1
|
Kanika, Ahmad A, Kumar A, Rahul, Mishra RK, Ali N, Navik U, Parvez S, Khan R. Leveraging thiol-functionalized biomucoadhesive hybrid nanoliposome for local therapy of ulcerative colitis. Biomaterials 2025; 312:122747. [PMID: 39142219 DOI: 10.1016/j.biomaterials.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Rahul
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Rakesh Kumar Mishra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Ghudda, Punjab, 151401, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
2
|
Huang Z, Liu B, Xiao L, Liao M, Huang L, Zhao X, Ma K, Wang R, Ji F, Li W, Huang L, Xie L. Effects of breast-fed infants-derived Limosilactobacillus reuteri and Bifidobacterium breve ameliorate DSS-induced colitis in mice. iScience 2024; 27:110902. [PMID: 39351200 PMCID: PMC11439849 DOI: 10.1016/j.isci.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Studies have shown that breastfeeding can reduce the risk and severity of inflammatory bowel disease (IBD) in children and adults. Probiotics in breast milk have also been isolated and their effects on IBD have been studied. However, based on current evidence, the exact efficacy and mechanisms of probiotics in the treatment of IBD cannot be determined. In this study, Bifidobacterium breve FPHC4024 (BB FPHC4024) and Limosilactobacillus reuteri FPHC2951 (LR FPHC2951) were isolated from feces of exclusively breastfed healthy infants and administered by gavage to dextran sulfate sodium (DSS)-induced IBD mice. The results showed that LR FPHC2951 improved the symptoms of DSS-induced IBD, increased the expression of interleukin (IL)-10 mRNA and upregulated the abundance of Verrucomicrobiaceae Akkermansia. Combined with Kyoto Encyclopedia of Genes and Genomes (KEGG)-based Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) function prediction results, we hypothesized that LR FPHC2951 improved DSS-induced colitis symptoms in mice by increasing of IL-10 mRNA, altering the structure of intestinal flora, and reducing proinflammatory pathways and enhancing pathways associated with anti-inflammatory and intestinal protection.
Collapse
Affiliation(s)
- Zhipeng Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lanlin Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Miaomiao Liao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liujing Huang
- Medical Affairs Department, Guangzhou Betrue Technology Co., Ltd. Guangzhou 510700, China
| | - Xiaogan Zhao
- Nanjing Agricultural University College of Food Science and Technology, Nanjing, Jiangsu, China
| | - Kai Ma
- Jiangsu New-bio Biotechnology Co., Ltd., Jiangyin, China
| | - Runxin Wang
- Jiangsu New-bio Biotechnology Co., Ltd., Jiangyin, China
| | - Feng Ji
- Jiangsu New-bio Biotechnology Co., Ltd., Jiangyin, China
| | - Wei Li
- Nanjing Agricultural University College of Food Science and Technology, Nanjing, Jiangsu, China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- College of Life and Health Sciences, Guangdong Industry Polytechnic University, Guangzhou, Guangdong 510300, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| |
Collapse
|
3
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
4
|
Shrestha P, Duwa R, Lee S, Kwon TK, Jeong JH, Yook S. ROS-responsive thioketal nanoparticles delivering system for targeted ulcerative colitis therapy with potent HDAC6 inhibitor, tubastatin A. Eur J Pharm Sci 2024; 201:106856. [PMID: 39032536 DOI: 10.1016/j.ejps.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Ulcerative colitis (UC) is a common gastrointestinal problem characterized by the mucosal injury primarily affecting the large intestine. Currently available therapies are not satisfactory as evidenced by high relapse rate and adverse effects. In this study we aimed to develop an effective drug delivery system using reactive oxygen species (ROS)-responsive thioketal nanoparticles (TKNP), to deliver tubastatin A, a potent HDAC6 inhibitor, to the inflamed colon in mice with ulcerative colitis (UC). TKNPs were synthesized by step-growth polymerization from an acetal exchange reaction while TUBA-TKNP was prepared using the single emulsion solvent evaporation technique. Our developed nanoparticle showed release of tubastatin A only in presence of ROS which is found to be highly present at the site of inflamed colon. Oral administration of TUBA-TKNP resulted in the higher accumulation of tubastatin A at the inflamed colon site and decreased the inflammation as evidenced by reduced infiltration of immune cells and decreased level of pro-inflammatory cytokines in TUBA-TKNP treated mice. In summary, our results show the successful localization of tubastatin A at the site of colon inflammation through TUBA-TKNP delivery, as well as resolution of clinical features of UC in mice.
Collapse
Affiliation(s)
- Prabhat Shrestha
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramesh Duwa
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Radiology, Molecular Imaging Program at Standford (MIPS), School of Medicine, Standford University, Standford, California 94305, USA
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Sharma S, Gilberto VS, Levens CL, Chatterjee A, Kuhn KA, Nagpal P. Microbiome- and Host Inflammasome-Targeting Inhibitor Nanoligomers Are Therapeutic in the Murine Colitis Model. ACS Pharmacol Transl Sci 2024; 7:2677-2693. [PMID: 39296260 PMCID: PMC11406689 DOI: 10.1021/acsptsci.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024]
Abstract
Autoimmune and autoinflammatory diseases account for more than 80 chronic conditions affecting more than 24 million people in the US. Among these autoinflammatory diseases, noninfectious chronic inflammation of the gastrointestinal (GI) tract causes inflammatory bowel diseases (IBDs), primarily Crohn's and ulcerative colitis (UC). IBD is a complex disease, and one hypothesis is that these are either caused or worsened by compounds produced by bacteria in the gut. While traditional approaches have focused on pan immunosuppressive techniques (e.g., steroids), low remission rates, prolonged illnesses, and an increased frequency of surgical procedures have prompted the search for more targeted and precision therapeutic approaches. IBD is a complex disease resulting from both genetic and environmental factors, but several recent studies have highlighted the potential pivotal contribution of gut microbiota dysbiosis. Gut microbiota are known to modulate the immune status of the gut by producing metabolites that are encoded in biosynthetic gene clusters (BGCs) of the bacterial genome. Here, we show a targeted and high-throughput screening of more than 90 biosynthetic genes in 41 gut anaerobes, through downselection using available bioinformatics tools, targeted gene manipulation in these genetically intractable organisms using the Nanoligomer platform, and identification and synthesis of top microbiome targets as a Nanoligomer BGC cocktail (SB_BGC_CK1, abbreviated as CK1) as a feasible precision therapeutic approach. Further, we used a host-directed immune target screening to identify the NF-κB and NLRP3 cocktail SB_NI_112 (or NI112 for short) as a targeted inflammasome inhibitor. We used these top two microbe- and host-targeted Nanoligomer cocktails in acute and chronic dextran sulfate sodium (DSS) mouse colitis and in TNFΔARE/+ transgenic mice that develop spontaneous Crohn's like ileitis. The mouse microbiome was humanized to replicate that in human IBD through antibiotic treatment, followed by mixed fecal gavage from 10 human donors and spiked with IBD-inducing microbial species. Following colonization, colitis was induced in mice using 1 week of 3% DSS (acute) or 6 weeks of 3 rounds of 2.5% DSS induction for a week followed by 1 week of no DSS (chronic colitis model). Both Nanoligomer cocktails (CK1 and NI112) showed a strong reduction in disease severity, significant improvement in disease histopathology, and profound downregulation of disease biomarkers in colon tissue, as assessed by multiplexed ELISA. Further, we used two different formulations of intraperitoneal injections (IP) and Nanoligomer pills in the chronic DSS colitis model. Although both formulations were highly effective, the oral pill formulation demonstrated a greater reduction in biochemical markers compared to IP. A similar therapeutic effect was observed in the TNFΔARE/+ model. Overall, these results point to the potential for further development and testing of this inflammasome-targeting host-directed therapy (NI112) and more personalized microbiome cocktails (CK1) for patients with recalcitrant IBD.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 8002, United States
| | - Vincenzo S Gilberto
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 8002, United States
| | - Cassandra L Levens
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anushree Chatterjee
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 8002, United States
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 8002, United States
| |
Collapse
|
6
|
Singh V, Choi SD, Mahra K, Son H, Lee H, Lee YJ, Kim ES, Shin JH. Cultured fecal microbial community and its impact as fecal microbiota transplantation treatment in mice gut inflammation. Appl Microbiol Biotechnol 2024; 108:463. [PMID: 39269473 PMCID: PMC11399162 DOI: 10.1007/s00253-024-13295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024]
Abstract
The fecal microbiome is identical to the gut microbial communities and provides an easy access to the gut microbiome. Therefore, fecal microbial transplantation (FMT) strategies have been used to alter dysbiotic gut microbiomes with healthy fecal microbiota, successfully alleviating various metabolic disorders, such as obesity, type 2 diabetes, and inflammatory bowel disease (IBD). However, the success of FMT treatment is donor-dependent and variations in gut microbes cannot be avoided. This problem may be overcome by using a cultured fecal microbiome. In this study, a human fecal microbiome was cultured using five different media; growth in brain heart infusion (BHI) media resulted in the highest microbial community cell count. The microbiome (16S rRNA) data demonstrated that the cultured microbial communities were similar to that of the original fecal sample. Therefore, the BHI-cultured fecal microbiome was selected for cultured FMT (cFMT). Furthermore, a dextran sodium sulfate (DSS)-induced mice-IBD model was used to confirm the impact of cFMT. Results showed that cFMT effectively alleviated IBD-associated symptoms, including improved gut permeability, restoration of the inflamed gut epithelium, decreased expression of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1, IL-6, IL-12, and IL-17), and increased expression of anti-inflammatory cytokines (IL-4 and IL-10). Thus, study's findings suggest that cFMT can be a potential alternative to nFMT. KEY POINTS: • In vitro fecal microbial communities were grown in a batch culture using five different media. • Fecal microbial transplantation was performed on DSS-treated mice using cultured and normal fecal microbes. • Cultured fecal microbes effectively alleviated IBD-associated symptoms.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Dae Choi
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kanika Mahra
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Microbalance Co. Ltd, Daegu, Republic of Korea
| | - Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Yu-Jeong Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
- Microbalance Co. Ltd, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Zhang L, Liu H, Zhang H, Yuan H, Ren D. Lemairamin (Wgx-50) Attenuates DSS-Induced Intestinal Inflammation in Zebrafish. Int J Mol Sci 2024; 25:9510. [PMID: 39273457 PMCID: PMC11395399 DOI: 10.3390/ijms25179510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic non-specific intestinal inflammatory disease that affects millions of people worldwide, and current treatment methods have certain limitations. This study aimed to explore the therapeutic potential and mechanism of action of lemairamin (Wgx-50) in inflammatory bowel disease (IBD). We used dextran sulfate sodium (DSS)-treated zebrafish as an inflammatory bowel disease model, and observed the effect of Wgx-50 on DSS-induced colitis inflammation. The results of the study showed that Wgx-50 could reduce the expression of pro-inflammatory cytokines induced by DSS and inhibit the recruitment of neutrophils to the site of intestinal injury. Further experiments revealed that Wgx-50 exerted its anti-inflammatory effect by regulating the activation of the Akt pathway. These research findings indicate that Wgx-50 possesses anti-inflammatory activity.
