1
|
Huang YP, Shi JY, Luo XT, Luo SC, Cheung PCK, Corke H, Yang QQ, Zhang BB. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit Rev Biotechnol 2025; 45:80-96. [PMID: 38710624 DOI: 10.1080/07388551.2024.2336531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Xin-Tao Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, P.R. China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, P.R. China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| |
Collapse
|
2
|
Kildegaard H, Bliddal M, Ernst MT, Sander SD, Wesselhoeft R, Gingrich JA, Pottegård A, Margolis KG, Talati A. Prenatal exposure to selective serotonin reuptake inhibitors and risk of disorders of gut-brain interaction in children. Mol Psychiatry 2024:10.1038/s41380-024-02848-3. [PMID: 39658704 DOI: 10.1038/s41380-024-02848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Preclinical data suggest that gestational exposure to selective serotonin reuptake inhibitors (SSRI) alter gut innervation, and delays colonic motility. In this study we investigated associations between gestational SSRI exposure and offspring disorders of gut-brain interaction (DGBI). Using population-based registries, we included all single-birth Danish children born 1997-2015 with follow-up until outcome occurrence, age 15 years, death, emigration, or December 2018. Children to mothers who continued SSRIs during pregnancy and children to mothers who discontinued SSRI use before pregnancy were compared using Cox regression. Main outcomes were the first diagnosis of a childhood DGBI (functional nausea and vomiting, functional abdominal pain disorders, functional diarrhea, and functional constipation), or a physician-prescribed laxative. Among 1,158,560 children, 21,969 children (1.9%) were exposed to SSRIs prenatally and 30,174 children (2.6%) were born to mothers who discontinued SSRIs before pregnancy. Overall, the estimated 15-year cumulative incidence of any DGBI was 15.5% (95% CI, 14.9-16.2) in the SSRI-exposed group and 14.7% (14.0-15.3) in the unexposed group. SSRI-exposed children had an overall increased risk of DGBIs (HR 1.08, [1.02-1.14]), which was driven by functional constipation (HR 1.19, [1.10-1.28]) rather than functional nausea and vomiting (HR 0.97, [0.83-1.13]) or functional abdominal pain disorders (HR 0.90, [0.81-1.00]). These data suggest that prenatal SSRI exposure is associated with an increased risk of developing functional constipation. These findings are also consistent with extensive preclinical data supporting key roles for serotonin in gut development and function. Together findings support the need for further investigation of the long-term impact of maternal depression and SSRI exposure on development of common gastrointestinal disorders.
Collapse
Affiliation(s)
- Helene Kildegaard
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mette Bliddal
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin Thomsen Ernst
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Stine D Sander
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Rikke Wesselhoeft
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Child and Adolescent Mental Health Southern Denmark, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Jay A Gingrich
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Anton Pottegård
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kara G Margolis
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Ardesheer Talati
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
3
|
Yang W, Gao X, Lin J, Liu L, Peng L, Sheng J, Xu K, Tian Y. Water-insoluble dietary fiber from walnut relieves constipation through Limosilactobacillus reuteri-mediated serotonergic synapse and neuroactive ligand-receptor pathways. Int J Biol Macromol 2024; 283:137931. [PMID: 39579820 DOI: 10.1016/j.ijbiomac.2024.137931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Dietary fiber can alleviate functional constipation (FC) by modulating the gut microbiota. To clarify the prebiotic properties of walnut insoluble dietary fiber (WIDF), we explored its structural characteristics and laxative mechanism. A galacturonic acid and glucose-rich WIDF was isolated from walnuts by using a complex enzymatic method. Animal experiments results showed that WIDF could effectively alleviate the symptoms of loperamide-induced FC in mice, including shortening the defecation time, increasing the wet weight and water content of feces, and promoting intestinal motility. WIDF might alleviate FC through activating serotonergic synapse and inhibiting the delta-opioid receptor/inducible nitric oxide synthase (Oprd/iNOS) pathways. Importantly, WIDF treatment altered the structure and composition of the gut microbiota. Correlation analysis revealed that Bacillus and its dominant ASV17, which is considered to be the key microbe for constipation alleviation, were strongly associated with constipation phenotypes. Based on pure culture and 16S rRNA gene phylogenetic analysis, Limosilactobacillus reuteri (L. reuteri), which is 100 % similar to ASV17, was isolated and identified from the feces of WIDF-treated mice. L. reuteri relieved FC by modulating serotonergic synapse and the Oprd/iNOS pathways. These results suggested that WIDF and L. reuteri treatment is a prospective strategy for the prevention of constipation.
Collapse
Affiliation(s)
- Weixing Yang
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jialong Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Kunlong Xu
- Yunnan Agricultural University, Kunming 650201, China.
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Pu 'er University, Pu 'er 665000, China.
| |
Collapse
|
4
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator? Crit Rev Food Sci Nutr 2024; 64:11575-11589. [PMID: 37526310 DOI: 10.1080/10408398.2023.2241078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Various roles of intestinal flora in the gut-brain axis response pathway have received enormous attention because of their unique position in intestinal flora-derived metabolites regulating hormones, inducing appetite, and modulating energy metabolism. Reward pathways in the brain play a crucial role in gut-brain communications, but the mechanisms have not been methodically understood. This review outlined the mechanisms by which leptin, ghrelin, and insulin are influenced by intestinal flora-derived metabolites to regulate appetite and body weight, focused on the significance of the paraventricular nucleus and ventromedial prefrontal cortex in food reward. The vagus nerve and mitochondria are essential pathways of the intestinal flora involved in the modulation of neurotransmitters, neural signaling, and neurotransmission in gut-brain communications. The dynamic response to nutrient intake and changes in the characteristics of feeding activity requires the participation of the vagus nerve to transmit messages to be completed. SCFAs, Bas, BCAAs, and induced hormones mediate the sensory information and reward signaling of the host in the complex regulatory mechanism of food selection, and the composition of the intestinal flora significantly impacts this process. Food reward in the process of obesity based on gut-brain communications expands new ideas for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
7
|
Su M, Wang S, Cheng O, Xie K, Peng J, Du X, Huang L, Feng T. Constipation is associated with emotional and cognitive impairment in patients with Parkinson's disease: A clinical and brain functional study. Neuroscience 2024; 559:17-25. [PMID: 39168174 DOI: 10.1016/j.neuroscience.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/21/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Constipation frequently occurs in patients with Parkinson's disease (PD) and may be related to cognitive and emotional disorders. The aim of this study is to investigate the clinical and brain functional characteristics of patients with PD presenting with constipation. METHODS The motor and non-motor symptoms of patients with PD were evaluated, and a resting-state functional magnetic resonance imaging (RS-fMRI) study was conducted based on propensity score matching. Alterations in brain function were analyzed using regional homogeneity (ReHo) and functional connectivity (FC). RESULTS Compared with patients without constipation (PD-NC group), patients with constipation (PD-C group) had more serious motor and non-motor symptoms (including cognitive and emotional disorders along with visual hallucinations). Further, emotional and cognitive disorders were correlated with the occurrence of constipation in patients with PD. Compared with the PD-NC group, the PD-C group showed a reduced ReHo of the right insula and bilateral orbitofrontal cortex (OFC), increased ReHo of the left postcentral gyrus, and enhanced FC between the right OFC and the left middle temporal gyrus (MTG) and middle occipital gyrus (MOG). Additionally, the activity of the OFC and insula was significantly correlated with the constipation, mood, and cognitive levels of patients with PD. CONCLUSIONS Constipation in patients with PD is closely related to emotional and cognitive impairments, abnormal activity and FC of brain regions such as the right insula and bilateral OFC may play an important role in this.
Collapse
Affiliation(s)
- Meilan Su
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Wang
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Kai Xie
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyi Du
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
He Z, Yu Q, He B, Liu J, Gao W, Chen X. Can depression lead to chronic constipation, or does chronic constipation worsen depression? NHANES 2005-2010 and bidirectional mendelian randomization analyses. BMC Gastroenterol 2024; 24:361. [PMID: 39390366 PMCID: PMC11468412 DOI: 10.1186/s12876-024-03454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Depression and chronic constipation often co-occur, but the reciprocal influence between the two remains unclear. The purpose of this study is to explore the potential association between depression and chronic constipation. METHODS This study initially utilized data from National Health and Nutrition Examination Survey (NHANES) 2005-2010 to explore the correlation between depression scores and chronic constipation, assessing the non-linear relationship between the two. Subsequently, we conducted a two-sample Mendelian randomization (MR) analysis to evaluate the causal relationship between depression and major depression with chronic constipation. The Inverse Variance Weighting (IVW) method served as the primary reference, supplemented by sensitivity tests. Finally, a reverse MR analysis was performed to assess the presence of any reverse causation. The STROBE-MR checklist for the reporting of MR studies was used in this study. RESULTS In the NHANES analysis, survey-weighted logistic regression revealed a significantly positive correlation between depression scores and chronic constipation (OR = 1.04, 95% CI = 1.02-1.07, p = 0.002), even after adjusting for the included covariates. The nonlinear analysis using Restricted Cubic Splines (RCS) enhanced the robustness of the association (P-non-liner = 0.01). The MR analysis also confirmed the causal relationship between depression (OR = 11.43, 95% CI = 1.85-70.67, p = 0.008) and major depression (OR = 1.12, 95% CI = 1.03-1.22, p = 0.007) with chronic constipation, passing rigorous sensitivity tests. No evidence of reverse causation was observed in the reverse MR analysis (P > 0.05). CONCLUSIONS Depression is positively correlated with the risk of chronic constipation. Therefore, enhancing attention to chronic constipation in patients with depression may be effective in clinical practice.
