1
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
2
|
Zheng J, Feng H, Lin J, Zhou J, Xi Z, Zhang Y, Ling F, Liu Y, Wang J, Hou T, Xing F, Li Y. KDM3A Ablation Activates Endogenous Retrovirus Expression to Stimulate Antitumor Immunity in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309983. [PMID: 39031630 PMCID: PMC11515915 DOI: 10.1002/advs.202309983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/04/2024] [Indexed: 07/22/2024]
Abstract
The success of immunotherapy for cancer treatment is limited by the presence of an immunosuppressive tumor microenvironment (TME); Therefore, identifying novel targets to that can reverse this immunosuppressive TME and enhance immunotherapy efficacy is essential. In this study, enrichment analysis based on publicly available single-cell and bulk RNA sequencing data from gastric cancer patients are conducted, and found that tumor-intrinsic interferon (IFN) plays a central role in TME regulation. The results shows that KDM3A over-expression suppresses the tumor-intrinsic IFN response and inhibits KDM3A, either genomically or pharmacologically, which effectively promotes IFN responses by activating endogenous retroviruses (ERVs). KDM3A ablation reconfigures the dsRNA-MAVS-IFN axis by modulating H3K4me2, enhancing the infiltration and function of CD8 T cells, and simultaneously reducing the presence of regulatory T cells, resulting in a reshaped TME in vivo. In addition, combining anti-PD1 therapy with KDM3A inhibition effectively inhibited tumor growth. In conclusions, this study highlights KDM3A as a potential target for TME remodeling and the enhancement of antitumor immunity in gastric cancer through the regulation of the ERV-MAVS-IFN axis.
Collapse
Affiliation(s)
- Jiabin Zheng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Huolun Feng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jiatong Lin
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jianlong Zhou
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhihui Xi
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Yucheng Zhang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Fa Ling
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yongfeng Liu
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Junjiang Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Tieying Hou
- Medical Experimental CenterShenzhen Nanshan People's HospitalShenzhenGuangdong518052China
- Shenzhen University Medical SchoolShenzhenGuangdong518073China
| | - Fan Xing
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Yong Li
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
3
|
Yoo J, Kim GW, Jeon YH, Lee SW, Kwon SH. Epigenetic roles of KDM3B and KDM3C in tumorigenesis and their therapeutic implications. Cell Death Dis 2024; 15:451. [PMID: 38926399 PMCID: PMC11208531 DOI: 10.1038/s41419-024-06850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Advances in functional studies on epigenetic regulators have disclosed the vital roles played by diverse histone lysine demethylases (KDMs), ranging from normal development to tumorigenesis. Most of the KDMs are Jumonji C domain-containing (JMJD) proteins. Many of these KDMs remove methyl groups from histone tails to regulate gene transcription. There are more than 30 known KDM proteins, which fall into different subfamilies. Of the many KDM subfamilies, KDM3 (JMJD1) proteins specifically remove dimethyl and monomethyl marks from lysine 9 on histone H3 and other non-histone proteins. Dysregulation of KDM3 proteins leads to infertility, obesity, metabolic syndromes, heart diseases, and cancers. Among the KDM3 proteins, KDM3A has been largely studied in cancers. However, despite a number of studies pointing out their importance in tumorigenesis, KDM3B and KDM3C are relatively overlooked. KDM3B and KDM3C show context-dependent functions, showing pro- or anti-tumorigenic abilities in different cancers. Thus, this review provides a thorough understanding of the involvement of KDM3B and KDMC in oncology that should be helpful in determining the role of KDM3 proteins in preclinical studies for development of novel pharmacological methods to overcome cancer.
