1
|
Pourmehran Y, Sadri F, Hosseini SF, Mohammadi Y, Rezaei Z. Exploring the influence of non-coding RNAs on NF-κB signaling pathway regulation in ulcerative colitis. Biomed Pharmacother 2024; 179:117390. [PMID: 39243424 DOI: 10.1016/j.biopha.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The gastrointestinal tract is chronically inflamed in ulcerative colitis (UC), which has a complicated etiology involving immunological, environmental, and genetic factors. The inflammatory response that is typical of UC is significantly regulated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Latest research has displayed that NF-κB signaling is controlled by three main types of non-coding RNAs (ncRNAs): circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). These ncRNAs can change the expression of key genes within the NF-κB pathway by acting as molecular sponges, transcriptional regulators, and epigenetic modifiers. This review synthesizes current knowledge on the functions by which ncRNAs modulate NF-κB signaling in UC, discusses their potential as biomarkers for disease prognosis and diagnosis, and explores their therapeutic potential. Understanding the intricate interactions between ncRNAs and NF-κB signaling may provide novel insights into UC pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasaman Pourmehran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyede Fatemeh Hosseini
- Faculty member, Tabas School of Nursing, Birjand University of medical sciences, Birjand, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Biology, University of Sistan and Baluchestan, ZahedanIran.
| |
Collapse
|
2
|
Yang JX, Chuang YC, Tseng JC, Liu YL, Lai CY, Lee AYL, Huang CYF, Hong YR, Chuang TH. Tumor promoting effect of PDLIM2 downregulation involves mitochondrial ROS, oncometabolite accumulations and HIF-1α activation. J Exp Clin Cancer Res 2024; 43:169. [PMID: 38880883 PMCID: PMC11181580 DOI: 10.1186/s13046-024-03094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Cancer is characterized by dysregulated cellular metabolism. Thus, understanding the mechanisms underlying these metabolic alterations is important for developing targeted therapies. In this study, we investigated the pro-tumoral effect of PDZ and LIM domain 2 (PDLIM2) downregulation in lung cancer growth and its association with the accumulation of mitochondrial ROS, oncometabolites and the activation of hypoxia-inducible factor-1 (HIF-1) α in the process. METHODS Databases and human cancer tissue samples were analyzed to investigate the roles of PDLIM2 and HIF-1α in cancer growth. DNA microarray and gene ontology enrichment analyses were performed to determine the cellular functions of PDLIM2. Seahorse assay, flow cytometric analysis, and confocal microscopic analysis were employed to study mitochondrial functions. Oncometabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). A Lewis lung carcinoma (LLC) mouse model was established to assess the in vivo function of PDLIM2 and HIF-1α. RESULTS The expression of PDLIM2 was downregulated in lung cancer, and this downregulation correlated with poor prognosis in patients. PDLIM2 highly regulated genes associated with mitochondrial functions. Mechanistically, PDLIM2 downregulation resulted in NF-κB activation, impaired expression of tricarboxylic acid (TCA) cycle genes particularly the succinate dehydrogenase (SDH) genes, and mitochondrial dysfunction. This disturbance contributed to the accumulation of succinate and other oncometabolites, as well as the buildup of mitochondrial reactive oxygen species (mtROS), leading to the activation of hypoxia-inducible factor 1α (HIF-1α). Furthermore, the expression of HIF-1α was increased in all stages of lung cancer. The expression of PDLIM2 and HIF-1α was reversely correlated in lung cancer patients. In the animal study, the orally administered HIF-1α inhibitor, PX-478, significantly reduces PDLIM2 knockdown-promoted tumor growth. CONCLUSION These findings shed light on the complex action of PDLIM2 on mitochondria and HIF-1α activities in lung cancer, emphasizing the role of HIF-1α in the tumor-promoting effect of PDLIM2 downregulation. Additionally, they provide new insights into a strategy for precise targeted treatment by suggesting that HIF-1α inhibitors may serve as therapy for lung cancer patients with PDLIM2 downregulation.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yu-Chen Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, 32001, Taiwan.
| |
Collapse
|
3
|
Zhou H, Shen Y, Zheng G, Zhang B, Wang A, Zhang J, Hu H, Lin J, Liu S, Luan X, Zhang W. Integrating single-cell and spatial analysis reveals MUC1-mediated cellular crosstalk in mucinous colorectal adenocarcinoma. Clin Transl Med 2024; 14:e1701. [PMID: 38778448 PMCID: PMC11111627 DOI: 10.1002/ctm2.1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mucinous colorectal adenocarcinoma (MCA) is a distinct subtype of colorectal cancer (CRC) with the most aggressive pattern, but effective treatment of MCA remains a challenge due to its vague pathological characteristics. An in-depth understanding of transcriptional dynamics at the cellular level is critical for developing specialised MCA treatment strategies. METHODS We integrated single-cell RNA sequencing and spatial transcriptomics data to systematically profile the MCA tumor microenvironment (TME), particularly the interactome of stromal and immune cells. In addition, a three-dimensional bioprinting technique, canonical ex vivo co-culture system, and immunofluorescence staining were further applied to validate the cellular communication networks within the TME. RESULTS This study identified the crucial intercellular interactions that engaged in MCA pathogenesis. We found the increased infiltration of FGF7+/THBS1+ myofibroblasts in MCA tissues with decreased expression of genes associated with leukocyte-mediated immunity and T cell activation, suggesting a crucial role of these cells in regulating the immunosuppressive TME. In addition, MS4A4A+ macrophages that exhibit M2-phenotype were enriched in the tumoral niche and high expression of MS4A4A+ was associated with poor prognosis in the cohort data. The ligand-receptor-based intercellular communication analysis revealed the tight interaction of MUC1+ malignant cells and ZEB1+ endothelial cells, providing mechanistic information for MCA angiogenesis and molecular targets for subsequent translational applications. CONCLUSIONS Our study provides novel insights into communications among tumour cells with stromal and immune cells that are significantly enriched in the TME during MCA progression, presenting potential prognostic biomarkers and therapeutic strategies for MCA. KEY POINTS Tumour microenvironment profiling of MCA is developed. MUC1+ tumour cells interplay with FGF7+/THBS1+ myofibroblasts to promote MCA development. MS4A4A+ macrophages exhibit M2 phenotype in MCA. ZEB1+ endotheliocytes engage in EndMT process in MCA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Colorectal SurgeryChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Yiwen Shen
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guangyong Zheng
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Beibei Zhang
- Department of DermatologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Anqi Wang
- Department of Colorectal SurgeryChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jing Zhang
- Department of PathologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hao Hu
- Department of PathologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- School of PharmacyNaval Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Koike Y, Yin C, Sato Y, Nagano Y, Yamamoto A, Kitajima T, Shimura T, Kawamura M, Matsushita K, Okugawa Y, Amano K, Okita Y, Ohi M, Inoue M, Uchida K, Hirayama M, Toiyama Y. Promoter methylation levels of microRNA-124 in non-neoplastic rectal mucosa as a potential biomarker for ulcerative colitis-associated colorectal cancer in pediatric-onset patients. Surg Today 2024; 54:347-355. [PMID: 37610628 DOI: 10.1007/s00595-023-02738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE To determine the methylation level of the miR-124 promoter in non-neoplastic rectal mucosa of patients with pediatric-onset ulcerative colitis (UC) to predict UC-associated colorectal cancer (UC-CRC). METHODS Between 2005 and 2017, non-neoplastic rectal tissue specimens were collected from 86 patients with UC, including 13 patients with UC-CRC; cancer tissues were obtained from the latter group. The methylation status of the miR-124 promoter was quantified using bisulfite pyrosequencing and compared between pediatric- and adult-onset UC patients. RESULTS Patients with pediatric-onset UC experienced a significantly shorter disease duration than those with adult-onset UC. The levels of miR-124 promoter methylation in non-neoplastic rectal mucosa were positively correlated with the age at the diagnosis and duration of UC. The rate of increase in miR-124 methylation was accelerated in patients with pediatric-onset UC compared to those with adult-onset UC. Furthermore, the miR-124 methylation levels in non-neoplastic rectal mucosa were significantly higher in patients with UC-CRC than in those with UC alone (P = 0.02). A receiver operating characteristic analysis revealed that miR-124 methylation in non-neoplastic tissue discriminated between patients with pediatric-onset UC with or without CRC. CONCLUSION miR-124 methylation in non-neoplastic rectal mucosa may be a useful biomarker for identifying patients with pediatric-onset UC who face the highest risk of developing UC-CRC.
Collapse
Affiliation(s)
- Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuki Sato
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuka Nagano
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akira Yamamoto
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kohei Matsushita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Keishiro Amano
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Keiichi Uchida
- Department of Surgery, Mie Prefectural General Medical Center, 5450-132, Hinaga, Yokkaichi, Mie, 510-0885, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
5
|
Jia K, Shen J. Transcriptome-wide association studies associated with Crohn's disease: challenges and perspectives. Cell Biosci 2024; 14:29. [PMID: 38403629 PMCID: PMC10895848 DOI: 10.1186/s13578-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
Crohn's disease (CD) is regarded as a lifelong progressive disease affecting all segments of the intestinal tract and multiple organs. Based on genome-wide association studies (GWAS) and gene expression data, transcriptome-wide association studies (TWAS) can help identify susceptibility genes associated with pathogenesis and disease behavior. In this review, we overview seven reported TWASs of CD, summarize their study designs, and discuss the key methods and steps used in TWAS, which affect the prioritization of susceptibility genes. This article summarized the screening of tissue-specific susceptibility genes for CD, and discussed the reported potential pathological mechanisms of overlapping susceptibility genes related to CD in a certain tissue type. We observed that ileal lipid-related metabolism and colonic extracellular vesicles may be involved in the pathogenesis of CD by performing GO pathway enrichment analysis for susceptibility genes. We further pointed the low reproducibility of TWAS associated with CD and discussed the reasons for these issues, strategies for solving them. In the future, more TWAS are needed to be designed into large-scale, unified cohorts, unified analysis pipelines, and fully classified databases of expression trait loci.
