1
|
Athavale ON, Avci R, Clark AR, Di Natale MR, Wang X, Furness JB, Liu Z, Cheng LK, Du P. Neural regulation of slow waves and phasic contractions in the distal stomach: a mathematical model. J Neural Eng 2024; 20:066040. [PMID: 38100816 PMCID: PMC10765034 DOI: 10.1088/1741-2552/ad1610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Objective.Neural regulation of gastric motility occurs partly through the regulation of gastric bioelectrical slow waves (SWs) and phasic contractions. The interaction of the tissues and organs involved in this regulatory process is complex. We sought to infer the relative importance of cellular mechanisms in inhibitory neural regulation of the stomach by enteric neurons and the interaction of inhibitory and excitatory electrical field stimulation.Approach.A novel mathematical model of gastric motility regulation by enteric neurons was developed and scenarios were simulated to determine the mechanisms through which enteric neural influence is exerted. This model was coupled to revised and extended electrophysiological models of gastric SWs and smooth muscle cells (SMCs).Main results.The mathematical model predicted that regulation of contractile apparatus sensitivity to intracellular calcium in the SMC was the major inhibition mechanism of active tension development, and that the effect on SW amplitude depended on the inhibition of non-specific cation currents more than the inhibition of calcium-activated chloride current (kiNSCC= 0.77 vs kiAno1= 0.33). The model predicted that the interaction between inhibitory and excitatory neural regulation, when applied with simultaneous and equal intensity, resulted in an inhibition of contraction amplitude almost equivalent to that of inhibitory stimulation (79% vs 77% decrease), while the effect on frequency was overall excitatory, though less than excitatory stimulation alone (66% vs 47% increase).Significance.The mathematical model predicts the effects of inhibitory and excitatory enteric neural stimulation on gastric motility function, as well as the effects when inhibitory and excitatory enteric neural stimulation interact. Incorporation of the model into organ-level simulations will provide insights regarding pathological mechanisms that underpin gastric functional disorders, and allow forin silicotesting of the effects of clinical neuromodulation protocols for the treatment of these disorders.
Collapse
Affiliation(s)
- Omkar N Athavale
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Madeleine R Di Natale
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
3
|
Gong Y, Liang X, Dai Y, Huang X, Su Q, Ma Y, Chen F, Wang S. Prokinetic effects of Citrus reticulata and Citrus aurantium extract with/without Bupleurum chinense using multistress-induced delayed gastric emptying models. PHARMACEUTICAL BIOLOGY 2023; 61:345-355. [PMID: 36728913 PMCID: PMC9897790 DOI: 10.1080/13880209.2023.2173249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Citrus aurantium L (Rutaceae) (Au) and Citrus reticulata Blanco (Rutaceae) (Ci) are commonly used as couplet prokinetics and Bupleurum chinense DC. (Umbelliferae) (Bup) is an herbal antidepressant in traditional Chinese medicine. OBJECTIVE This study evaluates the synergistic prokinetic effects of Bup with Au and Ci in mice suffering from multistress-induced delayed gastric emptying (DGE). MATERIALS AND METHODS Kunming mice were divided into four groups: control, DGE, AuCi and AuCiBup. Mice were gavaged with AuCi (14.25 g/kg) or AuCiBup (22.13 g/kg) extract for 12 days. Gastric reminder rate, intestinal driving ratio, sucrose preference and open field test were examined, and serotonin (5-HT), motilin (MTL), substance P (SP), 5-HT4R and c-kit were assayed. Intracellular Ca2+ levels in primary cultured gastric smooth muscle cells (GSMCs) were determined. RESULTS Both AuCi and AuCiBup treatment significantly reduced gastric residual rate (39.5% and 67.7%, p < 0.01). Higher serum levels of 5-HT, MTL and SP were observed in treatment groups (AuCi: 0.060 mg/L, AuCiBup: 0.089 mg/L, DGE: 0.025 mg/L, p < 0.01). The expression of 5-HT4R and c-kit in the antrum and duodenum was upregulated after treatment (AuCi and AuCiBup, 4.3-times, 2.8-times to DGE, p < 0.01). Medicated serums of AuCi and AuCiBup effectively increased the influx of Ca2+ into GSMCs in vitro (1.8-times, p < 0.01). In terms of 5-HT4R expression, circulatory contents of 5-HT and SP and Ca2+ influx, AuCiBup demonstrated better prokinetic effects than AuCi. CONCLUSIONS These findings indicate the potential for developing combination therapy with antidepressants and prokinetics in gastrointestinal dysmotility management.
Collapse
Affiliation(s)
- Yanrong Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Naval Medical University, Shanghai, China
| | - Xiaoxia Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanting Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiaozhen Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fenglian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuling Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Choi NR, Lee K, Seo M, Ko SJ, Choi WG, Kim SC, Kim J, Park JW, Kim BJ. Network Pharmacological Analysis and Experimental Validation of the Effect of Smilacis Glabrae Rhixoma on Gastrointestinal Motility Disorder. PLANTS (BASEL, SWITZERLAND) 2023; 12:1509. [PMID: 37050134 PMCID: PMC10096900 DOI: 10.3390/plants12071509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal motility disorder (GMD) is a disease that causes digestive problems due to inhibition of the movement of the gastrointestinal tract and is one of the diseases that reduce the quality of life of modern people. Smilacis Glabrae Rhixoma (SGR) is a traditional herbal medicine for many diseases and is sometimes prescribed to improve digestion. As a network pharmacological approach, we searched the TCMSP database for SGR, reviewed its constituents and target genes, and analyzed its relevance to gastrointestinal motility disorder. The effects of the SGR extract on the pacemaker activity in interstitial cells of Cajal (ICC) and gastric emptying were investigated. In addition, using the GMD mouse model through acetic acid (AA), we investigated the locomotor effect of SGR on the intestinal transit rate (ITR). As a result of network pharmacology analysis, 56 compounds out of 74 candidate compounds of SGR have targets, the number of targets is 390 targets, and there are 904 combinations. Seventeen compounds of SGR were related to GMD, and as a result of comparing the related genes with the GMD-related genes, 17 genes (active only) corresponded to both. When looking at the relationship network between GMD and SGR, it was confirmed that quercetin, resveratrol, SCN5A, TNF, and FOS were most closely related to GMD. In addition, the SGR extract regulated the pacemaker activity in ICC and recovered the delayed gastric emptying. As a result of feeding the SGR extract to AA-induced GMD mice, it was confirmed that the ITR decreased by AA was restored by the SGR extract. Through network pharmacology, it was confirmed that quercetin, resveratrol, SCN5A, TNF, and FOS were related to GMD in SGR, and these were closely related to intestinal motility. Based on these results, it is suggested that SGR in GMD restores digestion through the recovery of intestinal motility.
Collapse
Affiliation(s)
- Na-Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Kangwook Lee
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
| | - Mujin Seo
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Seok-Jae Ko
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Gyun Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Sang-Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| | - Jinsung Kim
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byung-Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| |
Collapse
|
5
|
Trypsin Depolarizes Pacemaker Potentials in Murine Small Intestinal Interstitial Cells of Cajal. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interstitial cells of Cajal (ICCs) generate pacemaker potentials in the gastrointestinal (GI) tract. In this study, the effects of trypsin on pacemaker potentials in murine small intestinal ICCs were examined. We used whole-cell patch-clamp analysis. The results of whole-cell patch-clamp analysis revealed that trypsin dose-dependently depolarized pacemaker potentials and decreased their amplitude. Treatments with the antagonists of neurokinin1 (NK1) and NK2 receptors (SR-140333 and SR-48968, respectively) slightly inhibited the trypsin-induced responses. However, treatment with the combination of SR-140333 and SR-48968 completely inhibited trypsin-induced responses. Trypsin slightly depolarized pacemaker potentials and increased their amplitude after the intracellular application of GDP-β-S. Additionally, incubation in external Ca2+-free solution inhibited trypsin-induced responses. In the presence of U-73122, staurosporine, Go6976, or xestospongin C, trypsin did not depolarize the pacemaker’s potentials. However, trypsin depolarized the pacemaker potentials in the presence of rottlerin. Finally, HC067047, a TRPV4 inhibitor, did not affect the trypsin-induced responses. These results suggest that trypsin depolarized pacemaker potentials through NK1 and NK2 receptors in the murine small intestinal ICCs, with this effect being dependent on the G protein, phospholipase C, protein kinase C, inositol triphosphate pathways, and extracellular Ca2+ but being independent of the TRPV4 pathway. Hence, trypsin-mediated GI motility regulation must be considered for prokinetic drug developments.
Collapse
|
6
|
Inhibitory Effects of Jakyakgamcho-Tang (Glycyrrhiza uralensis and Paeonia lactiflora) on the Pacemaker Potential of the Interstitial Cells of Cajal in the Murine Small Intestine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Jakyakgamcho-tang (JYGCT) has been used to treat various diseases. The interstitial cells of Cajal (ICC) regulate gastrointestinal (GI) motility as pacemaker cells. Here, we examined the effects of JYGCT on the pacemaker potential of the ICC in the small intestine. We observed that JYGCT inhibited the pacemaker potential in a dose-dependent manner. Glibenclamide did not affect the pacemaker potential and on these conditions, JYGCT also had no effect on the pacemaker potential. Pretreatment with capsazepine or SB452533 blocked the JYGCT-induced effects. In the presence of SQ-22536, JYGCT did not inhibit the pacemaker potential. Additionally, JYGCT inhibited spontaneous [Ca2+]i oscillations and JYGCT-induced ITR increase was associated with TMEM16A, motilin and substance P activation. Moreover, JYGCT was effective in alleviating the symptoms of irritable bowel syndrome. Our results suggest that JYGCT inhibited the pacemaker potential of the ICC via KATP, the TRPV1 or the cyclic AMP pathway, and intracellular Ca2+ regulation, indicating that JYGCT can affect ICC and thus have the function of regulating GI motility. Therefore, JYGCT may be used as a GI motility disorder regulator or disease prevention agent.
