1
|
Abadi T, Teklu T, Wondmagegn T, Alem M, Desalegn G. Helicobacter pylori infection and associated risk factors among HIV-positive and HIV-negative individuals in Northern Ethiopia. J Infect Chemother 2025; 31:102517. [PMID: 39260772 DOI: 10.1016/j.jiac.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND H. pylori infection is a common bacterial infection worldwide, but its prevalence varies widely between different regions and populations. The objective of this study was to determine the prevalence of H. pylori infection and associated risk factors among HIV-positive and HIV-negative individuals in northern Ethiopia. METHODS A cross-sectional study was conducted from June to September 2020 in four randomly selected health facilities located in the Tigray region of Ethiopia. A total of 463 study participants were enrolled, of whom 288 were HIV-positive and 175 were HIV-negative individuals. H. pylori stool antigen tests were performed to detect H. pylori infection. Additionally, CD4+ T cell counts were measured from only a certain number of participants. RESULTS The overall prevalence of H. pylori infection among enrolled study participants was 39.7 %. Notably, the H. pylori infection rate was significantly higher in HIV-positive patients (43.4 %) compared to HIV-negative individuals (33.7 %); χ2 = 4.27, p = 0.039. Higher H. pylori prevalence was observed in participants with higher CD4+ T cell counts in both HIV-positive and HIV-negative individuals. Khat chewing habit, education, and monthly income levels were significantly associated with H. pylori infection in HIV-negative individuals, while the association between Body mass index (BMI) and H. pylori infection was observed in HIV-positive patients, but not HIV-negative individuals. CONCLUSION This study demonstrates a higher prevalence of H. pylori infection in HIV-positive patients compared to HIV-negative individuals, emphasizing the importance of comprehensive diagnostics, patient care, and management of H. pylori infection in HIV-positive individuals.
Collapse
Affiliation(s)
- Tesfay Abadi
- Department of Medical Laboratory Science, College of Health Sciences, Adigrat University, Adigrat, P.O. Box 50, Ethiopia; Department of Immunology and Molecular Biology, College of Health Sciences, University of Gondar, Gondar, P.O. Box 196, Ethiopia.
| | - Takele Teklu
- Department of Immunology and Molecular Biology, College of Health Sciences, University of Gondar, Gondar, P.O. Box 196, Ethiopia; School of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Sodo, P.O. Box 138, Ethiopia.
| | - Tadelo Wondmagegn
- Department of Immunology and Molecular Biology, College of Health Sciences, University of Gondar, Gondar, P.O. Box 196, Ethiopia.
| | - Meseret Alem
- Department of Immunology and Molecular Biology, College of Health Sciences, University of Gondar, Gondar, P.O. Box 196, Ethiopia.
| | - Girmay Desalegn
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, P.O.Box: 1871, Ethiopia.
| |
Collapse
|
2
|
Amaral R, Concha T, Vítor J, Almeida AJ, Calado C, Gonçalves LM. Chitosan Nanoparticles for Enhanced Immune Response and Delivery of Multi-Epitope Helicobacter pylori Vaccines in a BALB/c Mouse Model. Pharmaceutics 2025; 17:132. [PMID: 39861778 PMCID: PMC11768296 DOI: 10.3390/pharmaceutics17010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Helicobacter pylori is the leading cause of chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosal-associated lymphoma. Due to the emerging problems with antibiotic treatment against H. pylori in clinical practice, H. pylori vaccination has gained more interest. Oral immunization is considered a promising approach for preventing initial colonization of this bacterium in the gastrointestinal tract, establishing a first line of defense at gastric mucosal surfaces. Chitosan nanoparticles can be exploited effectively for oral vaccine delivery due to their stability, simplicity of target accessibility, and beneficial mucoadhesive and immunogenic properties. Methods: In this study, new multi-epitope pDNA- and recombinant protein-based vaccines incorporating multiple H. pylori antigens were produced and encapsulated in chitosan nanoparticles for oral and intramuscular administration. The induced immune response was assessed through the levels of antigen-specific IgGs, secreted mucosal SIgA, and cytokines (IL-2, IL-10, and IFN-γ) in immunized BALB/C mice. Results: Intramuscular administration of both pDNA and recombinant protein-based vaccines efficiently stimulated the production of specific IgG2a and IgG1, which was supported by cytokines levels. Oral immunizations with either pDNA or recombinant protein vaccines revealed high SIgA levels, suggesting effective gastric mucosal immunization, contrasting with intramuscular immunizations, which did not induce SIgA. Conclusions: These findings indicate that both pDNA and recombinant protein vaccines encapsulated into chitosan nanoparticles are promising candidates for eradicating H. pylori and mitigating associated gastric diseases in humans.
Collapse
Affiliation(s)
- Rita Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Tomás Concha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Jorge Vítor
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| | - Cecília Calado
- ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal;
- iBB—Institute for Bioengineering and Biosciences, i4HB—Associate Laboratory, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Lídia M. Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (R.A.); (T.C.); (J.V.); (A.J.A.)
| |
Collapse
|
3
|
Choi W, Lauwers GY, Slavik T. Inflammatory disorders of the stomach. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:135-194. [DOI: 10.1002/9781119423195.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189139. [PMID: 38897421 DOI: 10.1016/j.bbcan.2024.189139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Guang Zhao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China; Department of Emergency Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
5
|
Abadi T, Teklu T, Wondmagegn T, Alem M, Desalegn G. CD4 + T cell count and HIV-1 viral load dynamics positively impacted by H. pylori infection in HIV-positive patients regardless of ART status in a high-burden setting. Eur J Med Res 2024; 29:178. [PMID: 38494500 PMCID: PMC10946129 DOI: 10.1186/s40001-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND There is a widespread co-infection of HIV and Helicobacter pylori (H. pylori) globally, particularly in developing countries, and it has been suggested that this co-infection may affect the course of HIV disease. However, the interplay between H. pylori infection and HIV disease progression is not fully elucidated. In this study, we investigated the effect of H. pylori co-infection on CD4+ T cell count and HIV viral load dynamics in HIV-positive individuals in a high co-endemic setting. METHODS A comparative cross-sectional study was conducted among 288 HIV-positive and 175 HIV-negative individuals, both with and without H. pylori infection. Among HIV-positive participants, 195 were on antiretroviral therapy (ART) and 93 were ART-naïve. CD4+ T cell count and HIV-1 viral load were measured and compared between H. pylori-infected and -uninfected individuals, taking into account different HIV and ART status. RESULT Our study demonstrated that individuals infected with H. pylori had a significantly higher CD4+ T cell count compared to uninfected controls among both HIV-negative and HIV-positive participants, regardless of ART therapy. Conversely, HIV/H. pylori co-infected participants had lower HIV-1 viral load than those without H. pylori infection. Linear regression analysis further confirmed a positive association between H. pylori infection, along with other clinical factors such as BMI, ART, and duration of therapy, with CD4+ T cell count while indicating an inverse relationship with HIV-1 viral load in HIV-positive patients. Additionally, factors such as khat chewing, age and WHO clinical stage of HIV were associated with reduced CD4+ T cell count and increased HIV-1 viral load. CONCLUSION Our study demonstrates that H. pylori co-infection was associated with higher CD4+ T cell count and lower HIV-1 viral load in HIV-positive patients, regardless of ART status. These findings show a positive effect of H. pylori co-infection on the dynamics of HIV-related immunological and virological parameters. Further studies are needed to elucidate the underlying mechanisms of the observed effects.
Collapse
Affiliation(s)
- Tesfay Abadi
- Department of Medical Laboratory Science, Adigrat University, Adigrat, Ethiopia
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia
| | - Takele Teklu
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia.
- School of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Sodo, Ethiopia.
| | - Tadelo Wondmagegn
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia
| | - Meseret Alem
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia
| | - Girmay Desalegn
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
6
|
Ma PF, Zhuo L, Yuan LP, Qi XH. Recent Advances in Vitamin D3 Intervention to Eradicate Helicobacter pylori Infection. J Multidiscip Healthc 2024; 17:825-832. [PMID: 38434485 PMCID: PMC10906669 DOI: 10.2147/jmdh.s454605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Helicobacter pylori (HP) infections affect approximately one-third of children worldwide. In China, the incidence of HP infection in children ranges from approximately 30% to 60%. In addition to damaging the gastrointestinal tract mucosa, HP infection in children can negatively affect their growth and development, hematology, respiratory and hepatobiliary system, skin, nutritional metabolism, and autoimmune system. However, the rate of HP eradication also fell considerably from the previous rate due to the presence of drug-resistant HP strains and the limited types of antibiotics that can be used in young patients. Vitamin D3 (VitD3) is a steroid hormone that can reduce inflammation in the stomach mucosa induced by HP and can alleviate and eradicate HP through a variety of pathways and mechanisms, including immune regulation and the stimulation of antimicrobial peptide (AMP) secretion and Ca2+ influx, to reestablish lysosomal acidification; thus, these results provide new strategies and ideas for the eradication of drug-resistant HP strains.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Lin Zhuo
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Li-Ping Yuan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiao-Hui Qi
- Department of Pediatrics, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| |
Collapse
|
7
|
Yunle K, Tong W, Jiyang L, Guojun W. Advances in Helicobacter pylori vaccine research: From candidate antigens to adjuvants-A review. Helicobacter 2024; 29:e13034. [PMID: 37971157 DOI: 10.1111/hel.13034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Helicobacter pylori is a Gram-negative, spiral-shaped bacterium that infects approximately 50% of the world's population and has been strongly associated with chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoma, and gastric cancer. The elimination of H. pylori is currently considered one of the most effective strategies for the treatment of gastric-related diseases, so antibiotic therapy is the most commonly used regimen for the treatment of H. pylori infection. Although this therapy has some positive effects, antibiotic resistance has become another clinically prominent problem. Therefore, the development of a safe and efficient vaccine has become an important measure to prevent H. pylori infection. METHODS PubMed and ClinicalTrials.gov were systematically searched from January 1980 to March 2023 with search terms-H. pylori vaccine, adjuvants, immunization, pathogenesis, and H. pylori eradication in the title and/or abstract of literature. A total of 5182 documents were obtained. Based on the principles of academic reliability, authority, nearly publicated, and excluded the similar documents, finally, 75 documents were selected, organized, and analyzed. RESULTS Most of the candidate antigens used as H. pylori vaccines in these literatures are whole-cell antigens and virulence antigens such as UreB, VacA, CagA, and HspA, and the main types of vaccines for H. pylori are whole bacteria vaccines, vector vaccines, subunit vaccines, nucleic acid vaccines, epitope vaccines, etc. Some vaccines have shown good immune protection in animal trials; however, few vaccines show good in clinical trials. The only H. pylori vaccine passed phase 3 clinical trial is a recombinant subunit vaccine using Urease subunit B (UreB) as the vaccine antigen, and it shows good prophylactic effects. Meanwhile, the adjuvant system for vaccines against this bacterium has been developed considerably. In addition to the traditional mucosal adjuvants such as cholera toxin (CT) and E. coli heat labile enterotoxin (LT), there are also promising safer and more effective mucosal adjuvants. All these advances made safe and effective H. pylori vaccines come into service as early as possible. CONCLUSIONS This review briefly summarized the advances of H. pylori vaccines from two aspects, candidates of antigens and adjuvants, to provide references for the development of vaccine against this bacterium. We also present our prospects of exosomal vaccines in H. pylori vaccine research, in the hope of inspiring future researchers.