Collapse
Affiliation(s)
- Keyu Jia
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China
| | - Jun Shen
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Research Center, Ren Ji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China.
- NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Ren J, Han B, Feng P, Shao G, Chang Y. Mechanism of miR-7 mediating TLR4/TRAF6/NF-κB inflammatory pathway in colorectal cancer. Funct Integr Genomics 2024; 24:24. [PMID: 38315263 PMCID: PMC10844457 DOI: 10.1007/s10142-024-01307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
This study is aimed at investigating the roles of Toll-like receptor 4 (TLR4) and microRNA-7 (miR-7) in colorectal cancer (CRC) development and progression. We assessed TLR4 and miR-7 expression in CRC cells and tissues using reverse transcription-quantitative polymerase chain reaction. The relationship between miR-7 and TLR4 was analyzed through dual luciferase reporter assays. MTT, wound healing, and cell invasion assays were conducted to examine the effects of TLR4 and miR-7 on CRC cell proliferation, migration, and invasion. Western blotting was used to explore the involvement of the TRAF6/NF-κB signaling pathway. miR-7 was underexpressed in CRC, while TLR4 levels were increased. miR-7 negatively regulated TLR4 expression and its knockdown enhanced CRC cell proliferation, migration, and invasion. TLR4 knockdown had the opposite effects. The TRAF6/NF-κB pathway was linked to TLR4's role in tumor progression. miR-7 might inhibit TRAF6/NF-κB target a signaling pathway of TLR4 and promote CRC occurrence. miR-7 may therefore be used as a sensitive biomarker in CRC patients.
Collapse
Affiliation(s)
- Jianfeng Ren
- Department of Gastroenterology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Bing Han
- Department of Gastroenterology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Ping Feng
- Department of Gastroenterology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Gang Shao
- Department of Gastroenterology, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yunli Chang
- Department of Gastroenterology, Pudong New Area People's Hospital, 490 Chuanhuan Nan Lu, Pudong New Area, Shanghai, China.
| |
Collapse
|
7
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Li S, Yu M, Wang X, Fei B. MiR-597-5p inhibits carcinogenesis and macrophage recruitment in colitis-related colorectal cancer via reducing the expression of CXCL5. Cancer Biol Ther 2023; 24:2274122. [PMID: 37942533 PMCID: PMC10773537 DOI: 10.1080/15384047.2023.2274122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 11/10/2023] Open
Abstract
Despite being the subject of multiple cancer studies, nothing is known about miR-597-5p's role in colitis-associated colorectal cancer (CAC). We intend to explore how miR-597-5p influences the growth and development of CAC. In order to construct a CAC model, mice were stimulated with azoxymethane (AOM)/dextran sulfate sodium (DSS). The in situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) was used for the detection of miR-597-5p expression. The protein expression of CXCL5 was determined by western blotting, immunohistochemistry and enzyme-linked immuno sorbent assay (ELISA). The histologic colitis score and hematoxylin and eosin (HE) staining were used to evaluate degree of damage to colonic tissues. The proportion of macrophages detected in colon tumors was also measured using flow cytometry. The transwell test was employed to assess macrophage migration. It was found that the miR-597-5p and its target CXCL5 had a negative correlation. MiR-597-5p expression was decreased, while CXCL5 expression was raised in CAC tissues. In AOM/DSS-induced mice, miR-597-5p deficiency in intestinal epithelial cells resulted in decreasing colon length as well as increasing tumor numbers and histologic colitis score, which was reversed by CXCL5 inhibition. MiR-597-5p deficiency facilitated macrophage recruitment in AOM/DSS-induced mice and promoted macrophage migration in vitro, which were reversed by CXCL5 inhibition. Deficiency of miR-597-5p aggravated macrophage recruitment and tumorigenesis in a mouse CAC model, suggesting that miR-597-5p agonists may have an anti-inflammatory therapeutic effect in inflammatory bowel diseases and reduce the risk of developing CAC.
Collapse
Affiliation(s)
- Shuo Li
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Miao Yu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuying Wang
- Medical Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
10
|
Innocenti T, Bigagli E, Lynch EN, Galli A, Dragoni G. MiRNA-Based Therapies for the Treatment of Inflammatory Bowel Disease: What Are We Still Missing? Inflamm Bowel Dis 2023; 29:308-323. [PMID: 35749310 DOI: 10.1093/ibd/izac122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 02/05/2023]
Abstract
Micro-RNAs (miRNAs) are noncoding RNAs usually 24-30 nucleotides long that play a central role in epigenetic mechanisms of inflammatory diseases and cancers. Recently, several studies have assessed the involvement of miRNAs in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated neoplasia. Particularly, it has been shown that many members of miRNAs family are involved in the pathways of inflammation and fibrogenesis of IBD; therefore, their use as inflammatory and fibrosis biomarkers has been postulated. In light of these results, the role of miRNAs in IBD therapy has been proposed and is currently under investigation with many in vitro and in vivo studies, murine models, and a phase 2a trial. The accumulating data have pushed miRNA-based therapy closer to clinical practice, although many open questions remain. With this systematic review, we discuss the current knowledge about the therapeutic effects of miRNAs mimicking and inhibition, and we explore the new potential targets of miRNA family for the treatment of inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Tommaso Innocenti
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Erica Nicola Lynch
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriele Dragoni
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
11
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Andreucci E, Ruzzolini J, Bianchini F, Versienti G, Biagioni A, Lulli M, Guasti D, Nardini P, Serratì S, Margheri F, Laurenzana A, Nediani C, Peppicelli S, Calorini L. miR-214-Enriched Extracellular Vesicles Released by Acid-Adapted Melanoma Cells Promote Inflammatory Macrophage-Dependent Tumor Trans-Endothelial Migration. Cancers (Basel) 2022; 14:cancers14205090. [PMID: 36291876 PMCID: PMC9599952 DOI: 10.3390/cancers14205090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Cutaneous melanoma is the most aggressive form of skin cancer with high-metastatic ability. Despite the recent advancements in melanoma treatments, the prognosis of metastatic patients remains very poor. A better understanding of the molecular mechanisms leading to melanoma dissemination is urgently needed in order to develop novel therapeutical strategies to ameliorate patients’ outcomes. Extracellular vesicles (EV) released by tumor cells are key players in metastasis development: by conveying bioactive molecules with oncogenic activity, they can modulate the surrounding—and even the distant—microenvironment and reprogram recipient cells to facilitate the metastatic cascade. Here, we show that melanoma cells release a higher amount of miR-214-enriched EV when adapted to extracellular acidosis, which promote a macrophage activation state, capable of facilitating the trans-endothelial migration of melanoma cells. Thus, we disclose a new molecular mechanism to prevent melanoma intravasation based on miR-214 targeting. Abstract The understanding of the molecular mechanisms leading to melanoma dissemination is urgently needed in view of the identification of new targets and the development of innovative strategies to improve patients’ outcomes. Within the complexity of tumor intercellular communications leading to metastatic dissemination, extracellular vesicles (EV) released by tumor cells are central players. Indeed, the ability to travel through the circulatory system conveying oncogenic bioactive molecules even at distant sites makes EV capable of modulating recipient cells to facilitate metastatic dissemination. The dynamic remodeling of the tumor microenvironment might influence, along with a number of other events, tumoral EV release. We observed that, in melanoma, extracellular acidosis increases the release of EV enriched in miR-214, an onco-miRNA involved in melanoma metastasis. Then, miR-214-enriched EV were found to induce a state of macrophage activation, leading to an overproduction of proinflammatory cytokines and nitric oxide. Such an inflammatory microenvironment was able to alter the endothelial cell permeability, thereby facilitating the trans-endothelial migration of melanoma cells, a crucial step in the metastatic cascade. The use of synthetic miR-214 inhibitors and miR-214 overexpression allowed us to demonstrate the key role of miR-214 in the EV-dependent induction of macrophage activation. Overall, our in vitro study reveals that the release of tumor miR-214-enriched EV, potentiated by adapting tumor cells to extracellular acidosis, drives a macrophage-dependent trans-endothelial migration of melanoma cells. This finding points to miR-214 as a potential new therapeutic target to prevent melanoma intravasation.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
- Correspondence: (E.A.); (L.C.)