Collapse
|
7
|
Moon SB, Choi NR, Kim JN, Kwon MJ, Kim BS, Ha KT, Lim EY, Kim YT, Kim BJ. Effects of black garlic on the pacemaker potentials of interstitial cells of Cajal in murine small intestine in vitro and on gastrointestinal motility in vivo. Anim Cells Syst (Seoul) 2022; 26:37-44. [PMID: 35308125 PMCID: PMC8928804 DOI: 10.1080/19768354.2022.2049640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Black garlic (BG) is a newly explored food stuff obtained via fermentation of raw, healthy garlic, especially in Asian countries. Interstitial cells of Cajal (ICC) are the pacemaker cells of gastrointestinal (GI) motility. The purpose of this study was to investigate the effects of BG extract on the pacemaker potentials of the ICC in the small intestines of mice and the possibility of controlling GI motility. The antioxidant activity of BG extract was also investigated. The whole-cell electrophysiological method was used to measure pacemaker potentials of the ICC in vitro, whereas GI motility was measured using the intestinal transit rate (ITR) in vivo. BG extract depolarized the pacemaker potentials of the ICC. Y25130 and RS39604 5-HT receptor antagonists could not inhibit the effect of BG extract on the pacemaker potentials of the ICC, whereas the 5-HT receptor antagonist SB269970 could. Pre-treatment with external Na+ (5 mM) or Ca2+-free solution inhibited the BG extract-induced depolarization of the ICC. With SB203580, PD98059, or c-jun NH2-terminal kinase II inhibitor pre-treatment, BG extract did not induce pacemaker potential depolarization. Moreover, the ITR values were increased by BG extract. Elevation of the ITR due to BG extract was related with increased protein expression of the 5-HT7 receptors. In addition, BG extract showed antioxidant activity. Collectively, these results highlight the ability of BG extract to regulate GI motility and the possibility of using it to develop GI motility modulators in the future. Moreover, BG showed immense potential as an antioxidant.
Collapse
Affiliation(s)
- Suk Bae Moon
- Department of Surgery, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Na Ri Choi
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Min Ji Kwon
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Eun Yeong Lim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| |
Collapse
|
8
|
TRPM7 Ion Channel: Oncogenic Roles and Therapeutic Potential in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246322. [PMID: 34944940 PMCID: PMC8699295 DOI: 10.3390/cancers13246322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the most frequently diagnosed malignant tumor and the second leading cause of cancer death in women worldwide. The risk of developing breast cancer is 12.8%, i.e., 1 in 8 people, and a woman’s risk of dying is approximately 1 in 39. Calcium signals play an important role in various cancers and transport calcium ions may have altered expression in breast cancer, such as the TRPM7 calcium permeant ion channel, where overexpression may be associated with a poor prognosis. This review focuses on the TRPM7 channel, and the oncogenic roles studied so far in breast cancer. The TRPM7 ion channel is suggested as a potential and prospective target in the diagnosis and treatment of breast cancer. Abstract The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.
Collapse
|
9
|
Choi S, Seo H, Lee K, Shin DH, Wu MJ, Wu W, Huang X, Zhang J, Hong C, Jun JY. Hyperpolarization-activated cyclic nucleotide-gated channels working as pacemaker channels in colonic interstitial cells of Cajal. J Cell Mol Med 2021; 26:364-374. [PMID: 34845842 PMCID: PMC8743669 DOI: 10.1111/jcmm.17087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels function as pacemaker channels in spontaneously active cells. We studied the existence of HCN channels and their functional roles in the interstitial cells of Cajal (ICC) from the mouse colon using electrophysiological, immunohistochemical and molecular techniques. HCN1 and HCN3 channels were detected in anoctamin‐1 (Ca2+‐activated Cl− channel; ANO1)‐positive cells within the muscular and myenteric layers in colonic tissues. The mRNA transcripts of HCN1 and HCN3 channels were expressed in ANO1‐positive ICC. In the deletion of HCN1 and HCN3 channels in colonic ICC, the pacemaking potential frequency was reduced. Basal cellular adenylate cyclase activity was decreased by adenylate cyclase inhibitor in colonic ICC, whereas cAMP‐specific phosphodiesterase inhibitors increased it. 8‐Bromo‐cyclic AMP and rolipram increased spontaneous intracellular Ca2+ oscillations. In addition, Ca2+‐dependent adenylate cyclase 1 (AC1) mRNA was detected in colonic ICC. Sulprostone, a PGE2‐EP3 agonist, increased the pacemaking potential frequency, maximum rate of rise of resting membrane in pacemaker potentials and basal cellular adenylate cyclase activity in colonic ICC. These results indicate that HCN channels exist in colonic ICC and participate in generating pacemaking potentials. Thus, HCN channels may be therapeutic targets in disturbed colonic motility disorders.
Collapse
Affiliation(s)
- Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Hyunhyo Seo
- Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyungmin Lee
- Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dong Hoon Shin
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Mei Jin Wu
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Wenhao Wu
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Xingyou Huang
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jingwei Zhang
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
10
|
Kim B, Kwon H, Kim J, Kwon M, Lee J, Kim S, Nam J. The traditional medicine bojungikki-tang increases intestinal motility. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_507_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Hwang M, Kim JN, Lee JR, Kim SC, Kim BJ. Effects of Chaihu-Shugan-San on Small Intestinal Interstitial Cells of Cajal in Mice. Biol Pharm Bull 2020; 43:707-715. [PMID: 32238713 DOI: 10.1248/bpb.b19-01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chaihu-Shugan-San (CSS) has been widely used as an alternative treatment for gastrointestinal (GI) diseases in East Asia. Interstitial cells of Cajal (ICCs) are pacemakers in the GI tract. In the present study, we examined the action of CSS on pacemaker potentials in cultured ICCs from the mouse small intestine in vitro and on GI motility in vivo. We used the electrophysiological methods to measure the pacemaker potentials in ICCs. GI motility was investigated by measuring intestinal transit rates (ITR). CSS inhibited the pacemaker potentials in a dose-dependent manner. The capsazepine did not block the effect of CSS. However, the effects of CSS were blocked by glibenclamide. In addition, NG-nitro-L-arginine methyl ester (L-NAME) also blocked the CSS-induced effects. Pretreatment with SQ-22536 or with KT-5720 did not suppress the effects of CSS; however, pretreatment with ODQ or KT-5823 did. Furthermore, CSS significantly suppressed murine ITR enhancement by neostigmine in vivo. These results suggest that CSS exerts inhibitory effects on the pacemaker potentials of ICCs via nitric oxide (NO)/cGMP and ATP-sensitive K+ channel dependent and transient receptor potential vanilloid 1 (TRPV1) channel independent pathways. Accordingly, CSS could provide the basis for the development of new treatments for GI motility dysfunction.
Collapse
Affiliation(s)
- Minwoo Hwang
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine
| | - Jong Rok Lee
- Department of Pharmaceutical Engineering, Daegu Haany University
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine
| |
Collapse
|
12
|
Numata T, Sato-Numata K, Okada Y. TRPM7 is involved in acid-induced necrotic cell death in a manner sensitive to progesterone in human cervical cancer cells. Physiol Rep 2020; 7:e14157. [PMID: 31293101 PMCID: PMC6640595 DOI: 10.14814/phy2.14157] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Because intravaginal pH is strongly acidic, it is important to investigate the effects of acidosis on cervical cancer cells. Recently, in response to strong acidosis, human cervical cancer HeLa cells were shown to exhibit necrosis after showing persistent cell swelling induced by Cl− influx. Since cation influx should be accompanied with Cl− influx to drive water inflow causing cell swelling, we here studied on the nature of acidotoxic cation conductance. The mRNA/protein expression was assessed by RT‐PCR and Western blotting. Ionic currents were measured by patch‐clamping techniques. Cell counting/viability and colorimetric assays were applied to assess proliferation rate and caspase 3/7 activity, respectively. Cell volume and size were measured by electronic sizing and video‐microscopic measurements, respectively. Acid exposure enhanced TRPM7 activity endogenously expressed in HeLa cells and exogenously overexpressed in HEK293T cells. Gene silencing of TRPM7 abolished acid‐induced cell swelling and necrosis but rather induced activation of apoptotic caspase 3/7 in HeLa cells. Overexpression with the pore charge‐neutralizing D1054A mutant suppressed acid‐enhanced cation currents, acid‐induced cell swelling, and acidotoxic necrosis in HEK293T cells. Progesterone treatment was surprisingly found to suppress molecular and functional expression of TRPM7 and cell proliferation in HeLa cells. Furthermore, in the progesterone‐treated cells, acid exposure did not induce persistent cell swelling followed by necrosis but induced persistent cell shrinkage and apoptotic cell death. These results indicate that in the human cervical cancer cells, TRPM7 is essentially involved in acidotoxic necrotic cell death, and progesterone inhibits TRPM7 expression thereby inhibiting acidotoxic necrosis by switching to apoptosis.
