezic N, Gligorevic S, Candido KD, Knezevic NN. Assessing suicide risk in chronic pain management: a narrative review across drug classes. Expert Opin Drug Saf 2024; 23:1135-1155. [PMID: 39126380 DOI: 10.1080/14740338.2024.2391999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Chronic pain presents a multifaceted challenge in clinical practice, necessitating a nuanced understanding of pharmacological interventions to optimize treatment outcomes. This review provides an outline of various pharmacological agents commonly used in chronic pain management and highlights their safety considerations, particularly regarding suicide risk. AREAS COVERED This review discusses the role of antidepressants, anticonvulsants, GABA receptor agonists, NMDA receptor antagonists, corticosteroids, cannabis and cannabinoids, bisphosphonates, calcitonin, and alpha-2 adrenergic receptor agonists in chronic pain management. It assesses their therapeutic benefits, potential for misuse, and psychiatric adverse effects, including the risk of suicide. Each pharmacological class is evaluated in terms of its efficacy, safety profile, and considerations for clinical practice. We searched peer-reviewed English literature on the topic using the MEDLINE database without time restrictions. EXPERT OPINION While pharmacological interventions offer promise in alleviating chronic pain, healthcare providers must carefully weigh their benefits against potential risks, including the risk of exacerbating psychiatric symptoms and increasing suicide risk. Individualized treatment approaches, close monitoring, and multidisciplinary collaboration are essential for optimizing pain management strategies while mitigating adverse effects. Ongoing research efforts are crucial for advancing our understanding of these pharmacological interventions and refining pain management practices.
Collapse
Affiliation(s)
- Nebojsa Brezic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
| | - Strahinja Gligorevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
| | - Kenneth D Candido
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| |
Collapse
|
5
|
Viellard J, Bouali-Benazzouz R, Benazzouz A, Fossat P. Modulating Neural Circuits of Pain in Preclinical Models: Recent Insights for Future Therapeutics. Cells 2024; 13:997. [PMID: 38920628 PMCID: PMC11202162 DOI: 10.3390/cells13120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic pain is a pathological state defined as daily pain sensation over three consecutive months. It affects up to 30% of the general population. Although significant research efforts have been made in the past 30 years, only a few and relatively low effective molecules have emerged to treat chronic pain, with a considerable translational failure rate. Most preclinical models have focused on sensory neurotransmission, with particular emphasis on the dorsal horn of the spinal cord as the first relay of nociceptive information. Beyond impaired nociceptive transmission, chronic pain is also accompanied by numerous comorbidities, such as anxiety-depressive disorders, anhedonia and motor and cognitive deficits gathered under the term "pain matrix". The emergence of cutting-edge techniques assessing specific neuronal circuits allow in-depth studies of the connections between "pain matrix" circuits and behavioural outputs. Pain behaviours are assessed not only by reflex-induced responses but also by various or more complex behaviours in order to obtain the most complete picture of an animal's pain state. This review summarises the latest findings on pain modulation by brain component of the pain matrix and proposes new opportunities to unravel the mechanisms of chronic pain.
Collapse
Affiliation(s)
- Juliette Viellard
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
6
|
Shkodina AD, Bardhan M, Chopra H, Anyagwa OE, Pinchuk VA, Hryn KV, Kryvchun AM, Boiko DI, Suresh V, Verma A, Delva MY. Pharmacological and Non-pharmacological Approaches for the Management of Neuropathic Pain in Multiple Sclerosis. CNS Drugs 2024; 38:205-224. [PMID: 38421578 DOI: 10.1007/s40263-024-01072-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis is a chronic inflammatory disease that affects the central nervous system and can cause various types of pain including ongoing extremity pain, Lhermitte's phenomenon, trigeminal neuralgia, and mixed pain. Neuropathic pain is a major concern for individuals with multiple sclerosis as it is directly linked to myelin damage in the central nervous system and the management of neuropathic pain in multiple sclerosis is challenging as the options available have limited efficacy and can cause unpleasant side effects. The literature search was conducted across two databases, PubMed, and Google Scholar. Eligible studies included clinical trials, observational studies, meta-analyses, systematic reviews, and narrative reviews. The objective of this article is to provide an overview of literature on pharmacological and non-pharmacological strategies employed in the management of neuropathic pain in multiple sclerosis. Pharmacological options include cannabinoids, muscle relaxants (tizanidine, baclofen, dantrolene), anticonvulsants (benzodiazepines, gabapentin, phenytoin, carbamazepine, lamotrigine), antidepressants (duloxetine, venlafaxine, tricyclic antidepressants), opioids (naltrexone), and botulinum toxin variants, which have evidence from various clinical trials. Non-pharmacological approaches for trigeminal neuralgia may include neurosurgical methods. Non-invasive methods, physical therapy, and psychotherapy (cognitive behavioral therapy, acceptance and commitment therapy and mindfulness-based stress reduction) may be recommended for patients with neuropathic pain in multiple sclerosis. The choice of treatment depends on the severity and type of pain as well as other factors, such as patient preferences and comorbidities. There is a pressing need for healthcare professionals and researchers to prioritize the development of better strategies for managing multiple sclerosis-induced neuropathic pain.
Collapse
Affiliation(s)
- Anastasiia D Shkodina
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Mainak Bardhan
- Neuro Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, USA.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | | | - Viktoriia A Pinchuk
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Kateryna V Hryn
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Anzhelina M Kryvchun
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Dmytro I Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Vinay Suresh
- King George's Medical University, Lucknow, India
| | - Amogh Verma
- Rama Medical College Hospital and Research Centre, Hapur, India
| | - Mykhailo Yu Delva
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
7
|
Alorfi NM. Pharmacological Methods of Pain Management: Narrative Review of Medication Used. Int J Gen Med 2023; 16:3247-3256. [PMID: 37546242 PMCID: PMC10402723 DOI: 10.2147/ijgm.s419239] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/02/2023] [Indexed: 08/08/2023] Open
Abstract
Background Pain management is a critical aspect of healthcare, aimed at alleviating discomfort and improving the quality of life for individuals experiencing acute or chronic pain. Pharmacological methods constitute a primary approach to pain management, including a diverse array of drugs that work through different mechanisms. Aim Identifying medications commonly employed in pain management, focusing on their mechanism of actions, uses, efficacy and pharmacological applications. Methods The methodology involved a systematic search of scientific literature using various databases, including PubMed, Scopus, and Google Scholar. Relevant articles published between 2000 and 2023 were screened for inclusion. The selected studies encompassed original research, review articles, therapeutic guidelines and randomized controlled trials. Results The findings of this review suggest that a multimodal approach combining various analgesics can enhance pain relief while minimizing adverse effects. It emphasizes the importance of assessing pain intensity, determining the underlying etiology, and utilizing evidence-based guidelines to optimize pain management outcomes. Conclusion Pharmacological methods of pain management are an essential component of pain management strategies to achieve optimal pain relief while minimizing adverse effects. The article concludes with a discussion on emerging trends and future directions in pharmacological pain management, including novel drug targets and advances in drug delivery systems.
Collapse
Affiliation(s)
- Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Ramsey DJ, Kwan JT, Sharma A. Keeping an eye on the diabetic foot: The connection between diabetic eye disease and wound healing in the lower extremity. World J Diabetes 2022; 13:1035-1048. [PMID: 36578874 PMCID: PMC9791566 DOI: 10.4239/wjd.v13.i12.1035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic eye disease is strongly associated with the development of diabetic foot ulcers (DFUs). DFUs are a common and significant complication of diabetes mellitus (DM) that arise from a combination of micro- and macrovascular compromise. Hyperglycemia and associated metabolic dysfunction in DM lead to impaired wound healing, immune dysregulation, peripheral vascular disease, and diabetic neuropathy that predisposes the lower extremities to repetitive injury and progressive tissue damage that may ultimately necessitate amputation. Diabetic retinopathy (DR) is caused by cumulative damage to the retinal mic-rovasculature from hyperglycemia and other diabetes-associated factors. The severity of DR is closely associated with the development of DFUs and the need for lower extremity revascularization procedures and/or amputation. Like the lower extremity, the eye may also suffer end-organ damage from macrovascular compromise in the form of cranial neuropathies that impair its motility, cause optic neuropathy, or result in partial or complete blindness. Additionally, poor perfusion of the eye can cause ischemic retinopathy leading to the development of proliferative diabetic retinopathy or neovascular glaucoma, both serious, vision-threatening conditions. Finally, diabetic corneal ulcers and DFUs share many aspects of impaired wound healing resulting from neurovascular, sensory, and immunologic compromise. Notably, alterations in serum biomarkers, such as hemoglobin A1c, ceruloplasmin, creatinine, low-density lipoprotein, and high-density lipoprotein, are associated with both DR and DFUs. Monitoring these parameters can aid in prognosticating long-term outcomes and shed light on shared pathogenic mechanisms that lead to end-organ damage. The frequent co-occurrence of diabetic eye and foot problems mandate that patients affected by either condition undergo reciprocal comprehensive eye and foot evaluations in addition to optimizing diabetes management.
Collapse
Affiliation(s)
- David J Ramsey
- Department of Ophthalmology, Lahey Hospital and Medical Center, Burlington, MA 01805, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - James T Kwan
- Department of Ophthalmology, Lahey Hospital and Medical Center, Burlington, MA 01805, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Arjun Sharma
- Department of Ophthalmology, Lahey Hospital and Medical Center, Burlington, MA 01805, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
9
|
Effect of Cognitive-Behavioral Therapy or Mindfulness Therapy on Pain and Quality of Life in Patients with Diabetic Neuropathy: A Systematic Review and Meta-Analysis. Pain Manag Nurs 2022; 23:861-870. [PMID: 35934662 DOI: 10.1016/j.pmn.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effectiveness of cognitive behavioral therapy (CBT) and mindfulness therapy (MT) for pain relief and quality of life (QOL) in patients with diabetic neuropathy. REVIEW/ANALYSIS METHODS Four databases were systematically searched from their respective inception dates to 29 June 2021. Relevant randomized controlled trials (RCTs) were screened and assessed for risk of bias. Eight RCTs evaluating CBT or MT were included. Statistical analysis was performed using Review Manager 5.4. RESULTS Eight RCTs involving 384 patients with painful diabetic neuropathy (PDN) tested psychological interventions, including three CBT and five MT studies. The results showed that patients' pain severity (standardized mean difference [SMD] = -0.60, 95% confidence interval [CI; -0.93 to -0.27], P = .0003) and QOL (SMD = -0.43, 95% CI [-0.83 to -0.04], p = .03) were improved immediately after treatment. Besides, the pain intensity (SMD = -0.67, 95% CI [-1.37 to 0.03], p = .06), pain interference (SMD = -0.75, 95% CI [-1.20 to -0.30], p = .001) and depressive symptoms (SMD = -0.62, 95% CI [-0.96 to -0.28], p = .0003) were superior to the control group after follow up. The subgroup analysis results of different intervention type showed that the CBT group could immediately improve pain (SMD = -0.44, 95% CI [-0.78 to -0.10], p = .01) after treatment. However, there was no statistically significant difference in the CBT group after follow-up (SMD = -0.15, 95% CI [-0.52 to 0.22], p = .42). CONCLUSIONS Cognitive behavioral therapy or MT is effective for treating pain in patients with diabetic peripheral neuropathy, improving the QOL, and reducing depressive symptoms. However, large-scale, multi-centre, rigorously designed RCTs are needed to further verify the long-term effects.