Collapse
Affiliation(s)
- ZhiGuo He
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China
| | - QianLe Yu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China
| | - Bin He
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China
| | - JieFeng Liu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China
| | - WenBin Gao
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China.
| | - Xiong Chen
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China.
| |
Collapse
|
9
|
Li S, Li Y, Cai Y, Yan Z, Wei J, Zhang H, Yue F, Chen T. Lacticaseibacillus paracasei NCU-04 relieves constipation and the depressive-like behaviors induced by loperamide in mice through the microbiome-gut-brain axis. Curr Res Food Sci 2024; 9:100875. [PMID: 39429918 PMCID: PMC11490870 DOI: 10.1016/j.crfs.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Constipation is a prevalent gastrointestinal condition that significantly affects patients' physical and mental well-being, yet current treatments often lack safety and efficacy. Emerging evidence highlights the critical role of the microbiota-gut-brain axis (MBGA) in managing constipation, paving the way for probiotics as an adjuvant treatment to improve constipation symptoms. In this study, we isolated a gut probiotic strain, Lacticaseibacillus paracasei NCU-04, and investigated its improvement effects on loperamide-induced constipation in mice. We demonstrated that L. paracasei NCU-04 exhibited excellent probiotic properties, including robust growth, strong antibacterial and antioxidant capacities, and a lack of hemolytic activity in vitro. The administration of L. paracasei NCU-04 effectively improved the defecation-related indicators such as the fecal water content, time to the first black stool defecation, and intestine transit rate, suggesting enhanced gut immobility in constipated mice. Additionally, L. paracasei NCU-04 significantly reduced colon inflammation induced by loperamide. Further, L. paracasei NCU-04 increased levels of colonic motilin, 5-hydroxytryptamine (5-HT), and c-kit, while decreased that of aquaporin 3, vasoactive intestinal peptide, and peptide YY. Notably, L. paracasei NCU-04 effectively upregulated the expression of 5-HT and its receptor (i.e., 5-HT4R) in the brains of constipated mice. High-throughput sequencing revealed that L. paracasei NCU-04 restored the diversity and composition of the gut microbiota disturbed by loperamide, and significantly increased the relative abundance of Prevotella and Lactobacillus genera in the stool, while decreased that of Odoribacter, Rikenella, and Parabacteroides. Importantly, L. paracasei NCU-04 also effectively improved the depression-like behaviors associated with constipation, possibly through 5-HT mediated MGBA. These results suggest that L. paracasei NCU-04 may offer a promising approach for treating constipation and its related depressive symptoms, supporting its potential as a functional food or adjuvant therapy for human health.
Collapse
Affiliation(s)
- Shengjie Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yi Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yujie Cai
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zizhou Yan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fenfang Yue
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tingtao Chen
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
10
|
Wang L, Tian M, Sun H, Gao J, Qi W, Xu J, An Y, Xu W. Association between bowel movement disorders and depressive symptoms: a cross-sectional study. Front Psychiatry 2024; 15:1449948. [PMID: 39355376 PMCID: PMC11442234 DOI: 10.3389/fpsyt.2024.1449948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Objectives This study aimed to explore the association between bowel movement disorders and depression in adults. Method A cross-sectional study was conducted using data from the National Health and Nutritional Examination Survey (NHANES), 2005-2010. Depression, constipation, diarrhea, and fecal incontinence were self-reported via questionnaires. Weighted logistic regression and subgroup analyses were performed to explore the association between bowel movement disorders and the risk of depression. Restricted cubic spline (RCS) was also conducted to investigate the association between bowel movements disorder and depression. Results A total of 13,820 participants were collected. Compared to the participants with normal bowel movements, the full-adjusted depression model ORs for constipation and diarrhea were 2.28 (95%CI,1.78-2.92), 1.75 (95%CI,1.31-2.31), respectively. Any kind of bowel leakage were associated with depression. The RCS showed the possible nonlinear association between bowel movement frequency/stool shape and depression. Conclusions Constipation, diarrhea, and bowel leakage are associated with an increased risk of depression.
Collapse
Affiliation(s)
- Linyue Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Anorectal Surgery Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Maosheng Tian
- Anorectal Surgery Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongyuan Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Anorectal Surgery Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jihua Gao
- Anorectal Surgery Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenyue Qi
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jiancheng Xu
- Anorectal Surgery Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yongkang An
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wencong Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Anorectal Surgery Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
11
|
Alatan H, Liang S, Shimodaira Y, Wu X, Hu X, Wang T, Luo J, Iijima K, Jin F. Supplementation with Lactobacillus helveticus NS8 alleviated behavioral, neural, endocrine, and microbiota abnormalities in an endogenous rat model of depression. Front Immunol 2024; 15:1407620. [PMID: 39346901 PMCID: PMC11428200 DOI: 10.3389/fimmu.2024.1407620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Major depressive disorder is a condition involving microbiota-gut-brain axis dysfunction. Increasing research aims to improve depression through gut microbiota regulation, including interventions such as probiotics, prebiotics, and fecal microbiota transplants. However, most research focuses on exogenous depression induced by chronic stress or drugs, with less attention given to endogenous depression. Additionally, research on gut mycobiota in depression is significantly less than that on gut bacteria. Methods In the present study, Wistar-Kyoto rats were used as an endogenous depression and treatment-resistant depression model, while Wistar rats served as controls. Differences between the two rat strains in behavior, gut bacteria, gut mycobiota, nervous system, endocrine system, immune system, and gut barrier were evaluated. Additionally, the effects of Lactobacillus helveticus NS8 supplementation were investigated. Results Wistar-Kyoto rats demonstrated increased depressive-like behaviors in the forced swimming test, reduced sucrose preference in the sucrose preference test, and decreased locomotor activity in the open field test. They also exhibited abnormal gut bacteria and mycobiota, characterized by higher bacterial α-diversity but lower fungal α-diversity, along with increased butyrate, L-tyrosine, and L-phenylalanine biosynthesis from bacteria. Furthermore, these rats showed dysfunction in the microbiota-gut-brain axis, evidenced by a hypo-serotonergic system, hyper-noradrenergic system, defective hypothalamic-pituitary-adrenal axis, compromised gut barrier integrity, heightened serum inflammation, and diminished gut immunity. A 1-month L. helveticus NS8 intervention increased the fecal abundance of L. helveticus; reduced the abundance of Bilophila and Debaryomycetaceae; decreased immobility time but increased climbing time in the forced swimming test; reduced hippocampal corticotropin-releasing hormone levels; decreased hypothalamic norepinephrine levels; increased hippocampal glucocorticoid receptor, brain-derived neurotrophic factor dopamine, and 5-hydroxyindoleacetic acid content; and improved the gut microbiota, serotonergic, and noradrenergic system. Conclusion The depressive phenotype of Wistar-Kyoto rats is not only attributed to their genetic context but also closely related to their gut microbiota. Abnormal gut microbiota and a dysfunctional microbiota-gut-brain axis play important roles in endogenous depression, just as they do in exogenous depression. Supplementing with probiotics such as L. helveticus NS8 is likely a promising approach to improve endogenous depression and treatment-resistant depression.
Collapse
Affiliation(s)
- Husile Alatan
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shan Liang
- Mirai Food Academic Institute of Japan, Akita, Japan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yosuke Shimodaira
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jia Luo
- Psychology College, Sichuan Normal University, Chengdu, China
| | - Katsunori Iijima
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Feng Jin
- Mirai Food Academic Institute of Japan, Akita, Japan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Jiang ZM, Wang FF, Zhao YY, Lu LF, Jiang XY, Huang TQ, Lin Y, Guo L, Weng ZB, Liu EH. Hypericum perforatum L. attenuates depression by regulating Akkermansia muciniphila, tryptophan metabolism and NFκB-NLRP2-Caspase1-IL1β pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155847. [PMID: 38996505 DOI: 10.1016/j.phymed.2024.155847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1β pathway and increased proinflammatory IL1β in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1β pathway. CONCLUSIONS The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1β pathway, specifically by targeting AKK and tryptophan metabolites.
Collapse
Affiliation(s)
- Zheng-Meng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang-Fang Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin-Feng Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Yu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Long Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China.
| | - Ze-Bin Weng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - E-Hu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Zeng XL, Zhu LJ, Yang XD. Exploration of the complex origins of primary constipation. World J Clin Cases 2024; 12:5476-5482. [PMID: 39188609 PMCID: PMC11269998 DOI: 10.12998/wjcc.v12.i24.5476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Constipation is a common gastrointestinal disorder characterized by infrequent bowel movements and difficulty in passing stools. It can significantly affect an individual's quality of life and overall well-being. Understanding the causes of constipation is important for its effective management and treatment. In this paper, we have reviewed the primary causes of constipation or functional constipation. Primary constipation is a bowel disorder associated with colonic or anorectal sensorimotor or neuromuscular dysfunction. As per the literature, it is multifactorial and involves factors such as decreased interstitial cells of Cajal, altered colonic motility, enteric nervous system dysfunction, intestinal flora disturbances, and psychological influences. Clinical symptoms include difficulty in defecation, decreased frequency of defecation, or a feeling of incomplete evacuation. A comprehensive evaluation and management of constipation require an interdisciplinary approach incorporating dietary modifications, lifestyle changes, pharmacotherapy, and psychological interventions. Further research is imperative to explain the intricate mechanisms underlying constipation and develop targeted therapies for improved patient outcomes.
Collapse
Affiliation(s)
- Xing-Lin Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Lian-Jun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xiang-Dong Yang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu 610015, Sichuan Province, China
| |
Collapse
|
14
|
Wu S, Yuan G, Wu L, Zou L, Wu F. Identifying the association between depression and constipation: An observational study and Mendelian randomization analysis. J Affect Disord 2024; 359:394-402. [PMID: 38806066 DOI: 10.1016/j.jad.2024.05.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Both depression and constipation are universal disorders that seriously affect quality of life. But the phenotypic relationship and causality between depression and constipation are still unclear. METHODS We first assessed phenotypic relationships by logistic regression analysis using large-scale data extracted from the National Health and Nutrition Examination Survey (N = 11,585). We then evaluated causality by bidirectional two-sample mendelian randomization (MR) analysis using Genome-wide association study (GWAS) data (depression: N = 807,553; constipation: N = 377,277). To investigate whether depression severity affects the causal relationship between depression and constipation, we conducted a further MR study on GWAS data of major depression (N = 480,359). RESULTS About 11.31 % of the participants in the constipation group suffered from depression, which was significantly higher than the normal bowel group (6.09 %). The observational study showed a positive correlation between depression and constipation (OR = 1.968, 95%CI = 1.530-2.532). Besides, the risk of constipation was higher in participants with severe depression (OR = 2.294, 95%CI = 1.538-3.422) than in participants with mild depression (OR = 1.549, 95%CI = 1.242-1.932). Bidirectional MR analysis revealed an obviously causal effect of depression on constipation, but no causal effect of constipation on depression. In addition, the MR analysis also revealed a causal relationship between major depression and constipation. LIMITATION The exact mechanism by which depression affects constipation is still unclear. CONCLUSION This study reveals a positive correlation between depression and constipation and the causal effect of depression on constipation. Clinicians should keep the risk of constipation in mind when treating patients with depression.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Gastroenterology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, PR China
| | - Guojun Yuan
- Department of Gastroenterology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, PR China
| | - Linlin Wu
- Department of Psychosomatic diseases, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, PR China
| | - Long Zou
- Department of Gastroenterology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, PR China.