Collapse
Affiliation(s)
- Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
4
|
Wang Y, Liu S, Wang Y, Li B, Liang J, Chen Y, Tang B, Yu S, Wang H. KDM5B promotes SMAD4 loss-driven drug resistance through activating DLG1/YAP to induce lipid accumulation in pancreatic ductal adenocarcinoma. Cell Death Discov 2024; 10:252. [PMID: 38789418 PMCID: PMC11126577 DOI: 10.1038/s41420-024-02020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inactivated suppressor of mothers against decapentaplegic homolog (SMAD) 4 significantly affects cancer development in pancreatic ductal adenocarcinoma (PDAC). However, the contribution of smad4 loss to drug resistance in PDAC is largely undetermined. In the present study, we reported that the loss of SMAD4 endows PDAC cells the ability to drug resistance through upregulating histone lysine demethylase, Lysine-Specific Demethylase 5B (KDM5B, also known as JARID1B or PLU1). Upregulated KDM5B was found in PDAC, associated with poor prognosis and recurrence of PDAC patients. Upregulated KDM5B promotes PDAC tumor malignancy, i.e. cancer cells stemness and drug resistance in vitro and in vivo, while KDM5B knockout exerts opposite effects. Mechanistically, loss of Smad4-mediated upregulation of KDM5B promotes drug resistance through inhibiting the discs-large homolog 1 (DLG1), thereby facilitating nuclear translocation of YAP to induce de novo lipogenesis. Moreover, m6A demethylase FTO is involved in the upregulation of KDM5B by maintaining KDM5B mRNA stability. Collectively, the present study suggested FTO-mediated KDM5B stabilization in the context of loss of Smad4 activate DLG1/YAP1 pathway to promote tumorigenesis by reprogramming lipid accumulation in PDAC. Our study confirmed that the KDM5B-DLG1-YAP1 pathway axis plays a crucial role in the genesis and progression of PDAC, and KDM5B was expected to become a target for the treatment of PDAC. The schematic diagram of KDM5B-DLG1-YAP pathway axis in regulating drug resistance of PDAC to gemcitabine (GEM). In the context of SMAD4 loss PDAC cells, FTO-mediated stabilization and upregulation of KDM5B promotes drug resistance through directly targeting DLG1 to promote YAP1 translocation to nucleus to induce de novo lipogenesis (DNL).
Collapse
Affiliation(s)
- Yumin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Shiqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, P. R. China
| | - Baibei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Jiaming Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Hongquan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| |
Collapse
|
5
|
Jamali M, Barar E, Shi J. Unveiling the Molecular Landscape of Pancreatic Ductal Adenocarcinoma: Insights into the Role of the COMPASS-like Complex. Int J Mol Sci 2024; 25:5069. [PMID: 38791111 PMCID: PMC11121229 DOI: 10.3390/ijms25105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is poised to become the second leading cause of cancer-related death by 2030, necessitating innovative therapeutic strategies. Genetic and epigenetic alterations, including those involving the COMPASS-like complex genes, have emerged as critical drivers of PDAC progression. This review explores the genetic and epigenetic landscape of PDAC, focusing on the role of the COMPASS-like complex in regulating chromatin accessibility and gene expression. Specifically, we delve into the functions of key components such as KDM6A, KMT2D, KMT2C, KMT2A, and KMT2B, highlighting their significance as potential therapeutic targets. Furthermore, we discuss the implications of these findings for developing novel treatment modalities for PDAC.
Collapse
Affiliation(s)
- Marzieh Jamali
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Li L, Song Q, Zhou J, Ji Q. Controllers of histone methylation-modifying enzymes in gastrointestinal cancers. Biomed Pharmacother 2024; 174:116488. [PMID: 38520871 DOI: 10.1016/j.biopha.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Gastrointestinal (GI) cancers have been considered primarily genetic malignancies, caused by a series of progressive genetic alterations. Accumulating evidence shows that histone methylation, an epigenetic modification program, plays an essential role in the different pathological stages of GI cancer progression, such as precancerous lesions, tumorigenesis, and tumor metastasis. Histone methylation-modifying enzymes, including histone methyltransferases (HMTs) and demethylases (HDMs), are the main executor of post-transcriptional modification. The abnormal expression of histone methylation-modifying enzymes characterizes GI cancers with complex pathogenesis and progression. Interactions between upstream controllers and histone methylation-modifying enzymes have recently been revealed, and have provided numerous opportunities to elucidate the pathogenesis of GI cancers in depth and clearly. Here we focus on the association between histone methylation-modifying enzymes and their controllers, aiming to provide a new perspective on the molecular research and clinical management of GI cancers.