Collapse
|
10
|
Patel S, Mittal R, Sarantopoulos KD, Galor A. Neuropathic ocular surface pain: Emerging drug targets and therapeutic implications. Expert Opin Ther Targets 2022; 26:681-695. [PMID: 36069761 PMCID: PMC9613591 DOI: 10.1080/14728222.2022.2122438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dysfunction at various levels of the somatosensory system can lead to ocular surface pain with a neuropathic component. Compared to nociceptive pain (due to noxious stimuli at the ocular surface), neuropathic pain tends to be chronic and refractory to therapies, making it an important source of morbidity in the population. An understanding of the options available for neuropathic ocular surface pain, including new and emerging therapies, is thus an important topic. AREAS COVERED This review will examine studies focusing on ocular surface pain, emphasizing those examining patients with a neuropathic component. Attention will be placed toward recent (after 2017) studies that have examined new and emerging therapies for neuropathic ocular surface pain. EXPERT OPINION Several therapies have been studied thus far, and continued research is needed to identify which individuals would benefit from specific therapies. Gaps in our understanding exist, especially with availability of in-clinic diagnostics for neuropathic pain. A focus on improving diagnostic capabilities and researching gene-modulating therapies could help us to provide more specific mechanism-based therapies for patients. In the meantime, continuing to uncover new modalities and examining which are likely to work depending on pain phenotype remains an important short-term goal.
Collapse
Affiliation(s)
- Sneh Patel
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rhiya Mittal
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Anat Galor
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Surgical services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
11
|
Pergolizzi JV, Gharibo C, Magnusson P, Breve F, LeQuang JA, Varrassi G. Pharmacotherapeutic management of trigeminal neuropathic pain: an update. Expert Opin Pharmacother 2022; 23:1155-1164. [PMID: 35695796 DOI: 10.1080/14656566.2022.2087507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Guidelines recommend a number of pharmacotherapeutic options used as monotherapy or in combination with others for treating the pain of trigeminal neuropathy. AREAS COVERED The authors examine the pharmacotherapeutic options for treating trigeminal neuralgia and supporting evidence in the literature. Guidelines reported the most effective treatment for trigeminal neuropathy, in particular trigeminal neuralgia, appears to be carbamazepine or oxcabazepine, but side effects can be treatment limiting. Lamotrigine and gabapentin are also recommended in guidance. In real-world clinical practice, baclofen, cannabinoids, eslicarbazepine, levetiracetam, brivaracetam, lidocaine, misoprostol, opioids, phenytoin, fosphenytoin, pimozide, sodium valproate, sumatriptan, tizanidine, tocainide, tricyclic antidepressants, and vixotrigine are sometimes used, either as monotherapy or in combination. The relatively small patient population has limited the number of large-scale studies and there is limited evidence on which to base prescribing choices. EXPERT OPINION While there is no optimal pharmacotherapy for treating trigeminal neuropathy, advancements in our understanding of the underlying mechanisms of this condition and drug development indicate promise for NaV inhibitors, despite the fact that not all patients respond to them and they may have potentially treatment-limiting side effects. Nevertheless, better understanding of NaV channels may be important avenues for future drug development for trigeminal neuropathy.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
12
|
Ma L, Liu S, Yi M, Wan Y. Spontaneous pain as a challenge of research and management in chronic pain. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:308-319. [PMID: 37724190 PMCID: PMC10388751 DOI: 10.1515/mr-2022-0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
Spontaneous pain occurring without apparent external stimuli, is a significant complaint of individuals with chronic pain whose mechanisms, somewhat surprisingly, remain poorly understood. Over the past decades, neuroimaging studies start to reveal brain activities accompanying spontaneous pain. Meanwhile, a variety of animal models and behavioral tests have been established, including non-reflexive tests and free-choice tests, which have been shown to be effective in assessing spontaneous pain. For the spontaneous pain mechanisms, multiple lines of research mainly focus on three aspects: (1) sensitization of peripheral nociceptor receptors and ion channels, (2) spontaneous neuronal firing and abnormal activity patterns at the dorsal root ganglion and spinal cord level, (3) functional and structural alterations in the brain, particularly the limbic system and the medial pain pathway. Despite accumulating evidence revealing distinct neuronal mechanisms from evoked pain, we are still far from full understanding of spontaneous pain, leaving a big gap between bench and bedside for chronic pain treatment. A better understanding of the neural processes in chronic pain, with specific linkage as to which anatomical structures and molecules related to spontaneous pain perception and comorbidities, will greatly improve our ability to develop novel therapeutics.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
13
|
Staud R. Advances in the management of fibromyalgia: what is the state of the art? Expert Opin Pharmacother 2022; 23:979-989. [PMID: 35509228 DOI: 10.1080/14656566.2022.2071606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fibromyalgia (FM) is a chronic pain syndrome associated with fatigue, insomnia, dyscognition, and emotional distress. Critical illness mechanisms include central sensitization to nociceptive and non-nociceptive stimuli often resulting in hypersensitivity to all sensory input. AREAS COVERED The clinical presentation of FM can vary widely and therefore requires therapies tailored to each patient's set of symptoms. This manuscript examines currently prescribed therapeutic approaches supported by empirical evidence as well as promising novel treatments. Although pharmacological therapy until now has been only moderately effective for FM symptoms, it represents a critical component of every treatment plan. EXPERT OPINION Currently approved pharmacological therapies for FM symptoms have limited but proven effectiveness. Novel therapies with cannabinoids and naltrexone appear promising. Recent functional imaging studies of FM have discovered multiple brain network abnormalities that may provide novel targets for mechanism-based therapies. Future treatment approaches, however, need to improve more than clinical pain but also other FM domains like fatigue, insomnia, and distress.
Collapse
Affiliation(s)
- Roland Staud
- Division of Rheumatology and Clinical Immunology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Goh WP, Sinha K, Nere NK, Ho R, Bordawekar S, Sheikh A, Ghadiri M. Breakage Assessment of Lath-Like Crystals in a Novel Laboratory-Scale Agitated Filter Bed Dryer. Pharm Res 2022; 39:3209-3221. [PMID: 36253631 PMCID: PMC9780139 DOI: 10.1007/s11095-022-03411-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Agitated filter bed dryer is often the equipment of choice in the pharmaceutical industry for the isolation of potent active pharmaceutical ingredients (API) from the mother liquor and subsequent drying through intermittent agitation. The use of an impeller to promote homogeneous drying could lead to undesirable size reduction of the crystal product due to shear deformation induced by the impeller blades during agitation, potentially causing off-specification product and further downstream processing issues. An evaluation of the breakage propensity of crystals during the initial development stage is therefore critical. A new versatile scale-down agitated filter bed dryer (AFBD) has been developed for this purpose. Carbamazepine dihydrate crystals that are prone to breakage have been used as model particles. The extent of particle breakage as a function of impeller rotational speed, size of clearance between the impeller and containing walls and base, and solvent content has been evaluated. A transition of breakage behaviour is observed, where carbamazepine dihydrate crystals undergo fragmentation first along the crystallographic plane [00l]. As the crystals become smaller and more equant, the breakage pattern switches to chipping. Unbound solvent content has a strong influence on the breakage, as particles break more readily at high solvent contents. The laboratory-scale instrument developed here provides a tool for comparative assessment of the propensity of particle attrition under agitated filter bed drying conditions.