| | - Feixiang Wu
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, PR China.
| |
Collapse
|
15
|
Efimov AI, Hibberd TJ, Wang Y, Wu M, Zhang K, Ting K, Madhvapathy S, Lee MK, Kim J, Kang J, Riahi M, Zhang H, Travis L, Govier EJ, Yang L, Kelly N, Huang Y, Vázquez-Guardado A, Spencer NJ, Rogers JA. Remote optogenetic control of the enteric nervous system and brain-gut axis in freely-behaving mice enabled by a wireless, battery-free optoelectronic device. Biosens Bioelectron 2024; 258:116298. [PMID: 38701537 DOI: 10.1016/j.bios.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024]
Abstract
Wireless activation of the enteric nervous system (ENS) in freely moving animals with implantable optogenetic devices offers a unique and exciting opportunity to selectively control gastrointestinal (GI) transit in vivo, including the gut-brain axis. Programmed delivery of light to targeted locations in the GI-tract, however, poses many challenges not encountered within the central nervous system (CNS). We report here the development of a fully implantable, battery-free wireless device specifically designed for optogenetic control of the GI-tract, capable of generating sufficient light over large areas to robustly activate the ENS, potently inducing colonic motility ex vivo and increased propulsion in vivo. Use in in vivo studies reveals unique stimulation patterns that increase expulsion of colonic content, likely mediated in part by activation of an extrinsic brain-gut motor pathway, via pelvic nerves. This technology overcomes major limitations of conventional wireless optogenetic hardware designed for the CNS, providing targeted control of specific neurochemical classes of neurons in the ENS and brain-gut axis, for direct modulation of GI-transit and associated behaviours in freely moving animals.
Collapse
Affiliation(s)
- Andrew I Efimov
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Timothy J Hibberd
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mingzheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Kaiqing Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA; State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Kaila Ting
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Surabhi Madhvapathy
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Min-Kyu Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Center for Bionics of Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jiheon Kang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Mohammad Riahi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Emily J Govier
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Lianye Yang
- Department of Biomedical Engineering, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nigel Kelly
- Department of Biomedical Engineering, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Abraham Vázquez-Guardado
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA; Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA.
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
16
|
Chen SH, Wu HS, Jiang XF, Zhou C, Bian XR, He X, Li B, Dong YJ, Wang KG, Shen SH, Lv GY, Zhi YH. Bioinformatics and LC-QTOF-MS based discovery of pharmacodynamic and Q-markers of Pitongshu against functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118096. [PMID: 38537841 DOI: 10.1016/j.jep.2024.118096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pitongshu (PTS) is a clinically effective empirical formula for the treatment of FD. The efficacy and safety of PTS have been demonstrated in randomized, controlled, double-blind trials, but there is a lack of understanding of the systematic evaluation of the efficacy of PTS and its material basis. OBJECTIVE To investigate the efficacy of PTS in Functional dyspepsia (FD) mice and possible Q-markers. METHOD In this study, we used "irregular feeding + chronic unpredictable chronic stimulation" to establish a mice model of FD with hepatogastric disharmony. The efficacy of PTS was assessed from hair condition, behavioral, pain, gastrointestinal function, and serum 5-HT, GAS, MTL levels in mice by instillation of different doses of PTS. In addition, the composition of drugs in blood was analyzed by LC-QTOF-MS and potential Q-markers were selected by combining network pharmacology, molecular docking and actual content. RESULT Our study showed that different doses of PTS increased pain threshold and writhing latency, decreased the number of writhings, increased gastric emptying rate and small intestinal propulsion rate, decreased total acidity of gastric contents and gastric acid secretion, and increased serum levels of 5-HT, GAS, and MTL in mice to different degrees. Enrichment analysis showed that PTS may be anti-FD through multiple pathways such as Serotonergic synapse, thyroid hormone signaling pathway, cholinergic synapse, and dopaminergic synapse. In addition, potential active ingredient substances were explored by LC-QTOF-MS combined with bioinformatics. Combined with the actual contentselected six constituents, hesperidin, neohesperidin, naringin, paeoniflorin, magnolol and honokiol, possible as Q-markers. CONCLUSION PTS may exert its anti-FD effects through multi-component, multi-target and multi-pathway". Constituents, hesperidin, neohesperidin, naringin, paeoniflorin, magnolol and honokiol may be the Q-markers of its anti-FD effects.
Collapse
Affiliation(s)
- Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Han-Song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Xiao-Feng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Cong Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Xue-Ren Bian
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Kun-Gen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China; Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China.
| | - Shu-Hua Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China; Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China.
| | - Yi-Hui Zhi
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China; Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
17
|
Zhang Y, Wang Y. The dual roles of serotonin in antitumor immunity. Pharmacol Res 2024; 205:107255. [PMID: 38862071 DOI: 10.1016/j.phrs.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Research has shown that a significant portion of cancer patients experience depressive symptoms, often accompanied by neuroendocrine hormone imbalances. Depression is frequently associated with decreased levels of serotonin with the alternate name 5-hydroxytryptamine (5-HT), leading to the common use of selective serotonin reuptake inhibitors (SSRIs) as antidepressants. However, the role of serotonin in tumor regulation remains unclear, with its expression levels displaying varied effects across different types of tumors. Tumor initiation and progression are closely intertwined with the immune function of the human body. Neuroimmunity, as an interdisciplinary subject, has played a unique role in the study of the relationship between psychosocial factors and tumors and their mechanisms in recent years. This article offers a comprehensive review of serotonin's regulatory roles in tumor onset and progression, as well as its impacts on immune cells in the tumor microenvironment. The aim is to stimulate further interdisciplinary research and discover novel targets for tumor treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Wang X, Zhou J, Jiang T, Xu J. Deciphering the therapeutic potential of SheXiangXinTongNing: Interplay between gut microbiota and brain metabolomics in a CUMS mice model, with a focus on tryptophan metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155584. [PMID: 38704913 DOI: 10.1016/j.phymed.2024.155584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Depression, a prevalent and multifaceted mental disorder, has emerged as a significant public health concern due to its escalating prevalence and heightened risk of severe suicidality. Given its profound impact, the imperative for preventing and intervening in depression is paramount. Substantial evidence underscores intricate connections between depression and cardiovascular health. SheXiangXinTongNing (XTN), a recognized traditional Chinese medicine for treating Coronary Heart Disease (CHD), prompted our exploration into its antidepressant effects and underlying mechanisms. In this investigation, we assessed XTN's antidepressant potential using the chronic unpredictable mild stress (CUMS) mice model and behavioral tests. Employing network pharmacology, we delved into the intricate mechanisms at play. We characterized the microbial composition and function in CUMS mice, both with and without XTN treatment, utilizing 16S rRNA sequencing and metabolomics analysis. The joint analysis of these results via Cytoscape identified pivotal metabolic pathways. In the realm of network pharmacology, XTN administration exhibited antidepressant effects by modulating pathways such as IL-17, neuroactive ligand-receptor interaction, PI3K-Akt, cAMP, calcium, and dopamine synapse signaling pathways. Our findings revealed that XTN significantly mitigated depression-like symptoms and cognitive deficits in CUMS mice by inhibiting neuroinflammation and pyroptosis. Furthermore, 16S rRNA sequencing unveiled that XTN increased the alpha-diversity and beta-diversity of the gut microbiome in CUMS mice. Metabolomics analysis identified brain metabolites crucial for distinguishing between the CUMS and CUMS+XTN groups, with a focus on pathways like Tryptophan metabolism and Linoleic acid metabolism. Notably, specific bacterial families, including Alloprevotella, Helicobacter, Allobaculum, and Clostridia, exhibited robust co-occurring relationships with brain tryptophan metabolomics, hinting at the potential mediating role of gut microbiome alterations and metabolites in the efficacy of XTN treatment. In conclusion, our study unveils modifications in microbial compositions and metabolic functions may be pivotal in understanding the response to XTN treatment, offering novel insights into the mechanisms underpinning the efficacy of antidepressants.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225009, China
| | - Jiawei Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225009, China
| | - Tianlin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Rivet-Noor CR, Merchak AR, Render C, Gay NM, Beiter RM, Brown RM, Keeler A, Moreau GB, Li S, Olgun DG, Steigmeyer AD, Ofer R, Phan T, Vemuri K, Chen L, Mahoney KE, Shin JB, Malaker SA, Deppmann C, Verzi MP, Gaultier A. Stress-induced mucin 13 reductions drive intestinal microbiome shifts and despair behaviors. Brain Behav Immun 2024; 119:665-680. [PMID: 38579936 PMCID: PMC11187485 DOI: 10.1016/j.bbi.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024] Open
Abstract
Depression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition. This state of dysbiosis is known to feedback on depressive symptoms. While studies have demonstrated that targeted restoration of the microbiome can alleviate depressive-like symptoms in mice, translating these findings to human patients has proven challenging due to the complexity of the human microbiome. As such, there is an urgent need to identify factors upstream of microbial dysbiosis. Here we investigate the role of mucin 13 as an upstream mediator of microbiome composition changes in the context of stress. Using a model of chronic stress, we show that the glycocalyx protein, mucin 13, is selectively reduced after psychological stress exposure. We further demonstrate that the reduction of Muc13 is mediated by the Hnf4 transcription factor family. Finally, we determine that deleting Muc13 is sufficient to drive microbiome shifts and despair behaviors. These findings shed light on the mechanisms behind stress-induced microbial changes and reveal a novel regulator of mucin 13 expression.
Collapse
Affiliation(s)
- Courtney R Rivet-Noor
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA.
| | - Andrea R Merchak
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caroline Render
- Undergraduate Department of Global Studies, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - Naudia M Gay
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rebecca M Beiter
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ryan M Brown
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Austin Keeler
- Department of Biology, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - G Brett Moreau
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sihan Li
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Deniz G Olgun
- Undergraduate Department of Computer Science, University of Virginia School of Engineering and Applied Science, Charlottesville, VA 22904, USA; Undergraduate Department of Neuroscience Studies, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | | | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Tobey Phan
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Chris Deppmann
- Department of Biology, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Tan S, Santolaya JL, Wright TF, Liu Q, Fujikawa T, Chi S, Bergstrom CP, Lopez A, Chen Q, Vale G, McDonald JG, Schmidt A, Vo N, Kim J, Baniasadi H, Li L, Zhu G, He TC, Zhan X, Obata Y, Jin A, Jia D, Elmquist JK, Sifuentes-Dominguez L, Burstein E. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism. Nat Metab 2024; 6:1076-1091. [PMID: 38777856 DOI: 10.1038/s42255-024-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China.