Collapse
Affiliation(s)
- Kuang Yunle
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wu Tong
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Liu Jiyang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wu Guojun
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
8
|
Marzhoseyni Z, Mousavi MJ, Ghotloo S. Helicobacter pylori antigens as immunomodulators of immune system. Helicobacter 2024; 29:e13058. [PMID: 38380545 DOI: 10.1111/hel.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the most prevalent human pathogens and the leading cause of chronic infection in almost half of the population in the world (~59%). The bacterium is a major leading cause of chronic gastritis, gastric and duodenal ulcers, and two type of malignancies, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Despite the immune responses mounted by the host, the bacteria are not cleared from the body resulting in a chronic infection accompanied by a chronic inflammation. Herein, a review of the literature discussing H. pylori antigens modulating the immune responses is presented. The mechanisms that are involved in the modulation of innate immune response, include modulation of recognition by pattern recognition receptors (PRRs) such as modulation of recognition by toll like receptors (TLR)4 and TLR5, modulation of phagocytic function, and modulation of phagocytic killing mediated by reactive oxygen species (ROS) and nitric oxide (NO). On the other hands, H. pylori modulates acquired immune response by the induction of tolerogenic dendritic cells (DCs), modulation of apoptosis, induction of regulatory T cells, modulation of T helper (Th)1 response, and modulation of Th17 response.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Faujo Nintewoue GF, Tali Nguefak LD, Ngatcha G, Tagni SM, Talla P, Menzy Moungo‐Ndjole CM, Kouitcheu Mabeku LB. Helicobacter pylori infection-A risk factor for lipid peroxidation and superoxide dismutase over-activity: A cross-sectional study among patients with dyspepsia in Cameroon. JGH Open 2023; 7:618-628. [PMID: 37744703 PMCID: PMC10517442 DOI: 10.1002/jgh3.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023]
Abstract
Background and Aim There is an intimate relationship between oxidative stress and inflammation. Helicobacter pylori (H. pylori) infection leads to gastritis in almost all the hosts. So, we hypothesize that gastritis in H. pylori infection may be described as the accumulation of continuous oxidative damage. Methods The study was conducted from October 2020 to October 2021 at three reference health facilities in Cameroon. A total of 266 participants (131 males and 135 females) ranging from 15 to 88 years old with 48.28 ± 17.29 years as mean age were enrolled. Each participant gave a written informed consent and ethical committees approved the protocol. Biopsies samples were collected for H. pylori detection using histological examination and rapid urease test. Malondialdehyde (MDA) and glutathione (GSH) content, and catalase (CAT) and superoxide dismutase (SOD) activities were evaluated in serum as biomarkers of oxidative stress. Results Helicobacter pylori was detected in 71.80% of our sample population. Low income level was associated with higher GSH level (P = 0.0249) and having family history of gastric cancer to higher SOD activity (P = 0.0156). A significant higher MDA content (P < 0.0001) and SOD activity (P = 0.0235) was recorded among infected individuals compared with noninfected ones. A significantly higher MDA content and SOD activity was recorded among smokers (P = 0.0461) and participants older than 50 years old (P = 0.0491) with H. pylori positivity. Conclusion Our findings showed that H. pylori infection is associated with overproduction of reactive oxygen species and oxidative stress. The presence of this pathogen in elderly individuals or in smokers increased their risk for oxidative stress.
Collapse
Affiliation(s)
| | - Lionel Danny Tali Nguefak
- Microbiology and Pharmacology Laboratory, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
| | | | | | | | | | - Laure Brigitte Kouitcheu Mabeku
- Microbiology and Pharmacology Laboratory, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
- Medical Microbiology Laboratory, Department of Microbiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| |
Collapse
|
10
|
Cao Y, Wang D, Mo G, Peng Y, Li Z. Gastric precancerous lesions:occurrence, development factors, and treatment. Front Oncol 2023; 13:1226652. [PMID: 37719006 PMCID: PMC10499614 DOI: 10.3389/fonc.2023.1226652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Patients with gastric precancerous lesions (GPL) have a higher risk of gastric cancer (GC). However, the transformation of GPL into GC is an ongoing process that takes several years. At present, several factors including H.Pylori (Hp), flora imbalance, inflammatory factors, genetic variations, Claudin-4, gastric stem cells, solute carrier family member 26 (SLC26A9), bile reflux, exosomes, and miR-30a plays a considerable role in the transformation of GPL into GC. Moreover, timely intervention in the event of GPL can reduce the risk of GC. In clinical practice, GPL is mainly treated with endoscopy, acid suppression therapy, Hp eradication, a cyclooxygenase-2 inhibitor, aspirin, and diet. Currently, the use of traditional Chinese medicine (TCM) or combination with western medication to remove Hp and the use of TCM to treat GPL are common in Asia, particularly China, and have also demonstrated excellent clinical efficacy. This review thoroughly discussed the combining of TCM and Western therapy for the treatment of precancerous lesions as conditions allow. Consequently, this review also focuses on the causes of the development and progression of GPL, as well as its current treatment. This may help us understand GPL and related treatment.
Collapse
Affiliation(s)
- Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Dongcai Wang
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guiyun Mo
- Emergency Teaching and Research Department of the First Clinical School of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yinghui Peng
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
11
|
Teng Y, Xie R, Xu J, Wang P, Chen W, Shan Z, Yan Z, Mao F, Cheng P, Peng L, Zhang J, Tian W, Yang S, Zhao Y, Chen W, Zou Q, Zhuang Y. Tubulointerstitial nephritis antigen-like 1 is a novel matricellular protein that promotes gastric bacterial colonization and gastritis in the setting of Helicobacter pylori infection. Cell Mol Immunol 2023; 20:924-940. [PMID: 37336990 PMCID: PMC10387474 DOI: 10.1038/s41423-023-01055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The interaction between the gastric epithelium and immune cells plays key roles in H. pylori-associated pathology. Here, we demonstrate a procolonization and proinflammatory role of tubulointerstitial nephritis antigen-like 1 (TINAGL1), a newly discovered matricellular protein, in H. pylori infection. Increased TINAGL1 production by gastric epithelial cells (GECs) in the infected gastric mucosa was synergistically induced by H. pylori and IL-1β via the ERK-SP1 pathway in a cagA-dependent manner. Elevated human gastric TINAGL1 correlated with H. pylori colonization and the severity of gastritis, and mouse TINAGL1 derived from non-bone marrow-derived cells promoted bacterial colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Tinagl1-/- and Tinagl1ΔGEC mice and were increased in mice injected with mouse TINAGL1. Mechanistically, TINAGL1 suppressed CCL21 expression and promoted CCL2 production in GECs by directly binding to integrin α5β1 to inhibit ERK and activate the NF-κB pathway, respectively, which not only led to decreased gastric influx of moDCs via CCL21-CCR7-dependent migration and, as a direct consequence, reduced the bacterial clearance capacity of the H. pylori-specific Th1 response, thereby promoting H. pylori colonization, but also resulted in increased gastric influx of Ly6Chigh monocytes via CCL2-CCR2-dependent migration. In turn, TINAGL1 induced the production of the proinflammatory protein S100A11 by Ly6Chigh monocytes, promoting H. pylori-associated gastritis. In summary, we identified a model in which TINAGL1 collectively ensures H. pylori persistence and promotes gastritis.