Collapse
Affiliation(s)
- Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiru Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Haoyi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Yiu TH, Chow E, Grills C, Li Wai Suen CFD. Concomitant management of alopecia universalis and ulcerative colitis with upadacitinib. Intern Med J 2024; 54:1583-1584. [PMID: 39239955 DOI: 10.1111/imj.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Tsz Hong Yiu
- Department of Gastroenterology, Western Health, Melbourne, Victoria, Australia
| | - Elizabeth Chow
- Department of Gastroenterology, Western Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Claire Grills
- Department of Dermatology, Western Health, Melbourne, Victoria, Australia
| | - Christopher F D Li Wai Suen
- Department of Gastroenterology, Western Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Malik K, Kodgire P. Insights into the molecular mechanisms of H. pylori-associated B-cell lymphoma. Crit Rev Microbiol 2024; 50:879-895. [PMID: 38288575 DOI: 10.1080/1040841x.2024.2305439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 10/09/2024]
Abstract
Cancer research has extensively explored various factors contributing to cancer development, including chemicals, drugs, smoking, and obesity. However, the role of bacterial infections in cancer induction remains underexplored. In particular, the mechanisms underlying H. pylori-induced B-cell lymphoma, a potential consequence of bacterial infection, have received little attention. In recent years, there has been speculation about contagious agents causing persistent inflammation and encouraging B-lymphocyte transition along with lymphomagenesis. MALT lymphoma associated with chronic H. pylori infection, apart from two other central associated lymphomas - Burkitt's Lymphoma and DLBCL, is well studied. Owing to the increasing colonization of H. pylori in the host gut and its possible action in the development of B-cell lymphoma, this review aims to summarize the existing reports on different B-cell lymphomas' probable association with H. pylori infections; also emphasizing the function of the organism in lymphomagenesis; including its interaction with the host, pathogen and host-specific factors, and tumor microenvironment.
Collapse
Affiliation(s)
- Kritika Malik
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
10
|
Rigi G, Kardar G, Hajizade A, Zamani J, Ahmadian G. The effects of Staphylococcus aureus protein a (SpA) on the expression of inflammatory cytokines in autoimmune patients and their probable immune response modulation mechanisms. Cytokine 2024; 183:156745. [PMID: 39217914 DOI: 10.1016/j.cyto.2024.156745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The recombinant Staphylococcal protein A (SpA) is widely used in biotechnology to purify polyclonal and monoclonal IgG antibodies. At very low concentrations, the highly-purified form of the protein A can down-regulate the activation of human B-lymphocytes and macrophages which are the key cells in determining autoimmune diseases. In the present study, the efficiency of three different forms of protein A, including native full-length SpA, the recombinant full-length SpA, and a recombinant truncated form of SpA on the reduction of 4 inflammatory cytokines, including IL-8, IL-1β, TNF-α, and IL-6 by peripheral blood mononuclear cell (PBMCs) were studied and compared to an anti-rheumatoid arthritis commercial drug, Enbrel. The recombinant proteins were expressed in E. coli and the native form of SpA was commercially provided. PBMCs were obtained from adult patients with active rheumatoid arthritis (RA) and healthy control donors. Then, the effect of different doses of the three pure forms of SpA in comparison with Enbrel was investigated by analyzing the expression of selected cytokines using ELISA. The results showed that the truncated form of recombinant SpA significantly reduced the expression of cytokines more effectively than the other full-length formulations as well as the commercial drug Enbrel. In silico analysis shows that in the truncated protein, as the radius of gyration increases, the structure of IgG-binding domains become more open and more exposed to IgG. To summarize, our findings indicate that the truncated form of protein A is the most efficient form of SpA as it significantly decreases the secretion of evaluated cytokines from PBMCs in vitro.
Collapse
Affiliation(s)
- Garshasb Rigi
- Department of Genetics, Faculty of Basic Science, Shahrekord University, P. O. Box 115, Shahrekord 881 863 4141, Iran; Department of Industrial Biotechnology, Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Gholamali Kardar
- Immunology Asthma and Allergy Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Zamani
- Department of System Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran 1497716316, Iran
| | - Gholamreza Ahmadian
- Department of System Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran 1497716316, Iran.
| |
Collapse
|
11
|
Watson S, Cabrera-Silva RI, Parkos CA, Nusrat A, Quiros M. Interferon-gamma signaling drives epithelial TNF-alpha receptor-2 expression during colonic tissue repair. FASEB J 2024; 38:e70001. [PMID: 39139033 DOI: 10.1096/fj.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Interferon-gamma (IFNγ) is traditionally recognized for its pro-inflammatory role during intestinal inflammation. Here, we demonstrate that IFNγ also functions as a pro-repair molecule by increasing TNFα receptor 2 (TNFR2 protein/TNFRSF1B gene) expression on intestinal epithelial cells (IEC) following injury in vitro and in vivo. In silico analyses identified binding sites for the IFNγ signaling transcription factor STAT1 in the promoter region of TNFRSF1B. Scratch-wounded IEC exposed to IFNγ exhibited a STAT1-dependent increase in TNFR2 expression. In situ hybridization revealed elevated Tnfrsf1b mRNA levels in biopsy-induced colonic mucosal wounds, while intraperitoneal administration of IFNγ neutralizing antibodies following mucosal injury resulted in impaired IEC Tnfrsf1b mRNA and inhibited colonic mucosal repair. These findings challenge conventional notions that "pro-inflammatory" mediators solely exacerbate damage by highlighting latent pro-repair functions. Moreover, these results emphasize the critical importance of timing and amount in the synthesis and release of IFNγ and TNFα during the inflammatory process, as they are pivotal in restoring tissue homeostasis.
Collapse
Grants
- DK055679 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK059888 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK129214 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK61739 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK72564 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK79392 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
Collapse
Affiliation(s)
- Sean Watson
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rodolfo I Cabrera-Silva
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles A Parkos
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Asma Nusrat
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Miguel Quiros
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Jacobs I, Deleu S, Cremer J, De Hertogh G, Vermeire S, Breynaert C, Vanuytsel T, Verstockt B. Eosinophil Depletion as a Potential Therapeutic Strategy in Acute and Chronic Intestinal Inflammation Based on a Dextran Sulfate Sodium Colitis Model. Inflamm Bowel Dis 2024:izae168. [PMID: 39107256 DOI: 10.1093/ibd/izae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND A role for eosinophils in intestinal inflammation and fibrosis in the context of inflammatory bowel disease has been suggested, yet the precise nature, whether causal or secondary remains debated. Hence, it remains unclear whether targeting eosinophils should be further explored as a treatment option in inflammatory bowel disease. METHODS Acute and chronic dextran sulfate sodium colitis was induced in wild-type C57BL/6 mice. Eosinophils were depleted by anti-CCR3 injections before colitis induction in a chronic model and after colitis onset in an acute model in order to investigate the impact of eosinophil depletion on pre-existing colitis. Inflammation was assessed using the disease activity index, macroscopic damage, and histological disease activity score. In the chronic model, fibrosis was assessed by examining colon weight/length ratio, collagen deposition through Martius Scarlet Blue staining, hydroxyproline assay, and COL1A1 expression. Protein and gene expression were assessed using the Meso Scale Discovery platform and real-time quantitative polymerase chain reaction. RESULTS In the acute and chronic colitis model, eosinophil depletion resulted in reduced disease activity and faster recovery, as observed via the total area under the curve of the disease activity index (P = .004 and P = .02, respectively), macroscopic damage score (P = .009 and P = .08, respectively), and histological disease activity score (P = .09 and P = .002, respectively). In the acute model, the accelerated recovery was accompanied by an increase in interleukin (IL)-10 (P = .03) and a decrease in IL-4 (P = .03) and IL-6 (P = .009). Colon weight/length ratio and collagen deposition were not affected by eosinophil depletion. CONCLUSIONS Eosinophil depletion prevents and decreases intestinal inflammation in a preclinical dextran sulfate sodium model without affecting fibrosis. These results pave the way for exploring eosinophil depletion as a novel treatment modality in addressing intestinal inflammation.
Collapse
Affiliation(s)
- Inge Jacobs
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sara Deleu
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Christine Breynaert
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, UZ Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Bram Verstockt
- Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Onisor D, Brusnic O, Mocan S, Stoian M, Avram C, Boicean A, Dobru D. Cytomegalovirus in Ulcerative Colitis: An Unwanted "Guest". Pathogens 2024; 13:650. [PMID: 39204250 PMCID: PMC11356953 DOI: 10.3390/pathogens13080650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
The role of cytomegalovirus (CMV) in the flare-up of ulcerative colitis (UC) is not clearly understood. CMV can cause similar symptoms in different clinical contexts, which may be attributed to the natural evolution of the viral infection, the patient's immune status, or its association with inflammatory bowel disease (IBD). This study aims to delineate the diverse manifestations of CMV-related lesions from clinical, endoscopic, and histopathological perspectives, alongside a brief narrative review of the literature. In managing IBD patients, it is crucial to be vigilant for signs of CMV reactivation, especially before the initiation of more intensive therapies.
Collapse
Affiliation(s)
- Danusia Onisor
- Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Targu Mures, Romania; (D.O.); (D.D.)
- Gastroenterology Department, Mureș County Clinical Hospital, 540103 Targu Mures, Romania
| | - Olga Brusnic
- Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Targu Mures, Romania; (D.O.); (D.D.)
- Gastroenterology Department, Mureș County Clinical Hospital, 540103 Targu Mures, Romania
| | - Simona Mocan
- Pathology Department, Emergency County Hospital, 540136 Targu Mures, Romania;
| | - Mircea Stoian
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Calin Avram
- Department of Medical Informatics and Biostatistics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Targu Mures, Romania
| | - Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
| | - Daniela Dobru
- Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Targu Mures, Romania; (D.O.); (D.D.)
- Gastroenterology Department, Mureș County Clinical Hospital, 540103 Targu Mures, Romania
| |
Collapse
|
14
|
Teffera M, Veith AC, Ronnekleiv-Kelly S, Bradfield CA, Nikodemova M, Tussing-Humphreys L, Malecki K. Diverse mechanisms by which chemical pollutant exposure alters gut microbiota metabolism and inflammation. ENVIRONMENT INTERNATIONAL 2024; 190:108805. [PMID: 38901183 DOI: 10.1016/j.envint.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
The human gut microbiome, the host, and the environment are inextricably linked across the life course with significant health impacts. Consisting of trillions of bacteria, fungi, viruses, and other micro-organisms, microbiota living within our gut are particularly dynamic and responsible for digestion and metabolism of diverse classes of ingested chemical pollutants. Exposure to chemical pollutants not only in early life but throughout growth and into adulthood can alter human hosts' ability to absorb and metabolize xenobiotics, nutrients, and other components critical to health and longevity. Inflammation is a common mechanism underlying multiple environmentally related chronic conditions, including cardiovascular disease, multiple cancer types, and mental health. While growing research supports complex interactions between pollutants and the gut microbiome, significant gaps exist. Few reviews provide descriptions of the complex mechanisms by which chemical pollutants interact with the host microbiome through either direct or indirect pathways to alter disease risk, with a particular focus on inflammatory pathways. This review focuses on examples of several classes of pollutants commonly ingested by humans, including (i) heavy metals, (ii) persistent organic pollutants (POPs), and (iii) nitrates. Digestive enzymes and gut microbes are the first line of absorption and metabolism of these chemicals, and gut microbes have been shown to alter compounds from a less to more toxic state influencing subsequent distribution and excretion. In addition, chemical pollutants may interact with or alter the selection of more harmful and less commensal microbiota, leading to gut dysbiosis, and changes in receptor-mediated signaling pathways that alter the integrity and function of the gut intestinal tract. Arsenic, cadmium, and lead (heavy metals), influence the microbiome directly by altering different classes of bacteria, and subsequently driving inflammation through metabolite production and different signaling pathways (LPS/TLR4 or proteoglycan/TLR2 pathways). POPs can alter gut microbial composition either directly or indirectly depending on their ability to activate key signaling pathways within the intestine (e.g., PCB-126 and AHR). Nitrates and nitrites' effect on the gut and host may depend on their ability to be transformed to secondary and tertiary metabolites by gut bacteria. Future research should continue to support foundational research both in vitro, in vivo, and longitudinal population-based research to better identify opportunities for prevention, gain additional mechanistic insights into the complex interactions between environmental pollutants and the microbiome and support additional translational science.