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jacobo L Santolaya
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Freeney Wright
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Liu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sensen Chi
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Colin P Bergstrom
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam Lopez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Chen
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Goncalo Vale
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Schmidt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hamid Baniasadi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Li
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Gaohui Zhu
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, P. R. China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aishun Jin
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ezra Burstein
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Santonocito R, Paladino L, Vitale AM, D’Amico G, Zummo FP, Pirrotta P, Raccosta S, Manno M, Accomando S, D’Arpa F, Carini F, Barone R, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Caruso Bavisotto C. Nanovesicular Mediation of the Gut-Brain Axis by Probiotics: Insights into Irritable Bowel Syndrome. BIOLOGY 2024; 13:296. [PMID: 38785778 PMCID: PMC11117693 DOI: 10.3390/biology13050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Dysbiosis, influenced by poor diet or stress, is associated with various systemic diseases. Probiotic supplements are recognized for stabilizing gut microbiota and alleviating gastrointestinal issues, like irritable bowel syndrome (IBS). This study focused on the tryptophan pathways, which are important for the regulation of serotonin levels, and on host physiology and behavior regulation. METHODS Nanovesicles were isolated from the plasma of subjects with chronic diarrhea, both before and after 60 days of consuming a probiotic mix (Acronelle®, Bromatech S.r.l., Milan, Italy). These nanovesicles were assessed for the presence of Tryptophan 2,3-dioxygenase 2 (TDO 2). Furthermore, the probiotics mix, in combination with H2O2, was used to treat HT29 cells to explore its cytoprotective and anti-stress effect. RESULTS In vivo, levels of TDO 2 in nanovesicles were enhanced in the blood after probiotic treatment, suggesting a role in the gut-brain axis. In the in vitro model, a typical H2O2-induced stress effect occurred, which the probiotics mix was able to recover, showing a cytoprotective effect. The probiotics mix treatment significantly reduced the heat shock protein 60 kDa levels and was able to preserve intestinal integrity and barrier function by restoring the expression and redistribution of tight junction proteins. Moreover, the probiotics mix increased the expression of TDO 2 and serotonin receptors. CONCLUSIONS This study provides evidence for the gut-brain axis mediation by nanovesicles, influencing central nervous system function.
Collapse
Affiliation(s)
- Radha Santonocito
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesco Paolo Zummo
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Paolo Pirrotta
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Samuele Raccosta
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (M.M.)
| | - Mauro Manno
- Cell-Tech Hub, Institute of Biophysics, National Research Council of Italy, 90146 Palermo, Italy; (S.R.); (M.M.)
| | - Salvatore Accomando
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialities “G D‘Alessandro”, PROMISE, University of Palermo, 90127 Palermo, Italy;
| | - Francesco D’Arpa
- Department of Surgical, Oncological and Stomatological Disciplines, DICHIRONS, University of Palermo, 90127 Palermo, Italy;
| | - Francesco Carini
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Rosario Barone
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (R.S.); (L.P.); (A.M.V.); (G.D.); (F.P.Z.); (F.C.); (R.B.); (F.R.); (A.M.G.); (F.B.); or (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| |
Collapse
|
22
|
Zhao Q, Liu J, Chen L, Gao Z, Lin M, Wang Y, Xiao Z, Chen Y, Huang X. Phytomedicine Fructus Aurantii-derived two absorbed compounds unlock antidepressant and prokinetic multi-functions via modulating 5-HT 3/GHSR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117703. [PMID: 38185260 DOI: 10.1016/j.jep.2024.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Aurantii (FA), a well-known phytomedicine, has been employed to evoke antidepressant and prokinetic multi-functions. Therein, systematically identifying bioactive components and the referred mechanism is essential for FA. AIM OF THE STUDY This study was planned to answer "2 W" (What and Why), such as which components and pathways contribute to FA's multi-functions. We aimed to identify bioactive compounds as the key for opening the lock of FA's multi-functions, and the molecule mechanisms are their naturally matched lock cylinder. MATERIALS AND METHODS The phytochemical content of FA extract was determined, and the compounds were identified in rats pretreated with FA using liquid chromatography with mass spectrometry (LC-MS). The contribution strategy was used to assess bioactive compounds' efficacy (doses = their content in FA) in model rats with the mechanism. The changes in functional brain regions were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD). RESULT Eight phytochemicals' content was detected, and merely six components were identified in rats in vivo. Meranzin hydrate + hesperidin (MH), as the primary contributor of FA, exerted antidepressant and prokinetic effects (improvement of indexes for immobility time, gastric emptying, intestinal transit, CRH, ghrelin, ACTH, DA, NA, 5-HT, CORT, and 5-HT3) by regulating 5-HT3/Growth hormone secretagogue receptor (GHSR) pathway. These results were validated by 5-HT2A, 5-HT3, and GHSR receptor antagonists combined with molecule docking. MH restored the excessive BOLD activation of the left accumbens nucleus, left corpus callosum and hypothalamus preoptic region. CONCLUSION Absorbed MH accounts for FA's anti-depressant and prokinetic efficacy in acutely-stressed rats, primarily via 5-HT3/GHSR shared regulation.
Collapse
Affiliation(s)
- Qiulong Zhao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin Liu
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Li Chen
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhao Gao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Muhai Lin
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Yun Wang
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Zhe Xiao
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Yi Chen
- Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical College, Xiamen University, School of Medicine, Xiamen, 361102, China.
| |
Collapse
|
23
|
Huang X, Choi S, Wu W, Shahi PK, Lee JH, Hong C, Jun JY. 5-Hydroxytryptamine Enhances the Pacemaker Activity of Interstitial Cells of Cajal in Mouse Colon. Int J Mol Sci 2024; 25:3997. [PMID: 38612808 PMCID: PMC11012597 DOI: 10.3390/ijms25073997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.
Collapse
Affiliation(s)
- Xingyou Huang
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Wenhao Wu
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Pawan Kumar Shahi
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Jun Hyung Lee
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| |
Collapse
|
24
|
Tian X, Wang G, Teng F, Xue X, Pan J, Mao Q, Guo D, Song X, Ma K. Zhi Zi Chi decoction (Gardeniae fructus and semen Sojae Praeparatum) attenuates anxious depression via modulating microbiota-gut-brain axis in corticosterone combined with chronic restraint stress-induced mice. CNS Neurosci Ther 2024; 30:e14519. [PMID: 37905694 PMCID: PMC11017446 DOI: 10.1111/cns.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays a critical role in neuropsychiatric disorders, particularly anxious depression, and attracts more attention gradually. Zhi Zi Chi decoction (ZZCD) consisting of Gardenia jasminoides J. Ellis and Glycine max (L.) Merr, is a classic formula in clinic and widely applied in anxiety and depression treatment. However, the underlying mechanisms of regulating microbiota-gut-brain axis in the treatment of anxious depression by oral administration of ZZCD remain elusive. MATERIALS AND METHODS In this project, we clarified the origin and preparation methods of the Gardenia jasminoides J. Ellis and Glycine max (L.) Merr and examined the chemical ingredients of ZZCD by liquid chromatograph mass spectrometer. Then, corticosterone combined with chronic restraint stress was applied to establish an anxious depression model. After treated with ZZCD standard decoction, based on enzyme-linked immunosorbent assay (ELISA), 16S rRNA technology, high-throughput sequencing, quantitative RT-PCR and fecal microbiota transplantation (FMT), the multiple associations between nucleus accumbens and intestinal flora in anxious depression mice were determined to clarify the mechanism of ZZCD in the treatment of anxiety and depression disorder. RESULTS We found various substances with antidepressant and antianxiety properties in ZZCD such as rosiridin and oleanolic acid. ZZCD could alleviate depressive and anxiety behaviors in anxious depression mice via regulating the disturbance of gut microbiota. Meanwhile, the bioactive compounds of ZZCD might directly active on neurodevelopment and neuroimmune-related genes. Furthermore, the secretion of prolactin and estrogen, and interfering with mitogen-activated protein kinase (MAPK) and tumor necrosis factor (TNF) signaling pathways were mainly involved in the multi-target therapeutic effects of ZZCD against anxiety and depression. CONCLUSIONS These findings suggested that ZZCD exerts antidepressant effects pleiotropically through modulating the microbiota-gut-brain.
Collapse
Affiliation(s)
- Xuanhe Tian
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Guangyan Wang
- Department of Pharmacy, Women and Children's HospitalQingdao UniversityQingdaoChina
| | - Fei Teng
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Xiaoyan Xue
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Jin Pan
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Qiancheng Mao
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Dongjing Guo
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Xiaobin Song
- Shandong University of Traditional Chinese MedicineJinanChina
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese MedicineJinanChina
| | - Ke Ma
- Shandong Co‐Innovation Center of Classic TCM FormulaShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
25
|
Ming X, Gao S, Sun J, Zhang N, Guo R, Feng X, Luan X, Xing H, Jiao Y, Guo F. Regulation of the MCHergic Neural Circuit to Dorsal Raphe Nucleus on Emotion-Related Behaviors and Intestinal Dysfunction in Mice Model of Irritable Bowel Syndrome with Diarrhea. Neuroendocrinology 2024; 114:605-622. [PMID: 38547853 DOI: 10.1159/000538582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress. RESULTS Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and Western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.
