1
|
Bian L, Hu B, Li F, Gu Y, Hu C, Chen Y, Deng B, Fang H, Zhu X, Chen Y, Fu X, Wang T, She Q, Zhu M, Jiang Y, Dai J, Xu H, Ma H, Xu Z, Hu Z, Shen H, Ding Y, Yan C, Jin G. Single-cell eQTL mapping reveals cell-type-specific genes associated with the risk of gastric cancer. CELL GENOMICS 2025:100812. [PMID: 40112817 DOI: 10.1016/j.xgen.2025.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Most expression quantitative trait locus (eQTL) analyses have been conducted in heterogeneous gastric tissues, limiting understanding of cell-type-specific regulatory mechanisms. Here, we employed a pooled multiplexing strategy to profile 399,683 gastric cells from 203 Chinese individuals using single-cell RNA sequencing (scRNA-seq). We identified 19 distinct gastric cell types and performed eQTL analyses, uncovering 8,498 independent eQTLs, with a considerable fraction (81%, 6,909/8,498) exhibiting cell-type-specific effects. Integration of these eQTLs with genome-wide association studies for gastric cancer (GC) revealed four co-localization signals in specific cell types. Genetically predicted cell-type-specific gene expression identified 15 genes associated with GC risk, including the upregulation of MUC1 exclusively in parietal cells, linked to decreased GC risk. Our findings highlight substantial heterogeneity in the genetic regulation of gene expression across gastric cell types and provide critical cell-type-specific annotations of genetic variants associated with GC risk, offering new molecular insights underlying GC.
Collapse
Affiliation(s)
- Lijun Bian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi 214023, China
| | - Beiping Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Fengyuan Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Caihong Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuheng Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Haisheng Fang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xia Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiangjin Fu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiang She
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China.
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi 214023, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Pujol Gualdo N, Mägi R, Laisk T. Genome-wide association study meta-analysis supports association between MUC1 and ectopic pregnancy. Hum Reprod 2023; 38:2516-2525. [PMID: 37877466 PMCID: PMC10694401 DOI: 10.1093/humrep/dead217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/08/2023] [Indexed: 10/26/2023] Open
Abstract
STUDY QUESTION Can we identify genetic variants associated with ectopic pregnancy by undertaking the first genome-wide association study (GWAS) leveraging two large-scale biobank initiatives? SUMMARY ANSWER We identified two novel genome-wide significant associations with ectopic pregnancy, highlighting MUC1 (mucin 1) as the most plausible affected gene. WHAT IS KNOWN ALREADY Ectopic pregnancy is an important cause of maternal morbidity and mortality worldwide. Despite being a common early pregnancy complication, the genetic predisposition to this condition remains understudied and no large scale genetic studies have been performed so far. STUDY DESIGN, SIZE, DURATION A GWAS meta-analysis including 7070 women with ectopic pregnancy and 248 810 controls from Estonian Biobank and the FinnGen study. PARTICIPANTS/MATERIALS, SETTING, METHODS We identified ectopic pregnancy cases from national registers by ICD (International Classification of Disease) codes (ICD-10 O00), and all remaining women were considered controls. We carried out standard GWAS meta-analysis and additionally annotated GWAS signals, analysed co-localization with quantitative trait loci, estimated genetic correlations and identified associated phenotypes to characterize the genetic signals, as well as to analyse the genetic and phenotypic relationships with the condition. MAIN RESULTS AND THE ROLE OF CHANCE We identified two genome-wide significant loci on chromosomes 1 (rs4971091, P = 5.32×10-9) and 10 (rs11598956, P = 2.41×10-8) potentially associated with ectopic pregnancy. Follow-up analyses propose MUC1, which codes for an epithelial glycoprotein with an important role in barrier function, as the most likely candidate gene for the association on chromosome 1. We also characterize the phenotypic and genetic correlations with other phenotypes, identifying a genetic correlation with smoking and diseases of the (genito)urinary and gastrointestinal system, and phenotypic correlations with various reproductive health diagnoses, reflecting the previously known epidemiological associations. LARGE SCALE DATA The GWAS meta-analysis summary statistics are available from the GWAS Catalogue (GCST90272883). LIMITATIONS, REASONS FOR CAUTION The main limitation is that the findings are based on European-based ancestry populations, with limited data on other populations, and we only captured maternal genomes. Additionally, further larger meta-analysis or independent studies are needed to validate these findings. WIDER IMPLICATIONS OF THE FINDINGS This study encourages the use of large-scale genetic datasets to unravel genetic factors linked to ectopic pregnancy, which is difficult to study in experimental settings. Increased sample size might bring additional genetic factors associating with ectopic pregnancy and inform its heritability. Altogether, our results provide more insight into the biology of ectopic pregnancy and, accordingly, the biological processes governing embryo implantation. STUDY FUNDING/COMPETING INTEREST(S) N.P.G. was supported by MATER Marie Sklodowska-Curie which received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 813707. This study was funded by European Union through the European Regional Development Fund Project No. 2014-2020.4.01.15-0012 GENTRANSMED. Computations were performed in the High-Performance Computing Center of University of Tartu. The authors declare no competing interests.
Collapse
Affiliation(s)
- Natàlia Pujol Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | | | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Hua H, Su T, Han L, Zhang L, Huang Y, Zhang N, Yang M. LINC01226 promotes gastric cancer progression through enhancing cytoplasm-to-nucleus translocation of STIP1 and stabilizing β-catenin protein. Cancer Lett 2023; 577:216436. [PMID: 37806517 DOI: 10.1016/j.canlet.2023.216436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Gastric cancer (GC) remains one of the most common malignances and the leading cause of cancer-related mortality worldwide. Although the critical role of several long non-coding RNAs (lncRNAs) transcribed from several GC-risk loci has been established, we still know little about the biological significance of these lncRNAs at most gene loci and how they play in cell signaling. In the present study, we identified a novel oncogenic lncRNA LINC01226 transcribed from the 1p35.2 GC-risk locus. LINC01226 shows markedly higher expression levels in GC specimens compared with those in normal tissues. High expression of LINC01226 is evidently correlated with worse prognosis of GC cases. In line with these, oncogenic LINC01226 promotes proliferation, migration and metastasis of GC cells ex vivo and in vivo. Importantly, LINC01226 binds to STIP1 protein, leads to disassembly of the STIP1-HSP90 complex, elevates interactions between HSP90 and β-catenin, stabilizes β-catenin protein, activates the Wnt/β-catenin signaling and, thereby, promote GC progression. Together, our findings uncovered a novel layer regulating the Wnt signaling in cancers and uncovers a new epigenetic mode of GC tumorigenesis. These discoveries also shed new light on the importance of functional lncRNAs as innovative therapeutic targets through precisely controlling protein-protein interactions in cancers.
Collapse
Affiliation(s)
- Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Tao Su
- Shandong University Cancer Center, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Shandong University Cancer Center, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
4
|
Xie M, Zhang L, Han L, Huang L, Huang Y, Yang M, Zhang N. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene 2023; 42:3435-3445. [PMID: 37805663 DOI: 10.1038/s41388-023-02855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Gastric cancer (GC) is one of the most leading cause of malignancies. However, the molecular mechanisms underlying stomach carcinogenesis remain incompletely understood. Dysregulated genetic and epigenetic alternations significantly contribute to GC development. Here, we report that ASH1L and its antisense lncRNA ASH1L-AS1, which are transcribed from the most significant GC-risk signal at 1q22, act as novel oncogenes. The high levels of ASH1L or lncRNA ASH1L-AS1 expression in GC specimens are associated with worse prognosis of patients. In line with this, ASH1L and ASH1L-AS1 are functionally important in promoting GC disease progression. LncRNA ASH1L-AS1 up-regulates ASH1L transcription, increases histone methyltransferase ASH1L expression and elevates genome-wide H3K4me3 modification levels in GC cells. Furthermore, ASH1L-AS1 directly interacts with transcription factor NME1 protein to form the ASH1L-AS1-NME1 ribonucleoprotein, which transcriptionally promotes expression of ASH1L, ASH1L-AS1, KRAS and RAF1, and activates the RAS signaling pathway in GC cells. Taken together, our data demonstrated that the ASH1L-AS1-ASH1L regulatory axis controls histone modification reprogram and activation of the RAS signaling in cancers. Thus, ASH1L-AS1 might be a novel targets of GC therapeutics and diagnosis in the clinic.
Collapse
Affiliation(s)
- Mengyu Xie
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Nasha Zhang
- Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
5
|
Lee S, Yang HK, Lee HJ, Park DJ, Kong SH, Park SK. Cross-phenotype association analysis of gastric cancer: in-silico functional annotation based on the disease-gene network. Gastric Cancer 2023; 26:517-527. [PMID: 36995485 DOI: 10.1007/s10120-023-01380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/02/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND A gene or variant has pleiotropic effects, and genetic variant identification across multiple phenotypes can provide a comprehensive understanding of biological pathways shared among different diseases or phenotypes. Discovery of genetic loci associated with multiple diseases can simultaneously support general interventions. Several meta-analyses have shown genetic associations with gastric cancer (GC); however, no study has identified associations with other phenotypes using this approach. METHODS Here, we applied disease network analysis and gene-based analysis (GBA) to examine genetic variants linked to GC and simultaneously associated with other phenotypes. We conducted a single-nucleotide polymorphism (SNP) level meta-analysis and GBA through a systematic genome-wide association study (GWAS) linked to GC, to integrate published results for the SNP variants and group them into major GC-associated genes. We then performed disease network and expression quantitative trait loci (eQTL) analyses to evaluate cross-phenotype associations and expression levels of GC-related genes. RESULTS Seven genes (MTX1, GBAP1, MUC1, TRIM46, THBS3, PSCA, and ABO) were associated with GC as well as blood urea nitrogen (BUN), glomerular filtration rate (GFR), and uric acid (UA). In addition, 17 SNPs regulated the expression of genes located on 1q22, 24 SNPs regulated the expression of PSCA on 8q24.3, and rs7849820 regulated the expression of ABO on 9q34.2. Furthermore, rs1057941 and rs2294008 had the highest posterior causal probabilities of being a causal candidate SNP in 1q22, and 8q24.3, respectively. CONCLUSIONS These findings identified seven GC-associated genes exhibiting a cross-association with GFR, BUN, and UA.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongro-Gu, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do Joong Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongro-Gu, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Zhang N, Wang B, Ma C, Zeng J, Wang T, Han L, Yang M. LINC00240 in the 6p22.1 risk locus promotes gastric cancer progression through USP10-mediated DDX21 stabilization. J Exp Clin Cancer Res 2023; 42:89. [PMID: 37072811 PMCID: PMC10111703 DOI: 10.1186/s13046-023-02654-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Gastric cancer remains the leading cause of cancer death in the world. It is increasingly evident that long non-coding RNAs (lncRNAs) transcribed from the genome-wide association studies (GWAS)-identified gastric cancer risk loci act as a key mode of cancer development and disease progression. However, the biological significance of lncRNAs at most cancer risk loci remain poorly understood. METHODS The biological functions of LINC00240 in gastric cancer were investigated through a series of biochemical assays. Clinical implications of LINC00240 were examined in tissues from gastric cancer patients. RESULTS In the present study, we identified LINC00240, which is transcribed from the 6p22.1 gastric cancer risk locus, functioning as a novel oncogene. LINC00240 exhibits the noticeably higher expression in gastric cancer specimens compared with normal tissues and its high expression levels are associated with worse survival of patients. Consistently, LINC00240 promotes malignant proliferation, migration and metastasis of gastric cancer cells in vitro and in vivo. Importantly, LINC00240 could interact and stabilize oncoprotein DDX21 via eliminating its ubiquitination by its novel deubiquitinating enzyme USP10, which, thereby, promote gastric cancer progression. CONCLUSIONS Taken together, our data uncovered a new paradigm on how lncRNAs control protein deubiquitylation via intensifying interactions between the target protein and its deubiquitinase. These findings highlight the potentials of lncRNAs as innovative therapeutic targets and thus lay the ground work for clinical translation.
Collapse
Affiliation(s)
- Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Chi Ma
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Department of Thyroid Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, Yantai, 264000, China
| | - Jiajia Zeng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Teng Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
7
|
Kim YI, Pecha RL, Keihanian T, Mercado M, Pena-Munoz SV, Lang K, Van Buren G, Dhingra S, Othman MO. MUC1 Expressions and Its Prognostic Values in US Gastric Cancer Patients. Cancers (Basel) 2023; 15:cancers15040998. [PMID: 36831343 PMCID: PMC9954699 DOI: 10.3390/cancers15040998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
This study aims to evaluate the prognostic value of MUC expression in US GC patients. A total of 70 tumor specimens were collected from GC patients who underwent surgery or endoscopic resection between 2013 and 2019 at a tertiary referral center in the US. MUC expression status including MUC1, MUC2, MUC5AC, and MUC6 was evaluated by immunohistochemical staining. The positive rates of MUC1, MUC2, MUC5AC, and MUC6 were 71.4%, 78.6%, 74.3%, and 33.3%, respectively. Patients with positive MUC1 expression had a significantly higher rate of aggressive pathologic features including diffuse-type cancer (42.0% vs. 0%; p < 0.001), advanced GC (80.0% vs. 30.0%, p < 0.001), lymph node metastasis (62.0% vs. 20.0%; p = 0.001), and distant metastasis (32.0% vs. 5.0%; p = 0.017) compared with those with negative MUC1 expression. However, the differences in the pathologic features were not observed according to MUC2, MUC5AC, and MUC6 expression status. In early gastric cancer (EGC), patients with a high level of MUC1 expression showed a higher rate of lymphovascular invasion (71.4% vs. 21.4%; p = 0.026) and EGC meeting non-curative resection (85.7% vs. 42.9%; p = 0.061) than those with negative MUC1. In US GC patients, MUC1 expression is associated with aggressive pathological features, and might be a useful prognostic marker.