Collapse
Affiliation(s)
- Yongsheng Teng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyu Xu
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Pan Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Wanyan Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Zhiguo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zongbao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fangyuan Mao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongliang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China.
| |
Collapse
|
12
|
Ahmed AAQ, Besio R, Xiao L, Forlino A. Outer Membrane Vesicles (OMVs) as Biomedical Tools and Their Relevance as Immune-Modulating Agents against H. pylori Infections: Current Status and Future Prospects. Int J Mol Sci 2023; 24:ijms24108542. [PMID: 37239888 DOI: 10.3390/ijms24108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
13
|
Sáenz JB. Early Re"cag"nition: CagA-specific CD8 + T Cells Shape the Immune Response to Helicobacter pylori. Gastroenterology 2023; 164:520-521. [PMID: 36708789 DOI: 10.1053/j.gastro.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Medicine, Department of Molecular Cell Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
14
|
Nguyen QA, Schmitt L, Mejías-Luque R, Gerhard M. Effects of Helicobacter pylori adhesin HopQ binding to CEACAM receptors in the human stomach. Front Immunol 2023; 14:1113478. [PMID: 36891299 PMCID: PMC9986547 DOI: 10.3389/fimmu.2023.1113478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Helicobacter pylori has developed several strategies using its diverse virulence factors to trigger and, at the same time, limit the host's inflammatory responses in order to establish a chronic infection in the human stomach. One of the virulence factors that has recently received more attention is a member of the Helicobacter outer membrane protein family, the adhesin HopQ, which binds to the human Carcinoembryonic Antigen-related Cell Adhesion Molecules (CEACAMs) on the host cell surface. The HopQ-CEACAM interaction facilitates the translocation of the cytotoxin-associated gene A (CagA), an important effector protein of H. pylori, into host cells via the Type IV secretion system (T4SS). Both the T4SS itself and CagA are important virulence factors that are linked to many aberrant host signaling cascades. In the last few years, many studies have emphasized the prerequisite role of the HopQ-CEACAM interaction not only for the adhesion of this pathogen to host cells but also for the regulation of cellular processes. This review summarizes recent findings about the structural characteristics of the HopQ-CEACAM complex and the consequences of this interaction in gastric epithelial cells as well as immune cells. Given that the upregulation of CEACAMs is associated with many H. pylori-induced gastric diseases including gastritis and gastric cancer, these data may enable us to better understand the mechanisms of H. pylori's pathogenicity.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Leonard Schmitt
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
15
|
Agnarelli A, Vella V, Samuels M, Papanastasopoulos P, Giamas G. Incorporating Immunotherapy in the Management of Gastric Cancer: Molecular and Clinical Implications. Cancers (Basel) 2022; 14:cancers14184378. [PMID: 36139540 PMCID: PMC9496849 DOI: 10.3390/cancers14184378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Gastric cancer is one of the most common malignant tumours worldwide, with the fifth and third highest morbidity and mortality, respectively, of all cancers. Survival is limited, as most of the patients are diagnosed at an advanced stage, and are not suitable for surgery with a curative intent. Chemotherapy has only modestly improved patients’ outcomes and is mainly given with a palliative intent. Immunotherapy has improved overall survival of patients with gastric cancer, and has thus become a new standard of care in clinic. In this review we discuss the strong molecular rationale for the administration of immunotherapy in this disease and analyse the clinical data supporting its use. Abstract Gastric cancer has a median survival of 11 months, and this poor prognosis has not improved over the last 30 years. Recent pre-clinical data suggest that there is high tumour-related neoantigen expression in gastric cancer cells, suggesting that a clinical strategy that enhances the host’s immune system against cancer cells may be a successful approach to improve clinical outcomes. Additionally, there has been an increasing amount of translational evidence highlighting the relevance of PD-L1 expression in gastric cancer cells, indicating that PD-1/PD-L1 inhibitors may be useful. Several molecular subgroups of gastric cancer have been identified to respond with excellent outcomes to immunotherapy, including microsatellite instable tumours, tumours bearing a high tumour mutational burden, and tumours related to a chronic EBV infection. In gastric cancer, immunotherapy has produced durable responses in chemo-refractory patients; however, most recently there has been a lot of enthusiasm as several large-scale clinical trials highlight the improved survival noted from the incorporation of immunotherapy in the first line setting for advanced gastric cancer. Our review aims to discuss current pre-clinical and clinical data supporting the innovative role of immunotherapy in gastric cancer.
Collapse
|
16
|
Deng R, Zheng H, Cai H, Li M, Shi Y, Ding S. Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses. Front Immunol 2022; 13:923477. [PMID: 35967444 PMCID: PMC9371381 DOI: 10.3389/fimmu.2022.923477] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is closely associated with gastric cancer. During persistent infection, Helicobacter pylori can form a microenvironment in gastric mucosa which facilitates the survival and colony formation of Helicobacter pylori. Tumor stromal cells are involved in this process, including tumor-associated macrophages, mesenchymal stem cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells, and so on. The immune checkpoints are also regulated by Helicobacter pylori infection. Helicobacter pylori virulence factors can also act as immunogens or adjuvants to elicit or enhance immune responses, indicating their potential applications in vaccine development and tumor immunotherapy. This review highlights the effects of Helicobacter pylori on the immune microenvironment and its potential roles in tumor immunotherapy responses.
Collapse
Affiliation(s)
- Ruiyi Deng
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Huiling Zheng
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| | - Hongzhen Cai
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Man Li
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University Third Medical School, Beijing, China
| | - Yanyan Shi
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
| | - Shigang Ding
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| |
Collapse
|
17
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
18
|
Helicobacter pylori promotes gastric cancer progression through the tumor microenvironment. Appl Microbiol Biotechnol 2022; 106:4375-4385. [PMID: 35723694 DOI: 10.1007/s00253-022-12011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer (GC) is a leading type of cancer. Although immunotherapy has yielded important recent progress in the treatment of GC, the prognosis remains poor due to drug resistance and frequent recurrence and metastasis. There are multiple known risk factors for GC, and infection with Helicobacter pylori is one of the most significant. The mechanisms underlying the associations of H. pylori and GC remain unclear, but it is well known that infection can alter the tumor microenvironment (TME). The TME and the tumor itself constitute a complete ecosystem, and the TME plays critical roles in tumor progression, metastasis, and drug resistance. H. pylori infection can act synergistically with the TME to cause DNA damage and abnormal expression of multiple genes and activation of signaling pathways. It also modulates the host immune system in ways that enhance the proliferation and metastasis of tumor cells, promote epithelial-mesenchymal transition, inhibit apoptosis, and provide energy support for tumor growth. This review elaborates myriad ways that H. pylori infections promote the occurrence and progression of GC by influencing the TME, providing new directions for immunotherapy treatments for this important disease. KEY POINTS: • H. pylori infections cause DNA damage and affect the repair of the TME to DNA damage. • H. pylori infections regulate oncogenes or activate the oncogenic signaling pathways. • H. pylori infections modulate the immune system within the TME.
Collapse
|
19
|
Helicobacter pylori Infection Mediates Inflammation and Tumorigenesis-Associated Genes Through miR-155-5p: An Integrative Omics and Bioinformatics-Based Investigation. Curr Microbiol 2022; 79:192. [PMID: 35551487 DOI: 10.1007/s00284-022-02880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
Helicobacter pylori (H. pylori) is a major human pathogenic bacterium that survives in the gastric mucosa. The aim of this study is to evaluate the expression of the target gene network of miR-155-5p in H. pylori-related gastritis using a combination of public gene expression datasets and web-based platforms. To evaluate the expression of genes related to gastritis, we used two datasets from Gene Expression Omnibus (GEO) database. Then, we determined the overlaps between the predicted miR-155-5p target genes and gastritis-dysregulated GEO datasets genes; in the next step, we identified the possible miR-155-5p target-DEGs (Target-Differentially Expressed Genes). Also, we performed multiple bioinformatics analyses to identify the most important targets and downstream pathways associated with this miRNA. Using the UCSC cancer genomic browser analysis tool, we investigated the expression of hub genes in relation to gastric cancer and H. pylori infection, as well as the potential role of hub genes in gastritis, inflammation, and cancer. In this regard, 28 differentially expressed target genes of miR-155-5p were identified. Most of the captured target genes were correlated with the host immune response and inflammation. Based on the specific patterns of expression in gastritis and cancer, CD9, MST1R, and ADAM10 were candidates for the most probable targets of miR-155-5p. Although the focus of this study is primarily on bioinformatics, we think that our findings should be experimentally validated before they can be used as potential therapeutic and diagnostic tools.
Collapse
|
20
|
Tsukanov VV, Smirnova OV, Kasparov EV, Sinyakov AA, Vasyutin AV, Tonkikh JL, Cherepnin MA. Dynamics of Oxidative Stress in Helicobacter pylori-Positive Patients with Atrophic Body Gastritis and Various Stages of Gastric Cancer. Diagnostics (Basel) 2022; 12:1203. [PMID: 35626358 PMCID: PMC9141138 DOI: 10.3390/diagnostics12051203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a global health problem. The pathogenesis of this disease remains unclear. This study included 198 H. pylori (+) men aged 45 to 60 years old. Group A included 63 practically healthy men, group B included 45 men with severe atrophic body gastritis, group C included 37 men with epithelial gastric cancer stages I-II according to TNM, and group D included 54 men with epithelial gastric cancer stages III-IV according to the TNM scale. The content of malondialdehyde (MDA), diene conjugates (DCs), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPO) was detected using an enzyme immunoassay (ELISA) or spectrophotometric methods in the blood plasma. The concentrations of MDA and DC were increased in the patients of group B compared with group A, and in patients of groups C and D compared with groups A and B. The ratio of MDA/SOD and MDA/CAT was decreased in the patients in group D compared with the patients in group C, and was significantly higher compared with group A. The ratios of MDA/GPO and MDA/GST increased linearly and were at a maximum in groups C and D. Our work determined that indicators of oxidative stress may be the biochemical substrate, which brings together the various stages of the Correa cascade, and may explain disease progression. The dynamics of changes in the content of SOD and CAT in the plasma in patients with gastric cancer may be a target of future investigations.