Collapse
Affiliation(s)
- Wei Pin Goh
- grid.9909.90000 0004 1936 8403School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT UK
| | - Kushal Sinha
- grid.431072.30000 0004 0572 4227Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064 USA
| | - Nandkishor K. Nere
- grid.431072.30000 0004 0572 4227Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064 USA
| | - Raimundo Ho
- grid.431072.30000 0004 0572 4227Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064 USA
| | - Shailendra Bordawekar
- grid.431072.30000 0004 0572 4227Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064 USA
| | - Ahmad Sheikh
- grid.431072.30000 0004 0572 4227Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064 USA
| | - Mojtaba Ghadiri
- grid.9909.90000 0004 1936 8403School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
15
|
Sloan G, Alam U, Selvarajah D, Tesfaye S. The Treatment of Painful Diabetic Neuropathy. Curr Diabetes Rev 2022; 18:e070721194556. [PMID: 34238163 DOI: 10.2174/1573399817666210707112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Painful diabetic peripheral neuropathy (painful-DPN) is a highly prevalent and disabling condition, affecting up to one-third of patients with diabetes. This condition can have a profound impact resulting in a poor quality of life, disruption of employment, impaired sleep, and poor mental health with an excess of depression and anxiety. The management of painful-DPN poses a great challenge. Unfortunately, currently there are no Food and Drug Administration (USA) approved disease-modifying treatments for diabetic peripheral neuropathy (DPN) as trials of putative pathogenetic treatments have failed at phase 3 clinical trial stage. Therefore, the focus of managing painful- DPN other than improving glycaemic control and cardiovascular risk factor modification is treating symptoms. The recommended treatments based on expert international consensus for painful- DPN have remained essentially unchanged for the last decade. Both the serotonin re-uptake inhibitor (SNRI) duloxetine and α2δ ligand pregabalin have the most robust evidence for treating painful-DPN. The weak opioids (e.g. tapentadol and tramadol, both of which have an SNRI effect), tricyclic antidepressants such as amitriptyline and α2δ ligand gabapentin are also widely recommended and prescribed agents. Opioids (except tramadol and tapentadol), should be prescribed with caution in view of the lack of definitive data surrounding efficacy, concerns surrounding addiction and adverse events. Recently, emerging therapies have gained local licenses, including the α2δ ligand mirogabalin (Japan) and the high dose 8% capsaicin patch (FDA and Europe). The management of refractory painful-DPN is difficult; specialist pain services may offer off-label therapies (e.g. botulinum toxin, intravenous lidocaine and spinal cord stimulation), although there is limited clinical trial evidence supporting their use. Additionally, despite combination therapy being commonly used clinically, there is little evidence supporting this practise. There is a need for further clinical trials to assess novel therapeutic agents, optimal combination therapy and existing agents to determine which are the most effective for the treatment of painful-DPN. This article reviews the evidence for the treatment of painful-DPN, including emerging treatment strategies such as novel compounds and stratification of patients according to individual characteristics (e.g. pain phenotype, neuroimaging and genotype) to improve treatment responses.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine and the Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, and Liverpool University Hospital, NHS Foundation Trust, Liverpool, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
16
|
Shyu BC, He AB, Yu YH, Huang ACW. Tricyclic antidepressants and selective serotonin reuptake inhibitors but not anticonvulsants ameliorate pain, anxiety, and depression symptoms in an animal model of central post-stroke pain. Mol Pain 2021; 17:17448069211063351. [PMID: 34903115 PMCID: PMC8679055 DOI: 10.1177/17448069211063351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Central post-stroke pain (CPSP) is a type of neuropathic pain caused by
dysfunction in the spinothalamocortical pathway. However, no animal studies
have examined comorbid anxiety and depression symptoms. Whether the typical
pharmacological treatments for CPSP, which include antidepressants,
selective serotonin reuptake inhibitors (SSRIs), and anticonvulsants, can
treat comorbid anxiety and depression symptoms in addition to pain remains
unclear? The present study ablated the ventrobasal complex of the thalamus
(VBC) to cause various CPSP symptoms. The effects of the tricyclic
antidepressants amitriptyline and imipramine, the SSRI fluoxetine, and the
anticonvulsant carbamazepine on pain, anxiety, and depression were
examined. Results The results showed that VBC lesions induced sensitivity to thermal pain,
measured using a hot water bath; mechanical pain, assessed by von Frey test;
anxiety behavior, determined by the open-field test, elevated plus-maze
test, and zero-maze test; and depression behavior, assessed by the forced
swim test. No effect on motor activity in the open-field test was observed.
Amitriptyline reduced thermal and mechanical pain sensitivity and anxiety
but not depression. Imipramine suppressed thermal and mechanical pain
sensitivity, anxiety, and depression. Fluoxetine blocked mechanical but not
thermal pain sensitivity, anxiety, and depression. However, carbamazepine
did not affect pain, anxiety, or depression. Conclusion In summary, antidepressants and SSRIs but not anticonvulsants can effectively
ameliorate pain and comorbid anxiety and depression in CPSP. The present
findings, including discrepancies in the effects observed following
treatment with anticonvulsants, antidepressants, and SSRIs in this CPSP
animal model, can be applied in the clinical setting to guide the
pharmacological treatment of CPSP symptoms.
Collapse
Affiliation(s)
| | - Alan Bh He
- Department of Psychology, 56854Fo Guang University, Yilan County 26247, Taiwan
| | - Ying H Yu
- Department of Psychology, 56854Fo Guang University, Yilan County 26247, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County 260, Taiwan
| | | |
Collapse
|
17
|
Esposito C, Ugo Garzarella E, Santarcangelo C, Di Minno A, Dacrema M, Sacchi R, Piccinocchi G, Piccinocchi R, Daglia M. Safety and efficacy of alpha-lipoic acid oral supplementation in the reduction of pain with unknown etiology: A monocentric, randomized, double-blind, placebo-controlled clinical trial. Biomed Pharmacother 2021; 144:112308. [PMID: 34649217 DOI: 10.1016/j.biopha.2021.112308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Extensive evidence suggests that alpha-lipoic acid (ALA) is effective in diabetic neuropathy pain management. However, little is known on its safety and efficacy in reducing idiopathic pain in normoglycemic subjects. The aim of this study was to evaluate ALA food supplement safety and efficacy in the reduction of different forms of idiopathic pain. METHODS Two-hundred and ten normoglycemic adults suffering from idiopathic pain (i.e. 57 subjects with primitive neuropathic pain, 141 subjects with arthralgia with unknown etiology, and 12 subjects with idiopathic myalgia) were randomized to receive placebo, 400 mg/day, or 800 mg/day of ALA. Participants underwent two visits (at baseline = t0, and after 2 months = t1) in which two validated questionaries for pain (numerical rating scale [NRS] and visual analogue scale [VAS]) were collected; fasting blood glucose assessment, adverse effects, and renal and hepatic toxicity were also monitored. RESULTS At t1, none of subjects treated with ALA reported a decreased glycemia or adverse effects. The treated subjects showed a significant reduction in NRS (p < 0.001) while the placebo group did not show any NRS reduction (p = 0.86). Similar results were also obtained for VAS. Statistical analysis aimed at detecting possible differences in NRS and VAS scores among treatment groups based on the source of pain did not reveal any significant effect. CONCLUSIONS Since the management of idiopathic pain is challenging for physicians, the use of ALA food supplements could be a feasible option, based on its safety and efficacy compared to commonly-used analgesic drugs.
Collapse
Affiliation(s)
- Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, viale Taramelli 24, 27100 Pavia, Italy
| | - Gaetano Piccinocchi
- Comegen S.c.S., Società Cooperativa Sociale di Medici di Medicina Generale, Viale Maria Bakunin, 41, 80125 Naples, Italy
| | - Roberto Piccinocchi
- Level 1 Medical Director Anaesthesia and Resuscitation A. U. O. Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 80138 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China.
| |
Collapse
|
18
|
Ahmad N, Subhan F, Islam NU, Shahid M, Ullah N, Ullah R, Khurram M, Amin MU, Akbar S, Ullah I, Sewell RDE. Pharmacological evaluation of the gabapentin salicylaldehyde derivative, gabapentsal, against tonic and phasic pain models, inflammation, and pyrexia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2033-2047. [PMID: 34254154 DOI: 10.1007/s00210-021-02118-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Gabapentinoids are effective drugs in most animal models of pain and inflammation with variable effects in humans. The current study evaluated the pharmacological activity of gabapentin (GBP) and its salicylaldehyde derivative (gabapentsal; [2-(1-(((2-hydroxybenzylidene) amino) methyl) cyclohexyl) acetic acid]; GPS) in well-established mouse models of nociceptive pain, inflammatory edema, and pyrexia at doses of 25-100 mg/kg. GPS allayed tonic visceral pain as reflected by acetic acid-induced nociception and it also diminished thermally induced nociception as a mimic of phasic thermal pain. Antagonism of GPS-induced antinociceptive activities by naloxone (NLX, 1.0 mg/kg, subcutaneously, s.c), beta-funaltrexamine (β-FNT, 5.0 mg/kg, s.c), naltrindole (NT, 1.0 mg/kg, s.c), and nor-binaltorphimine (NOR-BNI, 5.0 mg/kg, s.c), and pentylenetetrazole (PTZ-15 mg/kg, intraperitoneally, i.p) implicated an involvement of both opioidergic and GABAergic mechanisms. Tail immersion test was conducted in order to delineate the mechanistic insights of antinociceptive response. Inflammatory edema induced by carrageenan, histamine, or serotonin was also effectively reversed by GPS in a fashion analogous to aspirin (150 mg/kg, i.p), chlorpheniramine (1.0 mg/kg, i.p), and mianserin (1.0 mg/kg, i.p), respectively. Additionally, yeast-induced pyrexia was decreased by GPS in a comparable manner to acetaminophen (50 mg/kg, i.p). These observations suggest that GPS possesses ameliorative properties in tonic, phasic, and tail immersion tests of nociception via opioidergic and GABAergic mechanisms, curbs inflammatory edema, and is antipyretic in nature.
Collapse
Affiliation(s)
- Nisar Ahmad
- Islam College of Pharmacy, Pasrur Road, Sialkot, Punjab, 51040, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, Cecos University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Naseem Ullah
- Islam College of Pharmacy, Pasrur Road, Sialkot, Punjab, 51040, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | | | | | - Shehla Akbar
- Department of Pharmacy, Cecos University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
19
|
Kim SI, Shin J, Tran Q, Park H, Kwon HH, Shin N, Hwang JA, Shin HJ, Lee J, Lee WH, Lee SY, Kim DW. Application of PLGA nanoparticles to enhance the action of duloxetine on microglia in neuropathic pain. Biomater Sci 2021; 9:6295-6307. [PMID: 34378557 DOI: 10.1039/d1bm00486g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Duloxetine (DLX) is a selective serotonin and noradrenaline reuptake inhibitor (SNRI) used for the treatment of pain, but it has been reported to show side effects in 10-20% of patients. Its analgesic efficacy in central pain is putatively related to its influence on descending inhibitory neuronal pathways. However, DLX can also affect the activation of microglia. This study was performed to investigate whether PLGA nanoparticles (NPs), which are expected to enhance targeting to microglia, can improve the analgesic efficacy and limit the side effects of DLX. PLGA NPs encapsulating a low dose of DLX (DLX NPs) were synthesized and characterized and their localization was determined. The analgesic and anti-inflammatory effects of DLX NPs were evaluated in a spinal nerve ligation (SNL)-induced neuropathic pain model. The analgesic effect of DLX lasted for only a few hours and disappeared within 1 day. However, DLX NPs alleviated mechanical allodynia, and the effect was maintained for 1 week. DLX NPs were localized to the spinal microglia and suppressed microglial activation, phosphorylation of p38/NF-κB-mediated pathways and the production of inflammatory cytokines in the spinal dorsal horn of SNL rats. We demonstrated that DLX NPs can provide a prolonged analgesic effect by enhanced targeting of microglia. Our observations imply that DLX delivery through nanoparticle encapsulation allows drug repositioning with a prolonged analgesic effect, and reduces the potential side effects of abuse and overdose.