Collapse
Affiliation(s)
- Young-Il Kim
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Gastric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
- Correspondence: (Y.-I.K.); (M.O.O.)
| | - Robert Luke Pecha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tara Keihanian
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Mercado
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - S. Valeria Pena-Munoz
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kailash Lang
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sadhna Dhingra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohamed O. Othman
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (Y.-I.K.); (M.O.O.)
| |
Collapse
|
8
|
Chen Y, Yan W, Yang K, Qian Y, Chen Y, Wang R, Zhu J, He Y, Wu H, Zhang G, Shi T, Chen W. Integrated multi-dimensional analysis highlights DHCR7 mutations involving in cholesterol biosynthesis and contributing therapy of gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:36. [PMID: 36710342 PMCID: PMC9885627 DOI: 10.1186/s13046-023-02611-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Genetic background plays an important role in the occurrence and development of gastric cancer (GC). With the application of genome-wide association study (GWAS), an increasing number of tumor susceptibility genes in gastric cancer have been discovered. While little of them can be further applicated in clinical diagnosis and treatment due to the lack of in-depth analysis. METHODS A GWAS of peripheral blood leukocytes from GC patients was performed to identify and obtain genetic background data. In combination with a clinical investigation, key SNP mutations and mutated genes were screened. Via in vitro and in vivo experiments, the function of the mutated gene was verified in GC. Via a combination of molecular function studies and amino acid network analysis, co-mutations were discovered and further identified as potential therapeutic targets. RESULTS At the genetic level, the G allele of rs104886038 in DHCR7 was a protective factor identified by the GWAS. Clinical investigation showed that patients with the rs104886038 A/G genotype, age ≥ 60, smoking ≥ 10 cigarettes/day, heavy drinking and H. pylori infection were independent risk factors for GC, with odds ratios of 12.33 (95% CI, 2.10 ~ 72.54), 20.42 (95% CI, 2.46 ~ 169.83), and 11.39 (95% CI, 1.82 ~ 71.21), respectively. Then molecular function studies indicated that DHCR7 regulated cell proliferation, migration, and invasion as well as apoptosis resistance via cellular cholesterol biosynthesis pathway. Further amino acid network analysis based on the predicted structure of DHCR7 and experimental verification indicated that rs104886035 and rs104886038 co-mutation reduced the stability of DHCR7 and induced its degradation. DHCR7 mutation suppressed the malignant behaviour of GC cells and induced apoptosis via inhibition on cell cholesterol biosynthesis. CONCLUSION In this work, we provided a comprehensive multi-dimensional analysis strategy which can be applied to in-depth exploration of GWAS data. DHCR7 and its mutation sites identified by this strategy are potential theratic targets of GC via inhibition of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Yuqi Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Wenying Yan
- grid.263761.70000 0001 0198 0694Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Kexi Yang
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yiting Qian
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yanjun Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Ruoqin Wang
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Jinghan Zhu
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yuxin He
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Hongya Wu
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China ,grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weichang Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China ,grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Lam SY, Mommersteeg MC, Yu B, Broer L, Spaander MCW, Frost F, Weiss S, Völzke H, Lerch MM, Schöttker B, Zhang Y, Stocker H, Brenner H, Levy D, Hwang SJ, Wood AC, Rich SS, Rotter JI, Taylor KD, Tracy RP, Kabagambe EK, Leja M, Klovins J, Peculis R, Rudzite D, Nikitina-Zake L, Skenders G, Rovite V, Uitterlinden A, Kuipers EJ, Fuhler GM, Homuth G, Peppelenbosch MP. Toll-Like Receptor 1 Locus Re-examined in a Genome-Wide Association Study Update on Anti-Helicobacter pylori IgG Titers. Gastroenterology 2022; 162:1705-1715. [PMID: 35031300 PMCID: PMC11734630 DOI: 10.1053/j.gastro.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS A genome-wide significant association between anti-Helicobacter pylori (H pylori) IgG titers and Toll-like receptor (TLR1/6/10) locus on 4p14 was demonstrated for individuals of European ancestry, but not uniformly replicated. We re-investigated this association in an updated genome-wide association study (GWAS) meta-analysis for populations with low gastric cancer incidence, address potential causes of cohort heterogeneity, and explore functional implications of genetic variation at the TLR1/6/10 locus. METHODS The dichotomous GWAS (25% individuals exhibiting highest anti-H pylori IgG titers vs remaining 75%) included discovery and replication sampls of, respectively, n = 15,685 and n = 9676, all of European ancestry. Longitudinal analysis of serologic data was performed on H pylori-eradicated subjects (n = 132) and patients under surveillance for premalignant gastric lesions (n = 107). TLR1/6/10 surface expression, TLR1 mRNA, and cytokine levels were measured in leukocyte subsets of healthy subjects (n = 26) genotyped for TLR1/6/10 variants. RESULTS The association of the TLR1/6/10 locus with anti-H pylori IgG titers (rs12233670; β = -0.267 ± SE 0.034; P = 4.42 × 10-15) presented with high heterogeneity and failed replication. Anti-H pylori IgG titers declined within 2-4 years after eradication treatment (P = 0.004), and decreased over time in patients with premalignant gastric lesions (P < 0.001). Variation at the TLR1/6/10 locus affected TLR1-mediated cytokine production and TLR1 surface expression on monocytes (P = 0.016) and neutrophils (P = 0.030), but not mRNA levels. CONCLUSIONS The association between anti-H pylori IgG titers and TLR1/6/10 locus was not replicated across cohorts, possibly owing to dependency of anti-H pylori IgG titers on therapy, clearance, and antibody decay. H pylori-mediated immune cell activation is partly mediated via TLR1 signaling, which in turn is affected by genetic variation.
Collapse
Affiliation(s)
- Suk Yee Lam
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michiel C Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bingting Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany; Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Russell P Tracy
- Laboratory for Clinical Biochemistry Research, University of Vermont College of Medicine, Colchester, Vermont, USA
| | | | - Marcis Leja
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Dace Rudzite
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | - Girts Skenders
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
11
|
Duan X, Shan L, Shi S, Xu B, Chen X, Di J, Chen B, Li X, Liu S, Wang Y, Yang W. GBAP1 polymorphisms (rs140081212, rs1057941 and rs2990220) contribute to reduced risk of gastric cancer. Future Oncol 2022; 18:1861-1872. [PMID: 35156841 DOI: 10.2217/fon-2021-0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study was designed to evaluate the contribution of GBAP1 variants to gastric cancer (GC) risk in a Chinese Han population. Methods: The genotypes of GBAP1 polymorphisms were detected using the Agena MassARRAY platform. Logistic regression analysis was used to calculate odds ratios (ORs) and 95% CIs. Results: GBAP1 rs140081212 (OR = 0.51, p = 4.50 × 10-07), rs1057941 (OR = 0.48, p = 1.19 × 10-08) and rs2990220 (OR = 0.46, p = 7.34 × 10-09) contribute to reduced GC risk, especially gastric adenocarcinoma. Interestingly, the contribution of GBAP1 variants to GC susceptibility was associated with age, sex, BMI, smoking and drinking. Conclusion: This research suggested that GBAP1 polymorphisms might provide a protective effect against GC occurrence in a Chinese Han population.
Collapse
Affiliation(s)
- Xianglong Duan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, XizangMinzu University, Xianyang, Shaanxi, 712082, China.,Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Liang Shan
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Shuai Shi
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Boyu Xu
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Xin Chen
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Jinqin Di
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Bopeng Chen
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Xiaoqing Li
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Sida Liu
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Yuhe Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, XizangMinzu University, Xianyang, Shaanxi, 712082, China
| | - Wei Yang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, XizangMinzu University, Xianyang, Shaanxi, 712082, China
| |
Collapse
|
12
|
Zheng Y, Lei T, Jin G, Guo H, Zhang N, Chai J, Xie M, Xu Y, Wang T, Liu J, Shen Y, Song Y, Wang B, Yu J, Yang M. LncPSCA in the 8q24.3 risk locus drives gastric cancer through destabilizing DDX5. EMBO Rep 2021; 22:e52707. [PMID: 34472665 DOI: 10.15252/embr.202152707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple gastric cancer risk loci and several protein-coding susceptibility genes. However, the role of long-noncoding RNAs (lncRNAs) transcribed from these risk loci in gastric cancer development and progression remains to be explored. Here, we functionally characterize a lncRNA, lncPSCA, as a novel tumor suppressor whose expression is fine-regulated by a gastric cancer risk-associated genetic variant. The rs2978980 T > G change in an intronic enhancer of lncPSCA interrupts binding of transcription factor RORA, which down-regulates lncPSCA expression in an allele-specific manner. LncPSCA interacts with DDX5 and promotes DDX5 degradation through ubiquitination. Increased expression of lncPSCA results in low levels of DDX5, less RNA polymerase II (Pol II) binding with DDX5 in the nucleus, thus activating transcription of multiple p53 signaling genes by Pol II. These findings highlight the importance of functionally annotating lncRNAs in GWAS risk loci and the great potential of modulating lncRNAs as innovative cancer therapy.
Collapse
Affiliation(s)
- Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyang Guo
- Clinical Laboratory, Tumor Marker Detection Engineering Laboratory of Shandong Province, The Second Hospital of Shandong University, Jinan, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
13
|
Pleiotropic Effects of Functional MUC1 Variants on Cardiometabolic, Renal, and Hematological Traits in the Taiwanese Population. Int J Mol Sci 2021; 22:ijms221910641. [PMID: 34638981 PMCID: PMC8509060 DOI: 10.3390/ijms221910641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
MUC1 is a transmembrane mucin involved in carcinogenesis and cell signaling. Functional MUC1 variants are associated with multiple metabolic and biochemical traits. This study investigated the association of functional MUC1 variants with MUC1 DNA methylation and various metabolic, biochemical, and hematological parameters. In total, 80,728 participants from the Taiwan Biobank were enrolled for association analysis using functional MUC1 variants and a nearby gene regional plot association study. A subgroup of 1686 participants was recruited for MUC1 DNA methylation analysis. After Bonferroni correction, we found that two MUC1 variants, rs4072037 and rs12411216, were significantly associated with waist circumference, systolic blood pressure, hemoglobin A1C, renal functional parameters (blood urea nitrogen, serum creatinine levels, and estimated glomerular filtration rate), albuminuria, hematocrit, hemoglobin, red blood cell count, serum uric acid level, and gout risk, with both favorable and unfavorable effects. Causal inference analysis revealed that the association between the variants and gout was partially dependent on the serum uric acid level. Both gene variants showed genome-wide significant associations with MUC1 gene-body methylation. Regional plot association analysis further revealed lead single-nucleotide polymorphisms situated at the nearby TRIM46-MUC1-THBS3-MTX1 gene region for the studied phenotypes. In conclusion, our data demonstrated the pleiotropic effects of MUC1 variants with novel associations for gout, red blood cell parameters, and MUC1 DNA methylation. These results provide further evidence in understanding the critical role of TRIM46-MUC1-THBS3-MTX1 gene region variants in the pathogenesis of cardiometabolic, renal, and hematological disorders.
Collapse
|
14
|
Nguyen NLT, Dang NDT, Dang QH, Tran VC, Vo HL, Yamaguchi M, Ta TV. Polymorphism of MUC1 Gene in Vietnamese Gastric Cancer Patients: A Multicenter Case-Control Study. Front Oncol 2021; 11:694977. [PMID: 34532288 PMCID: PMC8439541 DOI: 10.3389/fonc.2021.694977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
Background A few studies revealed that the polymorphisms of Mucin 1 gene have a role and significance as a susceptible factor contributing to gastric cancer. To better understand the roles of two MUC1 genotype polymorphisms of rs4072037 and rs2070803 in the development of gastric cancer in Vietnamese population, a multicenter, large-sample, case-control study was conducted to investigate the potential association of these single-nucleotide polymorphisms (SNPs) of MUC1 gene with gastric cancer risk and to evaluate the combination factors in relation with these SNPs. Methods This case-control study included 302 gastric cancer patients and 304 controls at four national medical hospitals between 2016 and 2018. All participants were interviewed for sociodemographic characteristics, smoking and drinking status, and personal and family history of gastric diseases. Genotyping was done using polymerase chain reaction-restriction fragment length polymorphism analysis. The association of SNPs with gastric cancer was explored using logistic regression models. Results AA genotype for rs4072037 was significantly associated with increased gastric cancer. Those with AA genotype had higher gastric cancer risk than had patients with AG (OR: 2.09, 95% CI: 1.48-2.96) and a combination of AG+GG (OR: 1.85, 95% CI: 1.33-2.56). In rs2070803, GG genotype increased gastric cancer risk when compared with AG (OR: 1.97, 95% CI: 1.39-2.80) and AG+AA (OR: 1.71, 95% CI: 1.23-2.39). AG genotypes in both SNPs decreased gastric cancer risk when compared with homogenous genotype, more specifically AA (OR: 0.51, 95% CI: 0.35-0.72) and GG (OR: 0.58, 95% CI: 0.35-0.97). These genotypes in combination with above-60-year-old age, male gender, alcoholism, and personal history of gastric disease were also significantly elevated risk factors for gastric cancer. Conclusions rs4072037 and rs2070803 of Mucin 1 genes are two genotypic risk factors for gastric cancer. Those in combination with gender, family history, smoking, and drinking habits significantly increase the risk of gastric cancer.