Collapse
Affiliation(s)
- Vladislav Vladimirovich Tsukanov
- Scientific Research Institute of Medical Problems of the North, Federal Research Centre “Krasnoyarsk Science Centre” of the Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia; (O.V.S.); (E.V.K.); (A.A.S.); (A.V.V.); (J.L.T.); (M.A.C.)
| | | | | | | | | | | | | |
Collapse
|
21
|
Idowu S, Bertrand PP, Walduck AK. Homeostasis and Cancer Initiation: Organoids as Models to Study the Initiation of Gastric Cancer. Int J Mol Sci 2022; 23:2790. [PMID: 35269931 PMCID: PMC8911327 DOI: 10.3390/ijms23052790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer represents a significant disease burden worldwide. The factors that initiate cancer are not well understood. Chronic inflammation such as that triggered by H. pylori infection is the most significant cause of gastric cancer. In recent years, organoid cultures developed from human and animal adult stem cells have facilitated great advances in our understanding of gastric homeostasis. Organoid models are now being exploited to investigate the role of host genetics and bacterial factors on proliferation and DNA damage in gastric stem cells. The impact of a chronic inflammatory state on gastric stem cells and the stroma has been less well addressed. This review discusses what we have learned from the use of organoid models to investigate cancer initiation, and highlights questions on the contribution of the microbiota, chronic inflammatory milieu, and stromal cells that can now be addressed by more complex coculture models.
Collapse
Affiliation(s)
| | | | - Anna K. Walduck
- STEM College, RMIT University, Melbourne, VIC 3000, Australia; (S.I.); (P.P.B.)
| |
Collapse
|
22
|
Miller AK, Tavera G, Dominguez RL, Camargo MC, Waterboer T, Wilson KT, Williams SM, Morgan DR. Ornithine decarboxylase (ODC1) gene variant (rs2302615) is associated with gastric cancer independently of Helicobacter pylori CagA serostatus. Oncogene 2021; 40:5963-5969. [PMID: 34376808 PMCID: PMC8692072 DOI: 10.1038/s41388-021-01981-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The primary cause of gastric cancer is chronic infection with Helicobacter pylori (H. pylori), particularly the high-risk genotype cagA, and risk modification by human genetic variants. We studied 94 variants in 54 genes for association with gastric cancer, including rs2302615 in ornithine decarboxylase (ODC1), which may affect response to chemoprevention with the ODC inhibitor, eflornithine (difluoromethylornithine; DFMO). Our population-based, case-control study included 1366 individuals (664 gastric cancer cases and 702 controls) from Western Honduras, a high incidence region of Latin America. CagA seropositivity was strongly associated with cancer (OR = 3.6; 95% CI: 2.6, 5.1). The ODC1 variant rs2302615 was associated with gastric cancer (OR = 1.36; p = 0.018) in a model adjusted for age, sex, and CagA serostatus. Two additional single nucleotide polymorphisms (SNPs) in CASP1 (rs530537) and TLR4 (rs1927914) genes were also associated with gastric cancer in univariate models as well as models adjusted for age, sex, and CagA serostatus. The ODC1 SNP association with gastric cancer was stronger in individuals who carried the TT genotype at the associating TLR4 polymorphism, rs1927914 (OR = 1.77; p = 1.85 × 10-3). In conclusion, the ODC1 variant, rs2302615, is associated with gastric cancer and supports chemoprevention trials with DFMO, particularly in individuals homozygous for the T allele at rs1927914.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gloria Tavera
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ricardo L Dominguez
- Hospital de Occidente, Ministry of Health, Santa Rosa de Copan, Copan, Honduras
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Keith T Wilson
- Vanderbilt University Medical Center, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Douglas R Morgan
- UAB Division of Gastroenterology and Hepatology, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
23
|
Ruan G, Huang A, Hu C, Xu N, Fan M, Zhang Z, Wang Y, Xing Y. CD4 + CD8αα + T cells in the gastric epithelium mediate chronic inflammation induced by Helicobacter felis. Microb Pathog 2021; 159:105151. [PMID: 34450200 DOI: 10.1016/j.micpath.2021.105151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 01/28/2023]
Abstract
CD4+ CD8αα+ double-positive intraepithelial T lymphocytes (DP T cells), a newly characterized subset of intraepithelial T cells, are reported to contribute to local immunosuppression. However, the presence of DP T cells in Helicobacter. pylori -induced gastritis and their relationship with disease prognosis has yet to be elucidated. In this study, a chronic gastritis model was established by infecting mice with Helicobacter felis. Gastric-infiltrating lymphocytes were isolated from these mice and analyzed by flow cytometry. The frequency of DP T cells in H. felis-induced gastritis mice was higher than that in uninfected mice. The gastric DP T cells were derived from lamina propria cells but were predominantly distributed in the gastric epithelial layer. These gastric DP T cells also exhibited anti-inflammatory functions, and they inhibited the maturation of dendritic cells and proliferation of CD4+ T lymphocytes in vitro. Elimination of DP T cells simultaneously resulted in severe gastritis and a reduction of H. felis load in vivo. Finally, vaccine mixed with different adjuvants was used to explore the relationship between vaccine efficacy and DP cells. Silk fibroin as the vaccine delivery system enhanced vaccine efficacy by reducing the number of DP T cells. This study demonstrated that DP T cells perform an immunosuppressive role in Helicobacter felis-induced gastritis, and consequently, DP T cells may affect disease prognosis and vaccine efficacy.
Collapse
Affiliation(s)
- Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - An Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Chupeng Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Ningyin Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Menghui Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Zhenxing Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yue Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
24
|
McNamara KM, Gobert AP, Wilson KT. The role of polyamines in gastric cancer. Oncogene 2021; 40:4399-4412. [PMID: 34108618 PMCID: PMC8262120 DOI: 10.1038/s41388-021-01862-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023]
Abstract
Advancements in our understanding of polyamine molecular and cellular functions have led to increased interest in targeting polyamine metabolism for anticancer therapeutic benefits. The polyamines putrescine, spermidine, and spermine are polycationic alkylamines commonly found in all living cells and are essential for cellular growth and survival. This review summarizes the existing research on polyamine metabolism and function, specifically the role of polyamines in gastric immune cell and epithelial cell function. Polyamines have been implicated in a multitude of cancers, but in this review, we focus on the role of polyamine dysregulation in the context of Helicobacter pylori-induced gastritis and subsequent progression to gastric cancer. Due to the emerging implication of polyamines in cancer development, there is an increasing number of promising clinical trials using agents to target the polyamine metabolic pathway for potential chemoprevention and anticancer therapy.
Collapse
Affiliation(s)
- Kara M. McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
25
|
de Brito BB, Lemos FFB, Carneiro CDM, Viana AS, Barreto NMPV, Assis GADS, Braga BDC, Santos MLC, Silva FAFD, Marques HS, Silva NOE, de Melo FF. Immune response to Helicobacter pylori infection and gastric cancer development. World J Meta-Anal 2021; 9:257-276. [DOI: 10.13105/wjma.v9.i3.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric adenocarcinoma is a global health concern, and Helicobacter pylori (H. pylori) infection is the main risk factor for its occurrence. Of note, the immune response against the pathogen seems to be a determining factor for gastric oncogenesis, and increasing evidence have emphasized several host and bacterium factors that probably influence in this setting. The development of an inflammatory process against H. pylori involves a wide range of mechanisms such as the activation of pattern recognition receptors and intracellular pathways resulting in the production of proinflammatory cytokines by gastric epithelial cells. This process culminates in the establishment of distinct immune response profiles that result from the cytokine-induced differentiation of T naïve cells into specific T helper cells. Cytokines released from each type of T helper cell orchestrate the immune system and interfere in the development of gastric cancer in idiosyncratic ways. Moreover, variants in genes such as single nucleotide polymorphisms have been associated with variable predispositions for the occurrence of gastric malignancy because they influence both the intensity of gene expression and the affinity of the resultant molecule with its receptor. In addition, various repercussions related to some H. pylori virulence factors seem to substantially influence the host immune response against the infection, and many of them have been associated with gastric tumorigenesis.
Collapse
Affiliation(s)
- Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Caroline da Mota Carneiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Andressa Santos Viana
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | - Barbara Dicarlo Costa Braga
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45031900, Bahia, Brazil
| | - Natália Oliveira e Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
26
|
Yörgüç E, Gülerman HF, Kalkan İH, Güven B, Balcı M, Yörgüç MÇ. Comparison of clinical outcomes and FOXP3, IL-17A responses in Helicobacter pylori infection in children versus adults. Helicobacter 2021; 26:e12795. [PMID: 33818871 DOI: 10.1111/hel.12795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The purpose of this study was to compare the clinical symptoms and pathological consequences of Helicobacter pylori (H. pylori) infection between children and adults and determine the levels of expression of FOX3P and IL-17A to examine the Th17/Treg balance. METHODS Forty pediatric and 40 adult patients who were followed up at the Pediatric Gastroenterology and Internal Medicine Gastroenterology Departments were enrolled in the study. In our case-control study, gastric tissue specimens were evaluated using the updated Sydney system, and the number of cells expressing FOXP3/IL-17A (Treg and Th17 cell markers) was analyzed immunohistochemically. In addition, each case was evaluated using a clinical follow-up questionnaire. RESULTS Clinical signs and symptoms of children and adults were similar. IL-17A and FOXP3 levels were significantly higher in children and adults with H. pylori (+) than in those without H. pylori (-) (p < .001). In patients with H. pylori (+), the mean FOXP3 level was significantly higher, whereas the mean IL-17A level was significantly lower in children than in adults (p < 0001 for both groups). In children with H. pylori (+), bacterial density was negatively correlated with IL-17A level and positively correlated with FOXP3 level. In adults with H. pylori (+), there was a statistically significant, highly positive correlation between bacterial density and levels of IL-17A and FOXP3. CONCLUSIONS Treg cells are suggested to more predominant in children than in adults, IL-17A levels decrease as H. pylori bacterial density increases. In conclusion, immune responses incline toward Treg , which increases the susceptibility to persistent infections.