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Giampaolo Versienti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Simona Serratì
- Laboratory of Nanotecnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50134 Florence, Italy
- Correspondence: (E.A.); (L.C.)
| |
Collapse
|
13
|
Dong Y, Xu T, Xiao G, Hu Z, Chen J. Opportunities and challenges for synthetic biology in the therapy of inflammatory bowel disease. Front Bioeng Biotechnol 2022; 10:909591. [PMID: 36032720 PMCID: PMC9399643 DOI: 10.3389/fbioe.2022.909591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex, chronic intestinal inflammatory disorder that primarily includes Crohn’s disease (CD) and ulcerative colitis (UC). Although traditional antibiotics and immunosuppressants are known as the most effective and commonly used treatments, some limitations may be expected, such as limited efficacy in a small number of patients and gut flora disruption. A great many research studies have been done with respect to the etiology of IBD, while the composition of the gut microbiota is suggested as one of the most influential factors. Along with the development of synthetic biology and the continuing clarification of IBD etiology, broader prospects for novel approaches to IBD therapy could be obtained. This study presents an overview of the currently existing treatment options and possible therapeutic targets at the preclinical stage with respect to microbial synthesis technology in biological therapy. This study is highly correlated to the following topics: microbiota-derived metabolites, microRNAs, cell therapy, calreticulin, live biotherapeutic products (LBP), fecal microbiota transplantation (FMT), bacteriophages, engineered bacteria, and their functional secreted synthetic products for IBD medical implementation. Considering microorganisms as the main therapeutic component, as a result, the related clinical trial stability, effectiveness, and safety analysis may be the major challenges for upcoming research. This article strives to provide pharmaceutical researchers and developers with the most up-to-date information for adjuvant medicinal therapies based on synthetic biology.
Collapse
Affiliation(s)
- Yumeng Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Suzhou U-Synbio Co., Ltd., Suzhou, China
| | - Tiangang Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guozheng Xiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ziyan Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Jingyu Chen,
| |
Collapse
|
14
|
MicroRNAs in Inflammatory Bowel Disease and Its Complications. Int J Mol Sci 2022; 23:ijms23158751. [PMID: 35955886 PMCID: PMC9369281 DOI: 10.3390/ijms23158751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), classified primarily between Crohn's disease and ulcerative colitis, is a collection of chronic gastrointestinal inflammatory conditions that cause multiple complications because of systemic alterations in the immune response. One major player is microRNA (miRNA), which is found to be associated with multiple pathways in mediating inflammation, especially those of a chronic nature in IBD, as well as irritable bowel syndrome. Although there have been studies linking miRNA alterations in IBD, even differentiating Crohn's disease and ulcerative colitis, this review focuses mainly on how miRNAs cause and mechanistically influence the pathologic complications of IBD. In addition to its role in the well-known progression towards colorectal cancer, we also emphasize how miRNA manifests the many extraintestinal complications in IBD such as cardiovascular diseases; neuropsychiatric conditions such as depression and anxiety disorders; and others, including various musculoskeletal, dermatologic, ocular, and hepatobiliary complications. We conclude through a description of its potential use in bettering diagnostics and the future treatment of IBD and its systemic symptoms.
Collapse
|
15
|
Yarani R, Shojaeian A, Palasca O, Doncheva NT, Jensen LJ, Gorodkin J, Pociot F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front Immunol 2022; 13:865777. [PMID: 35734163 PMCID: PMC9208551 DOI: 10.3389/fimmu.2022.865777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Differential microRNA (miRNA or miR) regulation is linked to the development and progress of many diseases, including inflammatory bowel disease (IBD). It is well-established that miRNAs are involved in the differentiation, maturation, and functional control of immune cells. miRNAs modulate inflammatory cascades and affect the extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review summarizes current knowledge of differentially expressed miRNAs in mucosal tissues and peripheral blood of patients with ulcerative colitis and Crohn’s disease. We combined comprehensive literature curation with computational meta-analysis of publicly available high-throughput datasets to obtain a consensus set of miRNAs consistently differentially expressed in mucosal tissues. We further describe the role of the most relevant differentially expressed miRNAs in IBD, extract their potential targets involved in IBD, and highlight their diagnostic and therapeutic potential for future investigations.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
16
|
Yao F, Zhao B, Hu S, Bai S, Jin R, Zhang C, Chen Y, Wu X. miR-129-5p Participates in Hair Follicle Growth by Targeting HOXC13 in Rabbit. Genes (Basel) 2022; 13:679. [PMID: 35456485 PMCID: PMC9024705 DOI: 10.3390/genes13040679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
Mammalian hair formation is critically determined by the growth of hair follicles (HF). MiRNAs are crucial in the periodic development of hair follicles; they maintain epidermal homeostasis by targeting genes and influencing the activity of signaling pathways and related regulators. Our study discovered miR-129-5p to be overexpressed in the skin of Angora rabbits during catagen, and was negatively correlated with HOXC13 expression (Pearson’s R = −0.313, p < 0.05). The dual-Luciferase reporter gene detection system and Western blotting confirmed that miR-129-5p targeted HOXC13. In addition, miR-129-5p overexpression was found to significantly inhibit the expression of hair follicle development-related genes (HFDRGs), such as BCL2, WNT2, CCND1, and LEF1 (p < 0.01), and promoted the expression of SFRP2, TGF-β1, and FGF2 (p < 0.01), which was the same as the knockdown of HOXC13. In contrast, the knockout of miR-129-5p was the opposite, and it demonstrated similar results to the overexpression of HOXC13. CCK8 and flow cytometry demonstrated that miR-129-5p mimics significantly promoted the apoptosis of dermal papilla cells (DPCs) and inhibited proliferation (p < 0.01), while the inhibitor was found to reduce the apoptosis of DPCs and promote proliferation (p < 0.01). These results showed that miR-129-5p can participate in the periodic development of HF by targeting HOXC13, and it can induce apoptosis and inhibit proliferation of DPCs. These results will help to understand the role and mechanism of miR-129-5p in the periodic development of HF, and will provide support for subsequent studies, not only providing a theoretical basis for genetically improving the quality of hair in animals in the future, but also a new theory and method for diagnosing and treating hair loss in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (F.Y.); (B.Z.); (S.H.); (S.B.); (R.J.); (C.Z.); (Y.C.)
| |
Collapse
|
17
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Wu S, Yuan W, Luo W, Nie K, Wu X, Meng X, Shen Z, Wang X. MiR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer. Mol Oncol 2022; 16:3465-3489. [PMID: 35363937 PMCID: PMC9533691 DOI: 10.1002/1878-0261.13218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease, characterised by chronic relapsing‐remitting colitis, is a significant risk factor for colorectal cancer (CRC). Previously, we showed that miR‐126 functions as a tumour suppressor in CRC and is inversely correlated with tumour proliferation, metastasis and patient prognosis. In the current study, we documented a protective role for miR‐126 in colitis‐associated CRC (CAC) and its underlying mechanism. We detected downregulated miR‐126 expression during colorectal tumorigenesis in the mouse CAC model and in specimens from patients with CRC. The deficiency of miR‐126 in intestinal epithelial cells (IECs) exacerbated tumorigenesis in mice. We identified CXCL12 as a direct target of miR‐126 in inhibiting the development of colitis and CAC. Moreover, miR‐126 regulated the recruitment of macrophages via CXCL12 and decreased the levels of proinflammatory cytokines (IL‐6, IL‐12 and IL‐23). In addition, IL‐6 secreted by macrophages, which were regulated by cocultured transfected CRC cells, altered the proliferation and migration of colon cells. Our data suggest that miR‐126 exerts an antitumour effect on CAC by regulating the crosstalk between IECs and macrophages via CXCL12‐IL‐6 signalling. Our study contributes to the understanding of cancer progression and suggests miR‐126 as a potential therapy for CRC.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Wei Yuan
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China.,Department of Hepatology, The First Affiliated Hospital, The Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Weiwei Luo
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Kai Nie
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Xing Wu
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Xiangrui Meng
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Zhaohua Shen
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Central South University, Changsha, Hunan, China.,Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Li M, Li P, Tang R, Lu H. Resveratrol and its derivates improve inflammatory bowel disease by targeting gut microbiota and inflammatory signaling pathways. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Anisman H, Kusnecov AW. Cancer biology and pathology. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Cai L, Lai D, Gao J, Wu H, Shi B, Ji H, Tou J. The role and mechanisms of miRNA in neonatal necrotizing enterocolitis. Front Pediatr 2022; 10:1053965. [PMID: 36518784 PMCID: PMC9742607 DOI: 10.3389/fped.2022.1053965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Neonatal necrotizing enterocolitis (NEC), the most significant causes of neonatal mortality, is a disease of acute intestinal inflammation. At present, it is not clear exactly how the disease is caused, but it has been suggested that this disorder is a result of a complex interaction among prematurity, enteral feeding and inappropriate pro-inflammation response and bacterial infection of the intestine. A microRNA (miRNA) is a class of endogenous non-coding single-stranded RNA that is about 23 nucleotides long engaging in the regulation of the gene expression. Recently, numerous studies have determined that abnormal miRNA expression plays important roles in various diseases, including NEC. Here, we summarized the role of miRNAs in NEC. We introduce the biosynthetic and function of miRNAs and then describe the possible mechanisms of miRNAs in the initiation and development of NEC, including their influence on the intestinal epithelial barrier's function and regulation of the inflammatory process. Finally, this review aids in a comprehensive understanding of the current miRNA to accurately predict the diagnosis of NEC and provide ideas to find potential therapeutic targets of miRNA for NEC. In conclusion, our aims are to highlight the close relationship between miRNAs and NEC and to summarize the practical value of developing diagnostic biomarkers and potential therapeutic targets of NEC.
Collapse
Affiliation(s)
- Linghao Cai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiafang Gao
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wu
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Bo Shi
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haosen Ji
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinfa Tou
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
22
|
Role of microRNAs in the Pathophysiology of Ulcerative Colitis. IMMUNO 2021. [DOI: 10.3390/immuno1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.