Collapse
Affiliation(s)
- Ngoc-Lan Thi Nguyen
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam.,Clinical Laboratory, Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| | - Ngoc-Dzung Thi Dang
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam.,Clinical Laboratory, Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| | - Quang-Huy Dang
- Department of Medical Laboratory Science, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
| | - Van-Chuc Tran
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam
| | - Hoang-Long Vo
- Department of Scientific Research and International Cooperation, Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Thanh-Van Ta
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam.,Clinical Laboratory, Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
15
|
Guan W, Yang N, Zuo X, Wang X, Cao P, Chu Y, Qin Z, Cheng H, Shi X, Ma T, Xu Z, Sun Y. Heritable Variants in the Chromosome 1q22 Locus Increase Gastric Cancer Risk via Altered Chromatin Looping and Increased UBAP2L Expression. Mol Cancer Res 2021; 19:1992-2002. [PMID: 34535561 DOI: 10.1158/1541-7786.mcr-21-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022]
Abstract
Genome-wide association studies (GWAS) have implicated the 1q22 gastric cancer risk locus in disease, but little is known about its underlying oncogenic functions. This study represents a systematic investigation of the biological significance and potential mechanism associated with the gastric cancer risk of SNP rs2075570(C>T) in 1q22. We identified two functional germline variations (rs2049805-C and rs2974931-G) in an active enhancer in a 64.8 kb high-linkage disequilibrium block of rs2075570. The enhancer upregulated ubiquitin associated protein 2 like (UBAP2L) gene expression over a 960 kb distance by chromatin looping. Gastric cancer tissues expressed significantly higher levels of UBAP2L than was observed in the matched noncancerous tissues, and the UBAP2L expression was negatively correlated with patient survival. Downregulation of UBAP2L inhibited the proliferation and invasion of human gastric cancer cells in vitro and in a xenograft mouse model. Notably, the two mutant variations significantly enforced the enhancer activity and UBAP2L expression. In conclusion, this study revealed two causal variations in the 1q22 region using tag-SNP rs2075570 as a genetic marker. These variations may affect the occurrence and progression of gastric cancer by reinforcing the expression of the 1q22-Enh enhancer-regulated UBAP2L target gene. IMPLICATIONS: Our study provides an important clue of how noncoding germline variations contribute to gastric cancer, which gives a novel insight into understanding the genetic mechanism of gastric cancer.
Collapse
Affiliation(s)
- Wei Guan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xianglin Zuo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuchun Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Pingping Cao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Chu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhongyong Qin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - He Cheng
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tingzheng Ma
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu Province, China. .,Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Duan F, Song C, Shi J, Wang P, Ye H, Dai L, Zhang J, Wang K. Identification and epidemiological evaluation of gastric cancer risk factors: based on a field synopsis and meta-analysis in Chinese population. Aging (Albany NY) 2021; 13:21451-21469. [PMID: 34491229 PMCID: PMC8457565 DOI: 10.18632/aging.203484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
To summarize and assess the credibility and strength of non-genetic factors and genetic variation on gastric cancer risk, we performed a field synopsis and meta-analysis to identify the risk of gastric cancer in Chinese population. Cumulative evidence was graded according to the Venice criteria, and attributable risk percentage (ARP) and population attributable risk percentage (PARP) were used to evaluate the epidemiological effect. A total of 956 studies included non-genetic (404 studies) and genetic factors (552 studies) were quantified, and data on 1161 single nucleotide polymorphisms (SNPs) were available. We identified 14 non-genetic factors were significantly associated with gastric cancer risk. For the analysis of time trends, H. pylori infection rate in gastric cancer and population showed a downward trend. Meanwhile 22 variants were identified significantly associated with gastric cancer: 3 (PLCE1 rs2274223, PSCA rs2976392, MUC1 rs4072037) were high and 19 SNPs were intermediate level of summary evidence, respectively. For non-genetic factors, the top three for ARP were 54.75% (pickled food), 65.87% (stomach disease), and 49.75% (smoked and frying). For PARP were 34.22% (pickled food), 34.24% (edible hot food) and 23.66%(H. pylori infection). On the basis of ARP and PARP associated with SNPs of gastric cancer, the top three for ARP were 53.91% (NAT2, rs1799929),53.05% (NAT2 phenotype), and 42.85% (IL-10, rs1800896). For PARP (Chinese Han in Beijing) were 36.96% (VDR, rs731236), 25.58% (TGFBR2, rs3773651) and 20.56% (MUC1, rs4072037). Our study identified non-genetic risk factors and high-quality biomarkers of gastric cancer susceptibility and their contribution to gastric cancer.
Collapse
Affiliation(s)
- Fujiao Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou, Henan Province, China.,Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chunhua Song
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou, Henan Province, China
| | - Jiachen Shi
- Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University,Zhengzhou, Henan Province, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou, Henan Province, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou, Henan Province, China
| | - Liping Dai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou, Henan Province, China
| | - Jianying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou, Henan Province, China
| | - Kaijuan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou, Henan Province, China
| |
Collapse
|
17
|
Geospatial Assessments of DNA Adducts in the Human Stomach: A Model of Field Cancerization. Cancers (Basel) 2021; 13:cancers13153728. [PMID: 34359626 PMCID: PMC8345122 DOI: 10.3390/cancers13153728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Field cancerization is a popular concept regarding where cancer cells arise in a plane, such as the opened-up gastrointestinal mucosa. The geospatial distribution of DNA adducts, some of which are believed to initiate mutation, may be a clue to understanding the landscape of the preferred occurrence of gastric cancer in the human stomach, such that the occurrence is much more frequent in the lesser curvature than in the greater curvature. METHODS Seven DNA adducts, C5-methyl-2'-deoxycytidine, 2'-deoxyinosine, C5-hydroxymethyl-2'-deoxycytidine, N6-methyl-2'-deoxyadenosine, 1,N6-etheno-2'-deoxyadenosine, N6-hydroxymethyl-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine, from different points and zones of the human stomach were semi quantitatively measured by liquid chromatography/tandem mass spectrometry. The differences in the quantity of these DNA adducts from the lesser and greater curvature, the upper, middle and lower third zones, the anterior and posterior wall of the stomach, and the mucosae distant from and near the tumor were compared to determine whether the location preference of cancer in the stomach could be explained by the distribution of these DNA adducts. Comparisons were conducted considering the tumor locations and operation methods. CONCLUSIONS Regarding the DNA adducts investigated, significant differences in quantities and locations in the whole stomach were not noted; thus, these DNA adducts do not explain the preferential occurrence of cancer in particular locations of the human stomach.
Collapse
|
18
|
Lifestyles, genetics, and future perspectives on gastric cancer in east Asian populations. J Hum Genet 2021; 66:887-899. [PMID: 34267306 PMCID: PMC8384627 DOI: 10.1038/s10038-021-00960-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
The prevalence of gastric cancer (GC) differs among regions worldwide, with the highest occurrence in east Asia. Thus, its etiology, with respect to ethnic background, environmental factors, and lifestyles, is also thought to differ essentially. In addition, etiology of GC is speculated to be changing due to the recent decrease in the Helicobacter pylori (H. pylori) infection in Japan. State-of-the-art somatic/germline cancer genomics has clarified the etiologies of gastric carcinogenesis. In this review article, we summarize past and present milestones in our understanding of GC achieved through genomic approaches, including a recent report that revealed higher-than-expected frequencies of GCs attributed to east Asian-specific germline variants in ALDH2 or CDH1 in combination with lifestyles. Based on this updated knowledge, we also discuss the possible impact of and high-risk approaches for GCs in the upcoming "H. pylori-negative era."
Collapse
|
19
|
Herrera-Pariente C, Capó-García R, Díaz-Gay M, Carballal S, Muñoz J, Llach J, Sánchez A, Bonjoch L, Arnau-Collell C, Soares de Lima Y, Golubicki M, Jung G, Lozano JJ, Castells A, Balaguer F, Bujanda L, Castellví-Bel S, Moreira L. Identification of New Genes Involved in Germline Predisposition to Early-Onset Gastric Cancer. Int J Mol Sci 2021; 22:1310. [PMID: 33525650 PMCID: PMC7866206 DOI: 10.3390/ijms22031310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
The genetic cause for several families with gastric cancer (GC) aggregation is unclear, with marked relevance in early-onset patients. We aimed to identify new candidate genes involved in GC germline predisposition. Whole-exome sequencing (WES) of germline samples was performed in 20 early-onset GC patients without previous germline mutation identified. WES was also performed in nine tumor samples to analyze the somatic profile using SigProfilerExtractor tool. Sequencing germline data were filtered to select those variants with plausible pathogenicity, rare frequency and previously involved in cancer. Then, a manual filtering was performed to prioritize genes according to current knowledge and function. These genetic variants were prevalidated with Integrative Genomics Viewer 2.8.2 (IGV). Subsequently, a further selection step was carried out according to function and information obtained from tumor samples. After IGV and selection step, 58 genetic variants in 52 different candidate genes were validated by Sanger sequencing. Among them, APC, FAT4, CTNND1 and TLR2 seem to be the most promising genes because of their role in hereditary cancer syndromes, tumor suppression, cell adhesion and Helicobacter pylori recognition, respectively. These encouraging results represent the open door to the identification of new genes involved in GC germline predisposition.
Collapse
Affiliation(s)
- Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Roser Capó-García
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Marcos Díaz-Gay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Jenifer Muñoz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Joan Llach
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Ariadna Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Laia Bonjoch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Coral Arnau-Collell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Yasmin Soares de Lima
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Mariano Golubicki
- Oncology Section, Hospital of Gastroenterology “Dr. C. B. Udaondo”, C1264 Buenos Aires, Argentina;
- Molecular Biology Laboratory, Hospital of Gastroenterology “Dr. C. B. Udaondo”, C1264 Buenos Aires, Argentina
| | - Gerhard Jung
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Juan José Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, 08036 Barcelona, Spain;
| | - Antoni Castells
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Francesc Balaguer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Biodonostia Health Research Institute, Basque Country University (UPV/EHU), 20014 San Sebastián, Spain;
| | - Sergi Castellví-Bel
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Leticia Moreira
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| |
Collapse
|
20
|
Wang X, Guan D, Wang D, Liu H, Wu Y, Gong W, Du M, Chu H, Qian J, Zhang Z. Genetic variants in m 6A regulators are associated with gastric cancer risk. Arch Toxicol 2021; 95:1081-1088. [PMID: 33398416 DOI: 10.1007/s00204-020-02958-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
N6-methyladenosine (m6A) modification plays a vital regulatory role in tumorigenesis and development. In this study, we determined that the mRNA expression of IGF2BP1, IGF2BP2 and IGF2BP3, as the m6A modification genes, was significantly increased in gastric cancer (GC) tissues. Using a logistic regression model, we found that novel single-nucleotide polymorphism (SNP) rs9906944 C > T in IGF2BP1 was remarkably associated with a decreased risk of GC in discovery stage (odds ratio (OR) = 0.75, 95% confidence interval (95% CI): 0.60-0.93, P = 8.51 × 10-3). This finding was repeated in an independent Nanjing population (OR = 0.76, 95% CI: 0.59-0.98, P = 3.45 × 10-2). The combined analysis including 2900 GC cases and 3,536 controls confirmed the association between rs9906944 C > T and GC risk (OR = 0.75, 95% CI: 0.64-0.88, P = 5.76 × 10-4). Furthermore, we found that GC patients with higher IGF2BP1 mRNA expression level had prominent poorer overall survival (hazard ratio (HR) = 1.49, 95% CI: 1.16-1.91, logrank P = 1.50 × 10-3). For the first time, our findings suggested the importance of genetic variants in m6A regulators in GC and indicated that IGF2BP1 plays a crucial role in GC. Genetic variants in m6A modification genes may be used for GC risk prediction.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Guan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dafei Wang
- Department of Radiotherapy, Yixing Cancer Hospital, Yixing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanling Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing People's Hospital, Yixing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jing Qian
- Department of General Surgery, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Toyoshima O, Nishizawa T, Sekiba K, Matsuno T, Kondo R, Watanabe H, Suzuki H, Tanikawa C, Koike K, Matsuda K. A single nucleotide polymorphism in Prostate Stem Cell Antigen is associated with endoscopic grading in Kyoto classification of gastritis. J Clin Biochem Nutr 2021; 68:73-77. [PMID: 33536715 PMCID: PMC7844668 DOI: 10.3164/jcbn.20-67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 12/13/2022] Open
Abstract
The risk allele of a single nucleotide polymorphism (SNP) rs2294008 in the Prostate stem cell antigen (PSCA) gene is strongly associated with gastric cancer. Although the Kyoto classification score is believed to be an indicator of gastric cancer risk, it lacks supporting genetic evidence. We investigated the effect of this risk allele of PSCA SNP on the Kyoto score. Participants without a history of gastric cancer or Helicobacter pylori (H. pylori) eradication underwent esophagogastroduodenoscopy, H. pylori evaluation, and SNP genotyping. The Kyoto score is the sum of scores obtained from endoscopy-based atrophy, intestinal metaplasia, enlarged folds, nodularity, and diffuse redness. The Kyoto score is novel in the light of scoring for gastritis. A total of 323 patients were enrolled (number of individuals with genotype CC: 52; CT: 140; TT: 131, average age: 50.1 years, male: 50.8%). The patient baseline characteristics including age, sex, body mass index, smoking, drinking, family history of gastric cancer, and H. pylori status had no association with PSCA SNP. The Kyoto score was higher in T (CT or TT genotype; risk allele) carriers than in CC carriers. Atrophy, enlarged folds, and diffuse redness scores were higher in T allele carriers (risk allele) than in CC genotype individuals. In multivariate analysis, the Kyoto score was independently associated with PSCA SNP (OR: 1.30, p = 0.012). Thus, the Kyoto score was associated with a genetic predisposition.