Collapse
Affiliation(s)
- Eda Yörgüç
- Faculty of Medicine, Pediatrics, Kırıkkale University, Kırıkkale, Turkey
| | - Hacer Fulya Gülerman
- Faculty of Medicine, Pediatric Gastroenterology, Hepatology and Nutrition, Kırıkkale University, Kırıkkale, Turkey
| | - İsmail Hakkı Kalkan
- Faculty of Medicine, Internal Medicine, Gastroenterology, Kırıkkale University, Kırıkkale, Turkey
| | - Burcu Güven
- Faculty of Medicine, Pediatric Gastroenterology, Hepatology and Nutrition, Karadeniz Technical University, Trabzon, Turkey
| | - Mahi Balcı
- Department of Pathology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | | |
Collapse
|
27
|
Palrasu M, Zaika E, El-Rifai W, Que J, Zaika AI. Role of Bacterial and Viral Pathogens in Gastric Carcinogenesis. Cancers (Basel) 2021; 13:1878. [PMID: 33919876 PMCID: PMC8070847 DOI: 10.3390/cancers13081878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. In contrast to many other tumor types, gastric carcinogenesis is tightly linked to infectious events. Infections with Helicobacter pylori (H. pylori) bacterium and Epstein-Barr virus (EBV) are the two most investigated risk factors for GC. These pathogens infect more than half of the world's population. Fortunately, only a small fraction of infected individuals develops GC, suggesting high complexity of tumorigenic processes in the human stomach. Recent studies suggest that the multifaceted interplay between microbial, environmental, and host genetic factors underlies gastric tumorigenesis. Many aspects of these interactions still remain unclear. In this review, we update on recent discoveries, focusing on the roles of various gastric pathogens and gastric microbiome in tumorigenesis.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Elena Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - Alexander I. Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| |
Collapse
|
28
|
Wen Y, Huang H, Tang T, Yang H, Wang X, Huang X, Gong Y, Zhang X, She F. AI-2 represses CagA expression and bacterial adhesion, attenuating the Helicobacter pylori-induced inflammatory response of gastric epithelial cells. Helicobacter 2021; 26:e12778. [PMID: 33400843 DOI: 10.1111/hel.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection of gastric epithelial cells induces inflammatory response. Outer membrane proteins (OMPs), Type 4 secretion system (T4SS) encoded by cagPAI, and the effector protein CagA are involved in the pathogenesis of H. pylori. H. pylori possesses a gene encoding LuxS which synthesizes AI-2, a quorum sensing signal molecule. The aim of this study was to investigate the role of AI-2 in the expression of virulence factors and the inflammatory response of gastric epithelial (AGS) cells induced by H. pylori. MATERIALS AND METHODS H. pylori ΔluxS mutant was constructed, and AI-2 activity was measured with Vibrio harveyi BB170. NF-κB activation, IL-8 production, expression of OMPs (outer membrane proteins), CagA, and T4SS encoded by cagPAI were investigated in H. pylori wild type, and ΔluxS with or without supplementation of AI-2. RESULTS H. pylori produced approximately 7 μM of AI-2 in the medium. AI-2 inhibited expression and translocation of CagA after infection of AGS cells. AI-2 upregulated the expression of CagM, CagE, and CagX, while had no effect to the interaction between T4SS and α5β1 integrin. AI-2 also reduced expression of adhesins and bacterial adhesion to AGS cells. Finally, AI-2 reduced the activation of NF-κB and expression of IL-8 in H. pylori-infected AGS. CONCLUSIONS AI-2 plays an important role in the pathogenesis of H. pylori. AI-2 inhibits the bacterial adhesion, expression, and translocation of CagA, and attenuates the inflammatory response of AGS cells induced by H. pylori.
Collapse
Affiliation(s)
- Yancheng Wen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Hongming Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Tiechen Tang
- The First Hospital of Nanping City, affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Huang Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xi Wang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xi Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yingying Gong
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
29
|
Helicobacter pylori induced gastric carcinogenesis - The best molecular model we have? Best Pract Res Clin Gastroenterol 2021; 50-51:101743. [PMID: 33975683 DOI: 10.1016/j.bpg.2021.101743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/31/2023]
Abstract
Gastric carcinogenesis can be described as a consequence of multilevel molecular alterations that is triggered by a cascade of events. Historically, diet and environmental factors have been identified to substantially contribute to carcinogenesis before the discovery of Helicobacter pylori (H. pylori). But H. pylori infection has revolutionized the understanding of gastric carcinogenesis. Although the model of H. pylori-driven carcinogenesis remains valid, there is a continuous effort to precisely delineate the molecular pathways involved and to understand the interplay with additional risk factors including recent relevant knowledge on the stomach microbiota. In this review, we provide an updated view on the models of gastric carcinogenesis. This includes historically appreciated H. pylori-induced models and expands these taking recent molecular data into consideration. Based on the data provided, we conclude that indeed H. pylori-carcinogenesis remains one of the best-established models at least for a subset of gastric cancers. Implementation of the recently identified molecular subtypes in novel genetic animal models is required to expand our knowledge on H. pylori-independent carcinogenesis.
Collapse
|
30
|
A Novel Design of Multi-epitope Vaccine Against Helicobacter pylori by Immunoinformatics Approach. Int J Pept Res Ther 2021; 27:1027-1042. [PMID: 33424523 PMCID: PMC7778422 DOI: 10.1007/s10989-020-10148-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative spiral bacterium that caused infections in half of the world’s population and had been identified as type I carcinogen by the World Health Organization. Compared with antibiotic treatment which could result in drug resistance, the vaccine therapy is becoming a promising immunotherapy option against H. pylori. Further, the multi-epitope vaccine could provoke a wider immune protection to control H. pylori infection. In this study, the in-silico immunogenicity calculations on 381 protein sequences of H. pylori were performed, and the immunogenicity of selected proteins with top-ranked score were tested. The B cell epitopes and T cell epitopes from three well performed proteins UreB, PLA1, and Omp6 were assembled into six constructs of multi-epitope vaccines with random orders. In order to select the optimal constructs, the stability of the vaccine structure and the exposure of B cell epitopes on the vaccine surface were evaluated based on structure prediction and solvent accessible surface area analysis. Finally Construct S1 was selected and molecular docking showed that it had the potential of binding TLR2, TLR4, and TLR9 to stimulate strong immune response. In particular, this study provides good suggestions for epitope assembly in the construction of multi-epitope vaccines and it may be helpful to control H. pylori infection in the future.
Collapse
|
31
|
Zhao Q, Zhao R, Song C, Wang H, Rong J, Wang F, Yan L, Song Y, Xie Y. Increased IGFBP7 Expression Correlates with Poor Prognosis and Immune Infiltration in Gastric Cancer. J Cancer 2021; 12:1343-1355. [PMID: 33531979 PMCID: PMC7847654 DOI: 10.7150/jca.50370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Insulin-like growth factor binding protein-7 (IGFBP7) contributes to multiple biological processes in various tumors. However, the role of IGFBP7 in gastric cancer (GC) is still undetermined. The study aims to explore the role of IGFBP7 in GC via an integrated bioinformatics analysis. Methods: IGFBP7 expression levels in GC and its normal gastric tissues were analyzed using multiple databases, including the Tumor Immune Estimation Resource (TIMER), Oncomine, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, as well as by our clinical gastric specimens. The methylation analysis was conducted with MEXPRESS, UALCAN and Xena online tools. The survival analysis was conducted using the Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Coexpressed genes of IGFBP7 were selected with the cBioPortal tool and enrichment analysis was conducted with the clusterProfiler package in R software. Gene set enrichment analysis (GSEA) was performed to explore the IGFBP7-related biological processes involved in GC. Correlations between IGFBP7 and immune cell infiltrates were analyzed using the TIMER database. Results: IGFBP7 expression was significantly upregulated in GC and correlated with stage, grade, tumor status and Helicobacter pylori infection. High IGFBP7 expression and low IGFBP7 methylation levels were significantly associated with short survival of patients with GC. Univariate and multivariate analyses revealed that IGFBP7 was an independent risk factor for GC. The coexpressed genes LHFPL6, SEPTIN4, HSPB2, LAYN and GGT5 predicted unfavorable outcomes of GC. Enrichment analysis showed that the coexpressed genes were involved in extracellular matrix (ECM)-related processes. GSEA indicated that IGFBP7 was positively related to ECM and inflammation-related pathways. TIMER analysis indicated that the mRNA level of IGFBP7 was strongly correlated with genes related to various infiltrating immune cells in GC, especially with gene markers of tumor associated macrophages (TAMs). Conclusions: Increased IGFBP7 expression correlates with poor prognosis and immune cell infiltration in GC, which might be a potential biomarker for the diagnosis of GC.
Collapse
Affiliation(s)
- Qiaoyun Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Rulin Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Conghua Song
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Fangfei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Lili Yan
- Laboratory of Biochemistry and Molecular Biology, Jiangxi Institute of Medical Sciences, Nanchang 330000, Jiangxi Province, China
| | - Yanping Song
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330000, Jiangxi, China
| |
Collapse
|
32
|
What are the effects of IL-1β (rs1143634), IL-17A promoter (rs2275913) and TLR4 (rs4986790) gene polymorphism on the outcomes of infection with H. pylori within as Iranian population; A systematic review and meta-analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Chen P, Ming S, Lao J, Li C, Wang H, Xiong L, Zhang S, Liang Z, Niu X, Deng S, Geng L, Wu M, Wu Y, Gong S. CD103 Promotes the Pro-inflammatory Response of Gastric Resident CD4 + T Cell in Helicobacter pylori-Positive Gastritis. Front Cell Infect Microbiol 2020; 10:436. [PMID: 32974219 PMCID: PMC7472738 DOI: 10.3389/fcimb.2020.00436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
CD103 is considered as a surface marker for the resident immune cells. However, little is known about the intrinsic function of CD103 in infection and inflammation. In this study, we found that CD103 was highly expressed in CD4+T cells of the gastric mucosa from patients with H. pylori-positive gastritis. Mucosal resident CD103+CD4+T cells exhibited an increase in the CD45RO+CCR7− effector memory phenotype and high expression of the chemokine receptors CXCR3 and CCR9 compared with those in CD103−CD4+T cells. An In vitro coculture study demonstrated that H. pylori-specific antigen CagA/VacA-primed dendritic cells (DCs) induced proliferation and IFN-γ, TNF as well as IL-17 production by CD103+CD4+T cells from patients with H. pylori-positive gastritis, while blocking CD103 with a neutralizing antibody reduced proliferation and IFN-γ, TNF, and IL-17 production by CD103+CD4+T cells cocultured with DCs. Moreover, immunoprecipitation revealed that CD103 interacted with TCR α/β and CD3ζ, and activation of CD103 enhanced the phosphorylation of ZAP70 induced by the TCR signal. Finally, increased T-bet and Blimp1 levels were also observed in CD103+CD4+T cells, and activating CD103 increased T-bet and Blimp1 expression in CD4+T cells. Our results explored the intrinsic function of CD103 in gastric T cells from patients with H. pylori-positive gastritis, which may provide a therapeutic target for the treatment of gastritis.