Collapse
Affiliation(s)
- Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Krauß L, Schneider C, Hessmann E, Saur D, Schneider G. Epigenetic control of pancreatic cancer metastasis. Cancer Metastasis Rev 2023; 42:1113-1131. [PMID: 37659057 PMCID: PMC10713713 DOI: 10.1007/s10555-023-10132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Surgical resection, when combined with chemotherapy, has been shown to significantly improve the survival rate of patients with pancreatic ductal adenocarcinoma (PDAC). However, this treatment option is only feasible for a fraction of patients, as more than 50% of cases are diagnosed with metastasis. The multifaceted process of metastasis is still not fully understood, but recent data suggest that transcriptional and epigenetic plasticity play significant roles. Interfering with epigenetic reprogramming can potentially control the adaptive processes responsible for metastatic progression and therapy resistance, thereby enhancing treatment responses and preventing recurrence. This review will focus on the relevance of histone-modifying enzymes in pancreatic cancer, specifically on their impact on the metastatic cascade. Additionally, it will also provide a brief update on the current clinical developments in epigenetic therapies.
Collapse
Affiliation(s)
- Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075, Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675, Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany.
| |
Collapse
|
8
|
Moore LL, Houchen CW. Epigenetic Landscape and Therapeutic Implication of Gene Isoforms of Doublecortin-Like Kinase 1 for Cancer Stem Cells. Int J Mol Sci 2023; 24:16407. [PMID: 38003596 PMCID: PMC10671580 DOI: 10.3390/ijms242216407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While significant strides have been made in understanding cancer biology, the enhancement in patient survival is limited, underscoring the urgency for innovative strategies. Epigenetic modifications characterized by hereditary shifts in gene expression without changes to the DNA sequence play a critical role in producing alternative gene isoforms. When these processes go awry, they influence cancer onset, growth, spread, and cancer stemness. In this review, we delve into the epigenetic and isoform nuances of the protein kinase, doublecortin-like kinase 1 (DCLK1). Recognized as a hallmark of tumor stemness, DCLK1 plays a pivotal role in tumorigenesis, and DCLK1 isoforms, shaped by alternative promoter usage and splicing, can reveal potential therapeutic touchpoints. Our discussion centers on recent findings pertaining to the specific functions of DCLK1 isoforms and the prevailing understanding of its epigenetic regulation via its two distinct promoters. It is noteworthy that all DCLK1 isoforms retain their kinase domain, suggesting that their unique functionalities arise from non-kinase mechanisms. Consequently, our research has pivoted to drugs that specifically influence the epigenetic generation of these DCLK1 isoforms. We posit that a combined therapeutic approach, harnessing both the epigenetic regulators of specific DCLK1 isoforms and DCLK1-targeted drugs, may prove more effective than therapies that solely target DCLK1.
Collapse
Affiliation(s)
- Landon L. Moore
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
10
|
Li O, Li L, Sheng Y, Ke K, Wu J, Mou Y, Liu M, Jin W. Biological characteristics of pancreatic ductal adenocarcinoma: Initiation to malignancy, intracellular to extracellular. Cancer Lett 2023; 574:216391. [PMID: 37714257 DOI: 10.1016/j.canlet.2023.216391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly life-threatening tumour with a low early-detection rate, rapid progression and a tendency to develop resistance to chemotherapy. Therefore, understanding the regulatory mechanisms underlying the initiation, development and metastasis of pancreatic cancer is necessary for enhancing therapeutic effectiveness. In this review, we summarised single-gene mutations (including KRAS, CDKN2A, TP53, SMAD4 and some other less prevalent mutations), epigenetic changes (including DNA methylation, histone modifications and RNA interference) and large chromosome alterations (such as copy number variations, chromosome rearrangements and chromothripsis) associated with PDAC. In addition, we discussed variations in signalling pathways that act as intermediate oncogenic factors in PDAC, including PI3K/AKT, MAPK/ERK, Hippo and TGF-β signalling pathways. The focus of this review was to investigate alterations in the microenvironment of PDAC, particularly the role of immunosuppressive cells, cancer-associated fibroblasts, lymphocytes, other para-cancerous cells and tumour extracellular matrix in tumour progression. Peripheral axons innervating the pancreas have been reported to play a crucial role in the development of cancer. In addition, tumour cells can influence the behaviour of neighbouring non-tumour cells by secreting certain factors, both locally and at a distance. In this review, we elucidated the alterations in intracellular molecules and the extracellular environment that occur during the progression of PDAC. Altogether, this review may enhance the understanding of the biological characteristics of PDAC and guide the development of more precise treatment strategies.