Collapse
Affiliation(s)
- Song I Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Quangdon Tran
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Hyewon Park
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Jeong-Ah Hwang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Jiyong Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea.
| | - Won Hyung Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea.
| | - Sun Yeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea and Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
20
|
Naguib IA, Ali NA, Elroby FA, Elghobashy MR. Green HPLC-DAD and HPTLC Methods for Quantitative Determination of Binary Mixture of Pregabalin and Amitriptyline Used for Neuropathic Pain Management. J Chromatogr Sci 2021; 59:536-547. [PMID: 33778855 DOI: 10.1093/chromsci/bmab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 11/13/2022]
Abstract
First analytical methods were herein developed for determination of pregabalin (PGB) and amitriptyline (AMT) as an active binary mixture used for management of neuropathic pain whether in pure forms or in human biological fluids (plasma/urine). First method is green high-performance liquid chromatography-diode array detector (HPLC-DAD) after derivatization of PGB with ninhydrin (NIN) on a reversed-phase C18 column using a mobile phase consisting of ethanol:water (97:3%, v/v) pumped isocratically at 0.8 mL/min; AMT were scanned at 215 nm, whereas PGB-NIN was scanned at 580 nm. Second method is High-performance thin-layer chromatography (HPTLC), where PGB and AMT were separated on silica gel HPTLC F254 plates, using ethanol:ethyl acetate:acetone:ammonia solution (8:2:1:0.05, by volume) as a developing system. AMT peaks were scanned at 220 nm, whereas PGB peaks were visualized by spraying 3% (w/v) ethanolic NIN solution and scanning at 550 nm. Linear calibration curves were obtained for human plasma and urine spiked with PGB and AMT over the ranges of 5-100 μg/mL and 0.2-2.5 μg/band for PGB, and 1-100 μg/mL and 0.1-2.0 μg/band for AMT for HPLC-DAD and HPTLC methods, respectively. The suggested methods were validated according to Food and Drug Administration guidelines for bioanalytical methods validation and they can be applied for routine therapeutic drug monitoring for the concerned drugs.
Collapse
Affiliation(s)
- Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Nesma A Ali
- Analytical Toxicology Laboratory, Forensic Medicine Authority, Ministry of Justice, Cairo 11647, Egypt
| | - Fadwa A Elroby
- Faculty of Medicine, Forensic Medicine Department, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed R Elghobashy
- Faculty of Pharmacy, Analytical Chemistry Department, Cairo University, Cairo 11562, Egypt.,Faculty of Pharmacy, October 6 University, October 6 city, Giza 12585, Egypt
| |
Collapse
|
21
|
Schytz HW, Amin FM, Jensen RH, Carlsen L, Maarbjerg S, Lund N, Aegidius K, Thomsen LL, Bach FW, Beier D, Johansen H, Hansen JM, Kasch H, Munksgaard SB, Poulsen L, Sørensen PS, Schmidt-Hansen PT, Cvetkovic VV, Ashina M, Bendtsen L. Reference programme: diagnosis and treatment of headache disorders and facial pain. Danish Headache Society, 3rd edition, 2020. J Headache Pain 2021; 22:22. [PMID: 33832438 PMCID: PMC8034101 DOI: 10.1186/s10194-021-01228-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Headache and facial pain are among the most common, disabling and costly diseases in Europe, which demands for high quality health care on all levels within the health system. The role of the Danish Headache Society is to educate and advocate for the needs of patients with headache and facial pain. Therefore, the Danish Headache Society has launched a third version of the guideline for the diagnosis, organization and treatment of the most common types of headaches and facial pain in Denmark. The second edition was published in Danish in 2010 and has been a great success, but as new knowledge and treatments have emerged it was timely to revise the guideline. The recommendations for the primary headaches and facial pain are largely in accordance with the European guidelines produced by the European Academy of Neurology. The guideline should be used a practical tool for use in daily clinical practice for primary care physicians, neurologists with a common interest in headache, as well as other health-care professionals treating headache patients. The guideline first describes how to examine and diagnose the headache patient and how headache treatment is organized in Denmark. This description is followed by sections on the characteristics, diagnosis and treatment of each of the most common primary and secondary headache disorders and trigeminal neuralgia. The guideline includes many tables to facilitate a quick overview. Finally, the particular challenges regarding migraine and female hormones as well as headache in children are addressed.
Collapse
Affiliation(s)
- Henrik W Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark.
| | - Faisal M Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Louise Carlsen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Stine Maarbjerg
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Nunu Lund
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Karen Aegidius
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Lise L Thomsen
- Specialized Pediatric Clinic, Jægersborgvej 66B, 2. Sal, 2800, Kgs. Lyngby, Denmark
| | - Flemming W Bach
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Dagmar Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Hanne Johansen
- The Migraine and Headache Association (https://www.hovedpineforeningen.dk), Toftehøj 90, 6470 Sydals, Denmark
| | - Jakob M Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark.,National Headache Knowledge Center, Danish Headache Center, Rigshospitalet-Glostrup, Valdemar Hansen Vej 5, Glostrup, 2600, Denmark
| | - Helge Kasch
- Department of Neurology, Spinal Cord Injury Centre of Western Denmark, Viborg Hospital, Viborg, Denmark
| | - Signe B Munksgaard
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Lars Poulsen
- General Practice, Clinic Laegehuset Nr. Broby, Saksenballe 5, 5672, Broby, Denmark
| | | | | | - Vlasta V Cvetkovic
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Lars Bendtsen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| |
Collapse
|
22
|
Zhang Y, Wang L, Peng D, Zhang Q, Yang Q, Li J, Li D, Tang D, Chen M, Liang S, Liu Y, Wang S, Liu Z. Engineering of highly potent and selective HNTX-III mutant against hNa v1.7 sodium channel for treatment of pain. J Biol Chem 2021; 296:100326. [PMID: 33493520 PMCID: PMC7988488 DOI: 10.1016/j.jbc.2021.100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Human voltage-gated sodium channel Nav1.7 (hNav1.7) is involved in the generation and conduction of neuropathic and nociceptive pain signals. Compelling genetic and preclinical studies have validated that hNav1.7 is a therapeutic target for the treatment of pain; however, there is a dearth of currently available compounds capable of targeting hNav1.7 with high potency and specificity. Hainantoxin-III (HNTX-III) is a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. Here, we report the engineering of improved potency and Nav selectivity of hNav1.7 inhibition peptides derived from the HNTX-III scaffold. Alanine scanning mutagenesis showed key residues for HNTX-III interacting with hNav1.7. Site-directed mutagenesis analysis indicated key residues on hNav1.7 interacting with HNTX-III. Molecular docking was conducted to clarify the binding interface between HNTX-III and Nav1.7 and guide the molecular engineering process. Ultimately, we obtained H4 [K0G1-P18K-A21L-V] based on molecular docking of HNTX-III and hNav1.7 with a 30-fold improved potency (IC50 0.007 ± 0.001 μM) and >1000-fold selectivity against Nav1.4 and Nav1.5. H4 also showed robust analgesia in the acute and chronic inflammatory pain model and neuropathic pain model. Thus, our results provide further insight into peptide toxins that may prove useful in guiding the development of inhibitors with improved potency and selectivity for Nav subtypes with robust analgesia.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Li Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dezheng Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jiayan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yu Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Abstract
Depression is among the most prevalent mental disorders worldwide, and a substantial proportion of patients do not respond adequately to standard antidepressants. Our understanding of the pathophysiology of depression is no longer limited to the chemical imbalance of neurotransmitters, but also involves the interplay of proinflammatory modulators in the central nervous system, as well as folate metabolism. Additional factors such as stress and metabolic disorders also may contribute. Multiple inflammatory, metabolic, and genetic markers have been identified and may provide critical information to help clinicians individualize treatments for patients to achieve optimal outcomes. Recent advancements in research have clarified underlying causes of depression and have led to possible new avenues for adjunctive treatment. Among these is L-methylfolate, a medical food that is thought to enhance synthesis of monoamines (serotonin, norepinephrine, and dopamine), suppress inflammation, and promote neural health. Clinical studies that assessed supplemental use of L-methylfolate in patients with usual care-resistant depression found that it resulted in improved outcomes. Patients with selective serotonin reuptake inhibitor-resistant depression, and particularly subgroups with biomarkers of inflammation or metabolic disorders or folate metabolism-related genetic polymorphisms (or ≥2 of these factors), had the best responses. Considering this, the goals of this review are to 1) highlight recent advances in the pathophysiology of major depressive disorder as it pertains to folate and associated biomarkers and 2) establish the profiles of patients with depression who could benefit most from supplemental use of L-methylfolate.
Collapse
|
24
|
Javed S, Abdi S. Use of anticonvulsants and antidepressants for treatment of complex regional pain syndrome: a literature review. Pain Manag 2020; 11:189-199. [PMID: 33183126 DOI: 10.2217/pmt-2020-0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is characterized by pain accompanied by symptoms including skin changes, sensory, motor, trophic changes and autonomic dysfunction. Anticonvulsants and antidepressants are commonly prescribed for neuropathic pain conditions; however, evidence is sparse whether these drugs are effective in reducing CRPS-related pain. As such, Pubmed was searched for studies published from January 1990 through March 2020; 13 studies were included in this review. Overall, evidence is considered insufficient for use of gabapentinoids for CRPS-related pain. However, three randomized controlled trials (RCTs) did find gabapentin to result in significant improvement in pain whereas one RCT reported use of amitriptyline to be equally as effective as gabapentin. Multiple case reports discussing the efficacy of pregabalin in pediatric CRPS patients, with relatively short duration of disease and underlying psychiatric illness, have been reported, but these findings need to be validated with RCTs.
Collapse
Affiliation(s)
- Saba Javed
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Salahadin Abdi
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Naguib IA, Ali NA, Elroby FA, El Ghobashy MR, Abdallah FF. Ecologically evaluated and FDA-validated HPTLC method for assay of pregabalin and tramadol in human biological fluids. Biomed Chromatogr 2020; 35:e5023. [PMID: 33169415 DOI: 10.1002/bmc.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/03/2020] [Accepted: 11/04/2020] [Indexed: 11/12/2022]
Abstract
The introduced research presents a novel in vivo quantitative method for assay of mixtures of pregabalin and tramadol as a common combinations approved for treatment of neuropathic pain. Green analytical chemistry is a recently emerging science concerned with control of the use of chemicals harmful to the environment in various analytical methods. Consequently, a green high-performance thin layer chromatography (HPTLC) method was achieved for determination of the mixture in human plasma and urine satisfying both analytical and environmental standards. The separation was achieved on HPTLC sheets using a separating mixture of ethanol-ethyl acetate-acetone-ammonia solution (8:2:1:0.05, by volume) as a mobile phase. The sheets were dried in air then scanned at two wavelengths. For tramadol, 220 nm was chosen; however, pregabalin is an unconjugated drug, so its determination was a challenge. Hence for pregabalin, the plates were sprayed with ethanolic solution of ninhydrin (3%, w/v), to obtain a conjugated complex, which could be assessed at 550 nm. Furthermore, the developed method fulfilled the US Food and Drug Administration validation guidelines, and proved to be useful in therapeutic drug monitoring of this combination. The Eco-scale assessment protocol was implemented to determine the greenness profile of the applied method.