Collapse
Affiliation(s)
- Menna Teffera
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, US; Biotechnology Center, University of Wisconsin-Madison, Madison, WI, US.
| | - Alex C Veith
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, US.
| | - Sean Ronnekleiv-Kelly
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, US; Biotechnology Center, University of Wisconsin-Madison, Madison, WI, US; Department of Surgery, University of Wisconsin-Madison, Madison, WI, US.
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, US; Department of Surgery, University of Wisconsin-Madison, Madison, WI, US; Department of Oncology, University of Wisconsin-Madison, Madison, WI, US.
| | - Maria Nikodemova
- College of Public Health and Health Professionals, University of Florida, FL, US.
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois-Chicago, Chicago, IL, US; University of Illinois Cancer Center, University of Illinois-Chicago, Chicago, IL, US.
| | - Kristen Malecki
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI, US; Biotechnology Center, University of Wisconsin-Madison, Madison, WI, US; University of Illinois Cancer Center, University of Illinois-Chicago, Chicago, IL, US; Environmental Occupational Health Sciences, University of Illinois-Chicago, Chicago, IL, US.
| |
Collapse
|
15
|
Duarte F, Teçza M, Gedi V, McGourty K, Hudson SP. C5a peptidase (ScpA) activity towards human type II and type III interferons. Cytokine 2024; 180:156652. [PMID: 38759527 DOI: 10.1016/j.cyto.2024.156652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
C5a peptidase, also known as ScpA, is a surface associated serine protease derived from Streptococcus pyogenes and has been described as an important factor in streptococcus virulence, capable of cleaving complement components C5a, C3 and C3a. Although the interactions of ScpA with complement components is well studied, extensive screening of ScpA activity against other pro-inflammatory cytokines is lacking. Here, ScpA's ability to cleave human pro-inflammatory cytokines was tested, revealing its ability to cleave human IFNγ, IFNλ1, IFNλ2, C5, IL-37 but with significantly reduced activities. The functional consequence of ScpA's cleavage of IFNγ in its signalling through the Jak-Stat pathway has also been evaluated in an in vitro RPE1 cell model. These newly identified targets for ScpA highlight the complexity of streptococcus infections and indeed, the potential for ScpA to have a therapeutic role in the progression of inflammatory diseases involving these cytokines.
Collapse
Affiliation(s)
- Francisco Duarte
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Malgorzata Teçza
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Vinayakumar Gedi
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Kieran McGourty
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
16
|
Chen YT, Chang YM, Chen YL, Su YH, Liao CC, Chiang TH, Chen WY, Su YC. N-ethyl-N-nitrosourea (ENU)-induced C-terminal truncation of Runx3 results in autoimmune colitis associated with Th17/Treg imbalance. Immunol Lett 2024; 268:106869. [PMID: 38788802 DOI: 10.1016/j.imlet.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory intestinal disease that affects people around the world. The primary cause of IBD is an imbalance in the host immune response to intestinal flora. Several human genes, including IL10, STAT3, IRGM, ATG16L1, NOD2 and RUNX3, are associated with inappropriate immune responses in IBD. It has been reported that homozygous Runx3-knockout (ko) mice spontaneously develop colitis. However, the high mortality rate in these mice within the first two weeks makes it challenging to study the role of Runx3 in colitis. To address this issue, a spontaneous colitis (SC) mouse model carrying a C-terminal truncated form of Runx3 with Tyr319stop point mutation has been generated. After weaning, SC mice developed spontaneous diarrhea and exhibited prominent enlargement of the colon, accompanied by severe inflammatory cell infiltration. Results of immunofluorescence staining showed massive CD4+ T cell infiltration in the inflammatory colon of SC mice. Colonic IL-17A mRNA expression and serum IL-17A level were increased in SC mice. CD4+ T cells from SC mice produced stronger IL-17A than those from wildtype mice in Th17-skewing conditions in vitro. In addition, the percentages of Foxp3+ Treg cells as well as the RORγt+Foxp3+ Treg subset, known for its role in suppressing Th17 response in the gut, were notably lower in colon lamina propria of SC mice than those in WT mice. Furthermore, transfer of total CD4+ T cells from SC mice, but not from wildtype mice, into Rag1-ko host mice resulted in severe autoimmune colitis. In conclusion, the C-terminal truncated Runx3 caused autoimmune colitis associated with Th17/Treg imbalance. The SC mouse model is a feasible approach to investigate the effect of immune response on spontaneous colitis.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Yi-Mei Chang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Yu-Ling Chen
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Yu-Hsuan Su
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Chia-Chi Liao
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Tien-Huang Chiang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Wen-Yu Chen
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Yu-Chia Su
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC.
| |
Collapse
|
17
|
Li J, Li Q, Ma W, Zhang Y, Li X. Expression of MAF bZIP transcription factor B protects against ulcerative colitis through the inhibition of the NF-κB pathway. Immun Inflamm Dis 2024; 12:e1372. [PMID: 39172054 PMCID: PMC11340633 DOI: 10.1002/iid3.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
PURPOSE The aim of this study was to explore whether MAF bZIP transcription factor B (MAFB) might alleviate ulcerative colitis (UC) in dextran sulfate sodium (DSS)-induced mice and LPS-induced IEC-6 cells. METHODS UC in vivo and in vitro model was established by using DSS and LPS, respectively. The mice body weight and disease activity index (DAI) score were recorded daily, and colon length was measured. Moreover, the permeability was evaluated utilizing a fluorescein isothiocyanate dextran (FITC-Dextran) probe. Histopathological changes of DSS-induced colitis mice was assessed utilizing H&E staining. Next, qRT-PCR was performed to detect IL-1β, IL-6, TNF-α, and IL-10 level in in vivo and in vitro. Furthermore, the level of MDA, SOD, CAT, and GSH were evaluated in colon tissues. Besides, the expressions of tight junction proteins and NF-κB pathway relative proteins were examined in colitis mice and IEC-6 cells using western blot, immunohistochemistry and immunofluorescence. RESULTS MAFB level was downregulated in DSS-induced colitis mice. Moreover, the upregulation of MAFB protected mice from DSS-induced colitis by suppressing DSS-induced inflammation, oxidative stress, and intestinal barrier impairment. We also demonstrated that the upregulation of MAFB inactivated NF-κB pathway in DSS-caused colitis mice. Subsequently, we observed that MAFB upregulation could inhibit LPS-caused epithelial barrier impairment and inflammation in IEC-6 cells. Additionally, MAFB overexpression could suppress the activation of NF-κB pathway in IEC-6 cells. CONCLUSION The upregulation of MAFB could protect against UC via the suppression of inflammation and the intestinal barrier impairment through inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Jingwen Li
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Qingmin Li
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of MedicineZhangqiu District Gaoguanzhai Community Health Service CenterJinanShandongChina
| | - Wei Ma
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yongsheng Zhang
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xiaonan Li
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
18
|
Wu M, Li C, Zhou X, Wu Z, Feng J, Guo X, Fang R, Lian Q, Pan M, Lai X, Peng Y. Wogonin preconditioning of MSCs improved their therapeutic efficiency for colitis through promoting glycolysis. Inflammopharmacology 2024; 32:2575-2587. [PMID: 38753221 DOI: 10.1007/s10787-024-01491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/07/2024] [Indexed: 08/06/2024]
Abstract
Inflammatory bowel diseases (IBDs) are prevalent and debilitating diseases with limited clinical treatment strategies. Mesenchymal stem cell (MSCs) are pluripotent stem cells with self-renewal capability and multiple immunomodulatory effects, which make them a promising therapeutic approach for IBDs. Thus, optimization of MSCs regimes is crucial for their further clinical application. Wogonin, a flavonoid-like compound with extensive immunomodulatory and adjuvant effects, has been investigated as a potential pretreatment for MSCs in IBD treatment. In this study, we employed the DSS-induced acute colitis mouse model to compare the therapeutic effectiveness of MSCs in pretreated with or without wogonin and further explore the underlying mechanism. Compared to untreated MSCs, MSCwogonin (pretreated with wogonin) showed greater effectiveness in the treatment of colitis. Further experiments revealed that wogonin treatment activated the AKT signaling pathway, resulting in higher cellular glycolysis. Inhibition of AKT phosphorylation by perifosine not only decreased glycolysis but impaired the therapeutic efficiency of MSCwogonin. Consistent with these results, qPCR data indicated that wogonin treatment induced the expression of immunomodulatory molecules IL-10, IDO, and AGR1, which were reduced by perifosine. Together, our data demonstrated that wogonin preconditioning strategy further augmented the therapeutic efficacy of MSCs via promoting glycolysis, which should be a promising strategy for optimizing MSCs therapy in IBDs.
Collapse
Affiliation(s)
- Mengye Wu
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Cuiping Li
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Xue Zhou
- Department of Ultrasonic Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Zhiyong Wu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianqi Feng
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Rui Fang
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Qinghai Lian
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Ming Pan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xiaorong Lai
- Department of Tumor Internal Medicine, Guangdong General Hospital Welfare Branch, Guangdong Academy of Medical Sciences, Guangzhou, 518067, Guangdong, China
| | - Yanwen Peng
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
19
|
Rüsing S, Welz L, Pfitzer C, Harris DM, Röcken C, Rosenstiel P, Nikolaus S, Tran F, Schreiber S, Aden K, Sievers LK. Decreased Serum Tryptophan and Severe Ulcerative Damage of Colon Mucosa Identify Inflammatory Bowel Disease Patients With High Risk of Cytomegalovirus Colitis. Clin Transl Gastroenterol 2024; 15:e00731. [PMID: 38934504 PMCID: PMC11346877 DOI: 10.14309/ctg.0000000000000731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Patients with inflammatory bowel disease (IBD) are predisposed to the reactivation of viral infections such as cytomegalovirus (CMV). Clinical discrimination of disease flares and colonic CMV reactivation is difficult in patients with established diagnosis of IBD, and there are no reliable noninvasive diagnostic tools yet. Furthermore, the influence of novel therapeutics including biologicals and Janus kinase inhibitors on the risk of CMV colitis is unclear. The goal of this study was to identify risk factors and clinical determinants of CMV colitis that could serve as minimally invasive markers both for active CMV colitis and relapse. METHODS To this end, a retrospective analysis of 376 patients with suspected or confirmed CMV colitis 2016-2023 was performed. RESULTS Previous administration of systemic steroids increased the odds of CMV colitis to OR 4.6. Biologicals did not change the incidence of CMV colitis but decreased the OR of a relapse to 0.13. Clinical parameters such as severely bloody diarrhea, intense microscopic ulcerative damage, and decreased serum tryptophan correlated with detection of CMV. Importantly, persistent decrease of tryptophan was observed in patients with CMV relapse. Furthermore, tryptophan degradation through the kynurenine pathway was increased in CMV-positive patients. DISCUSSION Taken together, we identify decreased serum tryptophan as a novel potential minimally invasive marker to aid identification of IBD patients with active CMV colitis and at high risk for relapse.