Collapse
Affiliation(s)
- Tomohiro Numata
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka, Japan
| | | | - Yasunobu Okada
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
13
|
Hwang M, Kim JN, Kim BJ. Hesperidin depolarizes the pacemaker potentials through 5-HT 4 receptor in murine small intestinal interstitial cells of Cajal. Anim Cells Syst (Seoul) 2020; 24:84-90. [PMID: 32489687 PMCID: PMC7241530 DOI: 10.1080/19768354.2020.1746398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/04/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Hesperidin, a citrus flavonoid, can exert numerous beneficial effects on human health. Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract. In the present study, we investigated potential effects of hesperidin on pacemaker potential of ICC in murine small intestine and GI motility. A whole-cell patch-clamp configuration was used to record pacemaker potential in ICC, and GI motility was investigated in vivo by recording gastric emptying (GE) and intestinal transit rate (ITR). Hesperidin depolarized pacemaker potentials of ICC in a dose-dependent manner. Pre-treatment with methoctramine or 4-DAMP did not inhibit hesperidin-induced pacemaker potential depolarization. Neither a 5-HT3 receptor antagonist (Y25130) nor a 5-HT7 receptor antagonist (SB269970) reduced the effect of hesperidin on ICC pacemaker potential, whereas the 5-HT4 receptor antagonist RS39604 was found to inhibit this effect. In the presence of GDP–β–S, hesperidin-induced pacemaker potential depolarization was inhibited. Moreover, in the presence of U73122 and calphostin C, hesperidin did not depolarize pacemaker potentials. Furthermore, hesperidin accelerated GE and ITR in vivo. These results imply that hesperidin depolarized ICC pacemaker potential via 5-HT4 receptors, G protein, and PLC/PKC dependent pathways and that it increased GI motility. Therefore, hesperidin may be a promising novel drug to regulate GI motility.
Collapse
Affiliation(s)
- Minwoo Hwang
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| |
Collapse
|
14
|
Lee S, Lee S, Lee A, Sim HJ, Kim GA, Kang BJ, Kim WH. The Presence and Distribution of TRPM7 in the Canine Mammary Glands. Animals (Basel) 2020; 10:ani10030466. [PMID: 32168794 PMCID: PMC7142925 DOI: 10.3390/ani10030466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) cation channel is a bifunctional ion channel with intrinsic kinase activity and is ubiquitously expressed in the animal/human body. Accumulated knowledge of TRPM7 suggests that it plays an essential role in normal physiological processes, including the development, survival, proliferation, differentiation, and migration of cells. The aim of this study was to demonstrate the presence and expression patterns of TRPM7 in normal canine mammary glands using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry. Normal mammary gland tissue samples were obtained from five female beagle dogs. RT-PCR and sequencing of the amplified PCR products demonstrated the presence of TRPM7 mRNA in normal mammary glands, and the presence of TRPM7 protein was confirmed by Western blotting. Immunohistochemical investigations demonstrated the expression of TRPM7 in the apical membrane of acinar and ductal epithelial cells in the canine mammary glands. These results provide the first evidence of the presence and distribution of TRPM7 in the canine mammary gland and could help explain the physiological and pathological roles of TRPM7 in the canine mammary gland; however, additional studies are required to elucidate these roles.
Collapse
Affiliation(s)
- Sungin Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.L.); (S.L.); (H.J.S.); (G.A.K.); (B.-J.K.)
| | - Seulji Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.L.); (S.L.); (H.J.S.); (G.A.K.); (B.-J.K.)
| | - Aeri Lee
- Seeu Animal Medical Center, 24, Ichon-ro 64 gil, Younsan-gu, Seoul 04427, Korea;
| | - Hun Ju Sim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.L.); (S.L.); (H.J.S.); (G.A.K.); (B.-J.K.)
| | - Geon A. Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.L.); (S.L.); (H.J.S.); (G.A.K.); (B.-J.K.)
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.L.); (S.L.); (H.J.S.); (G.A.K.); (B.-J.K.)
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.L.); (S.L.); (H.J.S.); (G.A.K.); (B.-J.K.)
- Correspondence:
| |
Collapse
|
15
|
Kim JN, Kim BJ. Depolarization of pacemaker potentials by caffeic acid phenethyl ester in interstitial cells of Cajal from the murine small intestine. Can J Physiol Pharmacol 2019; 98:201-210. [PMID: 31689119 DOI: 10.1139/cjpp-2019-0452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of caffeic acid phenethyl ester (CAPE) on the pacemaker potentials of ICCs from the mouse small or large intestine. Using the whole-cell patch-clamp configuration, we found that CAPE depolarized the pacemaker potentials of cultured ICCs from the murine small intestine in a dose-dependent manner. The estrogen receptor (ER) β antagonist PHTPP completely inhibited CAPE-induced depolarization, but the ERα antagonist BHPI did not. Intracellular GDP-β-S and pretreatment with Ca2+-free solution or thapsigargin also blocked CAPE-induced depolarization. To investigate the mechanisms of CAPE-mediated depolarization of ICCs, we used the nonselective cation channel (NSCC) inhibitor flufenamic acid, the Cl- channel blocker, mitogen-activated protein kinase (MAPK) inhibitors PD98059, SB203580, or SP600125, and PI3 kinase inhibitor LY294002. All inhibitors blocked the CAPE-induced pacemaker potential depolarization of ICCs. These results suggest that CAPE induces pacemaker potential depolarization through ERβ in a G protein, NSCC, Cl- channel, MAPK- and PI3 kinase dependent manner via intracellular and extracellular Ca2+ regulation in the murine small intestine. CAPE may therefore modulate GI motility by acting on ICCs in the murine small intestine.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
16
|
Youm JB, Zheng H, Koh SD, Sanders KM. Na-K-2Cl Cotransporter and Store-Operated Ca 2+ Entry in Pacemaking by Interstitial Cells of Cajal. Biophys J 2019; 117:767-779. [PMID: 31400920 DOI: 10.1016/j.bpj.2019.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023] Open
Abstract
Pacemaker depolarization in interstitial cells of Cajal (ICCs) is believed to be induced by Ca2+ transients and activation of anoctamin-1 (Ano1) channels in the plasma membrane. However, block of store-operated calcium entry (SOCE) or the Na-K-2Cl cotransporter (NKCC1) terminates pacemaker activity in ICC, indicating these transporters are involved in the initiation or maintenance of pacemaker activity. We hypothesized that SOCE contributes to pacemaker depolarization by maintaining [Ca2+] in the endoplasmic reticulum, which is the underlying source of Ca2+ transients for activation of Ano1. NKCC1 maintains the Cl- gradient supporting the driving force for inward current mediated by Ano1. Currently mechanisms sustaining release of Ca2+ and activation of Ano1 channels during the plateau phase of slow waves are unknown, but the reverse mode of the Na+/Ca2+ exchange may contribute. We generated a mathematical model of pacemaker activity based on current empirical observations from ICC of mouse small intestine that incorporates functions of SOCE and NKCC1. This model reproduces experimental findings, suggesting roles for SOCE and Ano1 channels: blocking of either NKCC1 or SOCE in our model terminates pacemaker activity. Direct contribution of NKCC1 to pacemaker activity in a beat-to-beat manner is not predicted by our model. Instead, NKCC1 plays a maintenance role supporting the driving force for Cl- efflux. Incorporation of SOCE allows the model to drive pacemaker activity without a diastolic depolarization, as observed in cardiac pacemaking. Further biological experiments are necessary to validate and further refine the roles of NKCC1, Na+/Ca2+ exchange, and Ano1 in the pacemaker mechanism of ICC.
Collapse
Affiliation(s)
- Jae Boum Youm
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada.
| |
Collapse
|
17
|
Kim JN, Kim BJ. The Mechanism of Action of Ghrelin and Motilin in the Pacemaker Potentials of Interstitial Cells of Cajal from the Murine Small Intestine. Mol Cells 2019; 42:470-479. [PMID: 31250620 PMCID: PMC6602145 DOI: 10.14348/molcells.2019.0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells that exhibit periodic spontaneous depolarization in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of ghrelin and motilin on the pacemaker potentials of ICCs isolated from the mouse small intestine. Using the whole-cell patch-clamp configuration, we demonstrated that ghrelin depolarized pacemaker potentials of cultured ICCs in a dose-dependent manner. The ghrelin receptor antagonist [D-Lys] GHRP-6 completely inhibited this ghrelin-induced depolarization. Intracellular guanosine 5'-diphosphate-β-S and pre-treatment with Ca2+free solution or thapsigargin also blocked the ghrelin-induced depolarization. To investigate the involvement of inositol triphosphate (IP3), Rho kinase, and protein kinase C (PKC) in ghrelin-mediated pacemaker potential depolarization of ICCs, we used the IP3 receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C, the Rho kinase inhibitor Y-27632, and the PKC inhibitors staurosporine, Go6976, and rottlerin. All inhibitors except rottlerin blocked the ghrelin-induced pacemaker potential depolarization of ICCs. In addition, motilin depolarized the pacemaker potentials of ICCs in a similar dose-dependent manner as ghrelin, and this was also completely inhibited by [D-Lys] GHRP-6. These results suggest that ghrelin induced the pacemaker potential depolarization through the ghrelin receptor in a G protein-, IP3-, Rho kinase-, and PKC-dependent manner via intracellular and extracellular Ca2+ regulation. In addition, motilin was able to depolarize the pacemaker potentials of ICCs through the ghrelin receptor. Therefore, ghrelin and its receptor may modulate GI motility by acting on ICCs in the murine small intestine.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612,
Korea
| |
Collapse
|
18
|
Broertjes J, Klarenbeek J, Habani Y, Langeslag M, Jalink K. TRPM7 residue S1269 mediates cAMP dependence of Ca2+ influx. PLoS One 2019; 14:e0209563. [PMID: 30615643 PMCID: PMC6322742 DOI: 10.1371/journal.pone.0209563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
The nonspecific divalent cation channel TRPM7 (transient receptor potential-melastatin-like 7) is involved in many Ca2+ and Mg2+-dependent cellular processes, including survival, proliferation and migration. TRPM7 expression predicts metastasis and recurrence in breast cancer and several other cancers. In cultured cells, it can induce an invasive phenotype by promoting Ca2+-mediated epithelial-mesenchymal transition. We previously showed that in neuroblastoma cells that overexpress TRPM7 moderately, stimulation with Ca2+-mobilizing agonists leads to a characteristic sustained influx of Ca2+. Here we report that sustained influx through TRPM7 is abruptly abrogated by elevating intracellular levels of cyclic adenosine monophosphate (cAMP). Using pharmacological inhibitors and overexpression studies we show that this blockage is mediated by the cAMP effector Protein Kinase A (PKA). Mutational analysis demonstrates that the Serine residue S1269, which is present proximal to the coiled-coil domain within the protein c-terminus, is responsible for sensitivity to cAMP.