Collapse
|
23
|
Fiocchi C, Dragoni G, Iliopoulos D, Katsanos K, Ramirez VH, Suzuki K, Torres J, Scharl M. Results of the Seventh Scientific Workshop of ECCO: Precision Medicine in IBD-What, Why, and How. J Crohns Colitis 2021; 15:1410-1430. [PMID: 33733656 DOI: 10.1093/ecco-jcc/jjab051] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many diseases that affect modern humans fall in the category of complex diseases, thus called because they result from a combination of multiple aetiological and pathogenic factors. Regardless of the organ or system affected, complex diseases present major challenges in diagnosis, classification, and management. Current forms of therapy are usually applied in an indiscriminate fashion based on clinical information, but even the most advanced drugs only benefit a limited number of patients and to a variable and unpredictable degree. This 'one measure does not fit all' situation has spurred the notion that therapy for complex disease should be tailored to individual patients or groups of patients, giving rise to the notion of 'precision medicine' [PM]. Inflammatory bowel disease [IBD] is a prototypical complex disease where the need for PM has become increasingly clear. This prompted the European Crohn's and Colitis Organisation to focus the Seventh Scientific Workshop on this emerging theme. The articles in this special issue of the Journal address the various complementary aspects of PM in IBD, including what PM is; why it is needed and how it can be used; how PM can contribute to prediction and prevention of IBD; how IBD PM can aid in prognosis and improve response to therapy; and the challenges and future directions of PM in IBD. This first article of this series is structured on three simple concepts [what, why, and how] and addresses the definition of PM, discusses the rationale for the need of PM in IBD, and outlines the methodology required to implement PM in IBD in a correct and clinically meaningful way.
Collapse
Affiliation(s)
- Claudio Fiocchi
- Department of Inflammation & Immunity, Lerner Research Institute, and Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gabriele Dragoni
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence,Italy.,IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence,Italy
| | | | - Konstantinos Katsanos
- Division of Gastroenterology, Department of Internal Medicine, University of Ioannina School of Health Sciences, Ioannina,Greece
| | - Vicent Hernandez Ramirez
- Department of Gastroenterology, Xerencia Xestión Integrada de Vigo, and Research Group in Digestive Diseases, Galicia Sur Health Research Institute [IIS Galicia Sur], SERGAS-UVIGO, Vigo, Spain
| | - Kohei Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX,USA
| | | | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Grillo TG, Quaglio AEV, Beraldo RF, Lima TB, Baima JP, Di Stasi LC, Sassaki LY. MicroRNA expression in inflammatory bowel disease-associated colorectal cancer. World J Gastrointest Oncol 2021; 13:995-1016. [PMID: 34616508 PMCID: PMC8465441 DOI: 10.4251/wjgo.v13.i9.995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules composed of 19–25 nucleotides that regulate gene expression and play a central role in the regulation of several immune-mediated disorders, including inflammatory bowel diseases (IBD). IBD, represented by ulcerative colitis and Crohn’s disease, is characterized by chronic intestinal inflammation associated with an increased risk of colorectal cancer (CRC). CRC is one of the most prevalent tumors in the world, and its main risk factors are obesity, physical inactivity, smoking, alcoholism, advanced age, and some eating habits, in addition to chronic intestinal inflammatory processes and the use of immunosuppressants administered to IBD patients. Recent studies have identified miRNAs associated with an increased risk of developing CRC in this population. The identification of miRNAs involved in this tumorigenic process could be useful to stratify cancer risk development for patients with IBD and to monitor and assess prognosis. Thus, the present review aimed to summarize the role of miRNAs as biomarkers for the diagnosis and prognosis of IBD-associated CRC. In the future, therapies based on miRNA modulation could be used both in clinical practice to achieve remission of the disease and restore the quality of life for patients with IBD, and to identify the patients with IBD at high risk for tumor development.
Collapse
Affiliation(s)
- Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Ana Elisa Valencise Quaglio
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Rodrigo Fedatto Beraldo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Talles Bazeia Lima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Julio Pinheiro Baima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
25
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
26
|
Hong J, Shi Z, Li C, Ji X, Li S, Chen Y, Jiang G, Shi M, Wang W, Zhang Y, Hu B, Yan S. Virtual screening identified natural Keap1-Nrf2 PPI inhibitor alleviates inflammatory osteoporosis through Nrf2-mir214-Traf3 axis. Free Radic Biol Med 2021; 171:365-378. [PMID: 34000381 DOI: 10.1016/j.freeradbiomed.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Overactive osteoclastogenesis is involved in the inflammatory bone loss and could be target for therapy. Here, we applied transcription factor enrichment analysis using public inflammatory osteolysis datasets and identified Nrf2 as the potential therapeutic target. Additionally, in-silico screening was performed to dig out Nrf2-Keap1 PPI inhibitor and Forsythoside-β was found to be the best-performing PHG compound. We firstly tested the effect of Forsythoside-β in inflammatory osteoporosis models and found it was able to attenuate the bone loss by inhibiting osteoclastogenesis and activating Nrf2-signaling in vivo. Forsythoside-β was capable to suppress the differentiation of osteoclast in time and dose-dependent manners in vitro. Further, Forsythoside-β could inhibit the production of reactive oxygen species and induce Nrf2 nuclear-translocation by interrupting Nrf2-Keap1 PPI. Recently, Nrf2 was identified as the epigenetic regulator modulating levels of miRNA in various diseases. We discovered that Forsythoside-β could suppress the expression of mir-214-3p, one of most variable miRNAs during osteoclastogenesis. To clarify the undermining mechanism, by utilizing chip-seq dataset, we found that Nrf2 could bind to promoter of mir-214-3p and further regulate this miRNA. Collectively, Forsythoside-β was able to prevent bone loss through Nrf2-mir-214-3p-Traf3 axis, which could be a promising candidate for treating inflammatory bone loss in the future.
Collapse
Affiliation(s)
- Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Congsun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Xiaoxiao Ji
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Yongxing Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China.
| | - Bin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China.
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Zhou J, Liu J, Gao Y, Shen L, Li S, Chen S. miRNA-Based Potential Biomarkers and New Molecular Insights in Ulcerative Colitis. Front Pharmacol 2021; 12:707776. [PMID: 34305614 PMCID: PMC8298863 DOI: 10.3389/fphar.2021.707776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, which usually manifests as abdominal pain, diarrhea and hematochezia. The disease often recurs and is difficult to cure. At present, the pathogenesis is not clear, but it is believed that the disease is caused by a complex interaction among immunity, heredity, environment and intestinal microflora disorders. MicroRNA (miRNA) is endogenous single-stranded non-coding RNA of 17–25 nucleotides (nts). They target the 3'Untranslated Region of a target gene and inhibit or degrade the target gene according to the extent of complementary bases. As important gene expression regulators, miRNAs are involved in regulating the expression of most human genes, and play an important role in the pathogenesis of many autoimmune diseases including UC. Studies in recent years have illustrated that abnormal expression of miRNA occurs very early in disease pathogenesis. Moreover, this abnormal expression is highly related to disease activity of UC and colitis-associated cancer, and involves virtually all key UC-related mechanisms, such as immunity and intestinal microbiota dysregulation. Recently, it was discovered that miRNA is highly stable outside the cell in the form of microvesicles, exosomes or apoptotic vesicles, which raises the possibility that miRNA may serve as a novel diagnostic marker for UC. In this review, we summarize the biosynthetic pathway and the function of miRNA, and summarize the usefulness of miRNA for diagnosis, monitoring and prognosis of UC. Then, we described four types of miRNAs involved in regulating the mechanisms of UC occurrence and development: 1) miRNAs are involved in regulating immune cells; 2) affect the intestinal epithelial cells barrier; 3) regulate the homeostasis between gut microbiota and the host; and 4) participate in the formation of tumor in UC. Altogether, we aim to emphasize the close relationship between miRNA and UC as well as to propose that the field has value for developing potential biomarkers as well as therapeutic targets for UC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangyang Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liwei Shen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng Li
- Center for Health Policy & Drug Affairs Operation Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Inoue K, Ng C, Xia Y, Zhao B. Regulation of Osteoclastogenesis and Bone Resorption by miRNAs. Front Cell Dev Biol 2021; 9:651161. [PMID: 34222229 PMCID: PMC8249944 DOI: 10.3389/fcell.2021.651161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
Osteoclasts are specialized bone-resorbing cells that contribute to physiological bone development and remodeling in bone metabolism throughout life. Abnormal production and activation of osteoclasts lead to excessive bone resorption in pathological conditions, such as in osteoporosis and in arthritic diseases with bone destruction. Recent epigenetic studies have shed novel insight into the dogma of the regulation of gene expression. microRNAs belong to a category of epigenetic regulators, which post-transcriptionally regulate and silence target gene expression, and thereby control a variety of biological events. In this review, we discuss miRNA biogenesis, the mechanisms utilized by miRNAs, several miRNAs that play important roles in osteoclast differentiation, function, survival and osteoblast-to-osteoclast communication, and their translational potential and challenges in bone biology and skeletal diseases.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States,Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Courtney Ng
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
| | - Yuhan Xia
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States,Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Graduate Program in Cell and Developmental Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, United States,*Correspondence: Baohong Zhao,
| |
Collapse
|
29
|
He T, Zhang X, Hao J, Ding S. Phosphatase and Tensin Homolog in Non-neoplastic Digestive Disease: More Than Just Tumor Suppressor. Front Physiol 2021; 12:684529. [PMID: 34140896 PMCID: PMC8204087 DOI: 10.3389/fphys.2021.684529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The Phosphatase and tensin homolog (PTEN) gene is one of the most important tumor suppressor genes, which acts through its unique protein phosphatase and lipid phosphatase activity. PTEN protein is widely distributed and exhibits complex biological functions and regulatory modes. It is involved in the regulation of cell morphology, proliferation, differentiation, adhesion, and migration through a variety of signaling pathways. The role of PTEN in malignant tumors of the digestive system is well documented. Recent studies have indicated that PTEN may be closely related to many other benign processes in digestive organs. Emerging evidence suggests that PTEN is a potential therapeutic target in the context of several non-neoplastic diseases of the digestive tract. The recent discovery of PTEN isoforms is expected to help unravel more biological effects of PTEN in non-neoplastic digestive diseases.