Collapse
Affiliation(s)
- Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62541, Egypt
| | - Nesma A Ali
- Toxicology Laboratory, Forensic Medicine Authority, Ministry of Justice, Cairo, 11647, Egypt
| | - Fadwa A Elroby
- Forensic Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed R El Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Faculty of Pharmacy, October 6 University, October 6 City, Giza, Egypt
| | - Fatma F Abdallah
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62541, Egypt
| |
Collapse
|
26
|
Kioskli K, Scott W, Winkley K, Kylakos S, McCracken LM. Psychosocial Factors in Painful Diabetic Neuropathy: A Systematic Review of Treatment Trials and Survey Studies. PAIN MEDICINE 2020; 20:1756-1773. [PMID: 30980660 DOI: 10.1093/pm/pnz071] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Diabetes mellitus is associated with a number of complications that can adversely impact patients' quality of life. A common and often painful complication is painful diabetic neuropathy. The aims of this study were to systematically review and summarize evidence from studies of psychological treatments and psychosocial factors related to painful diabetic neuropathy and assess the methodological quality of these studies. METHODS Electronic databases, related reviews, and associated reference lists were searched. Summaries of participants' data relating to the efficacy of psychological treatments and/or to associations between psychosocial factors and outcomes in painful diabetic neuropathy were extracted from the included studies. The methodological quality of included studies was assessed using two standardized quality assessment tools. RESULTS From 2,921 potentially relevant titles identified, 27 studies were included in this systematic review. The evidence suggests that depression, anxiety, sleep, and quality of life are the most studied variables in relation to pain outcomes in painful diabetic neuropathy and are consistently associated with pain intensity. The magnitude of the associations ranged from small to large. CONCLUSIONS Research into psychosocial factors in painful diabetic neuropathy is unexpectedly limited. The available evidence is inconsistent and leaves a number of questions unanswered, particularly with respect to causal associations between variables. The evidence reviewed indicates that depression, anxiety, low quality of life, and poor sleep are associated with pain in painful diabetic neuropathy. The disproportionate lack of research into psychological treatments for painful diabetic neuropathy represents a significant opportunity for future research.
Collapse
Affiliation(s)
- Kitty Kioskli
- Health Psychology Section, Psychology Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Whitney Scott
- Health Psychology Section, Psychology Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.,Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Kirsty Winkley
- Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, London, UK
| | - Stavros Kylakos
- Department of Computer Science, City, University of London, London, UK
| | - Lance M McCracken
- Health Psychology Section, Psychology Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.,Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
28
|
Carbamazepine conquers spinal GAP43 deficiency and sciatic Nav1.5 upregulation in diabetic mice: novel mechanisms in alleviating allodynia and hyperalgesia. Arch Pharm Res 2020; 43:724-734. [PMID: 32676893 DOI: 10.1007/s12272-020-01249-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
Abstract
This work tested the role of carbamazepine in alleviating alloxan-induced diabetic neuropathy and the enhancement of spinal plasticity. Mice were randomized into four groups: normal, control, carbamazepine (25-mg/kg) and carbamazepine (50-mg/kg). Nine weeks after induction of diabetes, symptoms of neuropathy were confirmed and carbamazepine (or vehicle) was given every other day for five weeks. After completing the treatment period, mice were sacrificed and the pathologic features in the spinal cord and the sciatic nerves were determined. The spinal cords were evaluated for synaptic plasticity (growth associated protein-43, GAP43), microglia cell expression (by CD11b) and astrocyte expression (glial fibrillary acidic protein, GFAP). Further, sciatic nerve expression of Nav1.5 was measured. Results revealed that carbamazepine 50 mg/kg prolonged the withdrawal threshold of von-Frey filaments and increased the hot plate jumping time. Carbamazepine improved the histopathologic pictures of the sciatic nerves and spinal cords. Spinal cord of carbamazepine-treated groups had enhanced expression of GAP43 but lower content of CD11b and GFAP. Furthermore, specimens from the sciatic nerve indicated low expression of Nav1.5. In conclusion, this work provided evidence, for the first time, that the preventive effect of carbamazepine against diabetic neuropathy involves correction of spinal neuronal plasticity and glia cell expression.
Collapse
|
29
|
Inhibition of Fast Nerve Conduction Produced by Analgesics and Analgesic Adjuvants-Possible Involvement in Pain Alleviation. Pharmaceuticals (Basel) 2020; 13:ph13040062. [PMID: 32260535 PMCID: PMC7243109 DOI: 10.3390/ph13040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nociceptive information is transmitted from the periphery to the cerebral cortex mainly by action potential (AP) conduction in nerve fibers and chemical transmission at synapses. Although this nociceptive transmission is largely inhibited at synapses by analgesics and their adjuvants, it is possible that the antinociceptive drugs inhibit nerve AP conduction, contributing to their antinociceptive effects. Many of the drugs are reported to inhibit the nerve conduction of AP and voltage-gated Na+ and K+ channels involved in its production. Compound action potential (CAP) is a useful measure to know whether drugs act on nerve AP conduction. Clinically-used analgesics and analgesic adjuvants (opioids, non-steroidal anti-inflammatory drugs, 2-adrenoceptor agonists, antiepileptics, antidepressants and local anesthetics) were found to inhibit fast-conducting CAPs recorded from the frog sciatic nerve by using the air-gap method. Similar actions were produced by antinociceptive plant-derived chemicals. Their inhibitory actions depended on the concentrations and chemical structures of the drugs. This review article will mention the inhibitory actions of the antinociceptive compounds on CAPs in frog and mammalian peripheral (particularly, sciatic) nerves and on voltage-gated Na+ and K+ channels involved in AP production. Nerve AP conduction inhibition produced by analgesics and analgesic adjuvants is suggested to contribute to at least a part of their antinociceptive effects.
Collapse
|
30
|
Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm (Vienna) 2020; 127:431-444. [PMID: 32088764 PMCID: PMC7148261 DOI: 10.1007/s00702-020-02161-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022]
Abstract
The trigeminal ganglion with its three trigeminal nerve tracts consists mainly of clusters of sensory neurons with their peripheral and central processes. Most neurons are surrounded by satellite glial cells and the axons are wrapped by myelinating and non-myelinating Schwann cells. Trigeminal neurons express various neuropeptides, most notably, calcitonin gene-related peptide (CGRP), substance P, and pituitary adenylate cyclase-activating polypeptide (PACAP). Two types of CGRP receptors are expressed in neurons and satellite glia. A variety of other signal molecules like ATP, nitric oxide, cytokines, and neurotrophic factors are released from trigeminal ganglion neurons and signal to neighboring neurons or satellite glial cells, which can signal back to neurons with same or other mediators. This potential cross-talk of signals involves intracellular mechanisms, including gene expression, that can modulate mediators of sensory information, such as neuropeptides, receptors, and neurotrophic factors. From the ganglia cell bodies, which are outside the blood–brain barrier, the mediators are further distributed to peripheral sites and/or to the spinal trigeminal nucleus in the brainstem, where they can affect neural transmission. A major question is how the sensory neurons in the trigeminal ganglion differ from those in the dorsal root ganglion. Despite their functional overlap, there are distinct differences in their ontogeny, gene expression, signaling pathways, and responses to anti-migraine drugs. Consequently, drugs that modulate cross-talk in the trigeminal ganglion can modulate both peripheral and central sensitization, which may potentially be distinct from sensitization mediated in the dorsal root ganglion.
Collapse
|
31
|
Selvaraj C, Selvaraj G, Kaliamurthi S, Cho WC, Wei DQ, Singh SK. Ion Channels as Therapeutic Targets for Type 1 Diabetes Mellitus. Curr Drug Targets 2020; 21:132-147. [PMID: 31538892 DOI: 10.2174/1389450119666190920152249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Ion channels are integral proteins expressed in almost all living cells and are involved in muscle contraction and nutrient transport. They play a critical role in the normal functioning of the excitable tissues of the nervous system and regulate the action potential and contraction events. Dysfunction of genes encodes ion channel proteins, which disrupt the channel function and lead to a number of diseases, among which is type 1 diabetes mellitus (T1DM). Therefore, understanding the complex mechanism of ion channel receptors is necessary to facilitate the diagnosis and management of treatment. In this review, we summarize the mechanism of important ion channels and their potential role in the regulation of insulin secretion along with the limitations of ion channels as therapeutic targets. Furthermore, we discuss the recent investigations of the mechanism regulating the ion channels in pancreatic beta cells, which suggest that ion channels are active participants in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
- Department of Bioinformatics, The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
32
|
Tendinopathy: Pathophysiology, Therapeutic Options, and Role of Nutraceutics. A Narrative Literature Review. ACTA ACUST UNITED AC 2019; 55:medicina55080447. [PMID: 31394838 PMCID: PMC6723894 DOI: 10.3390/medicina55080447] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
Tendinopathies are very common in general population and a huge number of tendon-related procedures take place annually worldwide, with significant socio-economic repercussions. Numerous treatment options are commonly used for tendon disorders. Besides pharmacological and physical therapy, nutrition could represent an additional tool for preventing and treating this complex pathology that deserve a multidisciplinary approach. In recent years, nutraceutical products are growing up in popularity since these seem to favor the prevention and the healing processes of tendon injuries. This narrative literature review aims to summarize current understanding and the areas of ongoing research about the management of tendinopathies with the help of oral supplementation.
Collapse
|
33
|
Gazerani P. Identification of novel analgesics through a drug repurposing strategy. Pain Manag 2019; 9:399-415. [DOI: 10.2217/pmt-2018-0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The identification of new indications for approved or failed drugs is a process called drug repositioning or drug repurposing. The motivation includes overcoming the productivity gap that exists in drug development, which is a high-cost–high-risk process. Repositioning also includes rescuing drugs that have safely entered the market but have failed to demonstrate sufficient efficiency for the initial clinical indication. Considering the high prevalence of chronic pain, the lack of sufficient efficacy and the safety issues of current analgesics, repositioning seems to be an attractive approach. This review presents example of drugs that already have been repositioned and highlights new technologies that are available for the identification of additional compounds to stimulate the curiosity of readers for further exploration.