Collapse
Affiliation(s)
- Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinqiu Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xufei Feng
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Han Xing
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yang Jiao
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Sun D, Yu J, Zhan Y, Cheng X, Zhang J, Li Y, Li Q, Xiong Y, Liu W. Lacidophilin tablets alleviate constipation through regulation of intestinal microflora by promoting the colonization of Akkermansia sps. Sci Rep 2024; 14:7152. [PMID: 38531966 DOI: 10.1038/s41598-024-57732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Constipation is a major health problem worldwide that requires effective and safe treatment options. Increasing evidence indicates that disturbances in gut microbiota may be a risk factor for constipation. Administration of lacidophilin tablets shows promising therapeutic potential in the treatment of inflammatory bowel disease owing to their immunomodulatory properties and regulation of the gut microbiota. The focus of this study was on investigating the ability of lacidophilin tablets to relieve constipation by modulating the gut microbiome. Rats with loperamide hydrochloride induced constipation were treated with lacidophilin tablets via intragastric administration for ten days. The laxative effect of lacidophilin tablets was then evaluated by investigating the regulation of intestinal microflora and the possible underlying molecular mechanism. Our results reveal that treatment with lacidophilin tablets increased the intestinal advancement rate, fecal moisture content, and colonic AQP3 protein expression. It also improved colonic microflora structure in the colonic contents of model rats mainly by increasing Akkermansia muciniphila and decreasing Clostridium_sensu_stricto_1. Transcriptome analysis indicated that treatment with lacidophilin tablets maintains the immune response in the intestine and promotes recovery of the intestinal mechanical barrier in the constipation model. Our study shows that lacidophilin tablets improve constipation, possibly by promoting Akkermansia colonization and by modulating the intestinal immune response.
Collapse
Affiliation(s)
- Denglong Sun
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Jingting Yu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Yang Zhan
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Xiaoying Cheng
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Jingwen Zhang
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Yingmeng Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Qiong Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China.
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China.
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China.
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China.
| |
Collapse
|
27
|
Qin LL, Yu M, Yang P, Zou ZM. The rhizomes of Atractylodes macrocephala relieve loperamide-induced constipation in rats by regulation of tryptophan metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117637. [PMID: 38135226 DOI: 10.1016/j.jep.2023.117637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Constipation is one of the most prevalent gastrointestinal tract diseases that seriously affects health-related quality of human life and requires effective treatments without side effect. The rhizome of Atractylodes macrocephala Koidz. (Compositae), called Atractylodes Macrocephala Rhizome (AMR), a commonly used traditional Chinese medicine, has been used to relieve the clinical symptoms of patients with constipation. AIM OF THE STUDY To reveal the dose-dependent laxative effect and potential mechanism of AMR on loperamide-induced slow transit constipation (STC) rats. MATERIALS AND METHODS Loperamide-induced constipation rat model was established and the dose-dependent laxative effect of AMR was investigated. Untargeted metabolomics based on an UPLC-Q/TOF-MS technique combined with western blot analysis was used to explain the potential mechanism of AMR relieve loperamide-induced constipation in rats. RESULTS The results showed that medium dose of AMR (AMR-M, 4.32 g raw herb/kg) and high dose of AMR (AMR-H, 8.64 g raw herb/kg) treatments significantly increased the fecal water content, Bristol score, gastrointestinal transit rate, and recovered the damaged colon tissues of constipated rats, but low dose of AMR (AMR-L, 2.16 g raw herb/kg) did not show laxative effect. Both AMR-M and AMR-H treatments also remarkably reduced the serum levels of vasoactive intestinal peptide (VIP), somatostatin (SS) and dopamine (DA), and increased the levels of motilin (MTL), gastrin (GAS) and 5-hydroxytryptamine (5-HT). Urine metabolomics revealed that constipation development was mainly ascribed to the perturbed tryptophan metabolism, and AMR-M and AMR-H markedly corrected the abnormal levels of five urine tryptophan metabolites, namely 4,6-dihydroxyquinoline, indole, 4,8-dihydroxyquinoline, 5-hydroxytryptamine, and kynurenic acid. Additionally, western blot analysis confirmed that the abnormal expression of rate-limiting enzyme involving in tryptophan metabolism, including tryptophan hydroxylase (TPH), monoamine oxidase (MAO) and indoleamine-2,3-dioxygenase (IDO) in the colon of constipated rats, were mediated by AMR-M and AMR-H. CONCLUSIONS The findings provide insight into the mechanisms of STC and AMR could be developed as new therapeutic agent for prevention or healing of constipation.
Collapse
Affiliation(s)
- Ling-Ling Qin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| | - Meng Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| | - Peng Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| | - Zhong-Mei Zou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
28
|
Xu J, Zhang H, Chen D, Xu K, Li Z, Wu H, Geng X, Wei X, Wu J, Cui W, Wei S. Looking for a Beam of Light to Heal Chronic Pain. J Pain Res 2024; 17:1091-1105. [PMID: 38510563 PMCID: PMC10953534 DOI: 10.2147/jpr.s455549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic pain (CP) is a leading cause of disability and a potential factor that affects biological processes, family relationships, and self-esteem of patients. However, the need for treatment of CP is presently unmet. Current methods of pain management involve the use of drugs, but there are different degrees of concerning side effects. At present, the potential mechanisms underlying CP are not completely clear. As research progresses and novel therapeutic approaches are developed, the shortcomings of current pain treatment methods may be overcome. In this review, we discuss the retinal photoreceptors and brain regions associated with photoanalgesia, as well as the targets involved in photoanalgesia, shedding light on its potential underlying mechanisms. Our aim is to provide a foundation to understand the mechanisms underlying CP and develop light as a novel analgesic treatment has its biological regulation principle for CP. This approach may provide an opportunity to drive the field towards future translational, clinical studies and support pain drug development.
Collapse
Affiliation(s)
- Jialing Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hao Zhang
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Dan Chen
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Kaiyong Xu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Zifa Li
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xiwen Geng
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Xia Wei
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Shandong Institute for Food and Drug Control, Ji’nan, Shandong, People’s Republic of China
| | - Jibiao Wu
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| | - Sheng Wei
- The Key Laboratory of Traditional Chinese Medicine Classic Theory of Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
- Chinese Medicine and Brain Science Interdisciplinary Research Institute, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, People’s Republic of China
| |
Collapse
|
29
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Punukollu RS, Chadalawada AK, Siddabattuni K, Gogineni NT. A blend of Withania somnifera (L.) Dunal root and Abelmoschus esculentus (L.) Moench fruit extracts relieves constipation and improves bowel function: A proof-of-concept clinical investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116997. [PMID: 37543151 DOI: 10.1016/j.jep.2023.116997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal (WS) and Abelmoschus esculentus (L.) Moench (AE) are known as Ashwagandha and Okra, respectively, important herbs in traditional medicine for their diverse therapeutic values. WS root is an adaptogen that relieves stress and anxiety and promotes sleep. AE fruit or Okra is widely consumed as a vegetable and is traditionally used to treat diabetes, gastric irritations, ulcers, and obesity. AIM OF THE STUDY The present randomized, double-blind, placebo-controlled study aimed to establish a proof-of-concept evaluating the efficacy and tolerability of a proprietary blend of standardized extracts of WS root and AE fruit, CL18100F4 in relieving constipation and improving quality of life in adults. MATERIALS AND METHODS Forty-eight male and female participants (age: 25-60 years) with functional constipation (following Rome-III criteria) were randomized into placebo, 300 or 500 mg of CL18100F4 groups, and supplemented for fourteen consecutive days. RESULTS CL18100F4 supplementation significantly (p < 0.0001) reduced the Patient Assessment of Constipation-Symptoms (PAC-SYM), Patient Assessment of Constipation-Quality of Life (PAC-QOL), and Gastrointestinal Symptom Rating Scale (GSRS) scores. CL18100F4 supplementation improved sleep quality and reduced stress (p < 0.0001). At the end of the study, CL18100F4-500 subjects showed significant increases in serum serotonin, gastrin, and interleukin-10 and decrease in interleukin-6 and cortisol levels. Participants' hematology, total blood chemistry, vital signs, and urinalysis parameters were within the normal ranges. No adverse events were reported. CONCLUSIONS This short-duration, single-site clinical investigation demonstrates that CL18100F4 supplementation is tolerable, helps relieve constipation, reduces stress, and improves gastrointestinal function, sleep quality, and general wellness in adults. TRIAL REGISTRATION Clinical Trials Registry- India (CTRI/2020/11/029320); Registered on 24/11/2020. Available at: http://ctri.nic.in/Clinicaltrials/showallp.php?mid1=49391&EncHid=&userName=CL18100F4.
Collapse
Affiliation(s)
- Raghu Sarath Punukollu
- Department of Urology, Aditya Multi Speciality Hospital, Guntur 522001, Andhra Pradesh, India.
| | - Arun Kumar Chadalawada
- Department of Clinical Research, Aditya Multi Speciality Hospital, Guntur 522001, Andhra Pradesh, India.
| | - Kalyani Siddabattuni
- Department of Clinical Research, Aditya Multi Speciality Hospital, Guntur 522001, Andhra Pradesh, India.
| | - Naga Tejaswi Gogineni
- Department of General Medicine, Aditya Multi Speciality Hospital, Guntur 522001, Andhra Pradesh, India.
| |
Collapse
|
31
|
Liang F, Liu S, Zhang H, Xiang R, Xie M, He X, Wang S, Wu S, Li J. Effects of chronic unpredictable mild stress on gut sensation and function in male mice. Stress 2024; 27:2374768. [PMID: 38975691 DOI: 10.1080/10253890.2024.2374768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Stress has been linked to the development of irritable bowel syndrome (IBS), and various methods have been explored to model IBS in combination with other stimuli. However, it remains unclear whether stress alone can induce IBS in animals. This study aimed to investigate the impact of chronic unpredictable mild stress (CUMS) on gastrointestinal sensation and function in mice and assess the potential of CUMS as a modeling approach for IBS. To evaluate the mice's behavior, we conducted open field test, sucrose preference test and weighed the mice, revealing that CUMS indeed induced anxiety and depression in the mice and caused weight loss. Further analyses, including fecal analysis, a total gastrointestinal transport test, and a colon propulsion test, demonstrated that CUMS led to abnormal defecation and disruptions in gastrointestinal motility in the mice. Additionally, the abdominal withdrawal reflex test indicated an increase in visceral sensitivity in CUMS-exposed mice. Histological examination using hematoxylin and eosin staining revealed no significant histological alterations in the colons of CUMS-exposed mice, but it did show a minor degree of inflammatory cell infiltration. In summary, the findings suggest that CUMS can replicate IBS-like symptoms in mice, offering a novel top-down approach to modeling IBS.