Collapse
Affiliation(s)
- Sophia Rüsing
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lina Welz
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Constanze Pfitzer
- Department of Congenital Heart Disease/Paediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Danielle Monica Harris
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florian Tran
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Laura Katharina Sievers
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
20
|
Migliorisi G, Mastrorocco E, Dal Buono A, Gabbiadini R, Pellegatta G, Spaggiari P, Racca F, Heffler E, Savarino EV, Bezzio C, Repici A, Armuzzi A. Eosinophils, Eosinophilic Gastrointestinal Diseases, and Inflammatory Bowel Disease: A Critical Review. J Clin Med 2024; 13:4119. [PMID: 39064159 PMCID: PMC11278413 DOI: 10.3390/jcm13144119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory bowel disease (IBD) and eosinophilic gastrointestinal diseases (EGIDs) are complex, multifactorial chronic inflammatory disorders affecting the gastrointestinal tract. Their epidemiology, particularly for eosinophilic esophagitis (EoE), is increasing worldwide, with a rise in the co-diagnosis of IBD and EGIDs. Both disorders share common risk factors, such as early exposure to antibiotics or specific dietary habits. Moreover, from a molecular perspective, eosinophilic infiltration is crucial in the diagnosis of eosinophilic disorders, and it also plays a pivotal role in IBD histological diagnosis. Indeed, recent evidence highlights the significant role of eosinophils in the health of the intestinal mucosal barrier and as mediators between innate and acquired immunity, even indicating a potential role in IBD pathogenesis. This narrative review aims to summarize the current evidence regarding the common clinical and molecular aspects of EGIDs and IBD and the current state of knowledge regarding overlap conditions and their pathogenesis. METHODS Pubmed was searched until May 2023 to assess relevant studies describing the epidemiology, pathophysiology, and therapy of EGIDs in IBD. RESULTS The immune pathways and mechanisms underlying both EGIDs and IBD remain partially known. An improved understanding of the role of eosinophils in overlapping conditions could lead to enhanced diagnostic precision, the development of more effective future therapeutic strategies, and a more accurate prediction of patient response. Consequently, the identification of red flags indicative of an eosinophilic disorder in IBD patients is of paramount importance and must be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Giulia Migliorisi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Elisabetta Mastrorocco
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
| | - Gaia Pellegatta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Paola Spaggiari
- Department of Pathology, Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Francesca Racca
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Personalized Medicine, Asthma and Allergy, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Personalized Medicine, Asthma and Allergy, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, Department of Medical and Surgical Specialties, University of Padua, 35122 Padova, Italy;
| | - Cristina Bezzio
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (G.M.); (E.M.); (A.D.B.); (R.G.); (C.B.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (G.P.); (F.R.); (E.H.); (A.R.)
| |
Collapse
|
21
|
Zhao LJ, Dai XY, Ye YW, Pang XF, Jiang M, Tan WY, Xu YH, Su JF, Shi B. MURAMYL DIPEPTIDE CAUSES MITOCHONDRIAL DYSFUNCTION AND INTESTINAL INFLAMMATORY CYTOKINE RESPONSES IN RATS. Shock 2024; 62:139-145. [PMID: 38546380 DOI: 10.1097/shk.0000000000002369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Introduction: Intestinal flora and the translocation of its products, such as muramyl dipeptide (MDP), are common causes of sepsis. MDP is a common activator of the intracellular pattern recognition receptor NOD2, and MDP translocation can cause inflammatory damage to the small intestine and systemic inflammatory responses in rats. Therefore, this study investigated the effects of MDP on the intestinal mucosa and distant organs during sepsis and the role of the NOD2/AMPK/LC3 pathway in MDP-induced mitochondrial dysfunction in the intestinal epithelium. Methods: Fifty male Sprague Dawley rats were randomly divided into five treatment groups: lipopolysaccharide (LPS) only, 1.5 and 15 mg/kg MDP+LPS, and 1.5 and 15 mg/kg MDP+short-peptide enteral nutrition (SPEN)+LPS. The total caloric intake was the same per group. The rats were euthanized 24 h after establishing the model, and peripheral blood and small intestinal mucosal and lung tissues were collected. Results: Compared to the LPS group, both MDP+LPS groups had aggravated inflammatory damage to the intestinal mucosal and lung tissues, increased IL-6 and MDP production, increased NOD2 expression, decreased AMPK and LC3 expression, increased mitochondrial reactive oxygen species production, and decreased mitochondrial membrane potential. Compared to the MDP+LPS groups, the MDP+SPEN+LPS groups had decreased IL-6 and MDP production, increased AMPK and LC3 protein expression, and protected mitochondrial and organ functions. Conclusions: MDP translocation reduced mitochondrial autophagy by regulating the NOD2/AMPK/LC3 pathway, causing mitochondrial dysfunction. SPEN protected against MDP-induced impairment of intestinal epithelial mitochondrial function during sepsis.
Collapse
Affiliation(s)
- Lu-Jia Zhao
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yong Dai
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - You-Wen Ye
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiu-Feng Pang
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Meng Jiang
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Wan-Yi Tan
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Ying-Hui Xu
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Ji-Feng Su
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Bin Shi
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
22
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
23
|
Wan C, Ji T, Wang L, Wu Q, Chen Q, Wang Y, Li Y, He F, Liu W, Zhong W, Wang B. Exploring the molecular mechanisms and shared gene signatures between celiac disease and ulcerative colitis based on bulk RNA and single-cell sequencing: Experimental verification. Int Immunopharmacol 2024; 133:112059. [PMID: 38615385 DOI: 10.1016/j.intimp.2024.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Many immune-mediated diseases have the common genetic basis, as an autoimmune disorder, celiac disease (CeD) primarily affects the small intestine, and is caused by the ingestion of gluten in genetically susceptible individuals. As for ulcerative colitis (UC), which most likely involves a complex interplay between some components of the commensal microbiota and other environmental factors in its origin. These two autoimmune diseases share a specific target organ, the bowel. The etiology and immunopathogenesis of both conditions characterized by chronic intestinal inflammation, ulcerative colitis and celiac disease, are not completely understood. Both are complex diseases with genetics and the environmental factors contributing to dysregulation of innate and adaptive immune responses, leading to chronic inflammation and disease. This study is designed to further clarify the relationship between UC and CeD. The GEO database was used to download gene expression profiles for CeD (GSE112102) and UC (GSE75214). The GSEA KEGG pathway analysis revealed that immune-related pathways were significantly associated with both diseases. Further, we screened 187 shared differentially expressed genes (DEGs) of the two diseases. Gene Ontology (GO) and WikiPathways were carried out to perform the biological process and pathway enrichment analysis. Subsequently, based on the DEGs, the least absolute shrinkage and selection operator (LASSO) analysis was performed to screen for the diagnostic biomarkers of the diseases. Moreover, single-cell RNA-sequencing (RNA-seq) data from five colonic propria with UC showed that REG4 expression was present in Goblet cell, Enteroendocrine cell, and Epithelial. Finally, our work identified REG4 is the shared gene of UC and CeD via external data validation, cellular experiments, and immunohistochemistry. In conclusion, our study elucidated that abnormal immune response could be the common pathogenesis of UC and CeD, and REG4 might be a key potential biomarker and therapeutic target for the comorbidity of these two diseases.
Collapse
Affiliation(s)
- Changshan Wan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Tao Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; Department of Gastroenterology, Linyi People's Hospital, Shandong 276000, China
| | - Liwei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyan Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyu Chen
- Department of Gastroenterology, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, China
| | - Yali Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yaqian Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Fengming He
- Department of Clinical Laboratory Medicine, Shanxi Medical University, Taiyuan 030600, Shanxi, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
24
|
Majumder A, Bano S. How the Western Diet Thwarts the Epigenetic Efforts of Gut Microbes in Ulcerative Colitis and Its Association with Colorectal Cancer. Biomolecules 2024; 14:633. [PMID: 38927037 PMCID: PMC11201633 DOI: 10.3390/biom14060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
25
|
Lin Z, Luo W, Zhang K, Dai S. Environmental and Microbial Factors in Inflammatory Bowel Disease Model Establishment: A Review Partly through Mendelian Randomization. Gut Liver 2024; 18:370-390. [PMID: 37814898 PMCID: PMC11096900 DOI: 10.5009/gnl230179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex condition resulting from environmental, microbial, immunologic, and genetic factors. With the advancement of Mendelian randomization research in IBD, we have gained new insights into the relationship between these factors and IBD. Many animal models of IBD have been developed using different methods, but few studies have attempted to model IBD by combining environmental factors and microbial factors. In this review, we examine how environmental factors and microbial factors affect the development and progression of IBD, and how they interact with each other and with the intestinal microbiota. We also summarize the current methods for creating animal models of IBD and compare their advantages and disadvantages. Based on the latest findings from Mendelian randomization studies on the role of environmental factors in IBD, we discuss which environmental and microbial factors could be used to construct a more realistic and reliable IBD experimental model. We propose that animal models of IBD should consider both environmental and microbial factors to better mimic human IBD pathogenesis and to reveal the underlying mechanisms of IBD at the immune and genetic levels. We highlight the importance of environmental and microbial factors in IBD pathogenesis and offer new perspectives and suggestions for improving experimental animal modeling. Our goal is to create a model that closely resembles the clinical picture of IBD.