Collapse
Affiliation(s)
- Tianyu He
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiaoyun Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Hirsch D, Hardt J, Sauer C, Heselmeyer-Hadded K, Witt SH, Kienle P, Ried T, Gaiser T. Molecular characterization of ulcerative colitis-associated colorectal carcinomas. Mod Pathol 2021; 34:1153-1166. [PMID: 33318582 PMCID: PMC8154647 DOI: 10.1038/s41379-020-00722-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Patients with ulcerative colitis (UC) are at increased risk for developing colorectal cancer (CRC). In contrast to sporadic colorectal tumorigenesis, TP53 mutations occur early in the progression from inflamed colonic epithelium to dysplasia to CRC, and are sometimes readily detectable in inflamed, (yet) non-dysplastic mucosa. Here, we analyzed formalin-fixed paraffin-embedded tissue samples from 19 patients with long-standing UC (median 18 years, range 3 to 34) who had developed CRC as a consequence of chronic inflammation of the large bowel. We performed microsatellite instability testing, copy number analysis by array-based comparative genomic hybridization, mutation analysis by targeted next generation sequencing (48-gene panel) and TP53 immunostaining. The results were compared to The Cancer Genome Atlas (TCGA) data on sporadic CRC. All UC-CRC lesions in our cohort were microsatellite stable. Overall, genomic imbalances of UC-CRCs showed patterns of chromosomal aneuploidies characteristic for sporadic CRC with the exception of gains of chromosome arm 5p (12 of 23 UC-CRC, 52%), which are rare in sporadic CRCs from TCGA (21 of 144, 15%; FDR adjusted P = 0.006). UC-CRCs showed a predilection for TP53 alterations, which was the most frequently mutated gene in our cohort (20 of 23, 87%). Interestingly, spatially separated tumor lesions from individual patients tended to harbor distinct TP53 mutations. Similar to CRCs arising in a background of Crohn's colitis, the genetic landscape of UC-CRCs was characterized by TP53 mutations and chromosomal aneuploidies including gains of chromosome arm 5p. Both alterations harbor the potential for early detection in precursor lesions, thus complementing morphologic diagnosis.
Collapse
Affiliation(s)
- Daniela Hirsch
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Cancer Genomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Julia Hardt
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Sauer
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kerstin Heselmeyer-Hadded
- Cancer Genomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kienle
- General and Visceral Surgery, Theresienkrankenhaus and St. Hedwig-Klinik GmbH, Mannheim, Germany
| | - Thomas Ried
- Cancer Genomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
31
|
Yu Shi An Chang Fang Ameliorates TNBS-Induced Colitis in Mice by Reducing Inflammatory Response and Protecting the Intestinal Mucosal Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8870901. [PMID: 34055024 PMCID: PMC8112936 DOI: 10.1155/2021/8870901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/17/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is related to the occurrence of colon cancer. This study aimed to investigate the underlying mechanism by which Yu Shi An Chang Fang (YST) treated UC. 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) was used to construct the UC model. The body weight, fecal viscosity, and fecal bleeding of all mice were recorded every day to calculate the DAI value. The pathological changes in colon tissues were observed by hematoxylin-eosin (H&E) staining. The levels of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and myeloperoxidase (MPO) reflecting inflammation and the levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) reflecting oxidative stress in colon tissues were all measured by their assay kits. The mRNA expression of TNF-α, IL-1β, and IL-6 in colon tissues was detected by quantitative reverse transcription-PCR (qRT-PCR). The expression of proteins related to pyroptosis and the colonic mucosal barrier was analyzed by Western blot. As a result, TNBS caused decreases in body weight and colon lengths, triggered serious histological damage, promoted inflammation, oxidative stress, and pyroptosis, and destroyed the colonic mucosal barrier. The above changes caused by TNBS in colitis mice could be partially reversed by YST. In conclusion, YST ameliorates TNBS-induced UC in mice by reducing the inflammatory response and protecting the intestinal mucosal barrier.
Collapse
|
32
|
Bocchetti M, Ferraro MG, Ricciardiello F, Ottaiano A, Luce A, Cossu AM, Scrima M, Leung WY, Abate M, Stiuso P, Caraglia M, Zappavigna S, Yau TO. The Role of microRNAs in Development of Colitis-Associated Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22083967. [PMID: 33921348 PMCID: PMC8068787 DOI: 10.3390/ijms22083967] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for an unphysiological and sustained chronic inflammation environment favoring the transformation. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments (18-25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD. However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and their roles in genes' expression modulation in chronic colonic-inflammation-induced carcinogenesis, including programmed cell-death pathways. These miRNAs dysregulation could be applied for early CAC diagnosis, to predict therapy efficacy and for precision treatment.
Collapse
Affiliation(s)
- Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, via D. Montesano 49, 80131 Naples, Italy;
| | | | - Alessandro Ottaiano
- SSD-Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Marianna Scrima
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Wing-Yan Leung
- Division of Haematology, Department of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Marianna Abate
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Correspondence: (S.Z.); (T.O.Y.)
| | - Tung On Yau
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (S.Z.); (T.O.Y.)
| |
Collapse
|
33
|
Hu S, Uniken Venema WT, Westra HJ, Vich Vila A, Barbieri R, Voskuil MD, Blokzijl T, Jansen BH, Li Y, Daly MJ, Xavier RJ, Dijkstra G, Festen EA, Weersma RK. Inflammation status modulates the effect of host genetic variation on intestinal gene expression in inflammatory bowel disease. Nat Commun 2021; 12:1122. [PMID: 33602935 PMCID: PMC7892863 DOI: 10.1038/s41467-021-21458-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
More than 240 genetic risk loci have been associated with inflammatory bowel disease (IBD), but little is known about how they contribute to disease development in involved tissue. Here, we hypothesized that host genetic variation affects gene expression in an inflammation-dependent way, and investigated 299 snap-frozen intestinal biopsies from inflamed and non-inflamed mucosa from 171 IBD patients. RNA-sequencing was performed, and genotypes were determined using whole exome sequencing and genome wide genotyping. In total, 28,746 genes and 6,894,979 SNPs were included. Linear mixed models identified 8,881 independent intestinal cis-expression quantitative trait loci (cis-eQTLs) (FDR < 0.05) and interaction analysis revealed 190 inflammation-dependent intestinal cis-eQTLs (FDR < 0.05), including known IBD-risk genes and genes encoding immune-cell receptors and antibodies. The inflammation-dependent cis-eQTL SNPs (eSNPs) mainly interact with prevalence of immune cell types. Inflammation-dependent intestinal cis-eQTLs reveal genetic susceptibility under inflammatory conditions that can help identify the cell types involved in and the pathways underlying inflammation, knowledge that may guide future drug development and profile patients for precision medicine in IBD.