Collapse
Affiliation(s)
- Fangyuan Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Suzhen Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Heng Zhang
- Department of Traditional Chinese Medicine, Henan Workers' Hospital, Zhengzhou, China
| | - Ronglan Xiang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Mengting Xie
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoru He
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Sunyi Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Song Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Acupuncture and Moxibustion Department, Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| | - Jia Li
- Acupuncture and Moxibustion, Xianning Hospital of Traditional Chinese Medicine Department, Xianning, China
| |
Collapse
|
32
|
Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes 2024; 16:2414796. [PMID: 39501848 PMCID: PMC11542600 DOI: 10.1080/19490976.2024.2414796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/09/2024] Open
Abstract
Appetite, a crucial aspect regulated by both the central nervous system and peripheral hormones, is influenced by the composition and dynamics of the intestinal microbiota, as evidenced by recent research. This review highlights the role of intestinal microbiota in appetite regulation, elucidating the involvement of various pathways. Notably, the metabolites generated by intestinal microorganisms, including short-chain fatty acids, bile acids, and amino acid derivatives, play a pivotal role in this intricate process. Furthermore, intestinal microorganisms contribute to appetite regulation by modulating nutritional perception, neural signal transmission, and hormone secretion within the digestive system. Consequently, manipulating and modulating the intestinal microbiota represent innovative strategies for ameliorating appetite-related disorders. This paper provides a comprehensive review of the effects of gut microbes and their metabolites on the central nervous system and host appetite. By exploring their potential regulatory pathways and mechanisms, this study aims to enhance our understanding of how gut microbes influence appetite regulation in the host.
Collapse
Affiliation(s)
- Miao Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- DadHank(Chengdu)Biotech Corp, Chengdu, Sichuan Province, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| |
Collapse
|
33
|
Zhou HB, Lu SZ, Yu ZS, Zhang JL, Mei ZN. Mechanisms for the biological activity of Gastrodia elata Blume and its constituents: A comprehensive review on sedative-hypnotic, and antidepressant properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155251. [PMID: 38056151 DOI: 10.1016/j.phymed.2023.155251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Insomnia and depressive disorder are two common symptoms with a reciprocal causal relationship in clinical practice, which are usually manifested in comorbid form. Several medications have been widely used in the treatment of insomnia and depression, but most of these drugs show non-negligible side effects. Currently, many treatments are indicated for insomnia and depressive symptom, including Chinese herbal medicine such as Gastrodia elata Blume (G. elata), which has excellent sedative-hypnotic and antidepressant effects in clinical and animal studies. PURPOSE To summarize the mechanisms of insomnia and depression and the structure-activity mechanism for G. elata to alleviate these symptoms, particularly by hypothalamic-pituitary-adrenal (HPA) axis and intestinal flora, aiming to discover new approaches for the treatment of insomnia and depression. METHODS The following electronic databases were searched from the beginning to November 2023: PubMed, Web of Science, Google Scholar, Wanfang Database, and CNKI. The following keywords of G. elata were used truncated with other relevant topic terms, such as depression, insomnia, antidepressant, sedative-hypnotic, neuroprotection, application, safety, and toxicity. RESULTS Natural compounds derived from G. elata could alleviate insomnia and depressive disorder, which is involved in monoamine neurotransmitters, inflammatory response, oxidative stress, and gut microbes, etc. Several clinical trials showed that G. elata-derived natural compounds that treat depression and insomnia have significant and safe therapeutic effects, but further well-designed clinical and toxicological studies are needed. CONCLUSION G. elata exerts a critical role in treating depression and insomnia due to its multi-targeting properties and fewer side effects. However, more clinical and toxicological studies should be performed to further explore the sedative-hypnotic and antidepressant mechanisms of G. elata and provide more evidence and recommendations for its clinical application. Our review provides an overview of G. elata treating insomnia with depression for future research direction.
Collapse
Affiliation(s)
- Hai-Bo Zhou
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Sheng-Ze Lu
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Zhong-Shun Yu
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, China.
| | - Zhi-Nan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
34
|
Yang C, Hu T, Xue X, Su X, Zhang X, Fan Y, Shen X, Dong X. Multi-omics analysis of fecal microbiota transplantation's impact on functional constipation and comorbid depression and anxiety. BMC Microbiol 2023; 23:389. [PMID: 38057705 PMCID: PMC10701952 DOI: 10.1186/s12866-023-03123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Depression and anxiety are common comorbid diseases of constipation. Fecal microbiota transplantation (FMT) significantly relieves gastrointestinal-related symptoms, but its impact on psychiatric symptoms remains uncharted. METHODS We collected fecal and serum samples before and after FMT from 4 functional constipation patients with psychiatric symptoms and corresponding donor stool samples. We categorized the samples into two groups: before FMT (Fb) and after FMT (Fa). Parameters associated with constipation, depression, and anxiety symptoms were evaluated. Metagenomics and targeted neurotransmitter metabolomics were performed to investigate the gut microbiota and metabolites. 5-hydroxytryptamine (5-HT) biosynthesis was detected in patients' fecal supernatants exposed to the QGP-1 cell model in vitro. RESULTS Our study demonstrated that patient's constipation, depression, and anxiety were improved after FMT intervention. At the genus level, relative abundance of g_Bacteroides and g_Klebsiella decreased in the Fa group, while g_Lactobacillus, and g_Selenomonas content increased in the same group. These observations suggest a potential involvement of these genera in the pathogenesis of constipation with psychiatric symptoms. Metabolomics analysis showed that FMT intervention decreased serum 5-HT levels. Additionally, we found that species, including s_Klebsiella sp. 1_1_55, s_Odoribacter splanchnicus, and s_Ruminococcus gnavus CAG:126, were positively correlated with 5-HT levels. In contrast, s_Acetobacterium bakii, s_Enterococcus hermanniensis, s_Prevotella falsenii, s_Propionispira arboris, s_Schwartzia succinivorans, s_Selenomonas artemidis, and s_Selenomonas sp. FC4001 were negatively correlated with 5-HT levels. Furthermore, we observed that patients' fecal supernatants increased 5-HT biosynthesis in QGP-1 cells. CONCLUSION FMT can relieve patients' constipation, depression, and anxiety symptoms by reshaping gut microbiota. The 5-HT level was associated with an altered abundance of specific bacteria or metabolites. This study provides specific evidence for FMT intervention in constipation patients with psychiatric symptoms.
Collapse
Affiliation(s)
- Chuanli Yang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Tianjiao Hu
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Xue
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohu Su
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuan Zhang
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yunhe Fan
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China.
| | - Xiushan Dong
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
35
|
Guo Y, Wang B, Gao H, He C, Xin S, Hua R, Liu X, Zhang S, Xu J. Insights into the Characteristics and Functions of Mast Cells in the Gut. GASTROENTEROLOGY INSIGHTS 2023; 14:637-652. [DOI: 10.3390/gastroent14040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Mast cells have vital functions in allergic responses and parasite ejection, while the underlying mechanisms remain unclear. Meanwhile, MCs are essential for the maintenance of GI barrier function, and their interactions with neurons, immune cells, and epithelial cells have been related to various gastrointestinal (GI) disorders. An increasing number of investigations are being disclosed, with a lack of inner connections among them. This review aims to highlight their properties and categorization and further delve into their participation in GI diseases via interplay with neurons and immune cells. We also discuss their roles in diseases like inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Based on the evidence, we advocated for their potential application in clinical practices and advocated future research prospects.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing 100049, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Sitian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
36
|
Shen R, Li Z, Wang H, Wang Y, Li X, Yang Q, Fu Y, Li M, Gao LN. Chinese Materia Medica in Treating Depression: The Role of Intestinal Microenvironment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1927-1955. [PMID: 37930334 DOI: 10.1142/s0192415x23500854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Depression is a highly heterogeneous mental illness. Drug treatment is currently the main therapeutic strategy used in the clinic, but its efficacy is limited by the modulation of a single target, slow onset, and side effects. The gut-brain axis is of increasing interest because intestinal microenvironment disorders increase susceptibility to depression. In turn, depression affects intestinal microenvironment homeostasis by altering intestinal tissue structure, flora abundance and metabolism, hormone secretion, neurotransmitter transmission, and immune balance. Depression falls into the category of "stagnation syndrome" according to Traditional Chinese Medicine (TCM), which further specifies that "the heart governs the spirit and is exterior-interior with the small intestine". However, the exact mechanisms of the means by which the disordered intestinal microenvironment affects depression are still unclear. Here, we present an overview of how the Chinese materia medica (CMM) protects against depression by repairing intestinal microenvironment homeostasis. We review the past five years of research progress in classical antidepressant TCM formulae and single CMMs on regulating the intestinal microenvironment for the treatment of depression. We then analyze and clarify the multitarget functions of CMM in repairing intestinal homeostasis and aim to provide a new theoretical basis for CMM clinical application in the treatment of depression.