Collapse
Affiliation(s)
- Jorrit Broertjes
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeffrey Klarenbeek
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yasmin Habani
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiel Langeslag
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
|
20
|
Kim D, Kim JN, Nam JH, Lee JR, Kim SC, Kim BJ. Modulation of Pacemaker Potentials in Murine Small Intestinal Interstitial Cells of Cajal by Gamisoyo-San, a Traditional Chinese Herbal Medicine. Digestion 2018; 98:56-68. [PMID: 29672308 DOI: 10.1159/000487186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND The Gamisoyo-san (GSS) has been used for -improving the gastrointestinal (GI) symptoms. The purpose of this study was to investigate the effects of GSS, a traditional Chinese herbal medicine, on the pacemaker potentials of mouse small intestinal interstitial cells of Cajal (ICCs). METHODS ICCs from the small intestines were dissociated and cultured. Whole-cell patch-clamp configuration was used to record pacemaker potentials and membrane currents. RESULTS GSS depolarized ICC pacemaker potentials in a dose-dependent manner. Pretreatment with 4-diphenylacetoxypiperidinium iodide completely inhibited GSS-induced pacemaker potential depolarizations. Intracellular GDP-β-S inhibited GSS-induced effects, and in the presence of U-73122, GSS-induced effects were inhibited. Also, GSS in the presence of a Ca2+-free solution or thapsigargin did not depolarize pacemaker potentials. However, in the presence of calphostin C, GSS slightly depolarized pacemaker potentials. Furthermore, GSS inhibited both transient receptor potential melastatin7 and Ca2+-activated Cl- channel (anoctamin1) currents. CONCLUSION GSS depolarized pacemaker potentials of ICCs via G protein and muscarinic M3 receptor signaling pathways and through internal or external Ca2+-, phospholipase C-, and protein kinase C-dependent and transient receptor potential melastatin 7-, and anoctamin 1-independent pathways. The study shows that GSS may regulate GI tract motility, suggesting that GSS could be a basis for developing novel prokinetic agents for treating GI motility dysfunctions.
Collapse
Affiliation(s)
- Doeun Kim
- Division of Longevity and Biofunctional Medicine, Yangsan, Republic of Korea
| | - Jung Nam Kim
- Division of Longevity and Biofunctional Medicine, Yangsan, Republic of Korea.,Healthy Aging Korean Medical Research Center (HAKMRC), Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, College of Medicine, Dongguk University, Kyungju, Republic of Korea
| | - Jong Rok Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Yangsan, Republic of Korea.,Healthy Aging Korean Medical Research Center (HAKMRC), Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| |
Collapse
|
21
|
mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. Int J Dev Neurosci 2018; 69:23-31. [DOI: 10.1016/j.ijdevneu.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 05/18/2018] [Indexed: 12/31/2022] Open
|
22
|
Park IK, Kim JH, Park CG, Kim MY, Parajuli SP, Hong CS, Choi S, Jun JY. Effects of ATP on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Small Intestine. Chonnam Med J 2018; 54:63-71. [PMID: 29399568 PMCID: PMC5794481 DOI: 10.4068/cmj.2018.54.1.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023] Open
Abstract
Purinergic receptors play an important role in regulating gastrointestinal (GI) motility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate GI smooth muscle activity. We studied the functional roles of external adenosine 5′-triphosphate (ATP) on pacemaker activity in cultured ICCs from mouse small intestines by using the whole-cell patch clamp technique and intracellular Ca2+ ([Ca2+]i) imaging. External ATP dose-dependently depolarized the resting membrane and produced tonic inward pacemaker currents, and these effects were antagonized by suramin, a purinergic P2 receptor antagonist. ATP-induced effects on pacemaker currents were suppressed by an external Na+-free solution and inhibited by the nonselective cation channel blockers, flufenamic acid and niflumic acid. The removal of external Ca2+ or treatment with thapsigargin (inhibitor of Ca2+ uptake into endoplasmic reticulum) inhibited the ATP-induced effects on pacemaker currents. Spontaneous [Ca2+]i oscillations were enhanced by external ATP. These results suggest that external ATP modulates pacemaker activity by activating nonselective cation channels via external Ca2+ influx and [Ca2+]i release from the endoplasmic reticulum. Thus, it seems that activating the purinergic P2 receptor may modulate GI motility by acting on ICCs in the small intestine.
Collapse
Affiliation(s)
- Il Koo Park
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Jin Ho Kim
- Department of Neurology, College of Medicine, Chosun University, Gwangju, Korea
| | - Chan Guk Park
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Man Yoo Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | | | - Chan Sik Hong
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
23
|
Park CG, Wu MJ, Hong C, Jo JY, Jiao HY, Park H, Jun JY, Choi S. Regulation of Intracellular Calcium by Endoplasmic Reticulum Proteins in Small Intestinal Interstitial Cells of Cajal. J Neurogastroenterol Motil 2018; 24:128-137. [PMID: 28774158 PMCID: PMC5753911 DOI: 10.5056/jnm16212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/13/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
Background/Aims We investigated the role of representative endoplasmic reticulum proteins, stromal interaction molecule 1 (STIM1), and store-operated calcium entry-associated regulatory factor (SARAF) in pacemaker activity in cultured interstitial cells of Cajal (ICCs) isolated from mouse small intestine. Methods The whole-cell patch clamp technique applied for intracellular calcium ions ([Ca2+]i) analysis with STIM1 or SARAF overexpressed cultured ICCs from mouse small intestine. Results In the current-clamping mode, cultured ICCs displayed spontaneous pacemaker potentials. External carbachol exposure produced tonic membrane depolarization in the current-clamp mode, which recovered within a few seconds into normal pacemaker potentials. In STIM1-overexpressing cultured ICCs pacemaker potential frequency was increased, and in SARAF-overexpressing ICCs pacemaker potential frequency was strongly inhibited. The application of gadolinium (a non-selective cation channel inhibitor) or a Ca2+-free solution to understand Orai channel involvement abolished the generation of pacemaker potentials. When recording intracellular Ca2+ concentration with Fluo 3-AM, STIM1-overexpressing ICCs showed an increased number of spontaneous intracellular Ca2+ oscillations. However, SARAF-overexpressing ICCs showed fewer spontaneous intracellular Ca2+ oscillations. Conclusion Endoplasmic reticulum proteins modulated the frequency of pacemaker activity in ICCs, and levels of STIM1 and SARAF may determine slow wave patterns in the gastrointestinal tract.
Collapse
Affiliation(s)
- Chan Guk Park
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Mei Jin Wu
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| | - Chansik Hong
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| | - Ju Yeon Jo
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Korea
| | - Han Yi Jiao
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| | - Hyun Park
- Department of Physiology, College of Medicine, Chosun University, Gwangju, Korea
| | - Jae Yeoul Jun
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| | - Seok Choi
- Department of Medicine, Graduate School, Chosun University, Gwangju, Korea
| |
Collapse
|
24
|
Kim HJ, Lee GS, Kim H, Kim BJ. Hwangryunhaedok-tang induces the depolarization of pacemaker potentials through 5-HT 3 and 5-HT 4 receptors in cultured murine small intestine interstitial cells of Cajal. World J Gastroenterol 2017; 23:5313-5323. [PMID: 28839431 PMCID: PMC5550780 DOI: 10.3748/wjg.v23.i29.5313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the effects of a water extract of Hwangryunhaedok-tang (HHTE) on the pacemaker potentials of mouse interstitial cells of Cajal (ICCs).
METHODS We dissociated ICCs from small intestines and cultured. ICCs were immunologically identified using an anti-c-kit antibody. We used the whole-cell patch-clamp configuration to record the pacemaker potentials generated by cultured ICCs under the current clamp mode (I = 0). All experiments were performed at 30 °C-32 °C
RESULTS HHTE dose-dependently depolarized ICC pacemaker potentials. Pretreatment with a 5-HT3 receptor antagonist (Y25130) or a 5-HT4 receptor antagonist (RS39604) blocked HHTE-induced pacemaker potential depolarizations, whereas pretreatment with a 5-HT7 receptor antagonist (SB269970) did not. Intracellular GDPβS inhibited HHTE-induced pacemaker potential depolarization and pretreatment with a Ca2+-free solution or thapsigargin abolished the pacemaker potentials. In the presence of a Ca2+-free solution or thapsigargin, HHTE did not depolarize ICC pacemaker potentials. In addition, HHTE-induced pacemaker potential depolarization was unaffected by a PKC inhibitor (calphostin C) or a Rho kinase inhibitor (Y27632). Of the four ingredients of HHT, Coptidis Rhizoma and Gardeniae Fructus more effectively inhibited pacemaker potential depolarization.
CONCLUSION These results suggest that HHTE dose-dependently depolarizes ICC pacemaker potentials through 5-HT3 and 5-HT4 receptors via external and internal Ca2+ regulation and via G protein-, PKC- and Rho kinase-independent pathways.