Collapse
Affiliation(s)
- Zesheng Lin
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Wenjing Luo
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Kaijun Zhang
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
| |
Collapse
|
26
|
Ferdous J, Bhuia MS, Chowdhury R, Rakib AI, Aktar MA, Al Hasan MS, Melo Coutinho HD, Islam MT. Pharmacological Activities of Plant-Derived Fraxin with Molecular Mechanisms: A Comprehensive Review. Chem Biodivers 2024; 21:e202301615. [PMID: 38506600 DOI: 10.1002/cbdv.202301615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Fruits and vegetables serve not only as sources of nutrition but also as medicinal agents for the treatment of diverse diseases and maladies. These dietary components are significant resources of phytochemicals that demonstrate therapeutic properties against many illnesses. Fraxin is a naturally occurring coumarin glycoside mainly present in various species of Fraxinus genera, having a multitude of therapeutic uses against various diseases and disorders. This study focuses to investigate the pharmacological activities, botanical sources, and biopharmaceutical profile of the phytochemical fraxin based on different preclinical and non-clinical studies to show the scientific evidence and to evaluate the underlying molecular mechanisms of the therapeutic effects against various ailments. For this, data was searched and collected (as of February 15, 2024) in a variety of credible electronic databases, including PubMed/Medline, Scopus, Springer Link, ScienceDirect, Wiley Online, Web of Science, and Google Scholar. The findings demonstrated favorable outcomes in relation to a range of diseases or medical conditions, including inflammation, neurodegenerative disorders such as cerebral ischemia-reperfusion (I/R) and depression, viral infection, as well as diabetic nephropathy. The phytochemical also showed protective effects such as osteoprotective, renoprotective, pulmoprotective, hepatoprotective, and gastroprotective effects due to its antioxidant capacity. Fraxin has a great capability to diminish oxidative stress-related damage in different organs by stimulating the antioxidant enzymes, downregulating nuclear factor kappa B and NLRP3, and triggering the Nrf2/ARE signaling pathways. Fraxin exhibited poor oral bioavailability because of reduced absorption and a wide distribution into tissues of different organs. However, extensive research is required to decipher the biopharmaceutical profiles, and clinical studies are necessary to establish the efficacy of the natural compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mst Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- BioLuster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
27
|
Oliva S, McGowan EC. Associations of Eosinophilic Gastrointestinal Disorders with Other Gastrointestinal and Allergic Diseases. Immunol Allergy Clin North Am 2024; 44:329-348. [PMID: 38575227 DOI: 10.1016/j.iac.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Eosinophilic gastrointestinal disorders (EGIDs) are becoming more common causing significant suffering and reduced quality of life. These conditions can affect different parts of the digestive system, either individually or in combination. Recognition of their link to allergic disorders or other gastrointestinal (GI) diseases has raised questions about their shared underlying mechanisms, which has had implications for diagnosis and management. The authors critically examine the current understanding of the connection between EGIDs and allergic conditions (ie, atopic dermatitis, allergic rhinitis, asthma, and food allergy) and GI diseases (ie, inflammatory bowel disease, celiac disease, gastroesophageal reflux disease, and motility disorders).
Collapse
Affiliation(s)
- Salvatore Oliva
- Department of Maternal and Child Health, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy.
| | - Emily Clarke McGowan
- Division of Allergy and Immunology, Departments of Internal Medicine and Pediatrics, University of Virginia School of Medicine, P.O. Box 801355, Charlottesville, VA 22908, USA
| |
Collapse
|
28
|
Ji R, Zhi Y. Causal relationship between eosinophilic esophagitis and inflammatory bowel disease: a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1374107. [PMID: 38720886 PMCID: PMC11076662 DOI: 10.3389/fimmu.2024.1374107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Background Eosinophilic esophagitis (EoE) and inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are immune-mediated gastrointestinal diseases with overlapped pathogenesis and are sometimes concurrently diagnosed, but their causal relationship remains unclear. We investigated the causal relationship between EoE and IBD and its subtypes via a two-sample bidirectional Mendelian randomization (MR) approach. Methods MR analyses were performed using summary data of a genome-wide association study (GWAS) on individuals of European ancestry. Independent single-nucleotide polymorphisms correlated with EoE (from a GWAS meta-analysis containing 1,930 cases and 13,634 controls) and IBD (from FinnGen GWASs containing 9,083 IBD, 2,033 CD, and 5,931 UC cases, and GWASs of IBD genetic consortium containing 12,882 IBD, 6,968 UC, and 5,956 CD cases) were selected as instruments. We applied the inverse variance weighted (IVW) method as the primary analysis followed by several sensitivity analyses. For the forward MR study, estimates from IVW methods were subsequently meta-analyzed using a random-effect model. Results Our results suggested a causal effect of EoE on IBD [pooled odds ratio (OR), 1.07; 95% confidence interval (CI), 1.02-1.13] and EoE on UC (pooled OR, 1.09, 95% CI, 1.04-1.14). No causal link between EoE and CD was observed (pooled OR, 1.05; 95% CI, 0.96-1.16). The reverse MR analyses revealed no causal effect of IBD (and its subtypes) on EoE. Sensitivity analyses confirmed the robustness of primary results. Conclusions Our findings provided evidence of a suggestive causal effect of EoE on IBD (specifically on UC) in the European population. Increased awareness of concurrent or subsequent IBD in patients with EoE is called for. Still, the present evidence is not adequate enough and ought to be validated by further investigations.
Collapse
Affiliation(s)
| | - Yuxiang Zhi
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Jurjus A, El Masri J, Ghazi M, El Ayoubi LM, Soueid L, Gerges Geagea A, Jurjus R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024; 16:1236. [PMID: 38674926 PMCID: PMC11054672 DOI: 10.3390/nu16081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a continuum of chronic inflammatory diseases, is tightly associated with immune system dysregulation and dysbiosis, leading to inflammation in the gastrointestinal tract (GIT) and multiple extraintestinal manifestations. The pathogenesis of IBD is not completely elucidated. However, it is associated with an increased risk of colorectal cancer (CRC), which is one of the most common gastrointestinal malignancies. In both IBD and CRC, a complex interplay occurs between the immune system and gut microbiota (GM), leading to the alteration in GM composition. Melatonin, a neuroendocrine hormone, was found to be involved with this interplay, especially since it is present in high amounts in the gut, leading to some protective effects. Actually, melatonin enhances the integrity of the intestinal mucosal barrier, regulates the immune response, alleviates inflammation, and attenuates oxidative stress. Thereby, the authors summarize the multifactorial interaction of melatonin with IBD and with CRC, focusing on new findings related to the mechanisms of action of this hormone, in addition to its documented positive outcomes on the treatment of these two pathologies and possible future perspectives to use melatonin as an adjuvant therapy.
Collapse
Affiliation(s)
- Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | | | - Lara Soueid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| |
Collapse
|
30
|
Zhang Y, Li WW, Wang Y, Fan YW, Wang QY, Liu C, Jiang S, Shang EX, Duan JA. Investigation of the material basis and mechanism of Lizhong decoction in ameliorating ulcerative colitis based on spectrum-effect relationship and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117666. [PMID: 38159822 DOI: 10.1016/j.jep.2023.117666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lizhong decoction (LZD), a classical herbal prescription recorded by Zhang Zhongjing in Treatise on Febrile and Miscellaneous Diseases, has been extensively used to treat ulcerative colitis (UC) in clinical practice for thousands of years. However, its material basis and underlying mechanism are not yet clear. AIM OF THE STUDY This study aims to explore the material basis and potential mechanism of LZD against UC based on the spectrum-effect relationship and network pharmacology. MATERIALS AND METHODS First, LZD was extracted by a systematic solvent extraction method into four parts. Ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) technique was used to identify the compounds from different polar parts, and dextran sulfate sodium (DSS)-induced colitis model was used to evaluate the efficacy of each fraction. Then, the spectrum-effect analyses of compounds and efficacy indicators were established via grey relational analysis (GRA), bivariate correlation analysis (BCA) and partial least squares regression (PLSR). Finally, the potential mechanism of LZD for UC therapy was explored by network pharmacology, and the results were further verified by molecular docking and reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS 66 chemical components of LZD were identified by UPLC-Q-TOF-MS/MS technology. The pharmacodynamic results showed that extraction parts of LZD had different therapeutic effects on UC, among which ethyl acetate and n-butanol extracts had significant anti-colitis effects, which might be the main effective fractions of LZD. Furthermore, the spectrum-effect analyses indicated that 21 active ingredients such as liquiritin apioside, neolicuroside, formononetin, ginsenoside Rg1, 6-gingesulfonic acid, licoricesaponin A3, liquiritin, glycyrrhizic acid were the main material basis for LZD improving UC. Based on the above results, network pharmacology suggested that the amelioration of LZD on UC might be closely related to the PI3K-Akt signaling pathway. Additionally, molecular docking technology and RT-qPCR further verified that LZD could markedly inhibit the PI3K-Akt signaling pathway. CONCLUSION Overall, our study first identified the chemical compositions of LZD by using UPLC-Q-TOF-MS/MS. Furthermore, the material basis and potential mechanism of LZD in improving UC were comprehensively elucidated via spectrum-effect relationships, network pharmacology, molecular docking and experimental verification. The proposed strategy provided a systematic approach for exploring how herbal medicines worked. More importantly, it laid the solid foundation for further clinical application and rational development of LZD.
Collapse
Affiliation(s)
- Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wen-Wen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yu-Wen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Qu-Yi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
31
|
Kiššová Z, Mudroňová D, Link R, Tkáčiková Ľ. Immunomodulatory effect of probiotic exopolysaccharides in a porcine in vitro co-culture model mimicking the intestinal environment on ETEC infection. Vet Res Commun 2024; 48:705-724. [PMID: 37875712 PMCID: PMC10998797 DOI: 10.1007/s11259-023-10237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
The aim of this study was to evaluate the immunomodulatory effect of EPS-L26 isolated from the probiotic strain Lactobacillus (Limosilactobacillus) reuteri L26 Biocenol™, in a model of infection with an enterotoxigenic E. coli (ETEC) by establishing monocultures consisting of the IPEC-J2 cell line or monocyte-derived dendritic cells (moDCs) and creating a 3D model of cell co-cultures established with IPEC-J2 cells and moDCs. The immunomodulatory and immunoprotective potential of used EPS-L26 was confirmed in monocultures in an experimental group of pretreated cells, where our study showed that pretreatment of cells with EPS-L26 and subsequent exposure to infection resulted in significantly down-regulated mRNA levels of genes encoding inflammatory cytokines compared to ETEC challenge in single cell cultures (in IPEC-J2, decreased mRNA levels for TNF-α, IL-6, IL-1β, IL-12p35; in moDCs, decreased mRNA levels for IL-1β). Similar to monocultures, we also demonstrated the immunostimulatory potential of the ETEC strain in the co-culture model on directly treated IPEC-J2 cells cultivated on insert chambers (apical compartment) and also on indirectly treated moDCs cultivated in the lower chamber (basolateral compartment), however in the co-culture model the expression of inflammatory cytokines was attenuated at the mRNA level compared to monocultures. Pretreatment of the cells on the insert chambers pointed to the immunoprotective properties of EPS-L26, manifested by decreased mRNA levels in both cell lines compared to ETEC challenge (in IPEC-J2 decreased mRNA levels for IL-12p35; in moDCs decreased mRNA levels for IL-1β, IL-6). Our results suggest intercellular communication via humoral signals derived from IPEC-J2 cells by influencing the gene expression of indirectly treated moDC cells located in the basolateral compartment.
Collapse
Affiliation(s)
- Zuzana Kiššová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia.