Collapse
Affiliation(s)
- Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Siqi Ming
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juanfeng Lao
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunna Li
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zibin Liang
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Niu
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Simei Deng
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Minhao Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjian Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Sanaei MJ, Shirzad H, Soltani A, Abdollahpour-Alitappeh M, Shafigh MH, Rahimian G, Mirzaei Y, Bagheri N. Up-regulated CCL18, CCL28 and CXCL13 Expression is Associated with the Risk of Gastritis and Peptic Ulcer Disease in Helicobacter Pylori infection. Am J Med Sci 2020; 361:43-54. [PMID: 32928496 DOI: 10.1016/j.amjms.2020.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/17/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection causes inflammation and increases the risk of developing peptic ulcer disease (PUD); however, the exact molecular mechanisms of PUD development remain unclear. The aim of this study was to investigate the expression of CCL18, CCL28, and CXCL13 in H. pylori-positive subjects in comparison with H. pylori-negative subjects, and to determine its association with different clinical outcomes and virulence factors. METHODS In total, 55 H. pylori-positive subjects with gastritis, 47 H. pylori-positive subjects with PUD, and 48 H. pylori-negative subjects were enrolled in this study. CCL18, CCL28, and CXCL13 expression were determined using real time polymerase chain reaction (PCR). The virulence factors of H. pylori such as cytotoxin-associated gene A (cagA), outer inflammatory protein A (oipA), blood group antigen-binding adhesin (babA), and vacuolating cytotoxin A (VacA) genes were evaluated using PCR. RESULTS CCL18, CCL28, and CXCL13 expression in H. pylori-positive subjects were significantly higher than H. pylori-negative subjects. CCL18 and CXCL13 expression in H. pylori-positive subjects with oipA+ and babA2+were significantly higher than H. pylori-positive subjects with oipA¯ and babA2¯. CCL18 and CXCL13 expression were found to be significantly elevated in H. pylori-positive subjects with gastritis compared with H. pylori-positive subjects with PUD. CCL28 expression was significantly higher in H. pylori-positive subjects with PUD compared with H. pylori-positive subjects with gastritis. CONCLUSIONS The increased of CCL18 and CXCL13 may be involved in the pathogenesis of H. pylori-associated gastritis, while the increased of CCL28 may be involved in the pathogenesis of H. pylori-associated PUD.
Collapse
Affiliation(s)
- Mohammad-Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mohammad-Hadi Shafigh
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Biology, Faculty of Sciences, Soran University, Soran, Kurdistan Region, Iraq
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
35
|
Alpízar-Alpízar W, Skindersoe ME, Rasmussen L, Kriegbaum MC, Christensen IJ, Lund IK, Illemann M, Laerum OD, Krogfelt KA, Andersen LP, Ploug M. Helicobacter pylori Colonization Drives Urokinase Receptor (uPAR) Expression in Murine Gastric Epithelium During Early Pathogenesis. Microorganisms 2020; 8:microorganisms8071019. [PMID: 32660136 PMCID: PMC7409347 DOI: 10.3390/microorganisms8071019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Persistent Helicobacter pylori infection is the most important risk factor for gastric cancer. The urokinase receptor (uPAR) is upregulated in lesions harboring cancer invasion and inflammation. Circumstantial evidence tends to correlate H. pylori colonization with increased uPAR expression in the human gastric epithelium, but a direct causative link has not yet been established in vivo; (2) Methods: In a mouse model of H. pylori-induced gastritis, we investigated the temporal emergence of uPAR protein expression in the gastric mucosa in response to H. pylori (SS1 strain) infection; (3) Results: We observed intense uPAR immunoreactivity in foveolar epithelial cells of the gastric corpus due to de novo synthesis, compared to non-infected animals. This uPAR induction represents a very early response, but it increases progressively over time as do infiltrating immune cells. Eradication of H. pylori infection by antimicrobial therapy causes a regression of uPAR expression to its physiological baseline levels. Suppression of the inflammatory response by prostaglandin E2 treatment attenuates uPAR expression. Notwithstanding this relationship, H. pylori does induce uPAR expression in vitro in co-cultures with gastric cancer cell lines; (4) Conclusions: We showed that persistent H. pylori colonization is a necessary event for the emergence of a relatively high uPAR protein expression in murine gastric epithelial cells.
Collapse
Affiliation(s)
- Warner Alpízar-Alpízar
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Centre for Research on Microscopic Structures (CIEMic) and Department of Biochemistry, University of Costa Rica, 2060 San José, Costa Rica
- Correspondence: (W.A.-A.); (M.P.)
| | - Mette E. Skindersoe
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (M.E.S.); (K.A.K.)
- Bacthera, Kogle Allé 6, 2970 Hoersholm, Denmark
| | - Lone Rasmussen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; (L.P.A.); (L.R.)
| | - Mette C. Kriegbaum
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ib J. Christensen
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Hvidovre Hospital, University of Copenhagen, 2650 Copenhagen, Denmark
| | - Ida K. Lund
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Martin Illemann
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole D. Laerum
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karen A. Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (M.E.S.); (K.A.K.)
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Department of Virus and microbiological Diagnostics, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Leif P. Andersen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; (L.P.A.); (L.R.)
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence: (W.A.-A.); (M.P.)
| |
Collapse
|
36
|
Cepeda González C, Culebras Requena J. Réplica. Med Clin (Barc) 2020; 155:90. [DOI: 10.1016/j.medcli.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
|
37
|
Pachathundikandi SK, Blaser N, Bruns H, Backert S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers (Basel) 2020; 12:E803. [PMID: 32230726 PMCID: PMC7226495 DOI: 10.3390/cancers12040803] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori persistently colonizes the human stomach, and is associated with inflammation-induced gastric cancer. Bacterial crosstalk with the host immune system produces various inflammatory mediators and subsequent reactions in the host, but not bacterial clearance. Interleukin-1β (IL-1β) is implicated in gastric cancer development and certain gene polymorphisms play a role in this scenario. Mature IL-1β production depends on inflammasome activation, and the NLRP3 inflammasome is a major driver in H. pylori-infected mice, while recent studies demonstrated the down-regulation of NLRP3 expression in human immune cells, indicating a differential NLRP3 regulation in human vs. mice. In addition to the formation of mature IL-1β or IL-18, inflammasome activation induces pyroptotic death in cells. We demonstrate that H. pylori infection indeed upregulated the expression of pro-IL-1β in human immune cells, but secreted only very low amounts of mature IL-1β. However, application of exogenous control activators such as Nigericin or ATP to infected cells readily induced NLRP3 inflammasome formation and secretion of high amounts of mature IL-1β. This suggests that chronic H. pylori infection in humans manipulates inflammasome activation and pyroptosis for bacterial persistence. This inflammasome deregulation during H. pylori infection, however, is prone to external stimulation by microbial, environmental or host molecules of inflammasome activators for the production of high amounts of mature IL-1β and signaling-mediated gastric tumorigenesis in humans.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Nicole Blaser
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University, D-91058 Erlangen, Germany;
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany;
| |
Collapse
|
38
|
Seeger AY, Ringling MD, Zohair H, Blanke SR. Risk factors associated with gastric malignancy during chronic Helicobacter pylori Infection. MEDICAL RESEARCH ARCHIVES 2020; 8:2068. [PMID: 37655156 PMCID: PMC10470974 DOI: 10.18103/mra.v8i3.2068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chronic Helicobacter pylori (Hp) infection is considered to be the single most important risk factor for the development of gastric adenocarcinoma in humans, which is a leading cause of cancer-related death worldwide. Nonetheless, Hp infection does not always progress to malignancy, and, gastric adenocarcinoma can occur in the absence of detectable Hp carriage, highlighting the complex and multifactorial nature of gastric cancer. Here we review known contributors to gastric malignancy, including Hp virulence factors, host genetic variation, and multiple environmental variables. In addition, we assess emerging evidence that resident gastric microflora in humans might impact disease progression in Hp-infected individuals. Molecular approaches for microbe identification have revealed differences in the gastric microbiota composition between cancer and non-cancerous patients, as well as infected and uninfected individuals. Although the reasons underlying differences in microbial community structures are not entirely understood, gastric atrophy and hypochlorhydria that accompany chronic Hp infection may be a critical driver of gastric dysbiosis that promote colonization of microbes that contribute to increased risk of malignancy. Defining the importance and role of the gastric microbiota as a potential risk factor for Hp-associated gastric cancer is a vital and exciting area of current research.