Collapse
|
25
|
Kim MW, Jiao HY, Kim SW, Park CG, Wu MJ, Hong C, Choi S, Jun JY. Prostanoid EP3 receptor agonist sulprostone enhances pacemaker activity of colonic interstitial cells of Cajal. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:961-969. [PMID: 28685234 DOI: 10.1007/s00210-017-1398-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
EP receptor activation by PGE2 regulates gastrointestinal motility by modulating smooth muscle contractility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate smooth muscle activity. We aimed to determine effects of the EP3 receptor agonist sulprostone on pacemaker potentials in colonic ICCs. We performed a whole cell patch clamp, RT-PCR, and Ca2+ imaging in cultured ICCs from mouse colon. Sulprostone depolarized the membrane and increased pacemaker frequency. EP3 receptor antagonist blocked these sulprostone-induced effects. EP3 receptors were expressed in ANO1-positive ICCs. Phospholipase C inhibitor or Ca2+-ATPase inhibitor from the endoplasmic reticulum blocked the sulprostone-induced effects and sulprostone increased intracellular Ca2+ ([Ca2+]i) oscillations. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers also suppressed the sulprostone-induced effects. Sulprostone enhanced pacemaker activity through EP3 receptors by activating HCN channels via the [Ca2+]i release pathway. Therefore, EP3 receptor activation in ICCs may modulate colonic motility and could be a therapeutic target for enhancing colonic GI motility.
Collapse
Affiliation(s)
- Man Woo Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, South Korea
| | - Han Yi Jiao
- Department of Physiology, College of Medicine, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-375, South Korea
| | - Seok Won Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, South Korea
| | - Chan Guk Park
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, South Korea
| | - Mei Jin Wu
- Department of Physiology, College of Medicine, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-375, South Korea
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-375, South Korea
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-375, South Korea
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-375, South Korea.
| |
Collapse
|
26
|
Alcaino C, Farrugia G, Beyder A. Mechanosensitive Piezo Channels in the Gastrointestinal Tract. CURRENT TOPICS IN MEMBRANES 2017; 79:219-244. [PMID: 28728818 PMCID: PMC5606247 DOI: 10.1016/bs.ctm.2016.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechanosensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels.
Collapse
Affiliation(s)
- C Alcaino
- Mayo Clinic College of Medicine, Rochester, MN, United States
| | - G Farrugia
- Mayo Clinic College of Medicine, Rochester, MN, United States
| | - A Beyder
- Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
27
|
Kim H, Kim HJ, Yang D, Jung MH, Kim BJ. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine. Pharmacogn Mag 2017; 13:141-147. [PMID: 28216898 PMCID: PMC5307899 DOI: 10.4103/0973-1296.196312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. Objective: The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Materials and Methods: Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. Results: In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did. Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca2+-free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. Conclusion: These results suggest that DKT depolarizes ICC PPs in an internal or external Ca2+-dependent manner by stimulating 5-HT4 and M3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. SUMMARY Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs) Y25130 (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT4 receptor antagonist) did Methoctramine (a muscarinic M2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-DAMP (a muscarinic M3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization Ginseng radix and Zingiberis rhizomes depolarized PPswhereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs.
Abbreviation used: DKT: Daikenchuto, GI: Gastrointestinal, ICCs: Interstitial cells of Cajal, PPs: Pacemaker Potentials.
Collapse
Affiliation(s)
- Hyungwoo Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine and Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine and Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine and Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
28
|
Lee SW, Kim SJ, Kim H, Yang D, Kim HJ, Kim BJ. Effects of Prunus mume Siebold & Zucc. in the pacemaking activity of interstitial cells of Cajal in murine small intestine. Exp Ther Med 2016; 13:327-334. [PMID: 28123510 DOI: 10.3892/etm.2016.3963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) function as pacemaker cells in the gastrointestinal (GI) tract and therefore, serve an important role in regulating GI motility. The effects of a species of plum (Prunus mume Siebold & Zucc.) on cultured ICC cluster-induced pacemaker potentials in the mouse small intestine were investigated, and the effects of a methanolic extract of Prunus mume (m-PM) on ICC pacemaker activities were examined using the whole-cell patch-clamp technique. ICC pacemaker membrane potentials were depolarized by m-PM in a concentration dependent manner in current clamp mode. 4-Diphenylacetoxy-N-methyl-piperidine methiodide, which is a muscarinic 3 (M3) receptor antagonist, was able to block m-PM-induced pacemaker potential increases, whereas methoctramine, which is a muscarinic 2 (M2) receptor antagonist, was not. When 1 mM guanosine diphosphate β-5 was present in the pipette solution, m-PM induced slight pacemaker depolarization. Following pretreatment in bath solution of Ca2+-free solution or a Ca2+-ATPase inhibitor in endoplasmic reticulum, the pacemaker currents were inhibited. Furthermore, pretreatment with PD98059, SB203580 or SP600125, which is a c-jun NH2-terminal kinase inhibitor, blocked m-PM-induced ICC potential depolarization. Furthermore, m-PM inhibited transient receptor potential melastatin (TRPM) 7 channels, but did not affect Ca2+-activated Cl- channels. These results suggest that m-PM is able to modulate pacemaker potentials through the muscarinic M3 receptor, via G-protein and external and internal Ca2+, in a mitogen-activated protein kinase and TRPM7-dependent manner. Therefore, m-PM may provide a basis for the development of a novel gastroprokinetic agent.
Collapse
Affiliation(s)
- Sang Weon Lee
- Department of Neurosurgery, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Sung Jin Kim
- Department of Neurosurgery, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Hyungwoo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Gachon University College of Medicine, Incheon, Gyeonggi 22332, Republic of Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam 50612, Republic of Korea
| |
Collapse
|
29
|
Lee MC, Ha W, Park J, Kim J, Jung Y, Kim BJ. Effects of Lizhong Tang on gastrointestinal motility in mice. World J Gastroenterol 2016; 22:7778-7786. [PMID: 27678361 PMCID: PMC5016378 DOI: 10.3748/wjg.v22.i34.7778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/07/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of Lizhong Tang, a traditional Chinese medicine formula, on gastrointestinal motility in mice.
METHODS The in vivo effects of Lizhong Tang on GI motility were investigated by measuring the intestinal transit rates (ITRs) and gastric emptying (GE) values in normal mice and in mice with experimentally induced GI motility dysfunction (GMD).
RESULTS In normal ICR mice, the ITR and GE values were significantly and dose-dependently increased by Lizhong Tang (ITR values: 54.4% ± 1.9% vs 65.2% ± 1.8%, P < 0.01 with 0.1 g/kg Lizhong Tang and 54.4% ± 1.9% vs 83.8% ± 1.9%, P < 0.01 with 1 g/kg Lizhong Tang; GE values: 60.7% ± 1.9% vs 66.8% ± 2.1%, P < 0.05 with 0.1 g/kg Lizhong Tang and 60.7% ± 1.9% vs 72.5% ± 1.7%, P < 0.01 with 1 g/kg Lizhong Tang). The ITRs of the GMD mice were significantly reduced compared with those of the normal mice, which were significantly and dose-dependently reversed by Lizhong Tang. Additionally, in loperamide- and cisplatin-induced models of GE delay, Lizhong Tang administration reversed the GE deficits.
CONCLUSION These results suggest that Lizhong Tang may be a novel candidate for development as a prokinetic treatment for the GI tract.
Collapse
|
30
|
Kim HJ, Kim H, Jung MH, Kwon YK, Kim BJ. Berberine induces pacemaker potential inhibition via cGMP-dependent ATP-sensitive K+ channels by stimulating mu/delta opioid receptors in cultured interstitial cells of Cajal from mouse small intestine. Mol Med Rep 2016; 14:3985-91. [PMID: 27601272 DOI: 10.3892/mmr.2016.5698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Berberine is traditionally used to treat gastrointestinal (GI) motility disorders. The interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal tract, which are responsible for the production of gut movements. The present study aimed to investigate the effects of berberine on pacemaker potentials (PPs) in cultured ICC clusters from the mouse small intestine, and sought to identify the receptors involved and the underlying mechanisms of action. All experiments were performed on cultured ICCs, and a whole‑cell patch‑clamp configuration was used to record PPs from ICC clusters (current clamp mode). Under current clamp mode, berberine was shown to decrease the amplitude and frequency of PPs. However, these effects were suppressed by treatment with glibenclamide, a specific ATP‑sensitive K+ channel blocker. Nor‑binaltorphimine dihydrochloride (a kappa opioid receptor antagonist) did not suppress berberine‑induced PP inhibition, whereas ICI 174,864 (a delta opioid receptor antagonist) and CTOP (a mu opioid receptor antagonist) did suppress the inhibitory effects of berberine. Pretreatment with SQ‑22536 (an adenylate cyclase inhibitor) or with KT‑5720 (a protein kinase A inhibitor) did not suppress the effects of berberine; however, pretreatment with 1H‑[1,2,4] oxadiazolo [4,3‑a] quinoxalin‑1‑one (a guanylate cyclase inhibitor) or KT‑5823 [a protein kinase G (PKG) inhibitor] did. In addition, berberine stimulated cyclic guanosine monophosphate (cGMP) production in ICCs. These observations indicate that berberine may inhibit the pacemaker activity of ICC clusters via ATP‑sensitive K+ channels and the cGMP‑PKG‑dependent pathway by stimulating mu and delta opioid receptors. Therefore, berberine may provide a basis for the development of novel agents for the treatment of GI motility dysfunction.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Hyungwoo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Young Kyu Kwon
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| |
Collapse
|
31
|
Shim JH, Lee SJ, Gim H, Kim HJ, Han T, Kim JG, Lim EY, Kim YT, Kim BJ. Regulation of the pacemaker activities in cultured interstitial cells of Cajal by Citrus unshiu peel extracts. Mol Med Rep 2016; 14:3908-16. [PMID: 27572234 DOI: 10.3892/mmr.2016.5689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