Collapse
Affiliation(s)
- Ruhui Shen
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Zhipeng Li
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Yongchao Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Xiaofang Li
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Qian Yang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Yingjie Fu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Ming Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
- Jining Key Laboratory of Depression Prevention and Treatment, Jining Medical University, Jining, Shandong 272067, P. R. China
| |
Collapse
|
37
|
Mrozek W, Socha J, Sidorowicz K, Skrok A, Syrytczyk A, Piątkowska-Chmiel I, Herbet M. Pathogenesis and treatment of depression: Role of diet in prevention and therapy. Nutrition 2023; 115:112143. [PMID: 37562078 PMCID: PMC10299949 DOI: 10.1016/j.nut.2023.112143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
In recent years, there has been a significant increase in depression, which is related to, among other things, the COVID-19 pandemic. Depression can be fatal if not treated or if treated inappropriately. Depression is the leading cause of suicide attempts. The disease is multifactorial, and pharmacotherapy often fails to bring satisfactory results. Therefore, increasingly more importance is attached to the natural healing substances and nutrients in food, which can significantly affect the therapy process and prevention of depressive disorders. A proper diet is vital to preventing depression and can be a valuable addition to psychological and pharmacologic treatment. An inadequate diet may reduce the effectiveness of antidepressants or increase their side effects, leading to life-threatening symptoms. This study aimed to review the literature on the pathogenesis of the development and treatment of depression, with particular emphasis on dietary supplements and the role of nutrition in the prevention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Weronika Mrozek
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Justyna Socha
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Klara Sidorowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Skrok
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Syrytczyk
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
38
|
Wang Y, Huang Y, Zhao M, Yang L, Su K, Wu H, Wang Y, Chang Q, Liu W. Zuojin pill improves chronic unpredictable stress-induced depression-like behavior and gastrointestinal dysfunction in mice via the theTPH2/5-HT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155067. [PMID: 37716030 DOI: 10.1016/j.phymed.2023.155067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The complex bidirectional communication between the gastrointestinal tract and the brain is associated with mental disorders such as depression; serotonin, as a crucial neurotransmitter in the communication system between the central nervous system and the gastrointestinal tract, has effects on regulating gastrointestinal motility and sensation and improving psychosomatic status. Zuojin pill is used as a traditional Chinese medicine formula for the treatment of gastrointestinal disorders. This study explored the effects of Zuojin pill on the improvement of depression and gastrointestinal function in CUMS mice via TPH2 and its mechanism. PURPOSE The aim of this study was to investigate whether Zuojin pill could improve depression and concomitant gastrointestinal dysfunction, and to reveal whether Zuojin pill could work through the regulation of the tryptophan hydroxylase 2 (TPH2) pathway. METHODS The CUMS model was established to observe the effects of Zuojin pill on depression-like behavior and gastrointestinal function in mice. Nissler staining and HE staining were used to observe the structure of hippocampal neurons and intestinal mucosa respectively. 5-HT levels in serum, hippocampus, and intestinal tissues were measured by ELISA, and TPH2 expression in hippocampus and intestinal nerves was observed by WB and immunofluorescence. In order to investigate the protective effect and mechanism of Zuojin pill on PC12 cells, CORT used an in vitro model to produce PC12 cell damage. RESULTS Our study showed that Zuojin pill ameliorated depression-like behavior and gastrointestinal dysfunction in CUMS mice, elevated BDNF, 5-HT, and TPH2 expression in the hippocampus, and restored the ratio of dopaminergic and GABAergic neurons between intestinal muscles. In vitro experiments showed that Zuojin pill exerted a protective effect on neurons by regulating TPH2 ubiquitination and thus inhibiting CORT-induced apoptosis of PC12 cells. CONCLUSION Zuojin pill improves chronic unpredictable stress-induced depression-like behavior and gastrointestinal dysfunction in mice via the TPH2/5-HT pathway. Therefore, TPH2 may be a potential therapeutic target for depression with gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Yan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Yuzhen Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Min Zhao
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Yang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Kunhan Su
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Yuting Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Qing Chang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Wanli Liu
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
39
|
Wang Y, Lai H, Zhang T, Wu J, Tang H, Liang X, Ren D, Huang J, Li W. Mitochondria of intestinal epithelial cells in depression: Are they at a crossroads of gut-brain communication? Neurosci Biobehav Rev 2023; 153:105403. [PMID: 37742989 DOI: 10.1016/j.neubiorev.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The role of gut dysbiosis in depression is well established. However, recent studies have shown that gut microbiota is regulated by intestinal epithelial cell (IEC) mitochondria, which has yet to receive much attention. This review summarizes the recent developments about the critical role of IEC mitochondria in actively maintaining gut microbiota, intestinal metabolism, and immune homeostasis. We propose that IEC mitochondrial dysfunction alters gut microbiota composition, participates in cell fate, mediates oxidative stress, activates the peripheral immune system, causes peripheral inflammation, and transmits peripheral signals through the vagus and enteric nervous systems. These pathological alterations lead to brain inflammation, disruption of the blood-brain barrier, activation of the hypothalamic-pituitary-adrenal axis, activation of microglia and astrocytes, induction of neuronal loss, and ultimately depression. Furthermore, we highlight the prospect of treating depression through the mitochondria of IECs. These new findings suggest that the mitochondria of IECs may be a newly found important factor in the pathogenesis of depression and represent a potential new strategy for treating depression.
Collapse
Affiliation(s)
- Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Han Lai
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jing Wu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Huiling Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Xuanwei Liang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Dandan Ren
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| |
Collapse
|
40
|
Chen H, Wang C, Bai J, Song J, Bu L, Liang M, Suo H. Targeting microbiota to alleviate the harm caused by sleep deprivation. Microbiol Res 2023; 275:127467. [PMID: 37549451 DOI: 10.1016/j.micres.2023.127467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Sleep deprivation has become a common health hazard, affecting 37-58% of the population and promoting the occurrence and development of many diseases. To date, effective treatment strategies are still elusive. Accumulating evidence indicates that modulating the intestinal microbiota harbors significant potential for alleviating the deleterious impacts of sleep deprivation. This paper first reviews the effects of sleep deprivation on gastrointestinal diseases, metabolic diseases, and neuropsychiatric diseases, discussing its specific mechanisms of influence. We then focus on summarizing existing interventions, including probiotics, melatonin, prebiotics, diet, and fecal microbiota transplantation (FMT). Finally, we have discussed the advantages and limitations of each strategy. Compared with other strategies, probiotics showed a high potential in alleviating sleep deprivation-related hazards due to their reduced risk and high security. We suggest that future research should focus on the specific mechanisms by which probiotics mitigate the harms of sleep deprivation, such insights may unveil novel pathways for treating diseases exacerbated by insufficient sleep.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ming Liang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China.
| |
Collapse
|
41
|
Fang F, Liu Y, Xiong Y, Li X, Li G, Jiang Y, Hou X, Song J. Slowed Intestinal Transit Induced by Less Mucus in Intestinal Goblet Cell Piezo1-Deficient Mice through Impaired Epithelial Homeostasis. Int J Mol Sci 2023; 24:14377. [PMID: 37762681 PMCID: PMC10531822 DOI: 10.3390/ijms241814377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mucus secreted by goblet cells (GCs) may play an important role in intestinal transit function. Our previous study found that Piezo1 protein is essential for GC function; however, the effect of GC Piezo1 on intestinal transit function is unclear. Our study aimed to investigate the effect of Piezo1 in GCs on intestinal transit and the potential mechanism. We compared intestinal mucus, fecal form, intestinal transit time, intestinal epithelial cell composition, and stem cell function in WT and GC-specific Piezo1-deficient (Piezo1ΔGC) mice. Our results revealed a correlation between mucus and intestinal transit: the less mucus there was, the slower the intestinal transit. Piezo1 deficiency in GCs led to decreased mucus synthesis and also disrupted the ecological niche of colon stem cells (CSCs). Through organoid culture, we found that the capacity of proliferation and differentiation in Piezo1ΔGC mouse CSCs was significantly decreased, which also led to a reduced source of GCs. Further studies found that the reduced Wnt and Notch signals in colon crypts might be the potential mechanism. These results indicated the importance of GC Piezo1 in intestinal transit function, which acts by maintaining the homeostasis of intestinal epithelial cells and mucus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.F.); (Y.L.); (Y.X.); (X.L.); (G.L.); (Y.J.); (X.H.)
| |
Collapse
|
42
|
Nelson MT, Coia HG, Holt C, Greenwood ES, Narayanan L, Robinson PJ, Merrill EA, Litteral V, Goodson MS, Saldanha RJ, Grogg MW, Mauzy CA. Evaluation of Human Performance Aiding Live Synthetically Engineered Bacteria in a Gut-on-a-Chip. ACS Biomater Sci Eng 2023; 9:5136-5150. [PMID: 36198112 DOI: 10.1021/acsbiomaterials.2c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synbiotics are a new class of live therapeutics employing engineered genetic circuits. The rapid adoption of genetic editing tools has catalyzed the expansion of possible synbiotics, exceeding traditional testing paradigms in terms of both throughput and model complexity. Herein, we present a simplistic gut-chip model using common Caco2 and HT-29 cell lines to establish a dynamic human screening platform for a cortisol sensing tryptamine producing synbiotic for cognitive performance sustainment. The synbiotic, SYN, was engineered from the common probiotic E. coli Nissle 1917 strain. It had the ability to sense cortisol at physiological concentrations, resulting in the activation of a genetic circuit that produces tryptophan decarboxylase and converts bioavailable tryptophan to tryptamine. SYN was successfully cultivated within the gut-chip showing log-phase growth comparable to the wild-type strain. Tryptophan metabolism occurred quickly in the gut compartment when exposed to 5 μM cortisol, resulting in the complete conversion of bioavailable tryptophan into tryptamine. The flux of tryptophan and tryptamine from the gut to the vascular compartment of the chip was delayed by 12 h, as indicated by the detectable tryptamine in the vascular compartment. The gut-chip provided a stable environment to characterize the sensitivity of the cortisol sensor and dynamic range by altering cortisol and tryptophan dosimetry. Collectively, the human gut-chip provided human relevant apparent permeability to assess tryptophan and tryptamine metabolism, production, and transport, enabled host analyses of cellular viability and pro-inflammatory cytokine secretion, and succeeded in providing an efficacy test of a novel synbiotic. Organ-on-a-chip technology holds promise in aiding traditional therapeutic pipelines to more rapidly down select high potential compounds that reduce the failure rate and accelerate the opportunity for clinical intervention.
Collapse
Affiliation(s)
- M Tyler Nelson
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Heidi G Coia
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- National Research Council, The National Academies of Sciences, Engineering, and Medicine, 500 Fifth Street N.W., Washington, D.C. 20001, United States
| | - Corey Holt
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Eric S Greenwood
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Latha Narayanan
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- The Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Peter J Robinson
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- The Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Elaine A Merrill
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Vaughn Litteral
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
- UES Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Michael S Goodson
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Roland J Saldanha
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Matthew W Grogg
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| | - Camilla A Mauzy
- United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
43
|
Du M, Chen F, Yang F. Enhancing gastrointestinal symptom alleviation in cancer patients after chemotherapy: the effect of whole-course seamless diet nursing and analysis of factors affecting efficacy. Am J Cancer Res 2023; 13:3822-3831. [PMID: 37693141 PMCID: PMC10492118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 09/12/2023] Open
Abstract
This study aimed to evaluate the effects of whole-course seamless diet nursing in the oncology department on alleviating gastrointestinal symptoms in cancer patients after chemotherapy and identify factors influencing its efficacy. Retrospective analysis was conducted on data from 114 cancer patients treated at Sir Run Run Shaw Hospital. Among them, 51 patients who received conventional nursing were assigned to the control group, while 63 patients who received whole-course seamless diet nursing were assigned to the observation group. The observation group showed a significantly higher total response rate in alleviating gastrointestinal symptoms compared to the control group. After nursing, the observation group exhibited improvements in physical function, psychological function, social function, and material life state, along with lower anxiety and depression levels. Logistic regression analysis revealed age, chemotherapy cycle, and nursing scheme as independent risk factors affecting efficacy. The study concluded that whole-course seamless diet nursing in the oncology department effectively alleviates gastrointestinal symptoms, enhances nursing outcomes, and improves patients' quality of life, suggesting its potential for clinical promotion and application.