Collapse
Affiliation(s)
- Ou Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunru Sheng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, China; National Clinical Research Center for Cancer, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Yang B, Zhao Y, Luo W, Zhu W, Jin L, Wang M, Ye L, Wang Y, Liang G. Macrophage DCLK1 promotes obesity-induced cardiomyopathy via activating RIP2/TAK1 signaling pathway. Cell Death Dis 2023; 14:419. [PMID: 37443105 PMCID: PMC10345119 DOI: 10.1038/s41419-023-05960-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Obesity increases the risk for cardiovascular diseases and induces cardiomyopathy. Chronic inflammation plays a significant role in obesity-induced cardiomyopathy and may provide new therapeutic targets for this disease. Doublecortin-like kinase 1 (DCLK1) is an important target for cancer therapy and the role of DCLK1 in obesity and cardiovascular diseases is unclear. Herein, we showed that DCLK1 was overexpressed in the cardiac tissue of obese mice and investigated the role of DCLK1 in obesity-induced cardiomyopathy. We generated DCLK1-deleted mice and showed that macrophage-specific DCLK1 knockout, rather than cardiomyocyte-specific DCLK1 knockout, prevented high-fat diet (HFD)-induced heart dysfunction, cardiac hypertrophy, and fibrosis. RNA sequencing analysis showed that DCLK1 deficiency exerted cardioprotective effects by suppressing RIP2/TAK1 activation and inflammatory responses in macrophages. Upon HFD/palmitate (PA) challenge, macrophage DCLK1 mediates RIP2/TAK1 phosphorylation and subsequent inflammatory cytokine release, which further promotes hypertrophy in cardiomyocytes and fibrogenesis in fibroblasts. Finally, a pharmacological inhibitor of DCLK1 significantly protects hearts in HFD-fed mice. Our study demonstrates a novel role and a pro-inflammatory mechanism of macrophage DCLK1 in obesity-induced cardiomyopathy and identifies DCLK1 as a new therapeutic target for the treatment of this disease. Upon HFD/PA challenge, DCLK1 induces RIP2/TAK1-mediated inflammatory response in macrophages, which subsequently promotes cardiac hypertrophy and fibrosis. Macrophage-specific DCLK1 deletion or pharmacological inhibition of DCLK1 protects hearts in HFD-fed mice.
Collapse
Affiliation(s)
- Bin Yang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wu Luo
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weiwei Zhu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Minxiu Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lin Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
12
|
Histone Modifications Represent a Key Epigenetic Feature of Epithelial-to-Mesenchyme Transition in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24054820. [PMID: 36902253 PMCID: PMC10003015 DOI: 10.3390/ijms24054820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant diseases due to its high invasiveness, early metastatic properties, rapid disease progression, and typically late diagnosis. Notably, the capacity for pancreatic cancer cells to undergo epithelial-mesenchymal transition (EMT) is key to their tumorigenic and metastatic potential, and is a feature that can explain the therapeutic resistance of such cancers to treatment. Epigenetic modifications are a central molecular feature of EMT, for which histone modifications are most prevalent. The modification of histones is a dynamic process typically carried out by pairs of reverse catalytic enzymes, and the functions of these enzymes are increasingly relevant to our improved understanding of cancer. In this review, we discuss the mechanisms through which histone-modifying enzymes regulate EMT in pancreatic cancer.
Collapse
|
13
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Jin RR, Zeng C, Chen Y. MiR-22-3p regulates the proliferation, migration and invasion of colorectal cancer cells by directly targeting KDM3A through the Hippo pathway. Histol Histopathol 2022; 37:1241-1252. [PMID: 36173030 DOI: 10.14670/hh-18-526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) has one of the highest incidences and mortality rates of all malignancies worldwide. microRNAs (miRNAs) have been reported to be involved in many biological processes of diseases. MiR-22-3p is considered to be involved in cancer progression, but its role in CRC remains unclear. In this study, we detected that in CRC, the level of miR-22-3p is downregulated. MiR-22-3p has antitumor effects in CRC. miR-22-3p can reduce the proliferative, invasive and migrative capacity of CRC cells. Luciferase reporter analyses confirmed that KDM3A was a target of miR-22-3p, which can directly target the 3'UTR of KDM3A and decrease the expression of KDM3A in CRC cells. Our study also confirmed that KDM3A plays a role as an oncogene in CRC. KDM3A overexpression attenuated the tumor suppressor effects of miR-22-3p in CRC cells, demonstrating that miR-22-3p exerts antitumor effects by targeting KDM3A. Overexpression of miR-22-3p in CRC reduced YAP1 expression, whereas overexpression of KDM3A restored the expression of YAP1. In summary, miR-22-3p might inhibit the progression of CRC by targeting KDM3A to regulate the HIPPO signaling pathway, which may provide an opportunity for the treatment of CRC.