Abstract
The Citrus unshiu peel has been widely used for the treatment of gastrointestinal (GI) disorders in Eastern traditional medicine. The present study aimed to investigate the effects of Citrus unshiu peel extract (CPE) on the pacemaker activity of the GI tract in cultured interstitial cells of Cajal (ICCs) derived from the mouse small intestine. The whole‑cell patch‑clamp configuration was used to record pacemaker potentials. In current clamp mode, exposure to CPE caused membrane pacemaker depolarization in a concentration‑dependent manner. In the presence of the muscarinic M2 receptor antagonist, methoctramine, CPE induced membrane pacemaker depolarization, whereas treatment with the muscarinic M3 receptor antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide, inhibited CPE‑induced responses. When the pipette solution contained guanosine 5'-(β-thio) diphosphate trilithium salt (1 mM), CPE marginally induced membrane pacemaker depolarization. In addition, CPE‑induced membrane pacemaker depolarization was inhibited following exposure to the active phospholipase C (PLC) inhibitor U‑73122, but not the inactive PLC inhibitor U‑73343. In the presence of a p42/p44 mitogen‑activated protein kinase (MAPK) inhibitor (PD98059), a p38 MAPK inhibitor (SB203580) or a c‑jun NH2‑terminal kinase (JNK) II inhibitor, CPE failed to induce membrane pacemaker depolarization. These results suggest that CPE may affect GI motility through modulating ICC pacemaker activity by activating the muscarinic M3 receptor and inducing the G‑protein dependent PLC and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ji Hwan Shim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Soo Jin Lee
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Huijin Gim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Taewon Han
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Jae Goo Kim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Eun Yeong Lim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Yun Tai Kim
- Research Group of Innovative Special Food, Korea Food Research Institute, Seongnam, Gyeonggi 13539, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| |
Collapse
|
32
|
Kim HJ, Park SY, Kim DG, Park SH, Lee H, Hwang DY, Jung MH, Ha KT, Kim BJ. Effects of the roots of Liriope Platyphylla Wang Et tang on gastrointestinal motility function. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:144-153. [PMID: 26969403 DOI: 10.1016/j.jep.2016.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liriope platyphylla Wang et Tang continues to be used in Korea as a traditional medicine for the treatment of gastrointestinal (GI) disorders related to constipation and abnormal GI motility. AIM OF THE STUDY Because GI disorders, especially GI motility dysfunctions, are major lifelong problems, the authors investigated the effects of a water extract of the roots of L. platyphylla Wang et Tang (LPE) on the pacemaker potentials (PPTs) of interstitial cells of Cajal (ICCs) and on GI motility in male ICR mice. MATERIALS AND METHODS Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record PPTs generated by cultured ICCs in vitro. In vivo effects of LPE on GI motility were investigated by measuring intestinal transit rates (ITRs) of Evans blue in normal mice and in acetic acid (AA) and streptozotocin (STZ)-induced diabetic mouse models of GI motility dysfunction. RESULTS LPE dose-dependently depolarized PPTs in ICCs. Pretreatment with methoctramine (a muscarinic M2 receptor antagonist) did not block LPE-induced PPT depolarization. However, pretreatment with 4-DAMP (a muscarinic M3 receptor antagonist) blocked LPE-induced PPT depolarization. In addition, treatment with LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor) also blocked LPE-induced PPT depolarization. Intracellular GDPβS inhibited LPE-induced PPT depolarization, and LPE-induced PPT depolarization was found to occur in a phospholipase C (PLC)- and a protein kinase C (PKC)-dependent manner. Pretreatment with Ca(2+)free solution or thapsigargin (a Ca(2+)-ATPase inhibitor in endoplasmic reticulum) abolished PPTs, and under these conditions, LPE did not depolarize ICC PPTs. In normal mice, ITRs were significantly and dose-dependently increased by LPE (0.01-1g/kg administered intragastrically (i.g.)). In addition, LPE (i.g.) significantly recovered GI motility dysfunctions in both animal models. CONCLUSION LPE dose-dependently depolarizes ICC PPTs through M3 receptors via external and internal Ca(2+)regulation and via G protein-, PI3K-, PLC- and PKC- dependent pathways in vitro. Also, in vivo, LPE increased ITRs in treatment naïve mice and our two mouse models of GI dysfunction. Therefore, this study shows that LPE offers a basis for the development of a prokinetic agent that prevents or alleviates GI motility dysfunctions.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Sun Young Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Dae Geon Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - So-Hae Park
- College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Heeseob Lee
- College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Dae Youn Hwang
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Ki-Tae Ha
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Division of Applied Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.
| |
Collapse
|
33
|
Kim BJ, Hong C. Role of transient receptor potential melastatin type 7 channel in gastric cancer. Integr Med Res 2016; 5:124-130. [PMID: 28462107 PMCID: PMC5381434 DOI: 10.1016/j.imr.2016.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023] Open
Abstract
Transient receptor potential (TRP) proteins are a family of ion channels, which are responsible for a wide array of cellular functions. In particular, TRP melastatin type (TRPM) 7 is expressed everywhere and permeable to divalent cations such as Mg2+ and Ca2+. It contains a channel and a kinase domain. Recent studies indicate that activation of TRPM7 plays an important role in the growth and survival of gastric cancer cells. In this review, we describe and discuss the findings of recent studies that have provided novel insights of the relation between TRPM7 and gastric cancer.
Collapse
Affiliation(s)
- Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea.,Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan, Korea
| | - Chansik Hong
- Department of Physiology, Seoul National University, College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Sung SK, Kim SJ, Ahn TS, Hong NR, Park HS, Kwon YK, Kim BJ. Effects of Dangkwisoo‑san, a traditional herbal medicine for treating pain and blood stagnation, on the pacemaker activities of cultured interstitial cells of Cajal. Mol Med Rep 2015; 12:6370-6. [PMID: 26260469 DOI: 10.3892/mmr.2015.4203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/17/2015] [Indexed: 11/06/2022] Open
Abstract
The interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal (GI) tract. In the present study, the effects of Dangkwisoo‑san (DS) on pacemaker potentials in cultured ICCs from the small intestine of the mouse were investigated. The whole‑cell patch‑clamp configuration was used to record pacemaker potentials from cultured ICCs and the increase in intracellular Ca2+ concentration ([Ca2+i) was analyzed in cultured ICCs using fura‑2‑acetoxymethyl ester. The generation of pacemaker potentials in the ICCs was observed. DS produced pacemaker depolarizations in a concentration dependent manner in current clamp mode. The 4‑diphenylacetoxy‑N‑methyl‑piperidine methiodide muscarinic M3 receptor antagonist inhibited DS‑induced pacemaker depolarizations, whereas methoctramine, a muscarinic M2 receptor antagonist, did not. When guanosine 5'‑[β‑thio] diphosphate (GDP‑β‑S; 1 mM) was in the pipette solution, DS marginally induced pacemaker depolarizations, whereas low Na+ solution externally eliminated the generation of pacemaker potentials and inhibited the DS‑induced pacemaker depolarizations. Additionally, the nonselective cation channel blocker, flufenamic acid, inhibited the DS‑induced pacemaker depolarizations. Pretreatment with Ca2+‑free solution and thapsigargin, a Ca2+‑ATPase inhibitor in the endoplasmic reticulum, also eliminated the generation of pacemaker currents and suppressed the DS‑induced pacemaker depolarizations. In addition, [Ca2+]i analysis revealed that DS increased [Ca2+]i. These results suggested that DS modulates pacemaker potentials through muscarinic M3 receptor activation in ICCs by G protein‑dependent external and internal Ca2+ regulation and external Na+. Therefore, DS were observed to affect intestinal motility through ICCs.
Collapse
Affiliation(s)
- Soon-Ki Sung
- Department of Neurosurgery, Pusan National University, Yangsan Hospital, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Sung Jin Kim
- Department of Neurosurgery, Pusan National University, Yangsan Hospital, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Tae Seok Ahn
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Noo Ri Hong
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Young Kyu Kwon
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626‑870, Republic of Korea
| |
Collapse
|
35
|
Kurth F, Franco-Obregón A, Casarosa M, Küster SK, Wuertz-Kozak K, Dittrich PS. Transient receptor potential vanilloid 2-mediated shear-stress responses in C2C12 myoblasts are regulated by serum and extracellular matrix. FASEB J 2015. [PMID: 26207028 DOI: 10.1096/fj.15-275396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The developmental sensitivity of skeletal muscle to mechanical forces is unparalleled in other tissues. Calcium entry via reputedly mechanosensitive transient receptor potential (TRP) channel classes has been shown to play an essential role in both the early proliferative stage and subsequent differentiation of skeletal muscle myoblasts, particularly TRP canonical (TRPC) 1 and TRP vanilloid (TRPV) 2. Here we show that C2C12 murine myoblasts respond to fluid flow-induced shear stress with increments in cytosolic calcium that are largely initiated by the mechanosensitive opening of TRPV2 channels. Response to fluid flow was augmented by growth in low extracellular serum concentration (5 vs. 20% fetal bovine serum) by greater than 9-fold and at 18 h in culture, coincident with the greatest TRPV2 channel expression under identical conditions (P < 0.02). Fluid flow responses were also enhanced by substrate functionalization with laminin, rather than with fibronectin, agreeing with previous findings that the gating of TRPV2 is facilitated by laminin. Fluid flow-induced calcium increments were blocked by ruthenium red (27%) and SKF-96365 (38%), whereas they were unaltered by 2-aminoethoxydiphenyl borate, further corroborating that TRPV2 channels play a predominant role in fluid flow mechanosensitivity over that of TRPC1 and TRP melastatin (TRPM) 7.