Collapse
Affiliation(s)
- Ami Y. Seeger
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Megan D. Ringling
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Huzaifa Zohair
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Steven R. Blanke
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Biomedical and Translational Sciences Department, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
39
|
Paydarnia N, Mansoori B, Esmaeili D, Kazemi T, Aghapour M, Hajiasgharzadeh K, Alizadeh N, Baradaran B. Helicobacter pylori Recombinant CagA Regulates Th1/Th2 Balance in a BALB/c Murine Model. Adv Pharm Bull 2020; 10:264-270. [PMID: 32373495 PMCID: PMC7191242 DOI: 10.34172/apb.2020.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/17/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose:Helicobacter pylori is recognized as one of the prevalent causes of human gastricinfection. In the present study, the role of mixed immunization with H. pylori lipopolysaccharide(LPS) and recombinant cytotoxin-associated gene A (rCagA) as a stimulator of host immuneresponses was determined. Methods: BALB/c mice were immunized with different formulations by the systemic administrationat 14-day intervals. The effects of the formulations plus CpG adjuvants were assessed before andpost-immunization in separated studies. Moreover, the expression of Th1/Th2 cytokines wasquantified in sera of immunized mice using reverse transcription polymerase chain reaction (RTPCR)test and the protein levels confirmed with enzyme linked immunosorbent assay (ELISA).Finally, the specific antibody levels in sera were studied by ELISA and the tendency of cellularresponse was examined by IgG1/IgG2a ratio. Results: Data of Western blotting verified the presence of constructed protein. Analysisof lymphocyte proliferation showed that CpG-conjugated rCagA increases lymphocytesproliferation compared to the control group. Also, it was shown that formulations containing LPSand rCagA promote a Th1 response indicated by interferon-gamma expression and induced Th1/Th2 balance. Additionally, the specific IgG1, total IgG and IgG2a levels elevated in response toall treatments. Ultimately, the IgG2a/IgG1 ratio in the mice immunized with rCagA-containingformulations increased. Conclusion: These results indicated that rCagA protein carried with CpG adjuvant not onlymaintained its antigenicity throughout the experiment but also induced robust Th1-biasedimmune responses. Therefore, it holds promise for the production of an efficient vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Nafiseh Paydarnia
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz University of Medical Sciences, International Branch (Aras), Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Esmaeili
- Department of Medical Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahyar Aghapour
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Latour YL, Gobert AP, Wilson KT. The role of polyamines in the regulation of macrophage polarization and function. Amino Acids 2020; 52:151-160. [PMID: 31016375 PMCID: PMC6812587 DOI: 10.1007/s00726-019-02719-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 01/18/2023]
Abstract
Naturally occurring polyamines are ubiquitously distributed and play important roles in cell development, amino acid and protein synthesis, oxidative DNA damage, proliferation, and cellular differentiation. Macrophages are essential in the innate immune response, and contribute to tissue remodeling. Naïve macrophages have two major potential fates: polarization to (1) the classical pro-inflammatory M1 defense response to bacterial pathogens and tumor cells, and (2) the alternatively activated M2 response, induced in the presence of parasites and wounding, and also implicated in the development of tumor-associated macrophages. ODC, the rate-limiting enzyme in polyamine synthesis, leads to an increase in putrescine levels, which impairs M1 gene transcription. Additionally, spermidine and spermine can regulate translation of pro-inflammatory mediators in activated macrophages. In this review, we focus on polyamines in macrophage activation patterns in the context of gastrointestinal inflammation and carcinogenesis. We seek to clarify mechanisms of innate immune regulation by polyamine metabolism and potential novel therapeutic targets.
Collapse
Affiliation(s)
- Yvonne L Latour
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Room 1030C Medical Research Building IV, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Room 1030C Medical Research Building IV, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Room 1030C Medical Research Building IV, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
41
|
Bacterial Pathogens Hijack the Innate Immune Response by Activation of the Reverse Transsulfuration Pathway. mBio 2019; 10:mBio.02174-19. [PMID: 31662455 PMCID: PMC6819659 DOI: 10.1128/mbio.02174-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages. The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.
Collapse
|
42
|
Clyne M, Rowland M. The Role of Host Genetic Polymorphisms in Helicobacter pylori Mediated Disease Outcome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:151-172. [PMID: 31016623 DOI: 10.1007/5584_2019_364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical outcome of infection with the chronic gastric pathogen Helicobacter pylori is not the same for all individuals and also differs in different ethnic groups. Infection occurs in early life (<3 years of age), and while all infected persons mount an immune response and develop gastritis, the majority of individuals are asymptomatic. However, up to 10-15% develop duodenal ulceration, up to 1% develop gastric cancer (GC) and up to 0.1% can develop gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The initial immune response fails to clear infection and H. pylori can persist for decades. H. pylori has been classified as a group one carcinogen by the WHO. Interestingly, development of duodenal ulceration protects against GC. Factors that determine the outcome of infection include the genotype of the infecting strains and the environment. Host genetic polymorphisms have also been identified as factors that play a role in mediating the clinical outcome of infection. Several studies present compelling evidence that polymorphisms in genes involved in the immune response such as pro and anti-inflammatory cytokines and pathogen recognition receptors (PRRs) play a role in modulating disease outcome. However, as the number of studies grows emerging confounding factors are small sample size and lack of appropriate controls, lack of consideration of environmental and bacterial factors and ethnicity of the population. This chapter is a review of current evidence that host genetic polymorphisms play a role in mediating persistent H. pylori infection and the consequences of the subsequent inflammatory response.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | - Marion Rowland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
Khan M, Khan S, Ali A, Akbar H, Sayaf AM, Khan A, Wei DQ. Immunoinformatics approaches to explore Helicobacter Pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci Rep 2019; 9:13321. [PMID: 31527719 PMCID: PMC6746805 DOI: 10.1038/s41598-019-49354-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
Helicobacter Pylori is a known causal agent of gastric malignancies and peptic ulcers. The extremophile nature of this bacterium is protecting it from designing a potent drug against it. Therefore, the use of computational approaches to design antigenic, stable and safe vaccine against this pathogen could help to control the infections associated with it. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a multi-epitopes subunit vaccine against H. Pylori. A total of 7 CTL and 12 HTL antigenic epitopes based on c-terminal cleavage and MHC binding scores were predicted from the four selected proteins (CagA, OipA, GroEL and cagA). The predicted epitopes were joined by AYY and GPGPG linkers. Β-defensins adjuvant was added to the N-terminus of the vaccine. For validation, immunogenicity, allergenicity and physiochemical analysis were conducted. The designed vaccine is likely antigenic in nature and produced robust and substantial interactions with Toll-like receptors (TLR-2, 4, 5, and 9). The vaccine developed was also subjected to an in silico cloning and immune response prediction model, which verified its efficiency of expression and the immune system provoking response. These analyses indicate that the suggested vaccine may produce particular immune responses against H. pylori, but laboratory validation is needed to verify the safety and immunogenicity status of the suggested vaccine design.
Collapse
Affiliation(s)
- Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Shahzeb Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Asim Ali
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Hameed Akbar
- Laboratory of Cellular Dynamics, School of Life Sciences, University of Science and Technology of China (USTC), Anhui Sheng, P.R. China
| | - Abrar Mohammad Sayaf
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Abbas Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan.,Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| |
Collapse
|
44
|
Gonciarz W, Krupa A, Hinc K, Obuchowski M, Moran AP, Gajewski A, Chmiela M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS One 2019; 14:e0220636. [PMID: 31390383 PMCID: PMC6685636 DOI: 10.1371/journal.pone.0220636] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Helicobacter pylori colonizes the human gastric mucosa, causing chronic inflammation, peptic ulcers and gastric cancer. A cascade of harmful processes results from the interaction of these bacteria with the gastric epithelium. Aim To investigate these processes in terms of upregulation of oxidative stress and cell apoptosis and downregulation of the pro-regenerative activity of cells. Methods We employed an in vivo guinea pig model at 7 or 28 days postinoculation with H. pylori, corresponding to an acute or chronic stage of infection, respectively, and an in vitro model of guinea pig primary gastric epithelial cells and fibroblasts treated with bacterial components: glycine acid extract (GE), urease subunit A (UreA), cytotoxin-associated gene A protein (CagA) and lipopolysaccharide (LPS). Cells were evaluated for metabolic activity (MTT reduction), myeloperoxidase (MPO) and metalloproteinase (MMP-9) secretion, lipid peroxidation (4-hydroxynonenal (4HNE)), migration (wound healing), proliferation (Ki-67 antigen) and cell apoptosis (TUNEL assay; Bcl-xL, Bax, Bcl-2 expression; caspase 3 cleavage). Results Significant infiltration of the gastric mucosa by inflammatory cells in vivo in response to H. pylori was accompanied by oxidative stress and cell apoptosis, which were more intense 7 than 28 days after inoculation. The increase in cell proliferation was more intense in chronic than acute infection. H. pylori components GE, CagA, UreA, and LPS upregulated oxidative stress and apoptosis. Only H. pylori LPS inhibited cell migration and proliferation, which was accompanied by the upregulation of MMP-9. Conclusions H. pylori infection induces cell apoptosis in conjunction with increased oxidative stress. Elevated apoptosis protects against deleterious inflammation and neoplasia; however, it reduces cell integrity. Upregulation of cell migration and proliferation in response to injury in the milieu of GE, CagA or UreA facilitates tissue regeneration but increases the risk of neoplasia. By comparison, downregulation of cell regeneration by H. pylori LPS may promote chronic inflammation.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Krzysztof Hinc
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Anthony P Moran
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Adrian Gajewski
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
- * E-mail:
| |
Collapse
|
45
|
Adibzadeh Sereshgi MM, Abdollahpour-Alitappeh M, Mahdavi M, Ranjbar R, Ahmadi K, Taheri RA, Fasihi-Ramandi M. Immunologic balance of regulatory T cell/T helper 17 responses in gastrointestinal infectious diseases: Role of miRNAs. Microb Pathog 2019; 131:135-143. [PMID: 30914387 DOI: 10.1016/j.micpath.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Gastrointestinal Infectious diseases (GIDs) are the second cause of death worldwide. T helper17 cells (Th17) play an important role in GIDs through production of IL-17A, IL-17F, and IL-22 cytokines. Because of their increased activities in GID, Th17 and its inflammatory cytokines can inhibit the progression and eliminate the infection. Actually, although Th17 have the best performance in the acute phase, regulatory T cells (Treg cells) are enhanced in the chronic phase and infection progress through its suppressive function. In addition, Treg cells prevent undesirable inflammatory damages developed by immune system components. On the other hand, miRNAs have important roles in the regulation of immune responses to eliminate bacterial infections and protect host organisms from harmful effects. Actually, miRNAs can reinforce innate and adaptive immunity to remove infections. Of note, miRNAs can develop a regulatory network with the immune system. Additionally, miRNAs can also serve in favor of bacteria to reduce immune responses. Therefore, balance of immune responses in Treg and Th17 cells can influence outcome of many infectious diseases. In conclusion, there is an imbalance in the Treg/Th17 ratio in GIDs; importantly, sets of miRNAs, particularly miR155 and miR146, were determined to be involved clearly in GIDs.