Collapse
Affiliation(s)
- Osamu Toyoshima
- Gastroenterology, Toyoshima Endoscopy Clinic, 6-17-5 Seijo, Setagaya, Tokyo 157-0066, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Toshihiro Nishizawa
- Gastroenterology, Toyoshima Endoscopy Clinic, 6-17-5 Seijo, Setagaya, Tokyo 157-0066, Japan
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Narita Hospital, 852 Hatakeda, Narita, Chiba 286-8520, Japan
| | - Kazuma Sekiba
- Gastroenterology, Toyoshima Endoscopy Clinic, 6-17-5 Seijo, Setagaya, Tokyo 157-0066, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tatsuya Matsuno
- Gastroenterology, Toyoshima Endoscopy Clinic, 6-17-5 Seijo, Setagaya, Tokyo 157-0066, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Ryo Kondo
- Gastroenterology, Toyoshima Endoscopy Clinic, 6-17-5 Seijo, Setagaya, Tokyo 157-0066, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Hidenobu Watanabe
- Pathology and Cytology Laboratory Japan, 1-34-5 Koenji-Minami, Suginami, Tokyo 166-0003, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Choi YJ, Ohn JH, Kim N, Kim W, Park K, Won S, Sael L, Shin CM, Lee SM, Lee S, An HJ, Jang DM, Han BW, Lee HS, Kang SJ, Kim JS, Lee DH. Family-based exome sequencing combined with linkage analyses identifies rare susceptibility variants of MUC4 for gastric cancer. PLoS One 2020; 15:e0236197. [PMID: 32701958 PMCID: PMC7377420 DOI: 10.1371/journal.pone.0236197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies of gastric cancer (GC) cases have revealed common gastric cancer susceptibility loci with low effect size. We investigated rare variants with high effect size via whole-exome sequencing (WES) of subjects with familial clustering of gastric cancer. WES of DNAs from the blood of 19 gastric cancer patients and 36 unaffected family members from 14 families with two or more gastric cancer patients were tested. Linkage analysis combined with association tests were performed using Pedigree Variant Annotation, Analysis, and Search Tool (pVAAST) software. Based on the logarithm of odds (LOD) and permutation-based composite likelihood ratio test (CLRT) from pVAAST, MUC4 was identified as a predisposing gene (LOD P-value = 1.9×10-5; permutation-based P-value of CLRT ≤ 9.9×10-9). In a larger cohort consisting of 597 GC patients and 9,759 healthy controls genotyped with SNP array, we discovered common variants in MUC4 regions (rs148735556, rs11717039, and rs547775645) significantly associated with GC supporting the association of MUC4 with gastric cancer. And the MUC4 variants were found in higher frequency in The Cancer Genome Atlas Study (TCGA) germline samples of patients with multiple cancer types. Immunohistochemistry indicated that MUC4 was downregulated in the noncancerous gastric mucosa of subjects with MUC4 germline missense variants, suggesting that loss of the protective function of MUC4 predisposes an individual to gastric cancer. Rare variants in MUC4 can be novel gastric cancer susceptibility loci in Koreans possessing the familial clustering of gastric cancer.
Collapse
Affiliation(s)
- Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jung Hun Ohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Wonji Kim
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kyungtaek Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Lee Sael
- Department of Artificial Intelligence and Data Science, Ajou University, Seoul, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sejoon Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Dong Man Jang
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Byung Woo Han
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung Joo Kang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
23
|
Abstract
Background Intestinal and diffuse gastric adenocarcinomas differ in clinical, epidemiological and molecular features. However, most of the concepts related to the intestinal-type are translated to gastric adenocarcinoma in general; thus, the peculiarities of the diffuse-type are underappreciated. Results Besides its growing importance, there are many gaps about the diffuse-type carcinogenesis and, as a result, its epidemiologic and pathogenetic features remain poorly understood. Conclusions Alternative hypotheses to explain these features are discussed, including the role of the gastric microbiota, medical therapies, and modifications in the stomach’s microenvironment.
Collapse
|
24
|
Yan C, Zhu M, Ding Y, Yang M, Wang M, Li G, Ren C, Huang T, Yang W, He B, Wang M, Yu F, Wang J, Zhang R, Wang T, Ni J, Chen J, Jiang Y, Dai J, Zhang E, Ma H, Wang Y, Xu D, Wang S, Chen Y, Xu Z, Zhou J, Ji G, Wang Z, Zhang Z, Hu Z, Wei Q, Shen H, Jin G. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations. Gut 2020; 69:641-651. [PMID: 31383772 DOI: 10.1136/gutjnl-2019-318760] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Although a subset of genetic loci have been associated with gastric cancer (GC) risk, the underlying mechanisms are largely unknown. We aimed to identify new susceptibility genes and elucidate their mechanisms in GC development. DESIGN We conducted a meta-analysis of four genome-wide association studies (GWASs) encompassing 3771 cases and 5426 controls. After targeted sequencing and functional annotation, we performed in vitro and in vivo experiments to confirm the functions of genetic variants and candidate genes. Moreover, we selected 33 promising variants for two-stage replication in 7035 cases and 8323 controls from other five studies. RESULTS The meta-analysis of GWASs identified three loci at 1q22, 5p13.1 and 10q23.33 associated with GC risk at p<5×10-8 and replicated seven known loci at p<0.05. At 5p13.1, the risk rs59133000[C] allele enhanced the binding affinity of NF-κB1 (nuclear factor kappa B subunit 1) to the promoter of PRKAA1, resulting in a reduced promoter activity and lower expression. The knockout of PRKAA1 promoted both GC cell proliferation and xenograft tumour growth in nude mice. At 10q23.33, the rs3781266[C] and rs3740365[T] risk alleles in complete linkage disequilibrium disrupted and created, respectively, the binding motifs of POU2F1 and PAX3, resulting in an increased enhancer activity and expression of NOC3L, while the NOC3L knockdown suppressed GC cell growth. Moreover, two new loci at 3q11.2 (OR=1.21, p=4.56×10-9) and 4q28.1 (OR=1.14, p=3.33×10-11) were associated with GC risk. CONCLUSION We identified 12 loci to be associated with GC risk in Chinese populations and deciphered the mechanisms of PRKAA1 at 5p13.1 and NOC3L at 10q23.33 in gastric tumourigenesis.
Collapse
Affiliation(s)
- Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Tongtong Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenjun Yang
- Key Laboratory of Fertility Preservation and Maintenance, The General Hospital, Ningxia Medical University, Yinchuan, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nangjing, China
| | - Meilin Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinchen Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruoxin Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Ni
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiaping Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yanong Wang
- Department of Gastric Cancer and Soft Tissue Sarcomas, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Cancer and Soft Tissue Sarcomas, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shukui Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nangjing, China
| | - Yun Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianwei Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhengdong Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Kim BS, Lee I, Yook JH, Song K, Kim BS. Association between the MUC1 rs4072037 Polymorphism and Risk of Gastric Cancer and Clinical Outcomes. J Gastric Cancer 2020; 20:127-138. [PMID: 32595997 PMCID: PMC7311214 DOI: 10.5230/jgc.2020.20.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Mucin 1 (MUC1) was identified as a gastric cancer (GC) susceptibility gene by genome-wide association studies in Asians and candidate gene studies in Europeans. This study aimed to investigate the association between the MUC1 rs4072037 polymorphism and GC in terms of the Lauren classification and long-term clinical outcomes. Materials and Methods A total of 803 patients with GC and 816 unrelated healthy controls were enrolled in the study. The association between the MUC1 rs4072037 variant and GC histological types and clinical outcomes, including tumor recurrence and prognosis was investigated. Results The major A allele of rs4072037 was associated with increased GC risk (P<0.05). In subtype analysis, the association was most significant for diffuse-type GC (P<0.05) and in a dominant model (P<0.05), whereas there was no association with intestinal-type GC (P>0.05). Cox proportional hazards analysis revealed the heterozygote AG rs4072037 allele as an independent risk factor influencing tumor recurrence and disease-related death in diffuse-type GC (P<0.05). but not in intestinal-type GC (P>0.05). Conclusions The exonic single nucleotide polymorphism rs4072037 in MUC1 was associated with diffuse-type GC and was an independent risk factor influencing tumor recurrence and disease-related death in diffuse-type GC.
Collapse
Affiliation(s)
- Beom Su Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inchul Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hwan Yook
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Byung-Sik Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Ge Y, Ma G, Liu H, Lin Y, Zhang G, Du M, Wang M, Chu H, Zhang H, Zhang Z. MUC1 is associated with TFF2 methylation in gastric cancer. Clin Epigenetics 2020; 12:37. [PMID: 32122390 PMCID: PMC7053135 DOI: 10.1186/s13148-020-00832-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/23/2020] [Indexed: 01/14/2023] Open
Abstract
Background Emerging evidence has shown that MUC1 and TFF2 play crucial roles in the H. pylori-infected pathogenesis of gastric cancer (GC). A recent study revealed that H. pylori infection induced obviously increased Tff2 methylation levels in Muc1−/− mice compared with controls. However, little is known of the molecular mechanism on MUC1 regulating the expression of TFF2. Methods We conducted a correlation analysis of MUC1 and TFF2 in public databases and our adjacent GC tissues. Besides, MUC1 overexpression vector or small interfering RNA (siRNA) was transfected into GC cells to assess the change in TFF2 expression. Furthermore, the methylation status of TFF2 was measured by bisulfite sequencing PCR (BSP). Results The expression of MUC1 was significantly lower in non-cardia and cardia tumor tissues than that in normal tissues. Downregulation of TFF2 expression was also observed in GC tissues. In addition, we found that MUC1 expression was positively associated with TFF2 expression in GC tissues, especially among GC patients with H. pylori infection. Overexpression of MUC1 in BGC-823 and SGC-7901 cell lines substantially increased the TFF2 expression, whereas knockdown of MUC1 reverted this effect. Moreover, MUC1 was negatively related to the methylation of TFF2 in the co-expression analysis. The results of BSP experiments showed that compared with negative vector group, the methylation level of TFF2 was decreased in GC cells transfected with MUC1 overexpression vector. Additionally, survival analysis indicated that GC patients with lower level of MUC1 or TFF2 had a worse outcome. Conclusion Our results indicated that MUC1 was associated with the methylation of TFF2, which may have implications for TFF2 expression in GC. These findings warrant further research toward the underlying mechanism of MUC1 influenced the TFF2 methylation.
Collapse
Affiliation(s)
- Yuqiu Ge
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yadi Lin
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gang Zhang
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Haiyan Zhang
- Department of Gastroenterology, Xuzhou Clinical College of Nanjing Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
27
|
Liu Z, Lin C, Mu L, Suo C, Ye W, Jin L, Franceschi S, Zhang T, Chen X. The disparities in gastrointestinal cancer incidence among Chinese populations in Shanghai compared to Chinese immigrants and indigenous non-Hispanic white populations in Los Angeles, USA. Int J Cancer 2020; 146:329-340. [PMID: 30838637 DOI: 10.1002/ijc.32251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 03/25/2024]
Abstract
Gastrointestinal cancer patterns are distinct among populations. Our study aims to compare the incidence and risk of gastrointestinal cancers between Chinese American and non-Hispanic whites in Los Angeles, CA, USA, to those of people indigenous to Shanghai to elucidate the changing patterns of gastrointestinal cancers. Cancer incidence data from 1988 to 2012 were extracted from the Cancer Incidence in Five Continents plus database. The age standardized incidence and estimated annual percentage change were calculated to estimate the temporal trends of gastrointestinal cancers. Traditional Poisson regression models and three-factor constrained Poisson regression models were applied to compare the gastrointestinal cancer risk across populations. The incidences of oesophageal, stomach, liver and gall bladder cancers were higher among indigenous Chinese residents of Shanghai than among the other two populations in Los Angeles. While the incidences of colorectal and pancreatic cancer were higher among non-Hispanic whites, Chinese American immigrants were considered to be at an intermediate level for most gastrointestinal cancers. The gender-specific gastrointestinal cancer disparities across populations, especially between Shanghai Chinese and non-Hispanic US whites, were significant regardless of age, period or cohort scale. However, the regional differences in gastrointestinal cancer rates decreased over time. Most gastrointestinal cancer patterns in Chinese American immigrants were more aligned to those of their new country of residence than to those of their original country. The disparities in gastrointestinal cancers across populations indicate that environmental factors might play a key role in cancer genesis. Shift in environmental exposures may result in significant changes in gastrointestinal cancer incidence.