Collapse
Affiliation(s)
- Felix Kurth
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Alfredo Franco-Obregón
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Marco Casarosa
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Simon K Küster
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Karin Wuertz-Kozak
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Petra S Dittrich
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| |
Collapse
|
36
|
Ahn TS, Kim DG, Hong NR, Park HS, Kim H, Ha KT, Jeon JH, So I, Kim BJ. Effects of Schisandra chinensis extract on gastrointestinal motility in mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:163-169. [PMID: 25862968 DOI: 10.1016/j.jep.2015.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill. (SC) continues to be used as a traditional folk medicine in Asia, especially for the treatment of gastrointestinal (GI) disorders related to gastritis, diarrhea, enterocolitis and abnormal GI motility. AIM OF THE STUDY Because GI disorders, especially abnormal GI motility, are major lifelong problems, we investigated the effects of SC on the pacemaker activity of the interstitial cells of Cajal (ICCs) in murine small intestine and GI motility. MATERIALS AND METHODS Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials generated by cultured ICCs. In vivo effects of SC on GI motility were investigated by measuring the intestinal transit rate (ITR) of Evans blue in normal and GI motility dysfunction mice. RESULTS SC extracts depolarized the membrane potentials of ICCs in a dose dependent manner. Pretreatment with Ca(2+) free solution or thapsigargin (a Ca(2+)-ATPase inhibitor in the endoplasmic reticulum) abolished the generation of pacemaker potentials by ICCs, and under these conditions, SC extract did not depolarize the membrane potentials of ICCs. In addition, membrane depolarizations were inhibited by intracellular GDPβS and by U-73122 (an active phospholipase C (PLC) inhibitor). In normal mice, ITRs were significantly increased by SC extract (0.1-1g/kg, intragastrically (i.g.)) in a dose dependent manner. Also, SC extract significantly recovered the GI motility dysfunctions in acetic acid (AA)-injected and streptozotocin (STZ)-induced diabetic mice, which are the GI motility animal models. MATERIALS AND METHODS SC extract modulates pacemaker potentials in ICCs in a dose dependent manner via external and internal Ca(2+) regulations, and via G protein and the PLC pathway. In addition, SC extract increased ITRs in normal and abnormal GI motility mice models. This study shows that SC extract offers a basis for the development of a prokinetic agent that prevents or alleviates GI motility dysfunctions.
Collapse
Affiliation(s)
- Tae Seok Ahn
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Dae Geon Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Noo Ri Hong
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Hyungwoo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea.
| |
Collapse
|
37
|
Lee HJ, Kim MC, Lim B, Kim BJ. Buxus Microphylla var. Koreana Nakai Extract for the Treatment of Gastric Cancer. J Pharmacopuncture 2015; 16:39-45. [PMID: 25780674 PMCID: PMC4331968 DOI: 10.3831/kpi.2013.16.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/12/2013] [Indexed: 11/24/2022] Open
Abstract
Objectives: Buxus Microphylla var. Koreana Nakai Extract (BMKNE) is used as a folk remedy for malaria and veneral disease. In the present study, we investigated the effects of BMKNE in the growth and the survival of AGS cells, the most common human gastric adenocarcinoma cell lines. Methods: The AGS cells were treated with varying concentrations of BMKNE. Analyses of the sub G1 peak, the caspase-3 and -9 activities, and the mitochondrial depolarization were conducted to determine whether AGS cell death occured by apoptosis. Also, to identify the role of transient receptor potential melastatin (TRPM) 7 channels in AGS cell growth and survival, we used human embryonic kidney (HEK) 293 cells overexpressed with TRPM7 channels. Results: Experimental results showed that the sub G1 peak, the caspase-3 and -9 activities, and the mitochondrial depolarization were increased. Therefore, BMKNE was found to induce the apoptosis of these cells, and this apoptosis was inhibited by SB203580 (a p38 mitogen-activated protein kinase (MAPK) inhibitor), and by a c-jun NH2-terminal kinase (JNK) II inhibitor. Furthermore, BMKNE inhibited TRPM7 currents and TRPM7 channel over-expressions in HEK 293 cells, exacerbating BMKNE-induced cell death. Conclusions: These findings indicate that BMKNE inhibits the growth and the survival of gastric cancer cells due to a blockade of the TRPM7 channel’s activity and MAPK signaling. Therefore, BMKNE is a potential drug for treatment of gastric cancer, and both the TRPM7 channel and MAPK signaling may play an important role in survival in gastric cancer cells.
Collapse
Affiliation(s)
- Hee Jung Lee
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Min Chul Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Bora Lim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|
38
|
Kim JN, Song HJ, Lim B, Kwon YK, Kim BJ. Modulation of pacemaker potentials by pyungwi-san in interstitial cells of cajal from murine small intestine: pyungwi-san and interstitial cells of cajal. J Pharmacopuncture 2015; 16:43-9. [PMID: 25780661 PMCID: PMC4331954 DOI: 10.3831/kpi.2013.16.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/28/2012] [Indexed: 11/09/2022] Open
Abstract
Objective: Pyungwi-san (PWS) plays a role in a number of physiologic and pharmacologic functions in many organs. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We aimed to investigate the beneficial effects of PWS in mouse small-intestinal ICCs. Methods: Enzymatic digestion was used to dissociate ICCs from the small intestine of a mouse. The wholecell patch-clamp configuration was used to record membrane potentials from the cultured ICCs. Results: ICCs generated pacemaker potentials in the GI tract. PWS produced membrane depolarization in the current clamp mode. Pretreatment with a Ca2+ -free solution and a thapsigargin, a Ca2+ -ATPase, inhibitor in the endoplasmic reticulum, eliminated the generation of pacemaker potentials. However, only when the thapsigargin was applied in a bath solution, the membrane depolarization was not produced by PWS. Furthermore, the membrane depolarizations due to PWS were inhibited not by U-73122, an active phospholipase C inhibitor, but by chelerythrine and calphostin C, protein kinase C inhibitors. Conclusions: These results suggest that PWS might affect GI motility by modulating the pacemaker activity in the ICCs.
Collapse
Affiliation(s)
- Jung Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Ho Jun Song
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Bora Lim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Young Kyu Kwon
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|
39
|
Kim BJ. Shengmaisan regulates pacemaker potentials in interstitial cells of cajal in mice. J Pharmacopuncture 2015; 16:36-42. [PMID: 25780681 PMCID: PMC4331980 DOI: 10.3831/kpi.2013.16.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/03/2013] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Shengmaisan (SMS) is a traditional Chinese medicine prescription widely used for the treatment of diverse organs in Korea. The interstitial cells of Cajal (ICCs) are pacemaker cells that play an important role in the generation of coordinated gastrointestinal (GI) motility. We have aimed to investigate the effects of SMS in the ICCs in the mouse small intestine. METHODS To dissociate the ICCs, we used enzymatic digestions from the small intestine in a mouse. After that, the ICCs were identified immunologically by using the anti-c-kit antibody. In the ICCs, the electrophysiological whole-cell patch-clamp configuration was used to record pacemaker potentials in the cultured ICCs. RESULTS The ICCs generated pacemaker potentials in the mouse small intestine. SMS produced membrane depolarization with concentration-dependent manners in the current clamp mode. Pretreatment with a Ca(2+) free solution and thapsigargin, a Ca(2+)-ATPase inhibitor in the endoplasmic reticulum, stopped the generation of the pacemaker potentials. In the case of Ca(2+)-free solutions, SMS induced membrane depolarizations. However, when thapsigargin in a bath solution was applied, the membrane depolarization was not produced by SMS. The membrane depolarizations produced by SMS were inhibited by U-73122, an active phospholipase C (PLC) inhibitors. Furthermore, chelerythrine and calphostin C, a protein kinase C (PKC) inhibitors had no effects on SMS-induced membrane depolarizations. CONCLUSIONS These results suggest that SMS might affect GI motility by modulating the pacemaker activity through an internal Ca(2+)- and PLC-dependent and PKC-independent pathway in the ICCs.
Collapse
Affiliation(s)
- Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|
40
|
Lim B, Lee HJ, Kim MC, Kim BJ. Effects of Ulmi Pumilae Cortex on AGS Gastric Cancer Cells. J Pharmacopuncture 2015; 16:55-61. [PMID: 25780669 PMCID: PMC4331962 DOI: 10.3831/kpi.2013.16.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/19/2013] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Ulmi Pumilae Cortex(UPC) is a deciduous tree with uneven pinnate leaves and is classified as a subfamily of Ulmuceae and contains many pharmacologically active constituents. The aim of this study was to investigate the effects of UPC on the growth and survival of AGS cells, the most common human gastric adenocarcinoma cell lines. METHODS The AGS cells were treated with varying concentrations of UPC. Analyses of the sub G1, caspase-3 activity, and mitochondrial depolarization were conducted to determine whether AGS cell death occured by apoptosis. Furthermore, to identify the role of the transient receptor potential melastatin (TRPM) 7 channels in AGS cell growth and survival, we used human embryonic kidney (HEK) 293 cells overexpressed with TRPM7 channels. RESULTS The addition of UPC to a culture medium inhibited AGS cell growth and survival. Experimental results showed that the sub G1, caspase-3 activity, and mitochondrial depolarization were increased. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated UPC-induced cell death. CONCLUSION These findings indicate that UPC inhibits the growth and survival of gastric cancer cells due to a blockade of the TRPM7 channel activity. Therefore, UPC is a potential drug for treatment of gastric cancer, and TRPM7 channels may play an important role in survival in cases of gastric cancer.
Collapse
Affiliation(s)
- Bora Lim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Hee Jung Lee
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Min Chul Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|
41
|
Hong NR, Park HS, Ahn TS, Kim HJ, Ha KT, Kim BJ. Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine. J Ginseng Res 2015; 39:314-21. [PMID: 26869823 PMCID: PMC4593795 DOI: 10.1016/j.jgr.2015.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/19/2015] [Accepted: 02/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results Ginsenoside Re (20–40μM) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 5′-[β-thio]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive K+ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester (100μM), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium (K+) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.
Collapse
Affiliation(s)
- Noo Ri Hong
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Tae Seok Ahn
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| | - Ki-Tae Ha
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea; Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea; Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|
42
|
Hwang MW, Ahn TS, Hong NR, Jeong HS, Jung MH, Ha KT, Kim BJ. Effects of traditional Chinese herbal medicine San-Huang-Xie-Xin-Tang on gastrointestinal motility in mice. World J Gastroenterol 2015; 21:1117-1124. [PMID: 25632184 PMCID: PMC4306155 DOI: 10.3748/wjg.v21.i4.1117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/05/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of San-Huang-Xie-Xin-Tang (SHXXT), a herbal product used in traditional Chinese medicine, on gastrointestinal (GI) motility in mice.