Collapse
Affiliation(s)
- Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Werna T Uniken Venema
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ruggero Barbieri
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Yanni Li
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Daly
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ramnik J Xavier
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutic, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eleonora A Festen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
34
|
Dun Su, Wang X, Ma Y, Hao J, Jinshen Wang, Yongqu Lu, Yulin Liu, Xingfang Wang, Zhang L. Nrf2-induced miR-23a-27a-24-2 cluster modulates damage repair of intestinal mucosa by targeting the Bach1/HO-1 axis in inflammatory bowel diseases. Free Radic Biol Med 2021; 163:1-9. [PMID: 33301881 DOI: 10.1016/j.freeradbiomed.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023]
Abstract
IBD is an idiopathic, chronic autoimmune disease associated with intense oxidative stress. As a master modulator of oxidative stress, Nrf2 has an important anti-inflammatory role in colitis by activating HO-1 transcription. Meanwhile, HO-1 expression is transcriptionally suppressed by Bach1. The Nrf2-activated HO-1 transcription depends on the inactivation of Bach1. However, how Bach1 is inactivated and how Nrf2, Bach1 and HO-1 participate in IBD remains elusive. We found that in response to inflammatory stimuli, Nrf2-induced transcription of miR-23a-27a-24-2 cluster directly inhibits Bach1 expression by binding to the 3'UTR and thereby relieved the Bach1-mediated suppression of HO-1. Besides, elevated miR-23a, miR-27a and miR-24-2 promotes the proliferation and wound healing through regulating Bach1/HO-1 expression in SW480 cell. Additionally, miR-23a, miR-27a and miR-24-2 exert a protective effect on the intestinal mucosa in DSS-induced colitis mouse model. In conclusion, our study revealed that the Nrf2/miR-23a-27a-24-2/Bach1/HO-1 regulatory axis promotes the damage repair of intestinal mucosa during the development of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Dun Su
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Xingwen Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Yan Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jinghua Hao
- Department of Digestive System, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yongqu Lu
- Department of General Surgery, Peking University Third Hospital, Beijing, 100000, China
| | - Yulin Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xingfang Wang
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Li Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
35
|
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188491. [PMID: 33316377 PMCID: PMC7856203 DOI: 10.1016/j.bbcan.2020.188491] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and anti-tumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
Collapse
Affiliation(s)
- Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
36
|
Sun B, Xing K, Qi C, Yan K, Xu Y. Down-regulation of miR-215 attenuates lipopolysaccharide-induced inflammatory injury in CCD-18co cells by targeting GDF11 through the TLR4/NF-kB and JNK/p38 signaling pathways. Histol Histopathol 2020; 35:1473-1481. [PMID: 33146403 DOI: 10.14670/hh-18-278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ulcerative colitis (UC) is a risk factor for carcinogenesis of colorectal cancer, which is associated with disruption of the epithelial barrier and disorder of the inflammatory response. It has been reported that the expression of microRNA (miR)-215 is upregulated in patients with long-term UC. The present study aimed to investigate the effects of miR-215 on lipopolysaccharide (LPS)-induced inflammatory injury in CCD-18Co cells, as well as to identify the underlying possible molecular mechanisms. CCD-18Co cells were treated with 1 µg/ml LPS to induce inflammatory injury. Reverse transcription-quantitative PCR was performed to determine the expression of miR-215 in LPS-treated CCD-18Co cells. Moreover, a dual luciferase reporter system assay was used to evaluate the interaction of miR-215 and growth differentiation factor 11 (GDF11) in CCD-18Co cells. The expression of miR-215 was significantly upregulated in LPS-treated CCD-18Co cells. Knockdown of miR-215 significantly alleviated the inflammatory response and oxidative stress in LPS-treated CCD-18Co cells. In addition, GDF11 was identified as a direct binding target of miR-215 in CCD-18Co cells. Knockdown of miR-215 significantly increased the expression of GDF11, but decreased the expression levels of Toll-like receptor (TLR)4, phosphorylated (p)-p65, iNOS, p-p38 and p-JNK in LPS-treated CCD-18Co cells. Collectively, the present findings indicated that knockdown of miR-215 alleviated oxidative stress and inflammatory response in LPS-treated CCD-18Co cells by upregulating GDF11 expression and inactivating the TLR4/NF-κB and JNK/p38 signaling pathways.
Collapse
Affiliation(s)
- Boyang Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Xing
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Chen Qi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Ke Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Guo Q, Xu J, Shi Q, Wu S. PDLIM2 protects articular chondrocytes from lipopolysaccharide-induced apoptosis, degeneration and inflammatory injury through down-regulation of nuclear factor (NF)-κB signaling. Int Immunopharmacol 2020; 88:106883. [PMID: 32805696 DOI: 10.1016/j.intimp.2020.106883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Excessive inflammatory response-induced apoptosis and the degeneration of articular chondrocytes contribute to the development and progression of osteoarthritis. PDZ and LIM domain containing protein 2 (PDLIM2) has emerged as one of the pivotal regulators in orchestrating an inflammatory response through regulating the activity of transcription factor nuclear factor (NF)-κB. However, whether PDLIM2 participates in the articular chondrocyte-associated inflammatory response in osteoarthritis remains unknown. In the current study, we aimed to explore the biological function of PDLIM2 in lipopolysaccharide (LPS)-stimulated articular chondrocytes, an in vitro model of osteoarthritis. Herein, we found that PDLIM2 expression was significantly down-regulated in chondrocytes in response to LPS exposure. Functional experiments revealed that PDLIM2 overexpression increased the viability and decreased the apoptosis of chondrocytes following LPS treatment. Moreover, PDLIM2 overexpression attenuated LPS-induced degeneration of chondrocytes via the down-regulation of matrix metalloproteinase (MMP)-3 and MMP-13 and the up-regulation of COL2A1 and ACAN. In addition, the overexpression of PDLIM2 decreased LPS-induced production of interleukin (IL)-1β, IL-6 and TNF-α. In contrast, depletion of PDLIM2 exhibited the opposite effect. Mechanism research elucidated that PDLIM2 repressed the activation of NF-κB signaling associated with the down-regulation of NF-κB p65 protein expression. PDLIM2 depletion-exacerbated LPS-induced injury was significantly reversed by NF-κB inhibition. Taken together, these results demonstrate that PDLIM2 overexpression attenuates LPS-induced injury of articular chondrocytes through the inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Qinyue Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, Shaanxi 710061, China
| | - Jing Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, Shaanxi 710061, China
| | - Qindong Shi
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, Shaanxi 710061, China
| | - Shufang Wu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Street, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
38
|
Eshghifar N, Badrlou E, Pouresmaeili F. The roles of miRNAs' clinical efficiencies in the colorectal cancer pathobiology: A review article. Hum Antibodies 2020; 28:273-285. [PMID: 32623393 DOI: 10.3233/hab-200417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MiRNAs (microRNAs) are defined as micro directors and regulators of gene expression. Since altered miRNA expression is signified in the pathobiology of diverse cancers such as colorectal cancers (CRCs), these molecules are described as therapeutic targets, either. Manipulation of miRNAs could lead to further therapy for chemo and radio-resistant CRCs. The usage of microRNAs has indicated prominent promise in the prognosis and diagnosis of CRC, because of their unique expression pattern associated with cancer types and malignancies. Nowadays, many researchers are analyzing the correlation between miRNA polymorphisms and cancer risk. With continuous incompatibility in colorectal cancer (CRC) miRNAs expression data, it is critical to move toward the content of a "pre-laboratory" analysis to speed up efficient accuracy medicine and translational study. Pathway study for the highest expressed miRNAs- regulated target genes resulted in the identification of a considerable number of genes associated with CRC pathway including PI3K, TGFβ, and APC. In this review, we aimed to collect fruitful information about miRNAs and their potential roles in CRC, and provide a meta-analysis of the most frequently studied miRNAs in association with the disease.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Molecular and Cellular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Badrlou
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Upregulation of microRNA-219-5p relieves ulcerative colitis through balancing the differentiation of Treg/Th17 cells. Eur J Gastroenterol Hepatol 2020; 32:813-820. [PMID: 32175983 PMCID: PMC7269018 DOI: 10.1097/meg.0000000000001712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the specific regulatory roles of microRNA-219-5p (miR-219-5p) on ulcerative colitis (UC), and reveal the potential mechanisms relating with the differentiation of Treg/Th17 cells. METHODS The mouse model of chronic UC was established by oral administration of 3% dextran sodium sulfate for three cycles. After intravenous injected with lentivirus (LV)-miR-219-5p for 24 h, the disease activity index (DAI), colon length, as well as the serum levels of Interleukin (IL)-6, -17A, -21, and -23 were measured. In addition, the histopathological changes in colon tissues were observed by Hematoxylin-eosin staining. The differentiation of Treg/Th17 cells was detected by Flow cytometry, and the expression of retinoic acid-related orphan receptor (RORrt), signal transducer and activator of transcription 3 (STAT3), and forkhead box p3 (Foxp3) were detected by quantitative real-time PCR and Western blot. RESULTS MiR-219-5p was downregulated in colonic mucosal tissues of UC mice (P < 0.05). UC mice injected with LV-miR-219-5p exhibited significantly relieved histopathological changes of colon tissues, increased colon length, decreased DAI, as well as decreased serum levels of IL-6, -17A, -21, and -23 (P < 0.05). In addition, the injection of LV-miR-219-5p significantly increased the percentage of Treg cells via upregulating Foxp3, and decreased the percentage of Th17 cells via downregulating RORrt and STAT3 in UC mice (P < 0.05). CONCLUSION The upregulation of miR-219-5p relieved the colonic damage and inflammation of UC through balancing the differentiation of Treg/Th17 cells.
Collapse
|
40
|
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, Eltzschig HK. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev 2020; 72:639-667. [PMID: 32554488 PMCID: PMC7300323 DOI: 10.1124/pr.119.019026] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and organ injury-such as that occurring in the perioperative period, including acute lung injury, myocardial infarction, and acute gut injury-are among the leading causes of death in the United States and impose a significant impact on quality of life. MicroRNAs (miRNAs) have been studied extensively during the last two decades for their role as regulators of gene expression, their translational application as diagnostic markers, and their potential as therapeutic targets for disease treatment. Despite promising preclinical outcomes implicating miRNA targets in disease treatment, only a few miRNAs have reached clinical trials. This likely relates to difficulties in the delivery of miRNA drugs to their targets to achieve efficient inhibition or overexpression. Therefore, understanding how to efficiently deliver miRNAs into diseased tissues and specific cell types in patients is critical. This review summarizes current knowledge on various approaches to deliver therapeutic miRNAs or miRNA inhibitors and highlights current progress in miRNA-based disease therapy that has reached clinical trials. Based on ongoing advances in miRNA delivery, we believe that additional therapeutic approaches to modulate miRNA function will soon enter routine medical treatment of human disease, particularly for cancer or perioperative organ injury. SIGNIFICANCE STATEMENT: MicroRNAs have been studied extensively during the last two decades in cancer and organ injury, including acute lung injury, myocardial infarction, and acute gut injury, for their regulation of gene expression, application as diagnostic markers, and therapeutic potentials. In this review, we specifically emphasize the pros and cons of different delivery approaches to modulate microRNAs, as well as the most recent exciting progress in the field of therapeutic targeting of microRNAs for disease treatment in patients.