Collapse
Affiliation(s)
- Zhenqiu Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chunqing Lin
- International Agency for Research on Cancer, Lyon, France
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York (SUNY) at Buffalo, Buffalo, NY
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Silvia Franceschi
- Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Hishida A, Ugai T, Fujii R, Nakatochi M, Wu MC, Ito H, Oze I, Tajika M, Niwa Y, Nishiyama T, Nakagawa-Senda H, Suzuki S, Koyama T, Matsui D, Watanabe Y, Kawaguchi T, Matsuda F, Momozawa Y, Kubo M, Naito M, Matsuo K, Wakai K. GWAS analysis reveals a significant contribution of PSCA to the risk of Heliobacter pylori-induced gastric atrophy. Carcinogenesis 2019; 40:661-668. [DOI: 10.1093/carcin/bgz016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Although recent genome-wide association studies (GWASs) have identified genetic variants associated with Helicobacter pylori (HP)-induced gastric cancer, few studies have examined the genetic traits associated with the risk of HP-induced gastric precancerous conditions. This study aimed to elucidate genetic variants associated with these conditions using a genome-wide approach. Data from four sites of the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study were used in the discovery phase (Stage I); two datasets from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center 2 (HERPACC2) study were used in the replication phases (Stages II and III) and SKAT (SNP-set Kernel Association Test) and single variant-based GWASs were conducted for the risks of gastric atrophy (GA) and severe GA defined by serum pepsinogen (PG) levels, and PG1 and PG1/2 ratios. In the gene-based SKAT in Stage I, prostate stem cell antigen (PSCA) was significantly associated with the risks of GA and severe GA, and serum PG1/2 level by linear kernel [false discovery rate (FDR) = 0.011, 0.230 and 7.2 × 10−7, respectively]. The single variant-based GWAS revealed that nine PSCA single nucleotide polymorphisms (SNPs) fulfilled the genome-wide significance level (P < 5 × 10−8) for the risks of both GA and severe GA in the combined study, although most of these associations did not reach genome-wide significance in the discovery or validation cohort on their own. GWAS for serum PG1 levels and PG1/2 ratios revealed that the PSCA rs2920283 SNP had a striking P-value of 4.31 × 10−27 for PG1/2 ratios. The present GWAS revealed the genetic locus of PSCA as the most significant locus for the risk of HP-induced GA, which confirmed the recently reported association in Europeans.
Collapse
Affiliation(s)
- Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomotaka Ugai
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Medical University School of Health Sciences, Toyoake, Japan
| | - Masahiro Nakatochi
- Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Michael C Wu
- Biostatistics and Biomathematics Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | - Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Nakagawa-Senda
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiyuki Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Tahara T, Tahara S, Horiguchi N, Kato T, Shinkai Y, Okubo M, Terada T, Yoshida D, Funasaka K, Nagasaka M, Nakagawa Y, Kurahashi H, Shibata T, Tsukamoto T, Ohmiya N. Prostate Stem Cell Antigen Gene Polymorphism Is Associated with H. pylori-related Promoter DNA Methylation in Nonneoplastic Gastric Epithelium. Cancer Prev Res (Phila) 2019; 12:579-584. [PMID: 31213476 DOI: 10.1158/1940-6207.capr-19-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/25/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
Genome-wide association study identified two functional SNPs associated with gastric cancer especially the diffuse type. The first was a polymorphism (rs2294008) in prostate stem cell antigen (PSCA), and the other was a polymorphism (rs4072037) in mucin 1 (MUC1). DNA methylation is associated with gastric cancer and Helicobacter pylori (H. pylori)-induced gastritis, while hypermethylation of promoter CpG island (CGI) is a common characteristic of enlarged-fold gastritis induced by H. pylori, a risk factor of diffuse-type gastric cancer. We evaluated the association between PSCA and MUC1 polymorphisms with H. pylori--related promoter CGI methylation in the nonneoplastic gastric mucosa. PSCA rs2294008 C/T and MUC1 rs4072037 A/G polymorphisms were genotyped in 410 cancer-free subjects in relation to promoter CGI methylation status of three candidate genes, of which the methylation status is associated with H. pylori infection (IGF2, MYOD1, and SLC16A12). Methylation levels of all three genes were significantly higher in subjects with PSCA rs2294008 T/T compared with the PSCA rs2294008 C/C (all P < 0.05). Such associations were more enhanced in H. pylori-positive subjects (all P < 0.01). The multivariate analysis demonstrated that PSCA C/T [OR, 2.37; 95% CI (confidence interval), 1.06-5.29; P = 0.035] and T/T genotypes (OR, 3.2; 95% CI, 1.41-7.25; P = 0.005) were significantly associated with methylation-high gastric mucosa as independent factors. MUC1 rs4072037 A/G polymorphism was not associated with methylation status of all three genes. PSCA C/T and T/T genotypes are associated with H. pylori-related promoter DNA methylation in the gastric mucosa.Impact: Our observations provided the evidence that PSCA polymorphism influence the susceptibility to gastric cancer through DNA methylation induction.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Sayumi Tahara
- Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Noriyuki Horiguchi
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yasuko Shinkai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Masaaki Okubo
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tsuyoshi Terada
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Dai Yoshida
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Funasaka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Tsukamoto
- Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
30
|
Ma G, Liu H, Du M, Zhang G, Lin Y, Ge Y, Wang M, Jin G, Zhao Q, Chu H, Gong W, Zhang Z. A genetic variation in the CpG island of pseudogene GBAP1 promoter is associated with gastric cancer susceptibility. Cancer 2019; 125:2465-2473. [PMID: 30951202 DOI: 10.1002/cncr.32081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous genome-wide association studies (GWASs) have identified that several single nucleotide polymorphisms (SNPs) are implicated in gastric cancer (GC) risk. However, the multiple statistical comparisons of GWASs may reject some true biological positives with subthreshold P values. METHODS This study annotated the genomic locations of all CpG islands in the genome using the Encyclopedia of DNA Elements (ENCODE). The SNPs in the regions were then genotyped using the Illumina 660W Quad chip. The effects of the prominent variations on GC risk were further confirmed in the other independent cohorts. RESULTS SNP rs2990245, which is located in the promoter of pseudogene GBAP1, was associated with GC risk using GWASs data. An additional cohort of 1275 GC patients and 1424 controls validated that individuals with the CC genotype had a 62% decreased risk of GC compared with those who carried the TT genotype (P = 2.01E-04) in the codominant model. The significant association was observed in the additive, dominant, and recessive models. A meta-analysis combining the results from the GWASs and replication studies revealed that rs2990245 was significantly associated with decreased GC risk (P = 5.59E-12). Importantly, rs2990245 can regulate the expression of GBAP1 by influencing the methylation status of the GBAP1 promoter. GBAP1 can act as a competing endogenous RNA by binding competitively with micro-RNA-212-3p and then promoting GBA expression. CONCLUSION rs2990245 is significantly associated with a decreased risk of GC. Pseudogene GBAP1 contributes to the development and progression of GC by sequestering the miR-212-3p from binding to GBA.
Collapse
Affiliation(s)
- Gaoxiang Ma
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gang Zhang
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yadi Lin
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing Cancer Hospital, Yixing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Huang Z, Lin B, Pan H, Du J, He R, Zhang S, Ouyang P. Gene expression profile analysis of ENO1 knockdown in gastric cancer cell line MGC-803. Oncol Lett 2019; 17:3881-3889. [PMID: 30930989 PMCID: PMC6425391 DOI: 10.3892/ol.2019.10053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-associated mortality. In a previous study, we identified that α-enolase (ENO1) promoted cell migration in GC, but the underlying molecular mechanisms remain to be fully elucidated. In the present study, small interfering RNAs were identified to interfere with ENO1 expression. The cDNA expression profiling was performed using an Affymetrix mRNA array platform to identify genes that may be associated with ENO1 in human GC cell line MGC-803. The differentially expressed genes (DEGs) were identified using the reverse transcription-quantitative polymerase chain reaction, followed by a series of bioinformatic analyses. As a result, there were 448 DEGs, among which 183 (40.85%) were downregulated. The most significant functional terms for the DEGs were the nuclear lumen for cell components (P=2.83×10−4), transcription for biological processes (P=3.7×10−7) and transcription factor activity for molecular functions (P=1.16×104). In total, six significant pathways were enriched, including the most common cancer-associated forkhead box O signaling pathway (P=0.0077), microRNAs in cancer (P=0.0183) and the cAMP signaling pathway (P=0.0415). Furthermore, a network analysis identified three hub genes (HUWE1, PPP1CB and HSPA4), which were all involved in tumor metastasis. Taken together, the DEGs, significant pathways and hub genes identified in the present study shed some light on the molecular mechanisms of ENO1 involved in the pathogenesis of GC.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bode Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Haiyan Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jinlin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Rongwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shizhuo Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
32
|
Lott PC, Carvajal-Carmona LG. Resolving gastric cancer aetiology: an update in genetic predisposition. Lancet Gastroenterol Hepatol 2018; 3:874-883. [PMID: 30507471 PMCID: PMC6500447 DOI: 10.1016/s2468-1253(18)30237-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Every year gastric cancer accounts for nearly 1 million new cases and more than 720 000 deaths worldwide. Prognosis is dismal because most patients are diagnosed with advanced disease; as such, gastric cancer outcomes will benefit from better methods for identification of at-risk individuals that can be targeted for early detection. One approach to targeting high-risk populations is to identify individuals who are genetically predisposed to gastric cancer, as up to 15% of all patients report family history of the disease. On the basis of clinical manifestations, three gastric cancer syndromes have been described, but the diagnosis of some of these syndromes is suboptimal and could benefit from genetic information. Over the past decade, genome-wide association and next-generation sequencing studies have identified several low penetrance variants and high-risk genes, considerably increasing our understanding of inherited gastric cancer predisposition. From these studies, PALB2 has emerged as a new familial gastric cancer gene. Furthermore, genetic analyses in patients with sporadic gastric cancer suggest that more than 10% of all cases have pathogenic mutations, a finding of great importance for cancer aetiology. In this Review, we summarise the role of genetics in gastric cancer aetiology and the implications of genetics findings for the prevention of this malignancy.