Collapse
Affiliation(s)
- Parisa Gazerani
- Biomedicine, Department of Health Science & Technology, Aalborg University, Frederik Bajers Vej 3 B, 9220 Aalborg East, Denmark
| |
Collapse
|
34
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
35
|
Membrane Stabilizer Medications in the Treatment of Chronic Neuropathic Pain: a Comprehensive Review. Curr Pain Headache Rep 2019; 23:37. [DOI: 10.1007/s11916-019-0774-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Nowaczyk A, Fijałkowski Ł, Kowalska M, Podkowa A, Sałat K. Studies on the Activity of Selected Highly Lipophilic Compounds toward hGAT1 Inhibition. Part II. ACS Chem Neurosci 2019; 10:337-347. [PMID: 30222312 DOI: 10.1021/acschemneuro.8b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this paper, we describe the latest results involving molecular modeling and pharmacodynamic studies of the selected highly lipophilic compounds acting by human GABA transporter 1 (hGAT1) inhibition. The chemical interaction of 17 GABA analogues with a model of hGAT1 is described using the molecular docking method. The biological role of GAT1 is related to the regulation of GABA level in the central nervous system and GAT1 inhibition plays an important role in the control of seizure threshold. To confirm that GAT1 can be also a molecular target for drugs used to treat other neurological and psychiatric diseases (e.g., pain and anxiety), in the in vivo part of this study, potential antinociceptive and anxiolytic-like properties of tiagabine, a selective GAT1 inhibitor, are described.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Magdalena Kowalska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Adrian Podkowa
- Chair of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
37
|
Yang CH, Yip HK, Chen HF, Yin TC, Chiang JY, Sung PH, Lin KC, Tsou YH, Chen YL, Li YC, Huang TH, Huang CR, Luo CW, Chen KH. Long-term Therapeutic Effects of Extracorporeal Shock Wave-Assisted Melatonin Therapy on Mononeuropathic Pain in Rats. Neurochem Res 2019; 44:796-810. [PMID: 30632086 DOI: 10.1007/s11064-018-02713-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/31/2018] [Indexed: 01/21/2023]
Abstract
We evaluated the ability of extracorporeal shock wave (ECSW)-assisted melatonin (Mel) therapy to offer an additional benefit for alleviating the neuropathic pain (NP) in rats. Left sciatic nerve was subjected to chronic constriction injury (CCI) to induce NP. Animals (n = 30) were randomized into group 1 (sham-operated control), group 2 (CCI only), group 3 (CCI + ECSW), group 4 (CCI + Mel) and group 5 (CCI + ECSW + Mel). By days 15, 22 and 29 after CCI, the thermal paw withdrawal latency (TPWL) and mechanical paw withdrawal threshold (MPWT) were highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, but they showed no difference between the later two groups (all p < 0.0001). The protein expressions of inflammatory (TNF-α, NF-κB, MMP-9, IL-1ß), oxidative-stress (NOXs-1, -2, -4, oxidized protein), apoptotic (cleaved-caspase3, cleaved-PARP), DNA/mitochondrial-damaged (γ-H2AX/cytosolic-cytochrome C), microglia/astrocyte activation (ox42/GFAP), and MAPKs [phosphorylated (p)-p38, p-JNK, p-ERK] biomarkers in dorsal root ganglia neurons (DRGs) and in spinal dorsal horn were exhibited an opposite pattern of TPWL among the five groups (all p < 0.0001). Additionally, protein expressions of Nav.1.3, Nav.1.8 and Nav.1.9 in sciatic nerve exhibited an identical pattern to inflammation among the five groups (all p < 0.0001). The numbers of cellular expressions of MAPKs (p-ERK1/2+/peripherin + cells, p-ERK1/2+/NF200 + cells and p-JNK+/peripherin + cells, p-JNK+/NF200 + cells) and voltage-gated sodium channels (Nav.1.8+/peripherin + cells, Nav.1.8+/NF200 + cells, Nav.1.9+/peripherin + cells, Nav.1.9+/NF200 + cells) in small and large DRGs displayed an identical pattern to inflammation among the five groups (all p < 0.0001). In conclusion, the synergistic effect of combined ECSW-Mel therapy is superior to either one alone for long-term improvement of mononeuropathic pain-induced by CCI in rats.
Collapse
Affiliation(s)
- Chien-Hui Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - Hung-Fei Chen
- Institute of Technological and Vocational Education, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Yu-Huan Tsou
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chi-Wen Luo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
38
|
Sadeghi L, Yekta R, Dehghan G. New mechanisms of phenytoin in calcium homeostasis: competitive inhibition of CD38 in hippocampal cells. ACTA ACUST UNITED AC 2018; 26:191-198. [PMID: 30402721 PMCID: PMC6279657 DOI: 10.1007/s40199-018-0224-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/17/2018] [Indexed: 11/30/2022]
Abstract
Purpose Phenytoin is a major anticonvulsant drug that is effective to improve arrhythmia and neuropathic pain. According to early works, phenytoin affected cell membrane depolarization by sodium channel blocking, guanylyl and adenylyl cyclase suppression that cause to intracellular Na+ and Ca2+ downregulation. This study was aimed to clarify some ambiguities in pathophysiological action of phenytoin by in vitro and molecular docking analyses. Methods In this study intracellular free Ca2+ of primary culture of embryonic mouse hippocampus evaluated via Fura 2 as fluorescent probe. The effects of phenytoin on ADP ribosyl cyclase activity was assessed by recently developed fluorometric assay. Molecular docking simulation was also implemented to investigate the possible interaction between phenytoin and CD38. Results Our results confirmed phenytoin competitively inhibits cyclase activity of CD38 (IC50 = 8.1 μM) and reduces cADPR content. cADPR is a Ca2+-mobilising second messenger which binds to L-type calcium channel and ryanodine receptors in cell and ER membrane and increases cytosolic free Ca2+. Ca2+ content of cells decreased significantly in the presence of phenytoin in a dose dependent manner (IC50 = 12.74 µM). Based on molecular docking analysis, phenytoin binds to deeper site of CD38 active site, mainly via hydrophobic interactions and consequently inhibits proper contact of substrate with catalytic residues specially Glu 226, Trp 186, Thr221. Conclusion Taken together, one of the anticonvulsant mechanisms of phenytoin is Ca2+ inhibition from CD38 pathway, therefore could be used in disorders that accompanied by CD38 over production or activation such as heart disease, depression, brain sepsis, airway disease, oxidative stress and inflammation. ᅟ ![]()
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran.
| | - Reza Yekta
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| |
Collapse
|
39
|
Gupta MA, Pur DR, Vujcic B, Gupta AK. Use of antiepileptic mood stabilizers in dermatology. Clin Dermatol 2018; 36:756-764. [DOI: 10.1016/j.clindermatol.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Nowaczyk A, Fijałkowski Ł, Zaręba P, Sałat K. Docking and pharmacodynamic studies on hGAT1 inhibition activity in the presence of selected neuronal and astrocytic inhibitors. Part I. J Mol Graph Model 2018; 85:171-181. [PMID: 30219588 DOI: 10.1016/j.jmgm.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/11/2018] [Accepted: 09/02/2018] [Indexed: 12/30/2022]
Abstract
Inhibition of 4-aminobutanoic acid (GABA) uptake is a strategy for enhancing GABA transmission. The utility of this approach is demonstrated by the successful development of such agents for the treatment of epilepsy and pain. Existing reports on acute brain slice preparations indicate the intersecting of complementary channels and receptors sets between astrocytes and neurons cells. Thorough analysis of astroglial cells by means of molecular and functional studies demonstrated their active modulatory role in intercellular communication. The chemical interactions between sixteen GABA analogues and isoform of hGAT1 is outlined in the light of molecular docking results. In the in vivo part antinociceptive properties of racemic nipecotic acid, its R and S enantiomers and isonipecotic acid, each administered intraperitoneally at 3 fixed doses (10, 30 and 100 mg/kg), were assessed in a thermally-induced acute pain model i.e. the mouse hot plate test. Docking analyses provided complex binding energies, specific h-bond components, and h-bond properties, such as energies, distances and angles. In vivo tests revealed statistically significant antinociceptive properties of isonipecotic acid (10 and 30 mg/kg), R-nipecotic acid (30 and 100 mg/kg) and S-nipecotic acid (100 mg/kg) in mice. The docking data endorse the hypothesis of correlation between the strength of their chemical interactions with hGAT1 and analgesic action of studied compounds.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland.
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland.
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Jagiellonian University Medical College, 9 Medyczna St., 30 - 688, Krakow, Poland.
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30 - 688, Krakow, Poland.
| |
Collapse
|
41
|
Shi T, Hao JX, Wiesenfeld-Hallin Z, Xu XJ. Gabapentin and NMDA receptor antagonists interacts synergistically to alleviate allodynia in two rat models of neuropathic pain. Scand J Pain 2018; 18:687-693. [DOI: 10.1515/sjpain-2018-0083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Background and aims
The clinical management of neuropathic pain remains a challenge. We examined the interaction between gabapentin and NMDA receptor antagonists dextromethrophan and MK-801 in alleviating neuropathic pain-like behaviors in rats after spinal cord or sciatic nerve injury.
Methods
Female and male rats were produced with Ischemic spinal cord injury and sciatic nerve injury. Gabapentin, dextromethorphan, MK-801 or drug combinations were injected with increasing doses. Mechanical response thresholds were tested with von Frey hairs to graded mechanical touch/pressure, and ethyl chloride spray was applied to assess the cold sensitivity before and after injuries.
Results
In spinally injured rats, gabapentin and dextromethorphan did not affect allodynia-like behaviors at doses of 30 and 20 mg/kg, respectively. In contrast, combination of 15 or 30 mg/kg gabapentin with dextromethorphan at 10 mg/kg produced total alleviation of allodynia to mechanical or cold stimulation. Further reducing the dose of gapapentin to 7.5 mg/kg and dextromethorphan to 5 mg/kg still produced significant effect. MK-801, another NMDA receptor antagonist, also enhanced the effect of gabapentin in spinally injured rats. Similar synergistic anti-allodynic effect between dextromethorphan and gabapentin was also observed in a rat model of partial sciatic nerve injury. No increased side effect was seen following the combination between gabapentin and dextromethorphan.
Conclusions
In conclusion, the present study suggested that combining NMDA receptor antagonists with gabapentin could provide synergistic effect to alleviate neuropathic pain and reduced side effects.