Collapse
Affiliation(s)
- Rui-Ri Jin
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
15
|
Comprehensive analyses of prognostic biomarkers and immune infiltrates among histone lysine demethylases (KDMs) in hepatocellular carcinoma. Cancer Immunol Immunother 2022; 71:2449-2467. [DOI: 10.1007/s00262-022-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
|
16
|
Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, Jayaraman S, Patil S, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci 2022; 9:965730. [PMID: 36250024 PMCID: PMC9560780 DOI: 10.3389/fmolb.2022.965730] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Collapse
Affiliation(s)
- Dibyashree Chhetri
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Varadharaju Balachandran
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Ashok Iyaswamy
- Centre for Parkinsons Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| |
Collapse
|
17
|
Yang L, Zhang Q, Yang Q. KDM3A promotes oral squamous cell carcinoma cell proliferation and invasion via H3K9me2 demethylation-activated DCLK1. Genes Genomics 2022; 44:1333-1342. [PMID: 36094735 DOI: 10.1007/s13258-022-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a frequently-diagnosed malignancy with high potential for proliferation and invasion. Histone methylation is known as a crucial mechanism that regulates pathological processes in various cancers, including OSCC. OBJECTIVE This study sought to delve into the molecular mechanism of lysine demethylase 3 A (KDM3A) in OSCC cell proliferation and invasion. METHODS Expression levels of KDM3A, lysin-9 of di-methylated histone H3 (H3K9me2), and doublecortin-like kinase 1 (DCLK1) in cells were determined by reverse-transcription quantitative polymerase chain reaction or Western blot analysis. Cell proliferation and invasion were evaluated by cell counting kit-8, colony formation, and Transwell assays. The enrichment of KDM3A and H3K9me2 on the DCLK1 promoter was determined by chromatin immunoprecipitation assay. The functional rescue experiment was performed with DCLK1 overexpression vector and si-KDM3A in CAL-27 and SCC-9 cells. RESULTS KDM3A was elevated in OSCC cells. KDM3A knockdown suppressed OSCC proliferation and invasion, along with increased H3K9me2 level in OSCC cells. KDM3A and H3K9me2 were enriched on the DCLK1 promoter and inhibiting H3K9me2 improved DCLK1 expression levels. DCLK1 overexpression neutralized the inhibition of KDM3A knockdown on OSCC proliferation and invasion. CONCLUSIONS KDM3A facilitated OSCC proliferation and invasion by eliminating H3K9me2 to upregulate DCLK1 expression levels.
Collapse
Affiliation(s)
- Lei Yang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China.
| | - Qiqiong Zhang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China
| | - Qiuye Yang
- Department of Prosthodontics, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing City, 163001, Heilongjiang Province, China
| |
Collapse
|
18
|
KDM3A Attenuates Myocardial Ischemic and Reperfusion Injury by Ameliorating Cardiac Microvascular Endothelial Cell Pyroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4622520. [PMID: 36092165 PMCID: PMC9463006 DOI: 10.1155/2022/4622520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Cardiac microvascular endothelial cell ischemia-reperfusion (CMEC I/R) injury occurs in approximately 50% of acute myocardial infarction patients subjected to successful revascularization therapy. This injury leads to cardiac microcirculatory system dysfunctions, which seriously affect cardiac functions and long-term prognostic outcomes. Previously, we elucidated the role of lysine-specific demethylase 3A (KDM3A) in protecting cardiomyocytes from I/R injury; however, its roles in CMEC I/R injuries have yet to be fully established. In this study, hypoxia/reoxygenation (H/R) treatment significantly impaired CMEC functions and induced their pyroptosis, accompanied by KDM3A downregulation. Then, gain- and loss-of-function assays were performed to investigate the roles of KDM3A in CMEC H/R injury in vitro. KDM3A knockout enhanced CMEC malfunctions and accelerated the expressions of pyroptosis-associated proteins, such as NLRP3, cleaved-caspase-1, ASC, IL-1β, GSDMD-N, and IL-18. Conversely, KDM3A overexpression developed ameliorated alternations in CMEC H/R injury. In vivo, KDM3A knockout resulted in the deterioration of cardiac functions and decreased the no-reflow area as well as capillary density. Mechanistically, KDM3A activated the PI3K/Akt signaling pathway and ameliorated I/R-mediated CMEC pyroptosis. In conclusion, KDM3A is a promising treatment target for alleviating CMEC I/R injury.