Collapse
Affiliation(s)
- Paul C Lott
- Genome Center, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Luis G Carvajal-Carmona
- Genome Center, School of Medicine, University of California at Davis, Davis, CA, USA; Population Sciences and Cancer Health Disparities Program, UC Davis Comprehensive Cancer Center, School of Medicine, University of California at Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Tanikawa C, Kamatani Y, Toyoshima O, Sakamoto H, Ito H, Takahashi A, Momozawa Y, Hirata M, Fuse N, Takai-Igarashi T, Shimizu A, Sasaki M, Yamaji T, Sawada N, Iwasaki M, Tsugane S, Naito M, Hishida A, Wakai K, Furusyo N, Murakami Y, Nakamura Y, Imoto I, Inazawa J, Oze I, Sato N, Tanioka F, Sugimura H, Hirose H, Yoshida T, Matsuo K, Kubo M, Matsuda K. Genome-wide association study identifies gastric cancer susceptibility loci at 12q24.11-12 and 20q11.21. Cancer Sci 2018; 109:4015-4024. [PMID: 30281874 PMCID: PMC6272082 DOI: 10.1111/cas.13815] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer mortality in Japan and worldwide. Although previous studies identify various genetic variations associated with gastric cancer, host genetic factors are largely unidentified. To identify novel gastric cancer loci in the Japanese population, herein, we carried out a large‐scale genome‐wide association study using 6171 cases and 27 178 controls followed by three replication analyses. Analysis using a total of 11 507 cases and 38 904 controls identified two novel loci on 12q24.11‐12 (rs6490061, P = 3.20 × 10−8 with an odds ratio [OR] of 0.905) and 20q11.21 (rs2376549, P = 8.11 × 10−10 with an OR of 1.109). rs6490061 is located at intron 19 of the CUX2 gene, and its expression was suppressed by Helicobacter pylori infection. rs2376549 is included within the gene cluster of DEFB families that encode antibacterial peptides. We also found a significant association of rs7849280 in the ABO gene locus on 9q34.2 (P = 2.64 × 10−13 with an OR of 1.148). CUX2 and ABO expression in gastric mucosal tissues was significantly associated with rs6490061 and rs7849280 (P = 0.0153 and 8.00 × 10−11), respectively. Our findings show the crucial roles of genetic variations in the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | | | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan.,Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Norihiro Furusyo
- Department of Environmental Medicine and Infectious Disease, Kyushu University, Fukuoka, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Nakamura
- Departments of Medicine and Surgery and Center for Personalized Therapeutics, The University of Chicago, Chicago, USA
| | - Issei Imoto
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Division of Molecular Genetics, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Naomi Sato
- Department of Clinical Nursing, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Fumihiko Tanioka
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan.,Division of Pathology, Iwata City Hospital, Shizuoka, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | | | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Companioni O, Bonet C, García N, Ramírez-Lázaro MJ, Lario S, Mendoza J, Adrados MM, Poves E, Espinosa L, Pozo-Kreilinger JJ, Ortega L, Bujanda L, Cosme A, Ferrández A, Muñoz G, Cuatrecasas M, Elizalde I, Andreu V, Paules MJ, Madrigal B, Barrio J, Berdasco M, Calvet X, Sanz-Anquela JM, Gisbert JP, González CA, Sala N. Genetic variation analysis in a follow-up study of gastric cancer precursor lesions confirms the association of MUC2
variants with the evolution of the lesions and identifies a significant association with NFKB1
and CD14. Int J Cancer 2018; 143:2777-2786. [PMID: 30171605 DOI: 10.1002/ijc.31839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Osmel Companioni
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program; Catalan Institute of Oncology (ICO)-IDIBELL; Barcelona Spain
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program; Catalan Institute of Oncology (ICO)-IDIBELL; Barcelona Spain
| | - Nadia García
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program; Catalan Institute of Oncology (ICO)-IDIBELL; Barcelona Spain
- Translational Research Laboratory; Catalan Institute of Oncology (ICO)-IDIBELL; Barcelona Spain
| | - María José Ramírez-Lázaro
- Departament of Medicine, Digestive Diseases Service; Institut Universitari Parc Taulí, Sabadell, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Spain
| | - Sergio Lario
- Departament of Medicine, Digestive Diseases Service; Institut Universitari Parc Taulí, Sabadell, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Spain
| | - Jorge Mendoza
- Department of Gastroenterology; Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) and CIBEREHD; Madrid Spain
| | - Mª Magdalena Adrados
- Department of Pathology; Hospital Universitario de la Princesa, IIS-IP; Madrid, Spain
| | - Elvira Poves
- Department of Gastroenterology; Hospital Universitario Príncipe de Asturias; Alcalá de Henares Spain
| | - Laura Espinosa
- Department of Gastroenterology; Hospital Universitario Príncipe de Asturias; Alcalá de Henares Spain
| | | | - Luís Ortega
- Department of Pathology; Hospital Clínico San Carlos; Madrid Spain
| | - Luis Bujanda
- Department of Pathology and Hospital Donostia/Instituto Biodonostia; Universidad del País Vasco (UPV/EHU), and CIBEREHD; San Sebastián Spain
| | - Angel Cosme
- Department of Gastroenterology; Hospital Donostia/Instituto Biodonostia, Universidad del País Vasco (UPV/EHU), and CIBEREHD; San Sebastián Spain
| | - Angel Ferrández
- Department of Gastroenterology and Hospital Clínico Universitario Lozano Blesa Zaragoza, and CIBEREHD; Spain
| | - Guillermo Muñoz
- Department of Pathology; Hospital Clínico Universitario Lozano Blesa, Zaragoza, and CIBEREHD; Spain
| | - Miriam Cuatrecasas
- Department of Pathology; Hospital Clínic de Barcelona, IDIBAPS and CIBEREHD, and Universitat de Barcelona; Spain
| | - Ignasi Elizalde
- Department of Gastroenterology; Hospital Clínic de Barcelona, IDIBAPS and CIBEREHD; Spain
| | - Victoria Andreu
- Department of Gastroenterology; Hospital de Viladecans; Spain
| | - Mª José Paules
- Department of Pathology; Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat; Spain
| | - Beatriz Madrigal
- Department of Pathology; Hospital Universitario Río Hortega; Valladolid Spain
| | - Jesús Barrio
- Department of Gastroenterology; Hospital Universitario Río Hortega; Valladolid Spain
| | - María Berdasco
- Cancer Epigenetics and Biology Program, IDIBELL; Barcelona Spain
| | - Xavier Calvet
- Departament of Medicine, Digestive Diseases Service; Institut Universitari Parc Taulí, Sabadell, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Spain
| | - José Miguel Sanz-Anquela
- Department of Pathology; Hospital “Principe de Asturias” and University of Alcalá; Alcalá de Henares Spain
| | - Javier P. Gisbert
- Department of Gastroenterology; Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) and CIBEREHD; Madrid Spain
| | - Carlos A. González
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program; Catalan Institute of Oncology (ICO)-IDIBELL; Barcelona Spain
| | - Núria Sala
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program; Catalan Institute of Oncology (ICO)-IDIBELL; Barcelona Spain
- Translational Research Laboratory; Catalan Institute of Oncology (ICO)-IDIBELL; Barcelona Spain
| | | |
Collapse
|
35
|
Zhang X, Wang Y, Tian T, Zhou G, Jin G. Germline genetic variants were interactively associated with somatic alterations in gastric cancer. Cancer Med 2018; 7:3912-3920. [PMID: 29923336 PMCID: PMC6089170 DOI: 10.1002/cam4.1612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have identified several germline variants in gastric cancer. Meanwhile, sequencing studies have characterized extensive somatic alterations that arise during gastric carcinogenesis. However, the relationship between the germline variants and somatic alterations is still unclear in gastric cancer. A total of 11 susceptibility loci and 276 driver genes of gastric cancer were determined based on previous studies and publicly available database. An enrichment analysis was made to detect whether driver genes were enriched in susceptibility regions. Besides, we performed a pathway enrichment analysis to find common-enrich pathways of cancer driver genes and susceptibility genes. Finally, on the basis of the gastric cancer samples and data from TCGA STAD project, we evaluated the associations between susceptibility loci and somatic alterations. Enrichment analysis showed that gastric cancer susceptibility genes were more likely to be enriched in driver genes than in all the genes (P = .05). The susceptibility genes and driver genes were commonly enriched in 8 biological pathways. Gastric cancer susceptibility locus of rs2285947 was associated with truncation mutation within Signaling by PDGF pathway (OR = 0.26, 95%CI: 0.12-0.55, P = 3.93 × 10-4 ). The rs1679709 was connected with COSMIC Signature15 (P = .026). Moreover, rs1679709 was also associated with copy number values of RFC4 which is related to Signature15. These results provide evidence for the relationship between germline variants and somatic alterations, which facilitate understanding the interactive mechanism of germline variations with somatic alterations in gastric cancer development.
Collapse
Affiliation(s)
- Xu Zhang
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Yuzhuo Wang
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Tian Tian
- Department of Epidemiology and BiostatisticsSchool of Public HealthNantong UniversityNantongChina
| | - Gangqiao Zhou
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of Radiation MedicineBeijingChina
- National Engineering Research Center for Protein DrugsBeijingChina
- National Center for Protein Sciences at BeijingBeijingChina
| | - Guangfu Jin
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
36
|
MUC1, MUC5AC, and MUC6 polymorphisms, Helicobacter pylori infection, and gastric cancer: a systematic review and meta-analysis. Eur J Cancer Prev 2018; 27:323-330. [DOI: 10.1097/cej.0000000000000348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Genetic variants in PI3K/Akt/mTOR pathway genes contribute to gastric cancer risk. Gene 2018; 670:130-135. [PMID: 29802999 DOI: 10.1016/j.gene.2018.05.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
Abstract
PI3K/Akt/mTOR pathway is involved in tumor initiation and progression, including gastric cancer (GC). However, the single nucleotide polymorphisms (SNPs) in this pathway and underlying molecular mechanism remain largely unexplored. A case-control study of 1275 GC patients and 1436 controls was performed to explore the associations of potentially functional SNPs in PI3K/Akt/mTOR pathway genes with the risk of GC. In the logistic regression analyses, one SNP rs7536272 out of the four candidate SNPs showed a significant association with GC risk (additive model: OR = 1.16, 95% CI = 1.03-1.30; co-dominant model: AG vs. AA, OR = 1.30, 95% CI = 1.11-1.53; dominant model: AG/GG vs. AA, OR = 1.28, 95% CI = 1.10-1.49).The luciferase assay indicated that rs7536272 G allele significantly enhanced the transcriptional activity, compared with A allele. Further expression quantitative trait loci (eQTL) analysis showed that GC patients with rs7536272 AG/GG genotypes had remarkably higher PIK3R3 levels than those with AA genotype, suggesting that rs7536272 polymorphism influenced the expression of PIK3R3. Additionally, we observed that GC patients with high expression of PIK3R3 had significant poorer outcome than those with low expression (HR = 1.29, 95% CI = 1.09-1.53). Our result demonstrated that SNP rs7536272, a functional risk variant located in the promoter region of PIK3R3, showed association with increased transcriptional activity and upregulation of PIK3R3 expression, thus involved in GC development.
Collapse
|
38
|
Pomerantz DJ, Ferdinandusse S, Cogan J, Cooper DN, Reimschisel T, Robertson A, Bican A, McGregor T, Gauthier J, Millington DS, Andrae JLW, Tschannen MR, Helbling DC, Demos WM, Denis S, Wanders RJA, Newman JN, Hamid R, Phillips JA. Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a NADK2 start loss variant. Am J Med Genet A 2018; 176:692-698. [PMID: 29388319 PMCID: PMC6185736 DOI: 10.1002/ajmg.a.38602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/12/2022]
Abstract
Mitochondrial NAD kinase deficiency (NADK2D, OMIM #615787) is a rare autosomal recessive disorder of NADPH biosynthesis that can cause hyperlysinemia and dienoyl-CoA reductase deficiency (DECRD, OMIM #616034). NADK2 deficiency has been reported in only three unrelated patients. Two had severe, unremitting disease; one died at 4 months and the other at 5 years of age. The third was a 10 year old female with CNS anomalies, ataxia, and incoordination. In two cases mutations in NADK2 have been demonstrated. Here, we report the fourth known case, a 15 year old female with normal intelligence and a mild clinical and biochemical phenotype presumably without DECRD. Her clinical symptoms, which are now stable, became evident at the age of 9 with the onset of decreased visual acuity, bilateral optic atrophy, nystagmus, episodic lower extremity weakness, peripheral neuropathy, and gait abnormalities. Plasma amino acid levels were within normal limits except for mean lysine and proline levels that were 3.7 and 2.5 times the upper limits of normal. Whole exome sequencing (WES) revealed homozygosity for a g.36241900 A>G p. Met1Val start loss mutation in the primary NADK2 transcript (NM_001085411.1) encoding the 442 amino acid isoform. This presumed hypomorphic mutation has not been previously reported and is absent from the v1000GP, EVS, and ExAC databases. Our patient's normal intelligence and stable disease expands the clinical heterogeneity and the prognosis associated with NADK2 deficiency. Our findings also clarify the mechanism underlying NADK2 deficiency and suggest that this disease should be ruled out in cases of hyperlysinemia, especially those with visual loss, and neurological phenotypes.
Collapse
Affiliation(s)
- Daniel J. Pomerantz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Joy Cogan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Heath Park, Cardiff University, Cardiff, United Kingdom
| | - Tyler Reimschisel
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amy Robertson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Bican
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracy McGregor
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jackie Gauthier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David S. Millington
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | - Simone Denis
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - John N. Newman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John A. Phillips
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
39
|
Kumar S, Cruz E, Joshi S, Patel A, Jahan R, Batra SK, Jain M. Genetic variants of mucins: unexplored conundrum. Carcinogenesis 2017; 38:671-679. [PMID: 27838635 DOI: 10.1093/carcin/bgw120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022] Open
Abstract
Alternative gene splicing, occurring ubiquitously in multicellular organisms can produce several protein isoforms with putatively different functions. The enormously extended genomic structure of mucin genes characterized by the presence of multiple exons encoding various domains may result in functionally diverse repertoire of mucin proteins due to alternative splicing. Splice variants (Svs) and mutations in mucin genes have been observed in various cancers and shown to participate in cancer progression and metastasis. Although several mucin Svs have been identified, their potential functions remain largely unexplored with the exception of the Svs of MUC1 and MUC4. A few studies have examined the expression of MUC1 and MUC4 Svs in cancer and indicated their potential involvement in promoting cancer cell proliferation, invasion, migration, angiogenesis and inflammation. Herein we review the current understanding of mucin Svs in cancer and inflammation and discuss the potential impact of splicing in generating a functionally diverse repertoire of mucin gene products. We also performed mutational analysis of mucin genes across five major cancer types in International Cancer Genome Consortium database and found unequal mutational rates across the panel of cancer-associated mucins. Although the functional role of mucins in the pathobiology of various malignancies and their utility as diagnostic and therapeutic targets remain undisputed, these attributes need to be reevaluated in light of the potentially unique functions of disease-specific genetic variants of mucins. Thus, the expressional and functional characterization of the genetic variants of mucins may provide avenues to fully exploit their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biochemistry and Molecular Biology
| | - Eric Cruz
- Department of Biochemistry and Molecular Biology
| | | | - Asish Patel
- Department of Biochemistry and Molecular Biology
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology.,Eppley Institute for Research in Cancer and Allied Diseases.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
40
|
Ashktorab H, Kupfer SS, Brim H, Carethers JM. Racial Disparity in Gastrointestinal Cancer Risk. Gastroenterology 2017; 153:910-923. [PMID: 28807841 PMCID: PMC5623134 DOI: 10.1053/j.gastro.2017.08.018] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/25/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
Cancer from the gastrointestinal tract and its associated excretory organs will occur in more than 300,000 Americans in 2017, with colorectal cancer responsible for >40% of that burden; there will be more than 150,000 deaths from this group of cancers in the same time period. Disparities among subgroups related to the incidence and mortality of these cancers exist. The epidemiology and risk factors associated with each cancer bear out differences for racial groups in the United States. Esophageal adenocarcinoma is more frequent in non-Hispanic whites, whereas esophageal squamous cell carcinoma with risk factors of tobacco and alcohol is more frequent among blacks. Liver cancer has been most frequent among Asian/Pacific Islanders, chiefly due to hepatitis B vertical transmission, but other racial groups show increasing rates due to hepatitis C and emergence of cirrhosis from non-alcoholic fatty liver disease. Gastric cancer incidence remains highest among Asian/Pacific Islanders likely due to gene-environment interaction. In addition to esophageal squamous cell carcinoma, cancers of the small bowel, pancreas, and colorectum show the highest rates among blacks, where the explanations for the disparity are not as obvious and are likely multifactorial, including socioeconomic and health care access, treatment, and prevention (vaccination and screening) differences, dietary and composition of the gut microbiome, as well as biologic and genetic influences. Cognizance of these disparities in gastrointestinal cancer risk, as well as approaches that apply precision medicine methods to populations with the increased risk, may reduce the observed disparities for digestive cancers.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine, Howard University, Washington, District of Columbia; Cancer Center, Howard University, Washington, District of Columbia
| | - Sonia S Kupfer
- Section of Gastroenterology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Hassan Brim
- Department of Pathology, Howard University, Washington, District of Columbia
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, Department of Human Genetics and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
41
|
Genetic variants in PPP2CA are associated with gastric cancer risk in a Chinese population. Sci Rep 2017; 7:11499. [PMID: 28904398 PMCID: PMC5597632 DOI: 10.1038/s41598-017-12040-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A), a tumor suppressor protein, has been implicated in cell cycle and apoptosis. Additionally, studies have illustrated its crucial roles in transformation of normal human cells to tumorigenic status. PPP2CA, which encodes the alpha isoform of the catalytic subunit of PP2A, has been recently reported to be associated with several types of cancers. Therefore, we hypothesized that genetic variants in PPP2CA might influence susceptibility of gastric cancer. To test this hypothesis, three tagging single nucleotide polymorphisms (SNPs) in PPP2CA were genotyped in a case-control study including 1,113 cases and 1,848 controls in a Chinese population. Three tagging SNPs in PPP2CA were genotyped using Illumina Human Exome BeadChip. We observed that the A allele of rs13187105 was associated with an increased risk of gastric cancer (adjusted odds ratio (OR) = 1.14, 95% confidence interval (CI): 1.02-1.28, P = 0.017). Further analyses showed that rs13187105 [A] was associated with decreased expression of PPP2CA mRNA (P = 5.1 × 10-6), and PPP2CA mRNA was significantly lower in gastric tumor tissues when comparing that in their adjacent normal tissues (P = 0.037). These findings support our hypothesis that genetic variants in PPP2CA may be implicated in gastric cancer susceptibility in Chinese population.