Collapse
Affiliation(s)
- Tae Jin Lee
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaoyi Yuan
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Keith Kerr
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
41
|
Liu R, Shen L, Lin C, He J, Wang Q, Qi Z, Zhang Q, Zhou M, Wang Z. MiR-1587 Regulates DNA Damage Repair and the Radiosensitivity of CRC Cells via Targeting LIG4. Dose Response 2020; 18:1559325820936906. [PMID: 32636722 PMCID: PMC7315685 DOI: 10.1177/1559325820936906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
DNA is subject to a range of endogenous and exogenous insults that can impair DNA replication and lead to DNA double-strand breaks (DSBs). The repair capacity of cancer cells mediates their radiosensitivity, but the roles of miR-1587 during radiation resistance are poorly characterized. In this study, we explored whether miR-1587 regulates the growth and radiosensitivity of colorectal cancer (CRC) cells through its ability to regulate DNA Ligase4 (LIG4). We found that CRC cells in which miR-1587 was overexpressed inhibited cell growth and promoted apoptosis through increasing DSBs and promoting cell cycle arrest. We found that overexpression of miR-1587 significantly inhibited LIG4 messenger RNA and protein expression and further revealed the ability of miR-1587 to directly bind to the LIG4-3′-untranslated region through dual-luciferase reporter assays. More notably, miR-1587 mimics increased the radiosensitivity of CRC cells. Taken together, we show that miR-1587 overexpression enhances the formation of DSBs, arrests CRC cell growth, and enhances the radiosensivity of CRC cells through the direct repression of LIG4 expression. These results reveal novel roles for miR-1587 during DNA damage repair and the radiosensivity of CRC cells. This highlights miR-1587 as a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.,Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Chuxian Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Junyan He
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qingtong Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, People's Republic of China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
42
|
Chao L, Li Z, Zhou J, Chen W, Li Y, Lv W, Guo A, Qu Q, Guo S. Shen-Ling-Bai-Zhu-San Improves Dextran Sodium Sulfate-Induced Colitis by Inhibiting Caspase-1/Caspase-11-Mediated Pyroptosis. Front Pharmacol 2020; 11:814. [PMID: 32547403 PMCID: PMC7273825 DOI: 10.3389/fphar.2020.00814] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
The traditional Chinese medicine Shen-ling-bai-zhu-san (SLBZS) is described in “Tai Ping Hui Min He Ji Ju Fang.” SLBZS has been shown to be effective against many gastrointestinal diseases. The present study aimed to investigate the effect of SLBZS on experimental colitis in mice and to define the potential mechanisms. Our data suggest that compared to the model group, SLBZS treatment increases mouse body weight and colon length, decreases the DAI score, and improves colonic injury. SLBZS reduces the production of cytokines (IL-1β, IL-18, and TNF-α) in colon tissue and mouse colonic mucosal epithelial (MCME) cells. Mechanistically, SLBZS inhibits inflammation by inhibiting the MAPK and NF-κB signaling pathways. Further mechanistic analyses showed that SLBZS attenuates the expression levels of pyroptosis-related genes, including NLRP3, ASC, and GSDMD-N in the colons of mice. In addition, SLBZS restores the levels of the colon tight junction proteins ZO-1 and occludin, suggesting that it protects colonic barrier integrity and ameliorates the progression of colitis. In this paper, we demonstrate that SLBZS attenuates DSS-induced ulcerative colitis injury in mice via the MAPK/NF-κB and pyroptosis signaling pathway. These results indicate that SLBZS is a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Limin Chao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zengquan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenqian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuefei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ao Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Chen W, Zhang YN, Jia QQ, Ji A, Shao SX, Zhang L, Gong M, Yin Q, Huang XL. MicroRNA-214 protects L6 skeletal myoblasts against hydrogen peroxide-induced apoptosis. Free Radic Res 2020; 54:162-172. [PMID: 32131653 DOI: 10.1080/10715762.2020.1730828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have been reported as key gene regulators, and they control many fundamental biological processes. Previously, we demonstrated that miR-214 had a protective effect against myocardial apoptosis and myocardial fibrosis. In this study, we sought to investigate the expression of miR-214 in L6 skeletal myoblast (SKM), the regulatory effect of miR-214 on hydrogen peroxide (H2O2) induced cell apoptosis and the underlying mechanisms of the antiapoptotic effect. MiR-214 expression was up-regulated by H2O2 in a dose and time-dependent manner in L6 SKMs. To investigate the regulatory effects of miR-214 on L6 SKM, both gain-of-function and loss-of-function approaches were applied. The results showed that miR-214 improved cell survival and inhibited cell apoptosis, and blockage of miR-214 abrogated the protective effect on cell survival and resistance to apoptosis. Phosphatase and tensin homolog (PTEN) was negatively regulated by miR-214, and PTEN inhibitor obviously reversed the effect of miR-214 blockage on enhancing cell apoptosis. In addition, miR-214 up-regulated antiapoptotic protein Bcl-2, down-regulated proapoptotic protein Bax, prevented release of cytochrome c and inhibited caspase-3 activation. In summary, H2O2-induced injury increases miR-214 expression in L6 SKM, and miR-214 contributes to the protection of L6 SKM against apoptosis via lowering PTEN and subsequently inhibiting the mitochondrial-mediated caspase-dependent apoptotic signaling pathway.
Collapse
Affiliation(s)
- Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ya-Nan Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong-Qiong Jia
- Department of Emergency, People's Hospital of Zhengding, Shijiazhuang, Hebei, China
| | - An Ji
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Su-Xia Shao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Miao Gong
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Yin
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin-Li Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
44
|
Qin Z, Wang PY, Wan JJ, Zhang Y, Wei J, Sun Y, Liu X. MicroRNA124-IL6R Mediates the Effect of Nicotine in Inflammatory Bowel Disease by Shifting Th1/Th2 Balance Toward Th1. Front Immunol 2020; 11:235. [PMID: 32153570 PMCID: PMC7050625 DOI: 10.3389/fimmu.2020.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Epidemiological investigations have shown that smoking ameliorates ulcerative colitis (UC) but exacerbates Crohn's disease (CD), diseases that feature a Th2-mediated and Th1-mediated response, respectively. Cigarette extracts, especially nicotine, affect the Th1/Th2 balance. We previously reported that nicotine protects against mouse DSS colitis (similar to UC) by enhancing microRNA-124 (miR-124) expression. Intriguingly, elevation of miR-124 in CD is reported to aggravate the disease. Here we investigate the dual regulation of miR-124 in inflammatory bowel diseases (IBDs), which may explain the similar bidirectional regulation of tobacco. We found that overexpressed miR-124 protected against mouse DSS-induced colitis with a Th1 polarization in peripheral blood lymphocytes and colon tissues, which was also found in human peripheral blood lymphocytes. Conversely, miR-124 knockdown worsened DSS murine colitis with a Th2 polarization. Moreover, knockdown of miR-124 could eliminate the polarization toward Th1 after nicotine treatment, suggesting that miR-124 mediates the effect of nicotine on the Th1/Th2 balance. In addition, interference of IL-6R, which is a downstream target of miR-124, could remarkably weaken the Th1 polarization induced by miR-124. Taken together, these results suggest that nicotine shifts the balance of Th1/Th2 toward Th1 via a miR-124-mediated IL-6R pathway, which might explain its dual role in IBDs.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Wang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jie Wei
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
45
|
Extracellular Vesicles with Possible Roles in Gut Intestinal Tract Homeostasis and IBD. Mediators Inflamm 2020; 2020:1945832. [PMID: 32410847 PMCID: PMC7201673 DOI: 10.1155/2020/1945832] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
The intestinal tract consists of various types of cells, such as epithelial cells, Paneth cells, macrophages, and lymphocytes, which constitute the intestinal immune system and play a significant role in maintaining intestinal homeostasis by producing antimicrobial materials and controlling the host-commensal balance. Various studies have found that the dysfunction of intestinal homeostasis contributes to the pathogenesis of inflammatory bowel disease (IBD). As a novel mediator, extracellular vesicles (EVs) have been recognized as effective communicators, not only between cells but also between cells and the organism. In recent years, EVs have been regarded as vital characters for dysregulated homeostasis and IBD in either the etiology or the pathology of intestinal inflammation. Here, we review recent studies on EVs associated with intestinal homeostasis and IBD and discuss their source, cargo, and origin, as well as their therapeutic effects on IBD, which mainly include artificial nanoparticles and EVs derived from microorganisms.
Collapse
|
46
|
Lee KH, Ahn BS, Cha D, Jang WW, Choi E, Park S, Park JH, Oh J, Jung DE, Park H, Park JH, Suh Y, Jin D, Lee S, Jang YH, Yoon T, Park MK, Seong Y, Pyo J, Yang S, Kwon Y, Jung H, Lim CK, Hong JB, Park Y, Choi E, Shin JI, Kronbichler A. Understanding the immunopathogenesis of autoimmune diseases by animal studies using gene modulation: A comprehensive review. Autoimmun Rev 2020; 19:102469. [PMID: 31918027 DOI: 10.1016/j.autrev.2020.102469] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
Autoimmune diseases are clinical syndromes that result from pathogenic inflammatory responses driven by inadequate immune activation by T- and B-cells. Although the exact mechanisms of autoimmune diseases are still elusive, genetic factors also play an important role in the pathogenesis. Recently, with the advancement of understanding of the immunological and molecular basis of autoimmune diseases, gene modulation has become a potential approach for the tailored treatment of autoimmune disorders. Gene modulation can be applied to regulate the levels of interleukins (IL), tumor necrosis factor (TNF), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), interferon-γ and other inflammatory cytokines by inhibiting these cytokine expressions using short interfering ribonucleic acid (siRNA) or by inhibiting cytokine signaling using small molecules. In addition, gene modulation delivering anti-inflammatory cytokines or cytokine antagonists showed effectiveness in regulating autoimmunity. In this review, we summarize the potential target genes for gene or immunomodulation in autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel diseases (IBD) and multiple sclerosis (MS). This article will give a new perspective on understanding immunopathogenesis of autoimmune diseases not only in animals but also in human. Emerging approaches to investigate cytokine regulation through gene modulation may be a potential approach for the tailored immunomodulation of some autoimmune diseases near in the future.