Implications
Combining NMDA receptor antagonists with gabapentin may provide a new approach in alleviating neuropathic pain with increased efficacy and reduced side effects.
Collapse
Affiliation(s)
- Tiansheng Shi
- Department of Physiology and Pharmacology, Section of Integrative Pain Research, Karolinska Institutet , S-171 77 Stockholm , Sweden
| | - Jing-Xia Hao
- Department of Physiology and Pharmacology, Section of Integrative Pain Research, Karolinska Institutet , Stockholm , Sweden
| | - Zsuzsanna Wiesenfeld-Hallin
- Department of Physiology and Pharmacology, Section of Integrative Pain Research, Karolinska Institutet , Stockholm , Sweden
| | - Xiao-Jun Xu
- Department of Physiology and Pharmacology, Section of Integrative Pain Research, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
42
|
Antiepileptic drugs as analgesics/adjuvants in inflammatory pain: current preclinical evidence. Pharmacol Ther 2018; 192:42-64. [PMID: 29909236 DOI: 10.1016/j.pharmthera.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory pain is the most common type of pain that is treated clinically. The use of currently available treatments (classic analgesics - NSAIDs, paracetamol and opioids) is limited by insufficient efficacy and/or side effects/tolerance development. Antiepileptic drugs (AEDs) are widely used in neuropathic pain treatment, but there is substantial preclinical evidence on their efficacy against inflammatory pain, too. In this review we focus on gabapentinoids (gabapentin and pregabalin) and dibenzazepine AEDs (carbamazepine, oxcarbazepine, and recently introduced eslicarbazepine acetate) and their potential for relieving inflammatory pain. In models of somatic, visceral and trigeminal inflammatory pain, that have a translational value for inflammatory conditions in locomotor system, viscera and head/face, AEDs have demonstrated analgesic activity. This activity was mostly consistent, dependent on the dose and largely independent on the site of inflammation and method of its induction, nociceptive stimuli, species, specific drug used, its route of administration and dosing schedule. AEDs exerted comparable efficacy with classic analgesics. Effective doses of AEDs are lower than toxic doses in animals and, when expressed as equivalent human doses, they are largely overlapping with AEDs doses already used in humans for treating epilepsy/neuropathic pain. The main mechanism of antinociceptive/antihyperalgesic action of gabapentinoids in inflammatory pain models seems to be α2δ-dependent suppression of voltage-gated calcium channels in primary sensory neurons that leads to reduced release of neurotransmitters in the spinal/medullar dorsal horn. The suppression of NMDA receptors via co-agonist binding site primarily at spinal sites, activation of various types of K+ channels at spinal and peripheral sites, and activation of noradrenergic and serotonergic descending pain modulatory pathways may also contribute. Inhibition of voltage-gated sodium channels along the pain pathway is probably the main mechanism of antinociceptive/antihyperalgesic effects of dibenzazepines. The recruitment of peripheral adrenergic and purinergic mechanisms and central GABAergic mechanisms may also contribute. When co-administered with classic/other alternative analgesics, AEDs exerted synergistic/additive interactions. Reviewed data could serve as a basis for clinical studies on the efficacy/safety of AEDs as analgesics/adjuvants in patients with inflammatory pain, and contribute to the improvement of the treatment of various inflammatory pain states.
Collapse
|
43
|
Galor A, Moein HR, Lee C, Rodriguez A, Felix ER, Sarantopoulos KD, Levitt RC. Neuropathic pain and dry eye. Ocul Surf 2018; 16:31-44. [PMID: 29031645 PMCID: PMC5756672 DOI: 10.1016/j.jtos.2017.10.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 09/05/2017] [Accepted: 10/07/2017] [Indexed: 02/06/2023]
Abstract
Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. Its epidemiology and clinical presentation have many similarities with neuropathic pain outside the eye. This review highlights the similarities between dry eye and neuropathic pain, focusing on clinical features, somatosensory function, and underlying pathophysiology. Implications of these similarities on the diagnosis and treatment of dry eye are discussed.
Collapse
Affiliation(s)
- Anat Galor
- Miami Veterans Administration Medical Center, USA; Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.
| | - Hamid-Reza Moein
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Charity Lee
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA
| | - Adriana Rodriguez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA
| | - Elizabeth R Felix
- Miami Veterans Administration Medical Center, USA; Physical Medicine and Rehabilitation, University of Miami, USA
| | - Konstantinos D Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roy C Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
44
|
Zhou M, Chen N, He L, Yang M, Zhu C, Wu F, Cochrane Neuromuscular Group. Oxcarbazepine for neuropathic pain. Cochrane Database Syst Rev 2017; 12:CD007963. [PMID: 29199767 PMCID: PMC6486101 DOI: 10.1002/14651858.cd007963.pub3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Several anticonvulsant drugs are used in the management of neuropathic pain. Oxcarbazepine is an anticonvulsant drug closely related to carbamazepine. Oxcarbazepine has been reported to be efficacious in the treatment of neuropathic pain, but evidence from randomised controlled trials (RCTs) is conflicting. Oxcarbazepine is reportedly better tolerated than carbamazepine. This is the first update of a review published in 2013. OBJECTIVES To assess the benefits and harms of oxcarbazepine for different types of neuropathic pain. SEARCH METHODS On 21 November 2016, we searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE and Embase. We searched the Chinese Biomedical Retrieval System (January 1978 to November 2016). We searched the US National Institutes of Health (NIH) databases and the World Health Organization (WHO) International Clinical Trials Registry Platform for ongoing trials in January 2017, and we wrote to the companies who make oxcarbazepine and to pain experts requesting additional information. SELECTION CRITERIA All RCTs and randomised cross-over studies of oxcarbazepine for the treatment of people of any age or sex with any neuropathic pain were eligible. We planned to include trials of oxcarbazepine compared with placebo or any other intervention with a treatment duration of at least six weeks, regardless of administration route and dose. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS Five multicentre, randomised, placebo-controlled, double-blind trials with a total of 862 participants were eligible for inclusion in this updated review. Three trials involved participants with painful diabetic peripheral neuropathy (DPN) (n = 634), one included people with neuropathic pain due to radiculopathy (n = 145), and one, which was newly identified at this update, involved participants with peripheral neuropathic pain of mixed origin (polyneuropathy, peripheral nerve injury or postherpetic neuralgia) (n = 83). Some studies did not report all outcomes of interest. For painful DPN, compared to the baseline, the proportion of participants who reported at least a 50% or 30% reduction of pain scores after 16 weeks of treatment in the oxcarbazepine group versus the placebo group were: at least 50% reduction: 34.8% with oxcarbazepine versus 18.2% with placebo (risk ratio (RR) 1.91, 95% confidence interval (CI) 1.08 to 3.39, number of people needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 3 to 41); and at least 30% reduction: 44.9% with oxcarbazepine versus 28.6% with placebo (RR 1.57, 95% CI 1.01 to 2.44; NNTB 6, 95% CI 3 to 114; n = 146). Both results were based on data from a single trial, since two trials that found little or no benefit did not provide data that could be included in a meta-analysis. Although these trials were well designed, incomplete outcome data and possible unblinding of participants due to obvious adverse effects placed the results at a high risk of bias. There was also serious imprecision and a high risk of publication bias. The radiculopathy trial reported no benefit for the outcome 'at least 50% pain relief' from oxcarbazepine. In mixed neuropathies, 19.3% of people receiving oxcarbazepine versus 4.8% receiving placebo had at least 50% pain relief. These small trials had low event rates and provided, at best, low-quality evidence for any outcome. The proportion of people with 'improved' or 'very much improved' pain was 45.9% with oxcarbazepine versus 30.1% with placebo in DPN (RR 1.46, 95% CI 1.13 to 1.88; n = 493; 2 trials; very-low-quality evidence) and 23.9% with oxcarbazepine versus 14.9% with placebo in radiculopathy (RR 1.61, 95% CI 0.81 to 3.20; n = 145).We found no trials in other types of neuropathic pain such as trigeminal neuralgia.Trial reports stated that most adverse effects were mild to moderate in severity. Based on moderate-quality evidence from the three DPN trials, serious adverse effects occurred in 8.3% with oxcarbazepine and 2.5% with placebo (RR 3.65, 95% CI 1.45 to 9.20; n = 634; moderate-quality evidence). The number needed to treat for an additional harmful (serious adverse effect) outcome (NNTH) was 17 (95% CI 11 to 42). The RR for serious adverse effects in the radiculopathy trial was 3.13 (95% CI 0.65 to 14.98, n = 145). The fifth trial did not provide data.More people withdrew because of adverse effects with oxcarbazepine than with placebo (DPN: 25.6% with oxcarbazepine versus 6.8% with placebo; RR 3.83, 95% CI 2.29 to 6.40; radiculopathy: 42.3% with oxcarbazepine versus 14.9% with placebo; RR 2.84, 95% CI 1.55 to 5.23; mixed neuropathic pain: 13.5% with oxcarbazepine versus 1.2% with placebo; RR 11.51, 95% CI 1.54 to 86.15). AUTHORS' CONCLUSIONS This review found little evidence to support the effectiveness of oxcarbazepine in painful diabetic neuropathy, neuropathic pain from radiculopathy and a mixture of neuropathies. Some very-low-quality evidence suggests efficacy but small trials, low event rates, heterogeneity in some measures and a high risk of publication bias means that we have very low confidence in the measures of effect. Adverse effects, serious adverse effects and adverse effects leading to discontinuation are probably more common with oxcarbazepine than placebo; however, the numbers of participants and event rates are low. More well-designed, multicentre RCTs investigating oxcarbazepine for various types of neuropathic pain are needed, and selective publication of studies or data should be avoided.