METHODS: The in vivo effects of SHXXT on GI motility were investigated by measuring the intestinal transit rates (ITRs) using Evans blue in normal mice and in mice with experimentally induced GI motility dysfunction (GMD).
RESULTS: In normal ICR mice, ITRs were significantly and dose-dependently increased by SHXXT (0.1-1 g/kg). GMD was induced by injecting acetic acid or streptozotocin intraperitoneally. The ITRs of GMD mice were significantly reduced compared to normal mice, and these reductions were significantly and dose-dependently inhibited by SHXXT (0.1-1 g/kg).
CONCLUSION: These results suggest that SHXXT is a novel candidate for the development of a prokinetic agent that may prevent or alleviate GMD.
Collapse
|
43
|
Zhang E, Liao P. Brain transient receptor potential channels and stroke. J Neurosci Res 2014; 93:1165-83. [PMID: 25502473 DOI: 10.1002/jnr.23529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/10/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been increasingly implicated in the pathological mechanisms of CNS disorders. TRP expression has been detected in neurons, astrocytes, oligodendrocytes, microglia, and ependymal cells as well as in the cerebral vascular endothelium and smooth muscle. In stroke, TRPC3/4/6, TRPM2/4/7, and TRPV1/3/4 channels have been found to participate in ischemia-induced cell death, whereas other TRP channels, in particular those expressed in nonneuronal cells, have been less well studied. This review summarizes the current knowledge on the expression and functions of the TRP channels in various cell types in the brain and our current understanding of TRP channels in stroke pathophysiology. In an aging society, the occurrence of stroke is expected to increase steadily, and there is an urgent requirement to improve the current stroke management strategy. Therefore, elucidating the roles of TRP channels in stroke could shed light on the development of novel therapeutic strategies and ultimately improve stroke outcome.
Collapse
Affiliation(s)
- Eric Zhang
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore.,Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
44
|
Visser D, Middelbeek J, van Leeuwen FN, Jalink K. Function and regulation of the channel-kinase TRPM7 in health and disease. Eur J Cell Biol 2014; 93:455-65. [DOI: 10.1016/j.ejcb.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022] Open
|
45
|
Modeling of stochastic behavior of pacemaker potential in interstitial cells of Cajal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:56-69. [PMID: 25238716 DOI: 10.1016/j.pbiomolbio.2014.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 01/20/2023]
Abstract
It is widely accepted that interstitial cells of Cajal (ICCs) generate pacemaker potentials to propagate slow waves along the whole gastrointestinal tract. Previously, we constructed a biophysically based model of ICCs in mouse small intestine to explain the pacemaker mechanism. Our previous model, however, could not explain non-uniformity of pacemaker potentials and random occurrence of unitary potentials, thus we updated our model. The inositol 1,4,5-trisphosphate (IP3)-mediated Ca(2+) mobilization is a key event to drive the cycle of pacemaker activity and was updated to reproduce its stochastic behavior. The stochasticity was embodied by simulating random opening and closing of individual IP3-mediated Ca(2+) channel. The updated model reproduces the stochastic features of pacemaker potentials in ICCs. Reproduced pacemaker potentials are not uniform in duration and interval. The resting and peak potentials are -75.5 ± 1.1 mV and -0.8 ± 0.5 mV, respectively (n = 55). Frequency of pacemaker potential is 14.3 ± 0.4 min(-1) (n = 10). Width at half-maximal amplitude of pacemaker potential is 902 ± 6 ms (n = 55). There are random events of unitary potential-like depolarization. Finally, we compared our updated model with a recently published model to speculate which ion channel is the best candidate to drive pacemaker depolarization. In conclusion, our updated mathematical model could now reproduce stochastic features of pacemaker activity in ICCs.
Collapse
|
46
|
Hwang MW, Kim BJ. Apoptotic Effects and Involvement of TRPM7 Channels of the Traditional Herbal Medicine, Dangkwisoo-San in Gastric Cancer Cells. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.398.405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Kim BJ, Kim H, Lee GS, So I, Kim SJ. Effects of San-Huang-Xie-Xin-tang, a traditional Chinese prescription for clearing away heat and toxin, on the pacemaker activities of interstitial cells of Cajal from the murine small intestine. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:744-752. [PMID: 24953035 DOI: 10.1016/j.jep.2014.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE San-Huang-Xie-Xin-Tang (SHXXT) is a traditional Chinese medicinal formula composed of Coptidis rhizoma (Coptis chinesis Franch), Scutellariae radix (Scutellaria baicalensis Georgi), and Rhei rhizoma (Rheum officinale Baill) and is widely used in Eastern Asia, especially to ameliorate the symptoms of gastrointestinal (GI) disorders related to gastritis, gastric bleeding, peptic ulcers, and abnormal GI motility AIM OF THE STUDY Interstitial cells of Cajal (ICCs) are pacemaker cells in the GI tract that generate rhythmic oscillations in membrane potentials known as slow waves. Because GI disorders, especially abnormal GI motility, are major lifelong problems, the authors investigated the effects of SHXXT on mouse small intestine ICCs, and sought to identify the receptors and the action mechanisms involved. MATERIALS AND METHODS Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials generated by cultured ICCs. RESULTS SHXXT produced membrane depolarization in current-clamp mode, and Y25130 (a 5-HT3 receptor antagonist) and RS39604 (a 5-HT4 receptor antagonist) blocked SHXXT-induced membrane depolarizations, whereas SB269970 (a 5-HT7 receptor antagonist) did not. However, during external Ca2+ free conditions or in the presence of thapsigargin, SHXXT did not exhibit membrane depolarization. Furthermore, the application of flufenamic acid (a nonselective cation channel (NSCC) blocker) or DIDS (a chloride channel blocker) abolished pacemaker potential generation and blocked SHXXT-induced membrane depolarizations. In addition, SHXXT-induced membrane depolarizations, which are dependent on G-protein, in ICCs were blocked by PD 98059 (a p42/44 mitogen-activated protein kinase (MAPK) inhibitor), SB203580 (a p38 MAPK inhibitor), and by a c-jun NH2-terminal kinase (JNK) II inhibitor. Regarding the components of SHXXT, Coptidis rhizome and Rhei rhizoma modulated ICC pacemaking activity, whereas Scutellariae radix did not. CONCLUSION SHXXT modulates pacemaker potentials via 5-HT3 and 5-HT4 receptor-mediated pathways, external Ca2+ influx, and Ca2+ release from internal stores. Furthermore, NSCCs and Cl- channels play important roles in the regulation of pacemaking activity in a MAPK dependent manner in ICCs. The regulation of pacemaking activity by SHXXT may be due to the activity of Coptidis rhizome and Rhei rhizome. The study shows SHXXT can modulate the pacemaking activity of ICCs in the GI tract, and thus, suggests SHXXT has potential pharmacological relevance for the treatment of GI motility disorders.
Collapse
Affiliation(s)
- Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea.
| | - Hyungwoo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan 626-870, Republic of Korea
| | - Guem San Lee
- Wonkwang University College of Korean Medicine, Iksan 570-749, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Seon Jeong Kim
- Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
48
|
Yee NS, Kazi AA, Yee RK. Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer. Cells 2014; 3:751-77. [PMID: 25079291 PMCID: PMC4197629 DOI: 10.3390/cells3030751] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Program of Experimental Therapeutics, Penn State Hershey Cancer Institute, Penn State Milton S, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Abid A Kazi
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Program of Experimental Therapeutics, Penn State Hershey Cancer Institute, Penn State Milton S, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Rosemary K Yee
- Schreyer Honors College, Pennsylvania State University, University Park, PA 16802, USA; Penn State Harrisburg School of Humanities, Pennsylvania State University, Middletown, PA 17057, USA.
| |
Collapse
|
49
|
Hwang MW, Lee JH, Kim BJ. Carthami Flos Depolarizes the Interstitial Cells of Cajal and Increases the Motility in Gastrointestinal Tract. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.248.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Lees-Green R, Gibbons SJ, Farrugia G, Sneyd J, Cheng LK. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2014; 306:G711-27. [PMID: 24481603 PMCID: PMC3989704 DOI: 10.1152/ajpgi.00449.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interstitial cells of Cajal (ICC) act as pacemaker cells in the gastrointestinal tract by generating electrical slow waves to regulate rhythmic smooth muscle contractions. Intrinsic Ca(2+) oscillations in ICC appear to produce the slow waves by activating pacemaker currents, currently thought to be carried by the Ca(2+)-activated Cl(-) channel anoctamin 1 (Ano1). In this article we present a novel model of small intestinal ICC pacemaker activity that incorporates store-operated Ca(2+) entry and a new model of Ano1 current. A series of simulations were carried out with the ICC model to investigate current controversies about the reversal potential of the Ano1 Cl(-) current in ICC and to predict the characteristics of the other ion channels that are necessary to generate slow waves. The model results show that Ano1 is a plausible pacemaker channel when coupled to a store-operated Ca(2+) channel but suggest that small cyclical depolarizations may still occur in ICC in Ano1 knockout mice. The results predict that voltage-dependent Ca(2+) current is likely to be negligible during the slow wave plateau phase. The model shows that the Cl(-) equilibrium potential is an important modulator of slow wave morphology, highlighting the need for a better understanding of Cl(-) dynamics in ICC.
Collapse
Affiliation(s)
- Rachel Lees-Green
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand;
| | - Simon J. Gibbons
- 2Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Gianrico Farrugia
- 2Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - James Sneyd
- 3Department of Mathematics, University of Auckland, New Zealand; and
| | - Leo K. Cheng
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; ,4Department of Surgery, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|