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Róbert Link
- Clinik of Swine, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia.
| |
Collapse
|
32
|
Dias IE, Dias IR, Franchi-Mendes T, Viegas CA, Carvalho PP. A Comprehensive Exploration of Therapeutic Strategies in Inflammatory Bowel Diseases: Insights from Human and Animal Studies. Biomedicines 2024; 12:735. [PMID: 38672091 PMCID: PMC11048724 DOI: 10.3390/biomedicines12040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a collective term for a group of chronic inflammatory enteropathies which are characterized by intestinal inflammation and persistent or frequent gastrointestinal signs. This disease affects more than 3.5 million humans worldwide and presents some similarities between animal species, in particular, dogs and cats. Although the underlying mechanism that triggers the disease is not yet well understood, the evidence suggests a multifactorial etiology implicating genetic causes, environmental factors, microbiota imbalance, and mucosa immune defects, both in humans and in dogs and cats. Conventional immunomodulatory drug therapies, such as glucocorticoids or immunosuppressants, are related with numerous adverse effects that limit its long-term use, creating the need to develop new therapeutic strategies. Mesenchymal stromal cells (MSCs) emerge as a promising alternative that attenuates intestinal inflammation by modulating inflammatory cytokines in inflamed tissues, and also due to their pro-angiogenic, anti-apoptotic, anti-fibrotic, regenerative, anti-tumor, and anti-microbial potential. However, this therapeutic approach may have important limitations regarding the lack of studies, namely in veterinary medicine, lack of standardized protocols, and high economic cost. This review summarizes the main differences and similarities between human, canine, and feline IBD, as well as the potential treatment and future prospects of MSCs.
Collapse
Affiliation(s)
- Inês Esteves Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (I.E.D.); (I.R.D.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Isabel Ribeiro Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (I.E.D.); (I.R.D.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Teresa Franchi-Mendes
- Department of Bioengineering and IBB—Institute for Bioengineering and Biosciences at Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carlos Antunes Viegas
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, Quinta de Prados, 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal;
| | - Pedro Pires Carvalho
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal;
- Vetherapy—Research and Development in Biotechnology, 3020-210 Coimbra, Portugal
| |
Collapse
|
33
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
34
|
Malik A, Liu BD, Zhu L, Kaelber D, Song G. A Comprehensive Global Population-Based Analysis on the Coexistence of Eosinophilic Esophagitis and Inflammatory Bowel Disease. Dig Dis Sci 2024; 69:892-900. [PMID: 38218734 PMCID: PMC10960894 DOI: 10.1007/s10620-024-08283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND We explored inflammatory bowel disease (IBD) and eosinophilic esophagitis (EoE) coexistence using a global dataset. Investigating their epidemiology, risks, and impact, we aimed to enhance the understanding of concurrent diagnoses and patient outcomes. METHODS A retrospective population-based cohort study was conducted using deidentified patient data from the TriNetX database (2011-2022). We estimated the incidence and prevalence of EoE in patients with IBD, including both Crohn's disease (CD) and ulcerative colitis (UC), and vice versa. Risks of select immune-mediated conditions and disease complications were compared among patients with EoE, IBD, or concurrent diagnoses. RESULTS Our results included 174,755 patients with CD; 150,774 patients with UC; and 44,714 patients with EoE. The risk of EoE was significantly higher among patients with CD (prevalence ratio [PR] 11.2) or UC (PR 8.7) compared with individuals without IBD. The risk of IBD was higher in patients with EoE (CD: PR 11.6; UC: PR 9.1) versus those without EoE. A propensity-matched analysis of IBD patients revealed that, when comparing patients with and without EoE, the relative risk of immune-mediated comorbidities was significantly greater for celiac disease, IBD-related inflammatory conditions, eczema and asthma (CD: n = 1896; UC: n = 1231; p < 0.001). Patients with a concurrent diagnosis of EoE and IBD had a higher composite risk of IBD-related complications (CD: adjusted HR (aHR) 1.14, p < 0.005; UC: aHR 1.17, p < 0.01) and lower risk of food bolus impaction (aHR 0.445, p = 0.0011). CONCLUSION Simultaneous EoE and IBD increased IBD-related complications risk, needing more treatment (glucocorticoids, biologic therapy, abdominal surgery), while reducing EoE-related issues like food bolus impaction.
Collapse
Affiliation(s)
- Alexander Malik
- Department of Medicine, Summa Health System, Northeast Ohio Medical University, Akron, OH, USA
| | - Benjamin Douglas Liu
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Kaelber
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Gengqing Song
- Division of Gastroenterology & Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
35
|
Geesala R, Zhang K, Lin YM, Johnson JC, Cong Y, Cohn S, Shi XZ. Exclusive Enteral Nutrition Alleviates Th17-Mediated Inflammation via Eliminating Mechanical Stress-Induced Th17-Polarizing Cytokines in Crohn's-like Colitis. Inflamm Bowel Dis 2024; 30:429-440. [PMID: 37536273 PMCID: PMC10906353 DOI: 10.1093/ibd/izad158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIMS Exclusive enteral nutrition (EEN) with a liquid diet is the only established dietary treatment for Crohn's' disease (CD). However, the mechanism of action of EEN in CD is unclear. T helper 17 (Th17) immune response plays a critical role in CD. We hypothesized that EEN alleviates Th17 response by eliminating mechanical stress-induced expression of Th17-polarizing cytokines. METHODS A rat model of Crohn's-like colitis was established by intracolonic instillation of TNBS (65 mg/kg in 250 µL of 40% ethanol). Control rats were treated with saline. We characterized immunophenotypes and molecular changes of the colon in control and colitis rats with and without EEN treatment. Th17 differentiation was determined using coculture assays. RESULTS TNBS instillation induced transmural inflammation with stenosis in the inflammation site and a marked increase of Th17-polarizing cytokines interleukin (IL)-6 and osteopontin and the Th17 cell population in the mechanically distended preinflammation site (P-site). EEN treatment eliminated mechanical distention and the increase of IL-6, osteopontin, and Th17 response in the P-site. IL-6 and osteopontin expression was found mainly in the muscularis externa. Mechanical stretch of colonic smooth muscle cells in vitro induced a robust increase of IL-6 and osteopontin. When naïve T cells were cultured with conditioned media from the P-site tissue or stretched cells, Th17 differentiation was significantly increased. Inhibition of IL-6, but not deletion of osteopontin, blocked the increase of Th17 differentiation. CONCLUSIONS Mechanical stress induces Th17-polarizing cytokines in the colon. EEN attenuates Th17 immune response by eliminating mechanical stress-induced IL-6 in Crohn's-like colitis.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ke Zhang
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - You-Min Lin
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - John C Johnson
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Steven Cohn
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
36
|
Masuta Y, Minaga K, Otsuka Y, Okai N, Hara A, Masaki S, Nagai T, Honjo H, Kudo M, Watanabe T. Cytokine and chemokine profiles in ulcerative colitis relapse after coronavirus disease 2019 vaccination. J Clin Biochem Nutr 2024; 74:127-135. [PMID: 38510687 PMCID: PMC10948343 DOI: 10.3164/jcbn.23-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 03/22/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines are highly effective; however, vaccine-related adverse events, including autoimmunity, have been reported. Case reports describing relapse or new-onset of ulcerative colitis (UC) after COVID-19 mRNA vaccination are available. However, the molecular mechanisms underlying the development of colonic inflammation associated with COVID-19 mRNA vaccination are poorly understood. Furthermore, it is unclear whether the relapse of UC after COVID-19 vaccination is driven by unique cytokine responses that differ from those of UC not associated with vaccination. mRNAs derived from COVID-19 vaccines are potent inducers of type I IFN response. We encountered three cases of UC relapse after COVID-19 vaccination. mRNA expressions of IFN-α, IFN-β, IL-1β, and IL-12/23p40 showed higher tendency in the colonic mucosa of patients with UC associated with vaccination compared with those not associated with vaccination. In contrast, the expressions of C-X-C motif chemokine ligand 9 (CXCL9) and CXCL10 were comparable. Immunofluorescence analyses also showed higher expression of IFN-α in the colonic mucosa of patients with UC associated with COVID-19 vaccination than in those not associated with vaccination. Taken together, these data suggest that the colonic mucosa of patients with UC who relapsed after COVID-19 vaccination was characterized by enhanced type I IFN responses.
Collapse
Affiliation(s)
- Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Sho Masaki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomoyuki Nagai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
37
|
Mobbs CL, Darling NJ, Przyborski S. An in vitro model to study immune activation, epithelial disruption and stromal remodelling in inflammatory bowel disease and fistulising Crohn's disease. Front Immunol 2024; 15:1357690. [PMID: 38410518 PMCID: PMC10894943 DOI: 10.3389/fimmu.2024.1357690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
At present, preclinical models of inflammatory bowel disease (IBD) are insufficient, limiting translation between research and new therapeutics. This is especially true for fistulising Crohn's disease (CD), as the severe lack of relevant models hinders research progression. To address this, we present in vitro human IBD mucosal models that recapitulate multiple pathological hallmarks of IBD simultaneously in one model system - immune cell infiltration, stromal remodelling and epithelial disruption. Stimulation of models induces epithelial aberrations common in IBD tissue including altered morphology, microvilli abnormalities, claudin gene expression changes and increased permeability. Inflammatory biomarkers are also significantly increased including cytokines and chemokines integral to IBD pathogenesis. Evidence of extracellular matrix remodelling, including upregulated matrix-metalloproteinases and altered basement membrane components, suggests the models simulate pathological stromal remodelling events that closely resemble fistulising CD. Importantly, MMP-9 is the most abundant MMP and mimics the unique localisation observed in IBD tissue. The inflamed models were subsequently used to elucidate the involvement of TNF-α and IFN- γ in intestinal stromal remodelling, in which TNF-α but not IFN- γ induced MMP upregulation, specifically of MMP-3 and MMP-9. Collectively, our results demonstrate the potential of the IBD models for use in preclinical research in IBD, particularly for fistulising CD.