Collapse
Affiliation(s)
- Min Du
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhou 310012, Zhejiang, China
| | - Fang Chen
- General Surgery Department, Alar Hospital of The First Division of Xinjiang Construction CorpsAlar 843300, Xinjiang, China
| | - Fang Yang
- General Surgery Department, Alar Hospital of The First Division of Xinjiang Construction CorpsAlar 843300, Xinjiang, China
| |
Collapse
|
44
|
Chaudhry TS, Senapati SG, Gadam S, Mannam HPSS, Voruganti HV, Abbasi Z, Abhinav T, Challa AB, Pallipamu N, Bheemisetty N, Arunachalam SP. The Impact of Microbiota on the Gut-Brain Axis: Examining the Complex Interplay and Implications. J Clin Med 2023; 12:5231. [PMID: 37629273 PMCID: PMC10455396 DOI: 10.3390/jcm12165231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The association and interaction between the central nervous system (CNS) and enteric nervous system (ENS) is well established. Essentially ENS is the second brain, as we call it. We tried to understand the structure and function, to throw light on the functional aspect of neurons, and address various disease manifestations. We summarized how various neurological disorders influence the gut via the enteric nervous system and/or bring anatomical or physiological changes in the enteric nervous system or the gut and vice versa. It is known that stress has an effect on Gastrointestinal (GI) motility and causes mucosal erosions. In our literature review, we found that stress can also affect sensory perception in the central nervous system. Interestingly, we found that mutations in the neurohormone, serotonin (5-HT), would result in dysfunctional organ development and further affect mood and behavior. We focused on the developmental aspects of neurons and cognition and their relation to nutritional absorption via the gastrointestinal tract, the development of neurodegenerative disorders in relation to the alteration in gut microbiota, and contrariwise associations between CNS disorders and ENS. This paper further summarizes the synergetic relation between gastrointestinal and neuropsychological manifestations and emphasizes the need to include behavioral therapies in management plans.
Collapse
Affiliation(s)
| | | | - Srikanth Gadam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
| | - Hari Priya Sri Sai Mannam
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Hima Varsha Voruganti
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Zainab Abbasi
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Tushar Abhinav
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | | | - Namratha Pallipamu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
| | - Niharika Bheemisetty
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
Kong X, Shen X, Yang L, Liu Y, Gu X, Kong Y. Dietary protein intake affects the association between urinary iodine and clinically relevant depression: Evidence from NHANES 2007-2018. Food Sci Nutr 2023; 11:4665-4677. [PMID: 37576051 PMCID: PMC10420777 DOI: 10.1002/fsn3.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 08/15/2023] Open
Abstract
Both iodine concentration and protein intake are important nutritional factors that may influence the development of depressive symptoms. However, there are no studies on the effect of protein intake on the relationship between iodine concentration and the risk of depression. The study aimed to explore the relationship between iodine and the risk of clinically relevant depression (CRD) according to protein intake. This study analyzed the adults (≥18 years) who participated in the 2007-2018 National Health and Nutrition Cross-sectional Survey (N = 10,462). CRD was assessed using the Patient Health Questionnaire (PHQ-9). Protein intake was assessed using two 24-h dietary recalls and urinary iodine concentration (UIC) was measured using inductively coupled plasma dynamic response cell mass spectrometry. Weighted multivariate logistic regression and restrictive cubic splines were performed to assess the relationship between UIC and CRD according to protein category (low protein intake <0.8 g/kg/day; high protein intake: ≥0.8 g/kg/day). After controlling for sociodemographic, behavioral, chronic diseases, and dietary factors, a positive correlation was observed between UIC (log10) and CRD (OR: 1.36, 95% CI: 1.026, 1.795). Low UIC (<100 μg/L) was associated with a lower prevalence of CRD (OR: 0.73, 95% CI: 0.533, 0.995) in high protein intake individuals, whereas this relationship did not exist in those with low protein intake. Moreover, restrictive cubic splines confirmed a near L-shaped relationship between UIC and CRD in the low-protein group (nonlinear p = .042) and a linear relationship between them in the high-protein group (nonlinear p = .392). This study illustrates that protein intake affects the relationship between UIC and CRD. Combining lower UIC and high protein intake may help reduce the prevalence of CRD, which would have significant implications for managing patients with depressive CRD in the clinical setting.
Collapse
Affiliation(s)
- Xue Kong
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiChina
| | - Xia Shen
- Department of Nursing, Wuxi Medical CollegeJiangnan UniversityWuxiChina
| | - Long Yang
- College of PediatricsXinjiang Medical UniversityUrumqiChina
| | - Yuan‐Yuan Liu
- Department of Nursing, Wuxi Medical CollegeJiangnan UniversityWuxiChina
| | - Xue Gu
- Department of Nursing, Wuxi Medical CollegeJiangnan UniversityWuxiChina
| | - Yan Kong
- Department of Radiation OncologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| |
Collapse
|
46
|
Liu X, Zhao Z, Zhao D, Zhao S, Qin X. Comprehensive microbiomes and fecal metabolomics combined with network pharmacology reveal the effects of Jichuanjian on aged functional constipation. Exp Gerontol 2023; 178:112216. [PMID: 37211069 DOI: 10.1016/j.exger.2023.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Functional constipation is a common gastrointestinal disorder especially severely affecting the life quality of the aged. Jichuanjian (JCJ) has been widely used for aged functional constipation (AFC) in clinic. Yet, the mechanisms of JCJ merely scratch the surface with being studied at a single level, rather than from a systematic perspective of the whole. AIM The purpose of this study was to explore the underlying mechanisms of JCJ in treating AFC from the perspectives of fecal metabolites and related pathways, gut microbiota, key gene targets and functional pathways, as well as "behaviors-microbiota-metabolites" relationships. METHODS 16S rRNA analysis and fecal metabolomics combined with network pharmacology were applied to investigate the abnormal performances of AFC rats, as well as the regulatory effects of JCJ. RESULTS JCJ significantly regulated the abnormalities of rats' behaviors, the microbial richness, and the metabolite profiles that were interrupted by AFC. 19 metabolites were found to be significantly associated with AFC involving in 15 metabolic pathways. Delightfully, JCJ significantly regulated 9 metabolites and 6 metabolic pathways. AFC significantly interrupted the levels of 4 differential bacteria while JCJ significantly regulated the level of SMB53. HSP90AA1 and TP53 were the key genes, and pathways in cancer was the most relevant signaling pathways involving in the mechanisms of JCJ. CONCLUSION The current findings not only reveal that the occurrence of AFC is closely related to gut microbiota mediating amino acid and energy metabolism, but also demonstrate the effects and the underlying mechanisms of JCJ on AFC.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Di Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Sijun Zhao
- Department of Pharmacology, Shanxi Institute for Food and Drug Control, Taiyuan 030001, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| |
Collapse
|
47
|
Bi M, Liu C, Wang Y, Liu SJ. Therapeutic Prospect of New Probiotics in Neurodegenerative Diseases. Microorganisms 2023; 11:1527. [PMID: 37375029 DOI: 10.3390/microorganisms11061527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing clinical and preclinical evidence implicates gut microbiome (GM) dysbiosis as a key susceptibility factor for neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). In recent years, neurodegenerative diseases have been viewed as being driven not solely by defects in the brain, and the role of GM in modulating central nervous system function via the gut-brain axis has attracted considerable interest. Encouraged by current GM research, the development of new probiotics may lead to tangible impacts on the treatment of neurodegenerative disorders. This review summarizes current understandings of GM composition and characteristics associated with neurodegenerative diseases and research demonstrations of key molecules from the GM that affect neurodegeneration. Furthermore, applications of new probiotics, such as Clostridium butyricum, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Bacteroides fragilis, for the remediation of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Mingxia Bi
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Chang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulin Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Xu M, Su S, Jiang S, Li W, Zhang Z, Zhang J, Hu X. Short-term arecoline exposure affected the systemic health state of mice, in which gut microbes played an important role. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115055. [PMID: 37224782 DOI: 10.1016/j.ecoenv.2023.115055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Arecoline is a critical bioactive component in areca nuts with toxicity and pharmacological activities. However, its effects on body health remain unclear. Here, we investigated the effects of arecoline on physiologic and biochemical parameters in mouse serum, liver, brain, and intestine. The effect of arecoline on gut microbiota was investigated based on shotgun metagenomic sequencing. The results showed that arecoline promoted lipid metabolism in mice, manifested as significantly reduced serum TC and TG and liver TC levels and a reduction in abdominal fat accumulation. Arecoline intake significantly modulated the neurotransmitters 5-HT and NE levels in the brain. Notably, arecoline intervention significantly increased serum IL-6 and LPS levels, leading to inflammation in the body. High-dose arecoline significantly reduced liver GSH levels and increased MDA levels, which led to oxidative stress in the liver. Arecoline intake promoted the release of intestinal IL-6 and IL-1β, causing intestinal injury. In addition, we observed a significant response of gut microbiota to arecoline intake, reflecting significant changes in diversity and function of the gut microbes. Further mechanistic exploration suggested that arecoline intake can regulate gut microbes and ultimately affect the host's health. This study provided technical help for the pharmacochemical application and toxicity control of arecoline.
Collapse
Affiliation(s)
- Meng Xu
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Shunyong Su
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Wanggao Li
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| | - Xiaosong Hu
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
49
|
Liu Y, Pei Z, Pan T, Wang H, Chen W, Lu W. Indole metabolites and colorectal cancer: Gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol Res 2023; 272:127392. [PMID: 37119643 DOI: 10.1016/j.micres.2023.127392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Tryptophan (Trp) functions in host-disease interactions. Its metabolism is a multi-pathway process. Indole and its derivatives are Trp metabolites unique to the human gut microbiota. Changes in Trp metabolism have also been detected in colorectal cancer (CRC). Here, combined with the existing CRC biomarkers, we ascribed it to the altered bacteria having the indole-producing ability by making a genomic prediction. We also reviewed the anti-inflammatory and possible anti-cancer mechanisms of indoles, including their effects on tumor cells, the ability to repair the gut barrier, regulation of the host immune system, and provide resistance against oxidative stress. Indole and its derivatives, along with related bacteria, could be targeted as auxiliary strategies to restrain cancer development in the future.
Collapse
Affiliation(s)
- Yufei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Tong Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
50
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|