Collapse
Affiliation(s)
| | | | - Mehdi Mahdavi
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Ahmadi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
47
|
Yaseen A, Audette GF. Structural flexibility in the Helicobacter pylori peptidyl-prolyl cis,trans-isomerase HP0175 is achieved through an extension of the chaperone helices. J Struct Biol 2018; 204:261-269. [PMID: 30179659 DOI: 10.1016/j.jsb.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 01/19/2023]
Abstract
Helicobacter pylori infects the gastric epithelium of half the global population, where infections can persist into adenocarcinomas and peptic ulcers. H. pylori secretes several proteins that lend to its pathogenesis and survival including VacA, CagA, γ-glutamyltransferase and HP0175. HP0175, also known as HpCBF2, classified as a peptidyl-prolyl cis,trans-isomerase, has been shown to induce apoptosis through a cascade of mechanisms initiated though its interaction with toll like receptor 4 (TLR4). Here, we report the structure of apo-HP0175 at 2.09 Å with a single monomer in the asymmetric unit. Chromatographic, light scattering and mass spectrometric analysis of HP0175 in solution indicate that the protein is mainly monomeric under low salt conditions, while increasing ionic interactions facilitates protein dimerization. A comparison of the apo-HP0175 structure to that of the indole-2-carboxylic acid-bound form shows movement of the N- and C-terminal helices upon interaction of the catalytic residues in the binding pocket. Helix extension of the N/C chaperone domains between apo and I2CA-bound HP0175 supports previous findings in parvulin PPIases for their role in protein stabilization (and accommodation of variable protein lengths) of those undergoing catalysis.
Collapse
Affiliation(s)
- Ayat Yaseen
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
| | - Gerald F Audette
- Department of Chemistry, York University, Toronto M3J 1P3, Canada; Centre for Research of Biomolecular Interactions, York University, Toronto M3J 1P3, Canada.
| |
Collapse
|
48
|
Whitehouse AJO, Alvares GA, Cleary D, Harun A, Stojanoska A, Taylor LJ, Varcin KJ, Maybery M. Symptom severity in autism spectrum disorder is related to the frequency and severity of nausea and vomiting during pregnancy: a retrospective case-control study. Mol Autism 2018; 9:37. [PMID: 29951183 PMCID: PMC6009817 DOI: 10.1186/s13229-018-0223-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/07/2018] [Indexed: 01/20/2023] Open
Abstract
Background Nausea and vomiting during pregnancy (NVP) is thought to be caused by changes in maternal hormones during pregnancy. Differences in hormone exposure during prenatal life have been implicated in the causal pathways for some cases of autism spectrum disorder (ASD). However, no study has investigated whether the presence and severity of NVP may be related to symptom severity in offspring with ASD. Methods A large sample of children with ASD (227 males and 60 females, aged 2 to 18 years) received a clinical assessment, during which parents completed questionnaires regarding their child’s social (Social Responsiveness Scale, SRS) and communication (Children’s Communication Checklist–2nd edition, CCC-2) symptoms. Parents also reported on a 5-point scale the frequency and severity of NVPs during the pregnancy of the child being assessed: (1) no NVP during the pregnancy, (2) occasional nausea, but no vomiting, (3) daily nausea, but no vomiting, (4) occasional vomiting, with or without nausea, and (5) daily nausea and vomiting. Results Impairments in social responsiveness in offspring, as indexed by SRS total score, significantly increased as a function of the frequency and severity of their mothers’ NVP, as did the level of language difficulties as indexed by the Global Communication Composite of the CCC-2. Conclusions The strong, positive association between increasing frequency and severity of NVP and ASD severity in offspring provides further evidence that exposure to an atypical hormonal environment during prenatal life may affect neurodevelopment and contribute to the ASD phenotype. Given that the measure of NVP symptoms in the current study was based on retrospective recall, replication of this finding is required before strong conclusions can be drawn. Electronic supplementary material The online version of this article (10.1186/s13229-018-0223-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew J O Whitehouse
- 1Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6009 Australia.,4Telethon Kids Institute, University of Western Australia, 100 Roberts Road, Subiaco, WA 6008 Australia
| | - Gail A Alvares
- 1Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6009 Australia
| | - Dominique Cleary
- 1Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6009 Australia
| | - Alexis Harun
- 1Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6009 Australia
| | - Angela Stojanoska
- 1Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6009 Australia
| | - Lauren J Taylor
- 2Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
| | - Kandice J Varcin
- 1Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6009 Australia
| | - Murray Maybery
- 3School of Psychological Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 Australia
| |
Collapse
|
49
|
Park JY, Forman D, Waskito LA, Yamaoka Y, Crabtree JE. Epidemiology of Helicobacter pylori and CagA-Positive Infections and Global Variations in Gastric Cancer. Toxins (Basel) 2018; 10:E163. [PMID: 29671784 PMCID: PMC5923329 DOI: 10.3390/toxins10040163] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a major health burden and is the fifth most common malignancy and the third most common cause of death from cancer worldwide. Development of gastric cancer involves several aspects, including host genetics, environmental factors, and Helicobacter pylori infection. There is increasing evidence from epidemiological studies of the association of H. pylori infection and specific virulence factors with gastric cancer. Studies in animal models indicate H. pylori is a primary factor in the development of gastric cancer. One major virulence factor in H. pylori is the cytotoxin-associated gene A (cagA), which encodes the CagA protein in the cag pathogenicity island (cag PAI). Meta-analysis of studies investigating CagA seropositivity irrespective of H. pylori status identified that CagA seropositivity increases the risk of gastric cancer (OR = 2.87, 95% CI: 1.95⁻4.22) relative to the risk of H. pylori infection alone (OR = 2.31, 95% CI: 1.58⁻3.39). Eradicating H. pylori is a strategy for reducing gastric cancer incidence. A meta-analysis of six randomised controlled trials (RCTs) suggests that searching for and eradicating H. pylori infection reduces the subsequent incidence of gastric cancer with a pooled relative risk of 0.66 (95% CI: 0.46⁻0.95). The introduction in regions of high gastric cancer incidence of population-based H. pylori screening and treatment programmes, with a scientifically valid assessment of programme processes, feasibility, effectiveness and possible adverse consequences, would impact the incidence of H. pylori-induced gastric cancer. Given the recent molecular understanding of the oncogenic role of CagA, targeting H. pylori screening and treatment programmes in populations with a high prevalence of H. pylori CagA-positive strains, particularly the more oncogenic East Asian H. pylori CagA strains, may be worth further investigation to optimise the benefits of such strategies.
Collapse
Affiliation(s)
- Jin Young Park
- International Agency for Research on Cancer, 69372 Lyon, France.
| | - David Forman
- International Agency for Research on Cancer, 69372 Lyon, France.
| | - Langgeng Agung Waskito
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60113, Indonesia.
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita 879-5503, Japan.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita 879-5503, Japan.
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030, USA.
| | - Jean E Crabtree
- Leeds Institute Biomedical and Clinical Sciences, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
50
|
Potential Association of IL1B Polymorphism With Iron Deficiency Risk in Childhood Helicobacter pylori Infection. J Pediatr Gastroenterol Nutr 2018; 66:e36-e40. [PMID: 28727656 DOI: 10.1097/mpg.0000000000001687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Helicobacter pylori infection occurs predominantly in childhood. Host immune response gene polymorphism is reported to affect the susceptibility to H pylori infection and the outcome of H pylori-related gastric cancer. Not all H pylori-infected patients, however, exhibit iron deficiency (ID). The relationship between host genetic polymorphisms and ID mediated by H pylori infection is not well understood. METHODS Subjects (n = 644) from the general population of age 10 to 18 years were divided into 2 groups based on serology testing for anti-H pylori IgG: seropositive study group; and seronegative control group. Five single nucleotide polymorphisms (SNPs) in IL1B (rs1143627 and rs16944), IL8 (rs4073), IL10 (rs1800896), and ABO (rs505922), were genotyped and the iron status of the 2 groups was compared. RESULTS The seroprevalence rate for H pylori was 10.7% in this study. Infected subjects were significantly older and had lower serum iron levels than uninfected subjects (P = 0.0195 and 0.0059, respectively). Multivariate analysis revealed a significantly higher frequency of the T allele of rs505922 (odds ratio [OR] = 6.128; P < 0.001) and lower frequency of the T allele of rs1143627 (OR = 0.846; P = 0.014) in seropositive subjects. Among 59 seropositive subjects, the T allele frequency of rs1143627 was significantly higher in those with ID (OR = 3.156; P = 0.043), compared with those without ID. CONCLUSIONS ABO (rs505922) and IL1B (rs1143627) may affect H pylori infection susceptibility, and IL1B (rs1143627) may also influence ID risk in infected children.
Collapse
|