Collapse
Affiliation(s)
- Muke Zhou
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Ning Chen
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Li He
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Mi Yang
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Cairong Zhu
- School of Public Health, Sichuan UniversityEpidemic Disease & Health Statistics DepartmentChengduChina
| | - Fengbo Wu
- West China Hospital, Sichuan UniversityDepartment of PharmacyNo. 37, Guo Xue XiangChengduSichuanChina60041
| | | |
Collapse
|
45
|
Sunwoo W, Jeon YJ, Bae YJ, Jang JH, Koo JW, Song JJ. Typewriter tinnitus revisited: The typical symptoms and the initial response to carbamazepine are the most reliable diagnostic clues. Sci Rep 2017; 7:10615. [PMID: 28878303 PMCID: PMC5587715 DOI: 10.1038/s41598-017-10798-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
Although neurovascular compression of the cochlear nerve (NVC-C) presenting as typewriter tinnitus is a discrete disease category, verified diagnostic criteria are lacking. We sought to refine the diagnostic criteria for NVC-C by reference to a relatively large case series. The medical records of 22 NVC-C patients were retrospectively reviewed. Psychoacoustic characteristics, the results of diagnostic work-up (including audiovestibular neurophysiological tests and radiological evaluations), and the initial treatment response to carbamazepine were investigated. All subjects described their tinnitus as a typical “typewriter” or “staccato” sound. Of the 22 subjects, 11 (50%) had histories of vertiginous spells, but none had ipsilesional hearing loss. Vestibular function tests in 11 subjects tested revealed only 2 (18.2%) isolated cervical vestibular evoked myogenic potential abnormalities. Radiological comparisons of the symptomatic and asymptomatic sides, regarding the type of the vascular loop and neurovascular contact, revealed no significant differences. However, all 22 subjects exhibited immediate and marked responses to short-term carbamazepine treatment. Meticulous history-taking in terms of the psychoacoustic characteristics and the response to initial carbamazepine, are more reliable diagnostic clues than are radiological or neurophysiological data in NVC-C subjects. Therefore, the typical psychoacoustic characteristics and the response to initial carbamazepine should be included in the diagnostic criteria.
Collapse
Affiliation(s)
- Woongsang Sunwoo
- Department of Otorhinolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Yung Jin Jeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong Hun Jang
- Department of Otolaryngology-Head and Neck Surgery, Ajou University Hospital, Suwon, Korea
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
46
|
Alyahya B, Friesen M, Nauche B, Laliberté M. Acute lamotrigine overdose: a systematic review of published adult and pediatric cases. Clin Toxicol (Phila) 2017; 56:81-89. [DOI: 10.1080/15563650.2017.1370096] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bader Alyahya
- Clinical Pharmacology and Toxicology Program, McGill University, Montreal, QC, Canada
- Emergency Department, King Saud University, Riyadh, Saudi Arabia
| | - Marjorie Friesen
- Pharmacy Department, McGill University Health Centre, Montreal, QC, Canada
| | - Bénédicte Nauche
- Library Department, McGill University Health Centre, Montreal, QC, Canada
| | - Martin Laliberté
- McGill University Health Centre, Emergency Medicine, McGill University, Montreal, QC, Canada
- Centre anti-poison du Québec, Quebec City, QC, Canada
| |
Collapse
|
47
|
Dureja GP, Iyer RN, Das G, Ahdal J, Narang P. Evidence and consensus recommendations for the pharmacological management of pain in India. J Pain Res 2017; 10:709-736. [PMID: 28435313 PMCID: PMC5386610 DOI: 10.2147/jpr.s128655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite enormous progress in the field of pain management over the recent years, pain continues to be a highly prevalent medical condition worldwide. In the developing countries, pain is often an undertreated and neglected aspect of treatment. Awareness issues and several misconceptions associated with the use of analgesics, fear of adverse events - particularly with opioids and surgical methods of analgesia - are major factors contributing to suboptimal treatment of pain. Untreated pain, as a consequence, is associated with disability, loss of income, unemployment and considerable mortality; besides contributing majorly to the economic burden on the society and the health care system in general. Available guidelines suggest that a strategic treatment approach may be helpful for physicians in managing pain in real-world settings. The aim of this manuscript is to propose treatment recommendations for the management of different types of pain, based on the available evidence. Evidence search was performed by using MEDLINE (by PubMed) and Cochrane databases. The types of articles included in this review were based on randomized control studies, case-control or cohort studies, prospective and retrospective studies, systematic reviews, meta-analyses, clinical practice guidelines and evidence-based consensus recommendations. Articles were reviewed by a multidisciplinary expert panel and recommendations were developed. A stepwise treatment algorithm-based approach based on a careful diagnosis and evaluation of the underlying disease, associated comorbidities and type/duration of pain is proposed to assist general practitioners, physicians and pain specialists in clinical decision making.
Collapse
Affiliation(s)
| | - Rajagopalan N Iyer
- Department of Orthopaedics, Raja Rajeswari Medical College and Hospital, Bengaluru, Karnataka
| | - Gautam Das
- Daradia Pain Clinic, Kolkata, West Bengal
| | - Jaishid Ahdal
- Department of Medical Affairs, Janssen India, Johnson & Johnson Pvt Ltd, Mumbai, Maharashtra, India
| | - Prashant Narang
- Department of Medical Affairs, Janssen India, Johnson & Johnson Pvt Ltd, Mumbai, Maharashtra, India
| |
Collapse
|
48
|
Xie X, Pascual C, Lieu C, Oh S, Wang J, Zou B, Xie J, Li Z, Xie J, Yeomans DC, Wu MX, Xie XS. Analgesic Microneedle Patch for Neuropathic Pain Therapy. ACS NANO 2017; 11:395-406. [PMID: 28001346 PMCID: PMC6348003 DOI: 10.1021/acsnano.6b06104] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Neuropathic pain caused by nerve injury is debilitating and difficult to treat. Current systemic pharmacological therapeutics for neuropathic pain produce limited pain relief and have undesirable side effects, while current local anesthetics tend to nonspecifically block both sensory and motor functions. Calcitonin gene related peptide (CGRP), a neuropeptide released from sensory nerve endings, appears to play a significant role in chronic neuropathic pain. In this study, an analgesic microneedle (AMN) patch was developed using dissolvable microneedles to transdermally deliver selective CGRP antagonist peptide in a painless manner for the treatment of localized neuropathic pain. Local analgesic effects were evaluated in rats by testing behavioral pain sensitivity in response to thermal and mechanical stimuli using neuropathic pain models such as spared-nerve injury and diabetic neuropathy pain, as well as neurogenic inflammatory pain model induced by ultraviolet B (UVB) radiation. Unlike several conventional therapies, the AMN patches produced effective analgesia on neuropathic pain without disturbing the normal nociception and motor function of the rat, resulting from the high specificity of the delivered peptide against CGRP receptors. The AMN patches did not cause skin irritation or systemic side effects. These results demonstrate that dissolvable microneedle patches delivering CGRP antagonist peptide provide an effective, safe, and simple approach to mitigate neuropathic pain with significant advantages over current treatments.
Collapse
Affiliation(s)
- Xi Xie
- AfaSci Research Laboratories, Redwood City, California 94063, United States
- School of Electronics and Information Technology; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
- Corresponding Authors:
| | - Conrado Pascual
- AfaSci Research Laboratories, Redwood City, California 94063, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Christopher Lieu
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - Seajin Oh
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - Ji Wang
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Bende Zou
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - Julian Xie
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - Zhaohui Li
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - James Xie
- AfaSci Research Laboratories, Redwood City, California 94063, United States
| | - David C. Yeomans
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Mei X. Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Xinmin Simon Xie
- AfaSci Research Laboratories, Redwood City, California 94063, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
49
|
Salimzade A, Hosseini-Sharifabad A, Rabbani M. Comparative effects of chronic administrations of gabapentin, pregabalin and baclofen on rat memory using object recognition test. Res Pharm Sci 2017. [PMID: 28626478 PMCID: PMC5465829 DOI: 10.4103/1735-5362.207201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Memory impairment is one of the greatest concerns when it comes to long-term CNS-affecting drug administration. Drugs like gabapentin, pregabalin and baclofen are administered in a long-term period in conditions such as epilepsy, neuropathic pain, spasticity associated with spinal cord injury or multiple sclerosis. Despite their wide spread use, few data are available on the effects of these drugs on cognitive functions, such as learning memory. In the present study, the effects of long-term administration of gabapentin, pregabalin and baclofen on memory were investigated in a comparative manner. Male Wistar rats received intraperitoneal (i.p.) injection of gabapentin (30 mg/kg), pregabalin (30 mg/kg), baclofen (3 mg/kg), combination of gabapentin/baclofen (30/3 mg/kg) and combination of pregabalin/baclofen (30/3 mg/kg) once a day for 3 weeks respective to their groups. After the end of treatments, rat memories were assessed using the object-recognition task. The discrimination and recognition indices (RI and DI) in the T2 trials were used as the memory indicating factors. The results showed that daily i.p. administrations of pregabalin but not gabapentin or baclofen significantly decreased DI and RI compared to saline group. In combination groups, either gabapentin or pregabalin impaired discrimination between new and familiar objects. Our findings suggested that pregabalin alone or in combination with baclofen significantly caused cognitive deficits.
Collapse
Affiliation(s)
- Asma Salimzade
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Hosseini-Sharifabad
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
50
|
Baharvand M, Hamian M, Moosavizadeh MA, Mortazavi A, Ameri A. Phenytoin mouthwash to treat cancer therapy-induced oral mucositis: A pilot studyPrimary neuroendocrine carcinoma of breast: A rare tumor. Indian J Cancer 2016; 52:81-5. [PMID: 26837983 DOI: 10.4103/0019-509x.175597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Oral mucositis is one of the most common side effects of cancer therapy with no definite treatment. Phenytoin has positive effects on healing of mucosal and dermal wounds. In this study efficacy of 1% phenytoin mouthwash on severity of mucositis (on the basis of WHO scale), pain relief (based on Visual Analogue Scale), and improvement of patients' quality of life (on the basis of EORTC-QLQ-H and N35 questionnaire) was evaluated. MATERIALS AND METHODS In a pilot -double-blind randomized clinical trial, eight patients in study group were given 1% phenytoin mouthwash while eight patients in control group used normal saline. Data analysis was performed by Mann-Whitney and Repeated Measured ANOVA tests. RESULTS Reduction of mucositis severity was observed, but the difference was not significant. On the other hand, patients on phenytoin therapy had better pain relief (VAS# 6.75 ± 1.58 at the beginning of the study reached to # 3.75 ± 1.16 after 3 weeks in phenytoin group) and improvement in quality of life (score of QOL was 70.63 ± 5.5 that reached to 63.61 ± 6.39 in phenytoin group) than normal saline group significantly (P < 0.05). CONCLUSION One percent phenytoin mouthwash caused pain relief and improvement of life quality significantly in patients with mucositis due to cancer therapy, but it did not reduce the severity of mucositis in a statistically significant scale.
Collapse
Affiliation(s)
| | - M Hamian
- Department of Oral and Maxillofacial Medicine, Qom University of Medical Sciences, Qom, Iran
| | | | | | | |
Collapse
|