Collapse
Affiliation(s)
- Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Soo Ahn
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dohyeon Cha
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Woo Jang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eugene Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Hyeong Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junseok Oh
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Eun Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heeryun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Ha Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngsong Suh
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongwan Jin
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Siyeon Lee
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Hwan Jang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tehwook Yoon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyu Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonje Seong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihoon Pyo
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunmo Yang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngin Kwon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjean Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae Kwang Lim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Beom Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeoeun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunjin Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Verdier J, Breunig IR, Ohse MC, Roubrocks S, Kleinfeld S, Roy S, Streetz K, Trautwein C, Roderburg C, Sellge G. Faecal Micro-RNAs in Inflammatory Bowel Diseases. J Crohns Colitis 2020; 14:110-117. [PMID: 31209454 DOI: 10.1093/ecco-jcc/jjz120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Faecal biomarkers are used as indicators of disease activity in inflammatory bowel diseases [IBD], which include Crohn's disease [CD] and ulcerative colitis [UC]. Micro-RNAs [miRNAs] are small non-coding RNAs detectable in extracellular fluids and can be used as clinical biomarkers. The aim of this study was to determine if faecal miRNA composition is altered in IBD. METHODS More than 800 different human faecal miRNAs were measured in stool samples from control individuals and patients with active CD by using NanoString technology. Selected miRNAs were quantified by qRT-PCR in faeces, serum and intestinal tissue of controls [n = 23] and patients with inactive or active CD [n = 22, n = 22] or UC [n = 11, n = 24] as well as patients with Clostridium difficile infection [CDI, n = 8]. RESULTS In total, 150 miRNAs were significantly detected in faeces from controls and patients, and multivariate analyses showed that CD patients with high disease activities had a distinct miRNA profile and that miR-223 and miR-1246 were distinct from other faecal miRNAs. In a larger cohort, active UC patients displayed significantly higher levels of miR-223 and miR-1246 than controls while patients with CDI had higher levels of faecal miR-1246 but not miR-223. No differences were noted in serum samples. CONCLUSIONS To our knowledge, this is the first comprehensive screen of faecal miRNAs performed in IBD. Further investigation will aim to confirm these findings in a larger cohort and to understand the biological function and cellular sources of faecal miRNAs.
Collapse
Affiliation(s)
- Julien Verdier
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,INSERM, Sorbonne Universités, UPMC Univ Paris, AIM-Institute of Myology, Paris, France
| | | | - Margarete Clara Ohse
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Silvia Roubrocks
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sandra Kleinfeld
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sanchari Roy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
48
|
Li R, Zhao K, Ruan Q, Meng C, Yin F. The transcription factor Foxd3 induces spinal cord ischemia-reperfusion injury by potentiating microRNA-214-dependent inhibition of Kcnk2. Exp Mol Med 2020; 52:118-129. [PMID: 31959866 PMCID: PMC7000395 DOI: 10.1038/s12276-019-0370-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 11/14/2022] Open
Abstract
Spinal cord injury after surgical repair of the thoracic or thoracoabdominal aorta is a devastating complication that is associated with pathological changes, including inflammation, edema, and nerve cell damage. Recently, microRNA (miRNA)-modulated control of spinal cord injury has been actively investigated. This study aims to clarify the regulatory effect of miR-214-mediated inhibition of Kcnk2 following spinal cord ischemia-reperfusion injury (SCII) and the possible underlying mechanisms. SCII was induced in rats by occluding the aortic arch followed by reperfusion. Gain-of-function and loss-of-function experiments were conducted to explore the modulatory effects of Foxd3, miR-214 and Kcnk2 on PC12 cells under hypoxia/reoxygenation (H/R) conditions. MiR-214 and Kcnk2 were poorly expressed, while Foxd3 was highly expressed in the rat spinal cord tissues and H/R-treated PC12 cells. Kcnk2 overexpression enhanced the viability and inhibited the apoptosis of the H/R-treated PC12 cells. Notably, Foxd3 activated miR-214, and miR-214 targeted Kcnk2. In addition, upregulation of Kcnk2 or knockdown of Foxd3 promoted the cell viability and reduced the apoptosis of the H/R-treated PC12 cells. Overall, our study identified a novel mechanism of Foxd3/miR-214/Kcnk2 involving SCII, suggesting that either Foxd3 or miR-214 may be a novel target for the treatment of SCII.
Collapse
Affiliation(s)
- Ran Li
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China
| | - Kunchi Zhao
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China
| | - Qing Ruan
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, P.R. China.
| |
Collapse
|
49
|
Matsuyama H, Suzuki HI. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int J Mol Sci 2019; 21:E132. [PMID: 31878193 PMCID: PMC6981965 DOI: 10.3390/ijms21010132] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 22-nucleotide-long, small non-coding RNAs that post-transcriptionally regulate gene expression. The biogenesis of miRNAs involves multiple steps, including the transcription of primary miRNAs (pri-miRNAs), nuclear Drosha-mediated processing, cytoplasmic Dicer-mediated processing, and loading onto Argonaute (Ago) proteins. Further, miRNAs control diverse biological and pathological processes via the silencing of target mRNAs. This review summarizes recent findings regarding the quantitative aspects of miRNA homeostasis, including Drosha-mediated pri-miRNA processing, Ago-mediated asymmetric miRNA strand selection, and modifications of miRNA pathway components, as well as the roles of RNA modifications (epitranscriptomics), epigenetics, transcription factor circuits, and super-enhancers in miRNA regulation. These recent advances have facilitated a system-level understanding of miRNA networks, as well as the improvement of RNAi performance for both gene-specific targeting and genome-wide screening. The comprehensive understanding and modeling of miRNA biogenesis and function have been applied to the design of synthetic gene circuits. In addition, the relationships between miRNA genes and super-enhancers provide the molecular basis for the highly biased cell type-specific expression patterns of miRNAs and the evolution of miRNA-target connections, while highlighting the importance of alterations of super-enhancer-associated miRNAs in a variety of human diseases.
Collapse
Affiliation(s)
- Hironori Matsuyama
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., 1-11-1 Karasaki, Otsu-shi, Shiga 520-0106, Japan;
| | - Hiroshi I. Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Lu X, Yu Y, Tan S. The role of the miR-21-5p-mediated inflammatory pathway in ulcerative colitis. Exp Ther Med 2019; 19:981-989. [PMID: 32010260 PMCID: PMC6966149 DOI: 10.3892/etm.2019.8277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC), a major type of inflammatory bowel disease, is also a chronic non-specific intestinal inflammation condition of unknown etiology. The pathogenesis of UC is closely associated with immune abnormalities, inflammatory damage and genetics. The present study aimed to explore the effects of microRNA (miR)-21-5p on the interleukin-6 (IL-6) receptor (IL6R)/signal transducer and activator of transcription (STAT3) signal pathway in UC, in order to identify a highly effective treatment for UC. A total of 45 patients with UC and 45 healthy controls were recruited for the present study. The expression levels of miR-21-5p and STAT3 in the sera of patients with UC and healthy controls were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A UC rat model was established using dextran sulfate sodium. Following lipopolysaccharide (LPS) treatment, RAW264.7 cells were transfected with a miR-21-5p inhibitor. The levels of morphological damage and apoptosis of the colonic mucosal epithelial tissue were investigated using hematoxylin and eosin staining and a TUNEL staining assay, and then the colon macroscopic damage index and disease activity index were measured in rats. Western blot analysis was used to detect the protein expression levels of IL6R, STAT3, intracellular adhesion molecule 1 (ICAM-1), NF-κB, cleaved caspase-3, cleaved caspase-9 and Fas ligand (FasL). RT-qPCR detected the mRNA expression levels of miR-21-5p, IL6R, STAT3, ICAM-1, NF-κB, caspase-3, caspase-9 and FasL. An ELISA was performed to measure the levels of inflammatory cytokines. The viability and apoptosis levels of RAW264.7 cells were examined using MTT and flow cytometry assays. Additionally, STAT3 was investigated as a direct target of miR-21-5p in RAW264.7 cells using a dual-luciferase reporter assay. The results of the present study demonstrated that inflammation and apoptotic markers were revealed to be significantly downregulated following transfection with miR-21-5p inhibitors in RAW264.7 cells induced by LPS, and that cell viability was increased. Furthermore, STAT3 was confirmed to be a target of miR-21-5p in RAW264.7 cells. Collectively, these data demonstrated that miR-21-5p inhibition mediated the IL-6/STAT3 pathway in UC rats to decrease the levels of inflammation and apoptosis in RAW264.7 cells, and suggested that miR-21-5p may be an important therapy target in human UC.
Collapse
Affiliation(s)
- Xiaohong Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei 430060, P.R. China
| | - Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei 430060, P.R. China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|