Collapse
|
19
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
20
|
Shen M, Li S, Zhao Y, Liu Y, Liu Z, Huan L, Qiao Y, Wang L, Han L, Chen Z, He X. Hepatic ARID3A facilitates liver cancer malignancy by cooperating with CEP131 to regulate an embryonic stem cell-like gene signature. Cell Death Dis 2022; 13:732. [PMID: 36008383 PMCID: PMC9411159 DOI: 10.1038/s41419-022-05187-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023]
Abstract
Liver cancer stemness refers to the stem cell-like phenotype of hepatocarcinoma cells and is closely related to a high degree of tumour malignancy. Here, we identified AT-rich interacting domain 3A (ARID3A) as one of the most upregulated stemness-related transcription factors in liver cancer by an in vitro functional screen. ARID3A can promote liver cancer cell viability and metastasis both in vitro and in vivo. Mechanistically, ARID3A interacts with CEP131 and transcriptionally activates KDM3A by co-occupying its promoter element, further upregulating the expression of downstream embryonic stem (ES) signature genes via demethylation of H3K9me2. ARID3A and CEP131 promote an ES cell gene signature through activation of KDM3A and contribute to the poor prognosis of liver cancer patients. Collectively, these results provide evidence highlighting a transcription-dependent mechanism of ARID3A in stemness regulation in liver cancer. The ARID3A/CEP131-KDM3A regulatory circuit could serve as a prognostic indicator and potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Mengting Shen
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Shengli Li
- grid.16821.3c0000 0004 0368 8293Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620 China
| | - Yiming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
| | - Yizhe Liu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Liu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lin Huan
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yejun Qiao
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
| | - Leng Han
- grid.264756.40000 0004 4687 2082Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA
| | - Zhiao Chen
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
| | - Xianghuo He
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
| |
Collapse
|
21
|
Wang W, Wang B. KDM3A-mediated SP1 activates PFKFB4 transcription to promote aerobic glycolysis in osteosarcoma and augment tumor development. BMC Cancer 2022; 22:562. [PMID: 35590288 PMCID: PMC9118730 DOI: 10.1186/s12885-022-09636-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/05/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lysine-specific histone demethylase 3A (KDM3A) is a potent histone modifier that is frequently implicated in the progression of several malignancies. However, its role in aerobic glycolysis of osteosarcoma (OS) remains unclear. METHODS KDM3A expression in OS tissues was determined by immunohistochemistry, and that in acquired OS cells was determined by RT-qPCR and western blot assays. KDM3A was silenced in OS cells to examine cellular behaviors and the aerobic glycolysis. Stably transfected cells were injected into nude mice for in vivo experiments. The downstream targets of KDM3A were predicted by bioinformatics systems and validated by ChIP-qPCR. Rescue experiments of SP1 and PFKFB4 were performed to examine their roles in the KDM3A-mediated events. RESULTS KDM3A was highly expressed in OS tissues and cells. Knockdown of KDM3A weakened OS cell growth and metastasis in vivo and in vitro, and it suppressed the aerobic glycolysis in OS cells. KDM3A enhanced the transcription of SP1 by demethylating H3K9me2 on its promoter. Restoration of SP1 rescued growth and metastasis of OS cells and recovered the glycolytic flux in cells suppressed by knockdown of KDM3A. SP1 bound to the PFKFB4 promoter to activate its transcription and expression. PFKFB4 expression in OS cells was suppressed by KDM3A silencing but increased after SP1 restoration. Overexpression of PFKFB4 significantly promoted OS cell growth and metastasis as well as the glycolytic flux in cells. CONCLUSION This paper elucidates that upregulation of PFKFB4 mediated by the KDM3A-SP1 axis promotes aerobic glycolysis in OS and augments tumor development.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000, Liaoning, P.R. China
| | - Bin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000, Liaoning, P.R. China.