Collapse
Affiliation(s)
- Claire L. Mobbs
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| | - Nicole J. Darling
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| |
Collapse
|
38
|
Wu Q, Liu Y, Liang J, Dai A, Du B, Xi X, Jin L, Guo Y. Baricitinib relieves DSS-induced ulcerative colitis in mice by suppressing the NF-κB and JAK2/STAT3 signalling pathways. Inflammopharmacology 2024; 32:849-861. [PMID: 38227095 DOI: 10.1007/s10787-023-01396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024]
Abstract
Ulcerative colitis (UC) is a relapsing inflammatory disease with a unique aetiology. The treatment of UC is challenging, and the current clinical therapeutics for colitis have limited efficacy. Thus, finding new and effective treatment options remains urgent. Baricitinib, an inhibitor of Janus kinase (JAK), has been clinically used to treat rheumatoid arthritis (RA). However, its potential effects on UC have not been fully elucidated. In this study, we aimed to explore the effects of baricitinib on UC and its underlying mechanism. Dextran sulphate sodium (DSS)-induced murine model of chronic colitis was used to investigate the intervention efficacy following oral administration of baricitinib. The levels of key cytokines, such as IL-6, IFN-γ and IL-17A, were determined. Moreover, western blotting for IκBα, p-IκBα, JAK2, p-JAK2, STAT3 and p-STAT3 protein expression was performed to investigate the associated signalling pathways. Our findings demonstrated that baricitinib can significantly relieve DSS-induced UC in mice. After baricitinib intervention, IL-6, IFN-γ and IL-17A levels were decreased both in vitro and in vivo. Moreover, the elevated expression levels of p-IκBα, p-JAK2, and p-STAT3 were significantly reduced after treatment. Collectively, these results suggest that baricitinib is a potential therapeutic agent for alleviation of DSS-induced colitis. This study provides a method for subsequent investigations on potential curative drugs development of the for colitis.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, Hubei, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yangyang Liu
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, Hubei, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jinmeiqi Liang
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, Hubei, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Ao Dai
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, Hubei, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Boyu Du
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Xueyan Xi
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, Hubei, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lan Jin
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, Hubei, People's Republic of China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Yang Guo
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, 30 Renmin Road, Shiyan, 442000, Hubei, People's Republic of China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
39
|
Ávila-Gálvez MÁ, Giménez-Bastida JA, Karadeniz B, Romero-Reyes S, Espín JC, Pelvan E, González-Sarrías A. Polyphenolic Characterization and Anti-Inflammatory Effect of In Vitro Digested Extracts of Echinacea purpurea L. Plant Parts in an Inflammatory Model of Human Colon Cells. Int J Mol Sci 2024; 25:1744. [PMID: 38339018 PMCID: PMC10855148 DOI: 10.3390/ijms25031744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Echinacea purpurea L. (EP) preparations are globally popular herbal supplements known for their medicinal benefits, including anti-inflammatory activities, partly related to their phenolic composition. However, regarding their use for the management of inflammation-related intestinal diseases, the knowledge about the fate of orally ingested constituents throughout the human gastrointestinal tract and the exposition of in vitro digested extracts in relevant inflammatory models are unknown. This study investigated for the first time the impact of in vitro gastrointestinal digestion (INFOGEST) on the phenolic composition and anti-inflammatory properties of EP extracts from flowers (EF), leaves (EL), and roots (ER) on IL-1β-treated human colon-derived CCD-18Co cells. Among the seven hydroxycinnamic acids identified using HPLC-UV-MS/MS, chicoric and caftaric acids showed the highest concentrations in EL, followed by EF and ER, and all extracts exerted significant reductions in IL-6, IL-8, and PGE2 levels. After digestion, despite reducing the bioaccessibility of their phenolics, the anti-inflammatory effects were preserved for digested EL and, to a lesser extent, for EF, but not for digested ER. The lower phenolic content in digested EF and ER could explain these findings. Overall, this study emphasizes the potential of EP in alleviating intestinal inflammatory conditions and related disorders.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Bulent Karadeniz
- Life Sciences, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470 Gebze-Kocaeli, Türkiye; (B.K.); (E.P.)
| | - Salvador Romero-Reyes
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470 Gebze-Kocaeli, Türkiye; (B.K.); (E.P.)
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| |
Collapse
|
40
|
Tungalag T, Park JY, Park KW, Yang DK. Sesame cake extract attenuates dextran sulfate sodium-induced colitis through inhibition of oxidative stress in mice. Food Sci Biotechnol 2024; 33:699-709. [PMID: 38274181 PMCID: PMC10806049 DOI: 10.1007/s10068-023-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 01/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease occurring in the gut causing chronic diarrhea and abdominal pain with severe complications. Sesame cake is a by-product of sesame oil production, possessing various beneficial properties; however, little is known about the effect of sesame cake extract (SCE) against IBD. The aim of this study was to investigate the protective effect of SCE against dextran sulfate sodium (DSS)-induced colitis in mice. Administration of SCE was first performed at 7 days before treating mice with 2.5% DSS to induce colitis for 7 days. SCE pretreatment improved symptoms of DSS-induced colitis. In addition, SCE ameliorated histopathological damages of the mucus layer in colon tissues and decreased pro-inflammatory cytokines in colitis-induced mice. SCE also suppressed apoptosis and oxidative stress in colitis-induced colon tissues. Together, these findings suggest that SCE could be potential nutraceuticals for treating colitis. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01367-1.
Collapse
Affiliation(s)
- Tsendsuren Tungalag
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596 Republic of Korea
| | - Jung Yong Park
- Queensbucket, Daegudae-ro, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do 38453 Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596 Republic of Korea
| |
Collapse
|
41
|
Tan JRL, Alba WS. Ustekinumab as a Treatment for Ixekizumab-Associated New-Onset Crohn's Disease in a Patient with Psoriasis. ACG Case Rep J 2024; 11:e01266. [PMID: 38303774 PMCID: PMC10830077 DOI: 10.14309/crj.0000000000001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Interleukin-17 inhibitors are effective treatments for plaque psoriasis. However, these medications have been linked to the development of new-onset inflammatory bowel disease (IBD) and the worsening of existing IBD in some patients. This case report describes a patient with plaque psoriasis who developed new-onset Crohn's disease after treatment with ixekizumab, an interleukin-17A inhibitor. He was then transitioned to ustekinumab, which resulted in successful remission of both psoriasis and Crohn's disease. This case highlights the potential for ustekinumab to be an effective rescue treatment for psoriasis patients with new-onset IBD triggered by medications.
Collapse
Affiliation(s)
- Justin Ryan L. Tan
- Section of Gastroenterology, Chinese General Hospital and Medical Center, Manila, Philippines
| | - Willy S. Alba
- Section of Gastroenterology, Chinese General Hospital and Medical Center, Manila, Philippines
| |
Collapse
|
42
|
Hill L, Roofigari N, Faraz M, Popov J, Moshkovich M, Figueiredo M, Hartung E, Talbo M, Lalanne-Mistrih ML, Sherlock M, Zachos M, Timmons BW, Obeid J, Pai N. Physical Activity in Pediatric Inflammatory Bowel Disease: A Scoping Review. Pediatr Exerc Sci 2024; 36:44-56. [PMID: 37487582 DOI: 10.1123/pes.2022-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, systemic condition affecting the gastrointestinal tract. IBD can be severe and are associated with impairment in growth, school absences, abdominal pain, and fatigue. Physical activity (PA) could have an anti-inflammatory effect in addition to other benefits. It is important to address the possible risks, physiological effects of PA, and potential barriers, and facilitators for PA participation in pediatric IBD. However, potential barriers and facilitators to PA have yet to be adequately described. METHODS We conducted a scoping review to map and describe the current literature on PA in pediatric IBD populations between 1980 and April 2022 using Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines for Scoping reviews. RESULTS Nineteen articles were identified including 10 descriptive, 6 interventional, and 3 physiological responses to PA studies. Patients and healthy controls demonstrated similar responses to exercise. Barriers to participation were low self-esteem, body image, and active IBD symptoms. Facilitators included personal interest, activity with friends, and support from family. CONCLUSION This review highlighted that PA participation may reduce in children with IBD-related symptoms. Short- and medium-term impacts of PA on immune modulation require further study; it is possible that regular PA does not negatively affect biomarkers of disease activity.
Collapse
Affiliation(s)
- Lee Hill
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Department of Endocrinology, Research Institute of the McGill University Health Center, Montreal, QC,Canada
| | | | - Maria Faraz
- Department of Pathology, Albany Medical Center, Albany, NY,USA
| | - Jelena Popov
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
| | - Michal Moshkovich
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON,Canada
| | - Melanie Figueiredo
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON,Canada
| | - Emily Hartung
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
| | - Meryem Talbo
- School of Human Nutrition, McGill University, Montreal, QC,Canada
| | - Marie-Laure Lalanne-Mistrih
- Montreal Clinical Research Institute, Montreal, QC,Canada
- Department of Nutrition, University Hospital of Guadeloupe, Pointe-à-Pitre,France
- UFR of Medicine, University of French West Indies, Abymes, Guadeloupe,France
| | - Mary Sherlock
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Department of Nutrition, University Hospital of Guadeloupe, Pointe-à-Pitre,France
| | - Mary Zachos
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Department of Nutrition, University Hospital of Guadeloupe, Pointe-à-Pitre,France
| | - Brian W Timmons
- Child Health and Exercise Medicine Program, McMaster University, Hamilton, ON,Canada
| | - Joyce Obeid
- Child Health and Exercise Medicine Program, McMaster University, Hamilton, ON,Canada
| | - Nikhil Pai
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON,Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON,Canada
| |
Collapse
|
43
|
Dong K, Zhang Y, Ji HR, Guan ZL, Wang DY, Guo ZY, Deng SJ, He BY, Xing JF, You CY. Dexamethasone-Loaded Lipid Calcium Phosphate Nanoparticles Treat Experimental Colitis by Regulating Macrophage Polarization in Inflammatory Sites. Int J Nanomedicine 2024; 19:993-1016. [PMID: 38299194 PMCID: PMC10829593 DOI: 10.2147/ijn.s442369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
Background The M1/M2 polarization of intestinal macrophages exerts an essential function in the pathogenesis of ulcerative colitis (UC), which can be adjusted to alleviate the UC symptoms. Purpose A kind of pH-sensitive lipid calcium phosphate core-shell nanoparticles (NPs), co-loading with dexamethasone (Dex) and its water-soluble salts, dexamethasone sodium phosphate (Dsp), was constructed to comprehensively regulate macrophages in different states towards the M2 phenotype to promote anti-inflammatory effects. Methods Dex and Dsp were loaded in the outer lipid shell and inner lipid calcium phosphate (Cap) core of the LdCaPd NPs, respectively. Then, the morphology of NPs and methods for determining drug concentration were investigated, followed by in vitro protein adsorption, stability, and release tests. Cell experiments evaluated the cytotoxicity, cellular uptake, and macrophage polarization induction ability of NPs. The in vivo distribution and anti-inflammatory effect of NPs were evaluated through a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced BALB/c mice ulcerative colitis model. Results The LdCaPd NPs showed a particle size of about 200 nm and achieved considerable loading amounts of Dex and Dsp. The in vitro and in vivo studies revealed that in the acidic UC microenvironment, the cationic lipid shell of LdCaPd underwent protonated dissociation to release Dex first for creating a microenvironment conducive to M2 polarization. Then, the exposed CaP core was further engulfed by M1 macrophages to release Dsp to restrict the pro-inflammatory cytokines production by inhibiting the activation and function of the nuclear factor kappa-B (NF-κB) through activating the GC receptor and the NF kappa B inhibitor α (I-κBα), respectively, ultimately reversing the M1 polarization to promote the anti-inflammatory therapy. Conclusion The LdCaPd NPs accomplished the sequential release of Dex and Dsp to the UC site and the inflammatory M1 macrophages at this site, promoting the regulation of macrophage polarization to accelerate the remission of UC symptoms.