Collapse
|
42
|
Ye Y, Yang C, Xu L, Fang D. MUC1 rs4072037 polymorphism is associated with decreased risk of gastric cancer: a meta-analysis. Int J Biol Markers 2017; 32:e284-e290. [PMID: 28561882 DOI: 10.5301/ijbm.5000270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Several studies have recently investigated the association between mucin 1 (MUC1) rs4072037 polymorphism and gastric cancer (GC) risk, but with conflicting results. The aim of this meta-analysis was to evaluate the association between MUC1 rs4072037 polymorphism and GC risk. METHODS A comprehensive database search of PubMed, Elsevier, Embase and China National Knowledge Infrastructure (CNKI) databases was performed to identify relevant studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of any association. RESULTS A total of 12 papers containing 18 studies were included in this meta-analysis, involving 12,373 cases and 15,008 controls. Our data suggested that rs4072037 polymorphism was associated with a decreased risk of GC. Stratification analyses of ethnicity indicated that rs4072037 decreased the risk of GC among white populations, but no significant relationship was observed among Asian populations. No significant associations were observed in subgroups of Lauren classification (intestinal or diffuse) and anatomical classification (cardia or non-cardia). CONCLUSIONS In conclusion, this meta-analysis suggested that rs4245739 polymorphism in the MUC1 gene may play a pivotal role in the pathogenesis of GC, especially for white populations.
Collapse
Affiliation(s)
- Yu Ye
- Department of General Surgery, Hang Zhou Red Cross Hospital, Hangzhou, Zhejiang - PR China
| | - Chong Yang
- Department of General Surgery, Hang Zhou Red Cross Hospital, Hangzhou, Zhejiang - PR China
| | - Lei Xu
- Department of Digestion, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang - PR China
| | - Dilong Fang
- Department of General Surgery, Hang Zhou Red Cross Hospital, Hangzhou, Zhejiang - PR China
| |
Collapse
|
43
|
Gigek CO, Calcagno DQ, Rasmussen LT, Santos LC, Leal MF, Wisnieski F, Burbano RR, Lourenço LG, Lopes-Filho GJ, Smith MAC. Genetic variants in gastric cancer: Risks and clinical implications. Exp Mol Pathol 2017; 103:101-111. [PMID: 28736214 DOI: 10.1016/j.yexmp.2017.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/03/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
Cancer is a multifactorial disease that involves many molecular alterations. Gastric cancer (GC) is the third leading cause of cancer death worldwide. GC is a highly heterogeneous disease with different molecular and genetics features. Therefore, this review focuses on an overview of the genetic aspects of gastric cancer by highlighting the important impact and role of deletions and/or duplications of chromosomal segments, genomic variants, H. pylori infection and interleukin variants, as found in gene expression and newly proposed molecular classification studies. The challenge is to better understand the mechanisms and different pathways that lead to the development and progression of GC.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil; Disciplina de Gastroenterologia Cirúrgica, Universidade Federal de São Paulo (UNIFESP), CEP: 04024-002 São Paulo, Brazil.
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará (UFPA), CEP: 66073-000 Belém, Pará, Brazil
| | | | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil; Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo (UNIFESP), CEP 04038-032 São Paulo, Brazil
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil
| | | | - Laercio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Universidade Federal de São Paulo (UNIFESP), CEP: 04024-002 São Paulo, Brazil
| | - Gaspar Jesus Lopes-Filho
- Disciplina de Gastroenterologia Cirúrgica, Universidade Federal de São Paulo (UNIFESP), CEP: 04024-002 São Paulo, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), CEP 04023-900 São Paulo, Brazil
| |
Collapse
|
44
|
Zhu M, Yan C, Ren C, Huang X, Zhu X, Gu H, Wang M, Wang S, Gao Y, Ji Y, Miao X, Yang M, Chen J, Du J, Huang T, Jiang Y, Dai J, Ma H, Zhou J, Wang Z, Hu Z, Ji G, Zhang Z, Shen H, Shi Y, Jin G. Exome Array Analysis Identifies Variants in SPOCD1 and BTN3A2 That Affect Risk for Gastric Cancer. Gastroenterology 2017; 152:2011-2021. [PMID: 28246015 DOI: 10.1053/j.gastro.2017.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Several genetic variants have been associated with gastric cancer risk, although these account for only a fraction of cases of gastric cancer. We aimed to identify low-frequency and other genetic variants that determine gastric cancer susceptibility. METHODS We performed exome array analysis of DNA in blood samples from 1113 patients with gastric cancer, collected at hospitals from 2006 to 2010 in China, and 1848 individuals without cancer (controls) undergoing physical examinations. Among 71,290 variants analyzed (including 25,784 common variants), 24 variants were selected and replicated in an analysis of DNA in blood samples from 4687 additional cases of gastric cancer and 5780 controls. We compared expression of candidate genes in tumor vs normal gastric tissues using data from TCGA and performed functional annotation analyses. An immortalized human gastric epithelial cell line (GES1) and 7 human gastric cancer lines were used to express transgenes, knock down gene expression (with small interfering RNAs), disrupt genes (using the CRISPR/Cas9 system), or assess expression of reporter constructs. We measured cell proliferation, colony formation, invasion, and migration, and assessed growth of xenograft tumors in nude mice. RESULTS A low-frequency missense variant rs112754928 in the SPOC domain containing 1 gene (SPOCD1; encoding p.Arg71Trp), at 1p35.2, was reproducibly associated with reduced risk of gastric cancer (odds ratio, 0.56; P = 3.48 × 10-8). SPOCD1 was overexpressed in gastric tumors, and knockout of SPOCD1 reduced gastric cancer cell proliferation, invasive activity, and migration, as well as growth of xenograft tumors in nude mice. We also associated the variant rs1679709 at 6p22.1 with reduced risk for gastric cancer (odds ratio, 0.80; P = 1.17 × 10-13). The protective allele rs1679709-A correlated with the surrounding haplotype rs2799077-T-rs2799079-C, which reduced the enhancer activity of this site to decrease expression of the butyrophilin subfamily 3 member A2 gene (BTN3A2). BTN3A2 is overexpressed in gastric tumors, and deletion of BTN3A2 inhibited proliferation, migration, and invasion of gastric cancer cells. CONCLUSIONS We have associated variants at 1p35.2 and 6p22.1 with gastric cancer risk, indicating a role for SPOCD1 and BTN3A2 in gastric carcinogenesis.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, International Joint Research Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuanli Ren
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xiaodan Huang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyong Gu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yong Gao
- Department of Medical Oncology, The Affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiaoping Miao
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tongtong Huang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoming Wang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yongyong Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, International Joint Research Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Horimasu Y, Ishikawa N, Tanaka S, Hirano C, Iwamoto H, Ohshimo S, Fujitaka K, Hamada H, Hattori N, Kohno N. MUC1 in lung adenocarcinoma: cross-sectional genetic and serological study. BMC Cancer 2017; 17:263. [PMID: 28403862 PMCID: PMC5388999 DOI: 10.1186/s12885-017-3272-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background Mucin 1 (MUC1) contributes to the growth and metastasis of various cancers, including lung cancer, and MUC1 gene length polymorphisms are associated with susceptibility to lung cancer and its prognosis. In contrast, the association between rs4072037, a single nucleotide polymorphism in MUC1, and lung cancer has not been well studied. Methods In the present study, we determined the rs4072037 genotype and measured serum KL-6 levels to evaluate the association between lung adenocarcinoma (ADC) and rs4072037 or serum KL-6 levels. DNA samples were available for 172 patients and these were included in the genomic analyses. In addition, 304 patients were included in the serum analyses. Furthermore, 276 healthy volunteers were included in both genomic and serum analyses. Results The rs4072037 genotype was not associated with susceptibility to lung ADC or its prognosis. Interestingly, serum KL-6 levels significantly differed according to rs4072037 genotype in those with T1 or T2 (P < 0.001), N0 or N1 (P = 0.002) and M0 (P < 0.001), but not in those with T3 or T4 (P = 0.882), N2 or N3 (P = 0.616) and M1a or M1b (P = 0.501). Serum KL-6 levels were significantly associated with the presence of lung ADC, as well as with its progression and prognosis, indicating the crucial involvement of KL-6/MUC1 in the development of lung cancer and its progression. Conclusion Based on these findings, we conclude that rs4072037 does not have a significant impact on the pathogenesis or prognosis of lung ADC, whereas serum KL-6 levels, which might reflecting the molecular length of MUC1, are significantly associated with lung ADC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3272-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasushi Horimasu
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530, Japan.
| | - Sonosuke Tanaka
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Internal Medicine, Shobara City Saijo Citizens Hospital, 1339 Nakano, Saijo-cho, Shobara, 729-5742, Japan
| | - Chihiro Hirano
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Physical Analysis and Therapeutic Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
46
|
Wang Z, Dai J, Hu N, Miao X, Abnet CC, Yang M, Freedman ND, Chen J, Burdette L, Zhu X, Chung CC, Ren C, Dawsey SM, Wang M, Ding T, Du J, Gao YT, Zhong R, Giffen C, Pan W, Koh WP, Dai N, Liao LM, Yan C, Qiao YL, Jiang Y, Shu XO, Chen J, Wang C, Ma H, Su H, Zhang Z, Wang L, Wu C, Xiang YB, Hu Z, Yuan JM, Xie L, Zheng W, Lin D, Chanock SJ, Shi Y, Goldstein AM, Jin G, Taylor PR, Shen H. Identification of new susceptibility loci for gastric non-cardia adenocarcinoma: pooled results from two Chinese genome-wide association studies. Gut 2017; 66:581-587. [PMID: 26701879 PMCID: PMC4963301 DOI: 10.1136/gutjnl-2015-310612] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/01/2015] [Accepted: 11/17/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Although several genome-wide association studies (GWAS) of non-cardia gastric cancer have been published, more novel association signals could be exploited by combining individual studies together, which will further elucidate the genetic susceptibility of non-cardia gastric cancer. DESIGN We conducted a meta-analysis of two published Chinese GWAS studies (2031 non-cardia gastric cancer cases and 4970 cancer-free controls) and followed by genotyping of additional 3564 cases and 4637 controls in two stages. RESULTS The overall meta-analysis revealed two new association signals. The first was a novel locus at 5q14.3 and marked by rs7712641 (per-allele OR=0.84, 95% CI 0.80 to 0.88; p=1.21×10-11). This single-nucleotide polymorphism (SNP) marker maps to the intron of the long non-coding RNA, lnc-POLR3G-4 (XLOC_004464), which we observed has lower expression in non-cardia gastric tumour compared with matched normal tissue (Pwilcoxon signed-rank=7.20×10-4). We also identified a new signal at the 1q22 locus, rs80142782 (per-allele OR=0.62; 95% CI 0.56 to 0.69; p=1.71×10-19), which was independent of the previously reported SNP at the same locus, rs4072037 (per-allele OR=0.74; 95% CI 0.69 to 0.79; p=6.28×10-17). Analysis of the new SNP conditioned on the known SNP showed that the new SNP remained genome-wide significant (Pconditional=3.47×10-8). Interestingly, rs80142782 has a minor allele frequency of 0.05 in East Asians but is monomorphic in both European and African populations. CONCLUSION These findings add new evidence for inherited genetic susceptibility to non-cardia gastric cancer and provide further clues to its aetiology in the Han Chinese population.