| |
Collapse
|
22
|
Ganji C, Farran B. Current clinical trials for epigenetic targets and therapeutic inhibitors for pancreatic cancer therapy. Drug Discov Today 2022; 27:1404-1410. [PMID: 34952224 DOI: 10.1016/j.drudis.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is an aggressive disease characterized by high mortality. Diagnosis at advanced stage, resistance, and recurrence are major hurdles for PC therapy and contribute to poor survival rate. Mutations in tumor-promoting kinases and epigenetic dysregulation in tumor suppressor genes are hallmarks of PC and can be used for diagnosis and therapy. In this review, we highlight dysregulated genes associated with epigenetic mechanisms, including DNA methylation and histone acetylation, involved in PC progression and resistance. We also explore epigenetic drugs currently in clinical trials. Combining epigenetic drugs and targeted therapies might represent a promising approach for PC.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Zhang B, Zhang J, Liu G, Guo X, Liu X, Chen J. KDM3A Inhibition Ameliorates Hyperglycemia-Mediated Myocardial Injury by Epigenetic Modulation of Nuclear Factor Kappa-B/P65. Front Cardiovasc Med 2022; 9:870999. [PMID: 35571189 PMCID: PMC9106140 DOI: 10.3389/fcvm.2022.870999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Objectives Even after the glucose level returns to normal, hyperglycemia-induced cardiac dysfunction as well as reactive oxygen species (ROS) generation, inflammatory responses, and apoptosis continued deterioration, showing a long-lasting adverse effect on cardiac function and structure. We aimed to unveil the molecular and cellular mechanisms underlying hyperglycemia-induced persistent myocardial injury and cardiac dysfunction. Methods and Results Recently, the accumulated evidence indicated epigenetic regulation act as a determining factor in hyperglycemia-induced continuous cardiovascular dysfunction. As an important histone demethylase, the expression of lysine-specific demethylase 3A (KDM3A) was continually increased, accompanied by a sustained decline of H3K9me2 levels in diabetic myocardium even if received hypoglycemic therapy. Besides, by utilizing gain- and loss-of-functional approaches, we identified KDM3A as a novel regulator that accelerates hyperglycemia-mediated myocardial injury by promoting ROS generation, aggregating inflammatory reaction, and facilitating cell apoptosis in vitro and in vivo. The KDM3A inhibition could significantly ameliorate the adverse effect of hyperglycemia in both diabetes model and diabetic intensive glycemic control model. Mechanically, our data uncovered that KDM3A could promote the expression and transcriptional activity of nuclear factor kappa-B (NF-κB/P65), and the succedent rescue experiments further verified that KDM3A regulates hyperglycemia-induced myocardial injury in an NF-κB/P65 dependent manner. Conclusion This study revealed histone-modifying enzymes KDM3A drives persistent oxidative stress, inflammation, apoptosis, and subsequent myocardial injury in the diabetic heart by regulating the transcription of NF-κB/P65.
Collapse
Affiliation(s)
- Bofang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, Yichang Central People’s Hospital, China Three Gorges University, Yichang, China
| | - Gen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Xin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Xiaopei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Jing Chen, , orcid.org/0000-0002-4037-7158
| |
Collapse
|
24
|
Zhao Y, Yang M, Wang S, Abbas SJ, Zhang J, Li Y, Shao R, Liu Y. An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Front Oncol 2022; 12:854773. [PMID: 35296007 PMCID: PMC8918690 DOI: 10.3389/fonc.2022.854773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Sk Jahir Abbas
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
| | - Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| |
Collapse
|
25
|
Yan R, Fan X, Xiao Z, Liu H, Huang X, Liu J, Zhang S, Yao J, An G, Ge Y. Inhibition of DCLK1 sensitizes resistant lung adenocarcinomas to EGFR-TKI through suppression of Wnt/β-Catenin activity and cancer stemness. Cancer Lett 2022; 531:83-97. [DOI: 10.1016/j.canlet.2022.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
26
|
High Expression of JMJD4 Is a Potential Diagnostic and Prognostic Marker of Renal Cell Carcinoma. DISEASE MARKERS 2022; 2021:9573540. [PMID: 34980950 PMCID: PMC8720244 DOI: 10.1155/2021/9573540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022]
Abstract
Histone demethylase JMJD4 is a burgeoning tumor marker, which has been proven to be associated with colon cancer, but the role it plays in kidney cancer has not yet been investigated. In the present study, we evaluated whether JMJD4 can be a prognostic marker of patients with clear cell renal cell carcinoma (ccRCC) using data from public platform and in vitro experiments. Our results revealed that the expression of JMJD4 is higher in cancerous tissue than in normal tissues (p < 0.001). High expression of JMJD4 is associated with a poor overall survival (OS) of ccRCC as compared with low expression of JMJD4 (p = 0.015). JMJD4 showed significant relevance with M stage (p = 0.016), gender (p = 0.003), OS (0.018), disease-specific survival (DSS) (0.007), and percussion free interval (PFI) (0.041). Univariate and multivariate Cox analyses demonstrated that high JMJD4 expression had independent predictive value for OS in ccRCC patients (hazard ratio (HR) = 1.563, 95%confidence interval (CI) = 1.055‐2.316, and p = 0.026). Besides, in vitro experiments confirmed that high expression of JMJD4 can significantly promote the invasion ability (p < 0.001), cloning ability (p < 0.001), and proliferation (p < 0.001) of renal cell carcinoma. In summary, high JMJD4 expression may be a prognostic marker in patients with kidney cancer.