Collapse
Affiliation(s)
- Kai Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hong Rui Ji
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ze Lin Guan
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Dan Yang Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Zi Yang Guo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shu Jing Deng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Bin Yang He
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jian Feng Xing
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Cui Yu You
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
44
|
Liu Z, Liu M, Wang H, Qin P, Di Y, Jiang S, Li Y, Huang L, Jiao N, Yang W. Glutamine attenuates bisphenol A-induced intestinal inflammation by regulating gut microbiota and TLR4-p38/MAPK-NF-κB pathway in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115836. [PMID: 38154151 DOI: 10.1016/j.ecoenv.2023.115836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Bisphenol A (BPA), as a kind of widely exerted environmental hazardous material, brings toxicity to both humans and animals. This study aimed to investigate the role of glutamine (Gln) in intestinal inflammation and microbiota in BPA-challenged piglets. Thirty-two piglets were randomly divided into four groups according to 2 factors including BPA (0 vs. 0.1%) and Gln (0 vs. 1%) supplemented in basal diet for a 42-day feeding experiment. The results showed BPA exposure impaired piglet growth, induced intestinal inflammation and disturbed microbiota balance. However, dietary Gln supplementation improved the growth performance, while decreasing serum pro-inflammatory cytokine levels in BPA-challenged piglets. In addition, Gln attenuated intestinal mucosal damage and inflammation by normalizing the activation of toll-like receptor 4 (TLR4)-p38/MAPK-nuclear factor-kappa B (NF-κB) pathway caused by BPA. Moreover, dietary Gln supplementation decreased the abundance of Actinobacteriota and Proteobacteria, and attenuated the decreased abundance of Roseburia, Prevotella, Romboutsia and Phascolarctobacterium and the content of short-chain fatty acids in cecum contents caused by BPA exposure. Moreover, there exerted potential relevance between the gut microbiota and pro-inflammatory cytokines and cecal short-chain fatty acids. In conclusion, Gln is critical nutrition for attenuating BPA-induced intestinal inflammation, which is partially mediated by regulating microbial balance and suppressing the TLR4/p38 MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Zihao Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Min Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Huiru Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Pengxiang Qin
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yanjiao Di
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
45
|
Zhang S, Cao Y, Huang Y, Zhang S, Wang G, Fang X, Bao W. Aqueous M. oleifera leaf extract alleviates DSS-induced colitis in mice through suppression of inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116929. [PMID: 37480965 DOI: 10.1016/j.jep.2023.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (M. oleifera) is a perennial deciduous tree with considerable agricultural and pharmacological value. Nearly all parts of the tree are edible, and nearly all parts are used in traditional medicine. Leaves of M. oleifera have the functions of hypoglycemic (antidiabetic), anti-cancer and anti-oxidant stress, but less research pay attention to the anti-inflammatory effect of M. oleifera leaves. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal medication. Here, we investigated the anti-inflammatory effects of aqueous extract of M. oleifera leaves. MATERIALS AND METHODS Intestinal organoids and mice as in vitro and in vivo models to investigate the effects of aqueous extract of M. oleifera leaves on inflammation induced by TNF-α and dextran sulfate sodium (DSS) respectively. The expression of inflammatory cytokines and proliferation-related genes were evaluated by RT-qPCR, respectively. The compounds in the leaf extract were determined by LC/MS, and network pharmacology approach was employed to predict 54 anti-IBD potential targets of quercetin-3-galactoside (QG) and isoquercitrin (IS). RESULTS We found that the extract protected against damage to intestinal organoids caused by tumor necrosis factor (TNF-α), and significantly down-regulated the expression of inflammatory cytokines. The extract also suppressed the TNF-α-induced expression of Pcna, c-Myc, and c-Jun. Additionally, oral administration of the extract also ameliorated DSS-induced colon damage (colonic shortening, loss of goblet cells and overall abnormal cellularity), and inhibited the expression of inflammatory cytokines and proliferation-related genes in colitis. By LC/MS we identified nearly 2000 of the compounds in the leaf extract, of the flavonoids identified, QG and IS made up the largest percentage; both have been shown to have anti-inflammatory properties. Moreover, network pharmacology approach was employed to predict 54 anti-IBD potential targets of QG and IS. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the overlapping targets participated in response to oxidative stress and PI3K-Akt signaling pathway respectively. CONCLUSIONS The present study demonstrated the anti-inflammatory capability, in vitro and in vivo, of the aqueous extract of M. oleifera leaves and suggests its potential phytotherapeutic treatment for IBD.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaomin Fang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
46
|
Fan X, Zhang Z, Gao W, Pan Q, Luo K, He B, Pu Y. An Engineered Butyrate-Derived Polymer Nanoplatform as a Mucosa-Healing Enhancer Potentiates the Therapeutic Effect of Magnolol in Inflammatory Bowel Disease. ACS NANO 2024; 18:229-244. [PMID: 38112525 DOI: 10.1021/acsnano.3c05732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Colonic epithelial damage and dysregulated immune response are crucial factors in the progression and exacerbation of inflammatory bowel disease (IBD). Nanoenabled targeted drug delivery to the inflamed intestinal mucosa has shown promise in inducing and maintaining colitis remission, while minimizing side effects. Inspired by the excellent antioxidative and anti-inflammatory efficacy of naturally derived magnolol (Mag) and gut homeostasis regulation of microbiota-derived butyrate, we developed a pH/redox dual-responsive butyrate-rich polymer nanoparticle (PSBA) as an oral Mag delivery system for combinational therapy of IBD. PSBA showed a high butyrate content of 22% and effectively encapsulated Mag. The Mag-loaded nanoparticles (PSBA@Mag) demonstrated colonic pH and reduction-responsive drug release, ensuring efficient retention and adhesion in the colon of colitis mice. PSBA@Mag not only normalized the level of reactive oxygen species and inflammatory effectors in inflamed colonic mucosa but also restored the epithelial barrier function in both ulcerative colitis and Crohn's disease mouse models. Importantly, PSBA promoted the migration and healing ability of intestinal epithelial cells in vitro and in vivo, sensitizing the therapeutic efficacy of Mag in animal models. Moreover, transcriptomics and metabolism analyses revealed that PSBA@Mag mitigated inflammation by suppressing the production of pro-inflammatory cytokines and chemokines and restoring the lipid metabolism. Additionally, this nanomedicine modulated the gut microbiota by inhibiting pathogenic Proteus and Escherichia-Shigella and promoting the proliferation of beneficial probiotics, including Lachnoclostridium, Lachnospiraceae_NK4A136_group and norank_f_Ruminococcaceae. Overall, our findings highlight the potential of butyrate-functionalized polymethacrylates as versatile and effective nanoplatforms for colonic drug delivery and mucosa repair in combating IBD and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
47
|
Li J, Wang X, Wang Q, Hu Y, Wang S, Xu J, Ye J. Galectin from Trichinella spiralis alleviates DSS-induced colitis in mice by regulating the intestinal microbiota. Vet Res 2024; 55:3. [PMID: 38172977 PMCID: PMC10763409 DOI: 10.1186/s13567-023-01262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
According to numerous reports, Trichinella spiralis (T. spiralis) and its antigens can reduce intestinal inflammation by modulating regulatory immunological responses in the host to maintain immune homeostasis. Galectin has been identified as a protein that is produced by T. spiralis, and its characterization revealed this protein has possible immune regulatory activity. However, whether recombinant T. spiralis galectin (rTs-gal) can cure dextran sulfate sodium (DSS)-induced colitis remains unknown. Here, the ability of rTs-gal to ameliorate experimental colitis in mice with inflammatory bowel disease (IBD) as well as the potential underlying mechanism were investigated. The disease activity index (DAI), colon shortening, inflammatory cell infiltration, and histological damage were used as indicators to monitor clinical symptoms of colitis. The results revealed that the administration of rTs-gal ameliorated these symptoms. According to Western blotting and ELISA results, rTs-gal may suppress the excessive inflammatory response-mediated induction of TLR4, MyD88, and NF-κB expression in the colon. Mice with colitis exhibit disruptions in the gut flora, including an increase in gram-negative bacteria, which in turn can result in increased lipopolysaccharide (LPS) production. However, injection of rTs-gal may inhibit changes in the gut microbiota, for example, by reducing the prevalence of Helicobacter and Bacteroides, which produce LPS. The findings of the present study revealed that rTs-gal may inhibit signalling pathways that involve enteric bacteria-derived LPS, TLR4, and NF-κB in mice with DSS-induced colitis and attenuate DSS-induced colitis in animals by modulating the gut microbiota. These findings shed additional light on the immunological processes underlying the beneficial effects of helminth-derived proteins in medicine.
Collapse
Affiliation(s)
- Jianqing Li
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
- School of Pharmacy, Putian University, Putian, 351100, Fujian, China
| | - Xiangjiang Wang
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
| | - Qiuhui Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
- School of Pharmacy, Putian University, Putian, 351100, Fujian, China
| | - Yishen Hu
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
- School of Pharmacy, Putian University, Putian, 351100, Fujian, China
| | - Shouan Wang
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
| | - Jia Xu
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China.
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China.
| | - Jianbin Ye
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China.
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China.
- School of Pharmacy, Putian University, Putian, 351100, Fujian, China.
| |
Collapse
|
48
|
Harwansh RK, Bhati H, Deshmukh R. Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis. Curr Pharm Des 2024; 30:420-439. [PMID: 38299405 DOI: 10.2174/0113816128295753240129074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
49
|
Yan Q, Feng Z, Jiang B, Yao J. Biological functions of connexins in the development of inflammatory bowel disease. Scand J Gastroenterol 2024; 59:142-149. [PMID: 37837320 DOI: 10.1080/00365521.2023.2267713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory diseases with unknown etiology. Gap junctions composed of connexins (Cxs) have been recently validated as an important factor in the development of IBD. Under IBD-induced inflammatory response in the gut, gap junctions connect multiple signaling pathways involved in the interaction between inflammatory cells with other intestinal cells, which altogether mediate the development of IBD. This paper is a narrative review aiming to comprehensively elucidate the biological function of connexins, especially the ubiquitously and predominantly expressed Cx43, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Qiaojing Yan
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Zhiling Feng
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Bin Jiang
- Colorectal Surgery Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Province Traditional Chinese Medicine Innovation Center for Anorectal Disease, Nanjing, China
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
50
|
Muso-Cachumba JJ, Feng S, Belaid M, Zhang Y, de Oliveira Rangel-Yagui C, Vllasaliu D. Polymersomes for protein drug delivery across intestinal mucosa. Int J Pharm 2023; 648:123613. [PMID: 37977286 DOI: 10.1016/j.ijpharm.2023.123613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The oral administration is the route preferred by patients due to its multiple advantages. In the case of biopharmaceuticals, due to their low stability and absorption in the intestine, these molecules must be administered by injectable routes. To circumvent these problems, several strategies have been studied, among which the use of nanosystems, such as polymersomes, can be highlighted. In this work the potential of poloxamer 401 polymersomes as a system for oral delivery of antibodies was evaluated. IgG-FITC-loaded poloxamer 401 polymerosomes were initially used to assess whether it improves intestinal epithelial permeation in Caco-2 cell monolayers. Subsequently, epithelial/macrophage co-culture model was used to evaluate the ability of poloxamer 401 polymersomes containing adalimumab to reduce proinflammatory cytokine levels. The data showed that polymersome-encapsulated IgG increased the transport across intestinal Caco-2 monolayers 2.7-fold compared to the antibody in solution. Also, when comparing the groups of blank polymersomes with polymersomes containing adalimumab, decreases of 1.5-, 5.5-, and 2.4-fold in TNF-α concentrations were observed for the polymersomes containing 1.5, 3.75, and 15 µg/mL of adalimumab, respectively. This could indicate a possibility for the oral administration of biopharmaceuticals which would revolutionize many conditions that require the systemic administration such as in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jorge Javier Muso-Cachumba
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Sa Feng
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Mona Belaid
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Yunyue Zhang
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Carlota de Oliveira Rangel-Yagui
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil.
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| |
Collapse
|