Collapse
Affiliation(s)
- Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Gaithersburg, Maryland, USA,Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ming Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Gaithersburg, Maryland, USA
| | - Xun Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Gaithersburg, Maryland, USA
| | - Chuanli Ren
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China,Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, People's Republic of China
| | - Sanford M Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meilin Wang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ti Ding
- Shanxi Cancer Hospital, Taiyuan, Shanxi, P.R. China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yu-Tang Gao
- Shanghai Cancer Institute, Shanghai, People's Republic of China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Carol Giffen
- Information Management Services Inc., Silver Spring, Maryland, USA
| | - Wenting Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Woon-Puay Koh
- Duke-NUS Graduate Medical School Singapore, and Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Ningbing Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - You-Lin Qiao
- Department of Epidemiology, Cancer Institute and Hospital Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiao-Ou Shu
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiaping Chen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Su
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhendong Zhang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lemin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chen Wu
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yong-Bing Xiang
- Shanghai Cancer Institute, Shanghai, People's Republic of China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute; Pittsburgh, Pennsylvania, USA,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lu Xie
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Zheng
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongyong Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Philip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
47
|
Liu P, Gao ZH, Ma JC, Yang J, Zhang YB, Yan HL, Yao JB, Da MX. Association between MUC1 rs4072037 polymorphism and susceptibility to gastric cancer: A meta-analysis based on ten case-control trials. Shijie Huaren Xiaohua Zazhi 2016; 24:4576-4583. [DOI: 10.11569/wcjd.v24.i34.4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the association between the MUC1 rs4072037 polymorphism and susceptibility to gastric cancer (GC) by conducting a meta-analysis.
METHODS PubMed, Embase, The Cochrane Library, CBM, CNKI, VIP and WanFang Database were searched for published case-control studies investigating the relationship between the MUC1 rs4072037 polymorphism and susceptibility to GC. Data were extracted and cross-checked from the case-control studies by two independent reviewers. Statistical analysis and heterogeneity test were conducted with Stata12.0.
RESULTS Ten case-control studies including 10700 GC patients and 12891 controls were analyzed in this meta-analysis. Results indicated that allele model (A vs G: OR = 1.42, 95%CI: 1.29-1.56, P < 0.001), dominant model (AA + AG vs GG: OR = 1.40, 95%CI: 1.21-1.61, P < 0.001), co-dominant model (AA vs GG: OR = 1.78, 95%CI: 1.52-2.08, P < 0.001), and recessive model (AA vs AG+GG: OR = 1.56, 95%CI: 1.38-1.76, P < 0.001) were strongly associated with the risk of GC. Subgroup analysis showed that allele model (A vs G: OR = 1.39, 95%CI: 1.21-1.60), dominant model (AA vs GG: OR = 2.01, 95%CI: 1.51-2.66)and co-dominant model (AA vs AG+GG: OR = 1.63, 95%CI: 1.29-2.07) increased the risk of GC in Caucasians.
CONCLUSION The MUC1 rs4072037 polymorphism is closely associated with the susceptibility to GC, and the allele A increases the risk of GC. MUC1 rs4072037 polymorphism may be used as a potential biomarker for GC.
Collapse
|
48
|
Hu N, Wang Z, Song X, Wei L, Kim BS, Freedman ND, Baek J, Burdette L, Chang J, Chung C, Dawsey SM, Ding T, Gao YT, Giffen C, Han Y, Hong M, Huang J, Kim HS, Koh WP, Liao LM, Qiao YL, Shu XO, Tan W, Wang C, Wu C, Wu MJ, Xiang YB, Yeager M, Yook JH, Yuan JM, Zhang P, Zhao XK, Zheng W, Song K, Wang LD, Lin D, Chanock SJ, Goldstein AM, Taylor PR, Abnet CC, Abnet CC. Genome-wide association study of gastric adenocarcinoma in Asia: a comparison of associations between cardia and non-cardia tumours. Gut 2016; 65:1611-8. [PMID: 26129866 PMCID: PMC5568652 DOI: 10.1136/gutjnl-2015-309340] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) of gastric cancer have reported differences in single-nucleotide polymorphism (SNP) associations for tumour subtypes, particularly when divided by location into the gastric cardia versus the non-cardia. DESIGN Here we present results for a GWAS using 2350 East Asian gastric cancer cases divided as 1189 gastric cardia and 1027 gastric non-cardia cases and 2708 controls. We also included up to 3042 cardia cases, 4359 non-cardia cases and 7548 controls for replication from two Chinese studies and one Korean study. From the GWAS, we selected 12 top SNPs for each gastric cancer subtype, 4 top SNPs for total gastric cancer and 1 SNP in MUC1 for replication testing. RESULTS We observed genome-wide significant associations for rs10074991 in PRKAA1 at 5p13.1 for cardia (p=7.36×10(-12)) and non-cardia cancers (p=2.42×10(-23)) with per allele OR (95% CI) for the combined endpoint of 0.80 (0.77 to 0.83). At 6p21.1, rs2294693 near UNC5CL was significantly associated with gastric non-cardia cancer risk (p=2.50×10(-8)), with OR (95% CI) of 1.18 (1.12 to 1.26), but there was only a nominal association for cardia cancer (p=1.47×10(-2)). We also confirmed a previously reported association for rs4072037 in MUC1 with p=6.59×10(-8) for total gastric cancer and similar estimates for cardia and non-cardia cancers. Three SNPs in PSCA previously reported to be associated with gastric non-cardia cancer showed no apparent association for cardia cancer. CONCLUSIONS Our results suggest that associations for SNPs with gastric cancer show some different results by tumour location in the stomach.
Collapse
Affiliation(s)
- Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Song
- Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, PRC
| | - Lixuan Wei
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PRC
| | - Byung Sik Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
| | - Jiang Chang
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PRC
| | - Charles Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
| | - Sanford M. Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ti Ding
- Shanxi Cancer Hospital, Taiyuan, Shanxi, PRC
| | | | - Carol Giffen
- Information Management Services Inc., Silver Spring, Maryland, USA
| | - Yaling Han
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PRC
| | - Myunghee Hong
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jia Huang
- Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, PRC
| | - Hee Sung Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woon-Puay Koh
- Duke-NUS Graduate Medical School Singapore, Singapore
| | - Linda M. Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - You-Lin Qiao
- Department of Epidemiology, Cancer Institute and Hospital Chinese Academy of Medical Sciences, Beijing, PRC
| | - Xiao-Ou Shu
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Wen Tan
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PRC
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chen Wu
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PRC
| | - Min-Jie Wu
- Cancer Research Center, Xinxiang Medical University, Xinxiang, Henan, PRC
| | | | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
| | - Jeong Hwan Yook
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburg, PA, USA
| | - Peng Zhang
- Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, PRC
| | - Xue-Ke Zhao
- Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, PRC
| | - Wei Zheng
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Li-Dong Wang
- Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, PRC
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PRC
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
49
|
Fehringer G, Kraft P, Pharoah PD, Eeles RA, Chatterjee N, Schumacher FR, Schildkraut JM, Lindström S, Brennan P, Bickeböller H, Houlston RS, Landi MT, Caporaso N, Risch A, Amin Al Olama A, Berndt SI, Giovannucci EL, Grönberg H, Kote-Jarai Z, Ma J, Muir K, Stampfer MJ, Stevens VL, Wiklund F, Willett WC, Goode EL, Permuth JB, Risch HA, Reid BM, Bezieau S, Brenner H, Chan AT, Chang-Claude J, Hudson TJ, Kocarnik JK, Newcomb PA, Schoen RE, Slattery ML, White E, Adank MA, Ahsan H, Aittomäki K, Baglietto L, Blomquist C, Canzian F, Czene K, Dos-Santos-Silva I, Eliassen AH, Figueroa JD, Flesch-Janys D, Fletcher O, Garcia-Closas M, Gaudet MM, Johnson N, Hall P, Hazra A, Hein R, Hofman A, Hopper JL, Irwanto A, Johansson M, Kaaks R, Kibriya MG, Lichtner P, Liu J, Lund E, Makalic E, Meindl A, Müller-Myhsok B, Muranen TA, Nevanlinna H, Peeters PH, Peto J, Prentice RL, Rahman N, Sanchez MJ, Schmidt DF, Schmutzler RK, Southey MC, Tamimi R, Travis RC, Turnbull C, Uitterlinden AG, Wang Z, Whittemore AS, Yang XR, Zheng W, Buchanan DD, Casey G, Conti DV, Edlund CK, Gallinger S, Haile RW, Jenkins M, Le Marchand L, Li L, Lindor NM, Schmit SL, Thibodeau SN, Woods MO, Rafnar T, Gudmundsson J, Stacey SN, Stefansson K, Sulem P, Chen YA, Tyrer JP, Christiani DC, Wei Y, Shen H, Hu Z, Shu XO, Shiraishi K, Takahashi A, Bossé Y, Obeidat M, Nickle D, Timens W, Freedman ML, Li Q, Seminara D, Chanock SJ, Gong J, Peters U, Gruber SB, Amos CI, Sellers TA, Easton DF, Hunter DJ, Haiman CA, Henderson BE, Hung RJ. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Res 2016; 76:5103-14. [PMID: 27197191 PMCID: PMC5010493 DOI: 10.1158/0008-5472.can-15-2980] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/05/2016] [Indexed: 01/26/2023]
Abstract
Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103-14. ©2016 AACR.
Collapse
Affiliation(s)
- Gordon Fehringer
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Peter Kraft
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | - Sara Lindström
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | - Angela Risch
- Division of Cancer Genetics/Epigenetics, Department of Molecular Biology, University of Salzburg, Salzburg, Austria. Division of Epigenomics and Cancer Risk Factors, DKFZ - German Cancer Research Center, Heidelberg, Germany. Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | | | | | | | | | | | - Jing Ma
- Harvard Medical School, Boston Massachusetts. Brigham and Women's Hospital, Boston, Massachusetts
| | - Kenneth Muir
- University of Manchester, Manchester, United Kingdom. The University of Warwick, Coventry, United Kingdom
| | | | - Victoria L Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | | | - Walter C Willett
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew T Chan
- Massachusetts General Hospital, Boston, Massachusetts
| | - Jenny Chang-Claude
- National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Robert E Schoen
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Muriel A Adank
- VU University Medical Center, Amsterdam, the Netherlands
| | | | - Kristiina Aittomäki
- University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Carl Blomquist
- University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - A Heather Eliassen
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Harvard Medical School, Boston Massachusetts
| | | | | | - Olivia Fletcher
- Breakthrough Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - Mia M Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Nichola Johnson
- Breakthrough Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Per Hall
- Karolinska Institutet, Stockholm, Sweden
| | - Aditi Hazra
- Harvard Medical School, Boston Massachusetts
| | - Rebecca Hein
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany. Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - John L Hopper
- Melbourne School of Population Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mattias Johansson
- International Agency for Research on Cancer, Lyon, France. Department of Biobank Research, Umea University, Umea, Sweden
| | - Rudolf Kaaks
- National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Peter Lichtner
- German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Eiliv Lund
- Institute of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Enes Makalic
- Melbourne School of Population Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Taru A Muranen
- University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Maria Jose Sanchez
- Escuela Andaluza de Salud Publica, Instituto de Investigacion Biosanitaria ibs. GRANADA, Granada, Spain. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. CIBER de Epidemiología y Salud Pública CIBERESP, Madrid, Spain
| | - Daniel F Schmidt
- Melbourne School of Population Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands. Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | - Wei Zheng
- Vanderbilt University, Nashville, Tennessee
| | | | - Graham Casey
- University of Southern California, Los Angeles, California
| | - David V Conti
- University of Southern California, Los Angeles, California
| | | | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | | | - Mark Jenkins
- The University of Melbourne, Melbourne, Victoria, Australia
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Li Li
- Case Comprehensive Cancer Center and Mary Ann Swetland Center for Environmental Health, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | - Michael O Woods
- Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | | | | | | | | | | | | | | - Yongyue Wei
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hongbing Shen
- Nanjing Medical University School of Public Health, Nanjing, China
| | - Zhibin Hu
- Nanjing Medical University School of Public Health, Nanjing, China
| | | | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yohan Bossé
- Department of Molecular Medicine, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Canada
| | - Ma'en Obeidat
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - David Nickle
- Merck & Co, Merck Research Laboratories, Seattle, Washington
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands
| | | | | | | | | | - Jian Gong
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ulrike Peters
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | - David J Hunter
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | | | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
50
|
Li Y, Yuan Y. Alternative RNA splicing and gastric cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 773:263-273. [PMID: 28927534 DOI: 10.1016/j.mrrev.2016.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) linked to diseases, especially to tumors. Recently, more and more studies focused on the relationship between AS and gastric cancer (GC). This review surveyed the hot topic from four aspects: First, the common types of AS in cancer, including exon skipping, intron retention, mutually exclusive exon, alternative 5 ' or 3' splice site, alternative first or last exon and alternative 3' untranslated regions. Second, basic mechanisms of AS and its relationship with cancer. RNA splicing in eukaryotes follows the GT-AG rule by both cis-elements and trans-acting factors regulatory. Through RNA splicing, different proteins with different forms and functions can be produced and may be associated with carcinogenesis. Third, AS types of GC-related genes and their splicing variants. In this paper, we listed 10 common genes with AS and illustrated its possible molecular mechanisms owing to genetic variation (mutation and /or polymorphism). Fourth, the splicing variants of GC-associated genes and gastric carcinogenesis, invasion and metastasis. Many studies have found that the different splicing variants of the same gene are differentially expressed in GC and its precancerous diseases, suggesting AS has important implications in GC development. Taking together, this review highlighted the role of AS and splicing variants in the process of GC. We hope that this is not only beneficial to advances in the study field of GC, but also can provide valuable information to other similar tumor research.Although we already know some gene splicing and splicing variants play an important role in the development of GC, but many phenomena and mechanisms are still unknown. For example, how the tumor microenvironment and signal transduction pathway effect the forming and function of AS? Unfortunately, this review did not cover the contents because the current study is limited. It is no doubt that clarifying the phenomena and mechanisms of these unknown may help to reveal the relationship of AS with complex tumor genetic variation and the occurrence and development of tumors.
Collapse
Affiliation(s)
- Ying Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.
| |
Collapse
|