Collapse
|
27
|
Wang Y, Yi J, Liu X. Roles of Dclk1 in the pathogenesis, diagnosis, prognosis and treatment of pancreatic cancer: A review. Expert Rev Gastroenterol Hepatol 2022; 16:13-19. [PMID: 34937474 DOI: 10.1080/17474124.2022.2020643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Pancreatic cancer (PC) is a malignant tumor with significantly increased incidence and poor prognosis. Its extremely poor prognosis is generally attributed to its early invasion and metastasis as well as the presence of chemotherapy resistance, which may be related to the potential role of cancer stem cells (CSCs). Doublecortin-like kinase 1 (Dclk1) has been recognized to be a marker of CSCs in PC, showing intimate association with its occurrence, metastasis, and poor prognosis. AREAS COVERED A review serves to provide a comprehensive overview of Dclk1 in the pathogenesis, diagnosis, prognosis, and treatment in PC. EXPERT OPINION Searching for potential key biomarkers for PC has been an urgent issue to be addressed. The expression of Dclk1 is increasing in PC, and its effect is linked to the mutant Kras, supporting that it may be a potential new target. Therefore, it highlights Dclk1 as a candidate biomarker and therapeutic target in future clinical application.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
28
|
Sun X, Li K, Hase M, Zha R, Feng Y, Li BY, Yokota H. Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling. Am J Cancer Res 2022; 12:929-943. [PMID: 34976221 PMCID: PMC8692912 DOI: 10.7150/thno.66148] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Bone is a frequent site of metastases from breast cancer, but existing therapeutic options are not satisfactory. Although osteoblasts have active roles in cancer progression by assisting the vicious bone-destructive cycle, we employed a counterintuitive approach of activating pro-tumorigenic Wnt signaling and examined the paradoxical possibility of developing osteoblast-derived tumor-suppressive, bone-protective secretomes. Methods: Wnt signaling was activated by the overexpression of Lrp5 and β-catenin in osteoblasts as well as a pharmacological agent (BML284), and the therapeutic effects of their conditioned medium (CM) were evaluated using in vitro cell cultures, ex vivo breast cancer tissues, and a mouse model of osteolysis. To explore the unconventional regulatory mechanism of the action of Wnt-activated osteoblasts, whole-genome proteomics analysis was conducted, followed by immunoprecipitation and gain- and loss-of-function assays. Results: While osteoblasts did not present any innate tumor-suppressing ability, we observed that the overexpression of Lrp5 and β-catenin in Wnt signaling made their CM tumor-suppressive and bone-protective. The growth of breast cancer cells and tissues was inhibited by Lrp5-overexpressing CM (Lrp5 CM), which suppressed mammary tumors and tumor-driven bone destruction in a mouse model. Lrp5 CM also inhibited the differentiation and maturation of bone-resorbing osteoclasts by downregulating NFATc1 and cathepsin K. The overexpression of Lrp5 upregulated osteopontin that enriched Hsp90ab1 (Hsp90 beta) and moesin (MSN) in Lrp5 CM. Hsp90ab1 and MSN are atypical tumor-suppressing proteins since they are multi-tasking, moonlighting proteins that promote tumorigenesis in tumor cells. Importantly, Hsp90ab1 immuno-precipitated latent TGFβ and inactivated TGFβ, whereas MSN interacted with CD44, a cancer stem-cell marker, as well as fibronectin 1, an ECM protein. Furthermore, Hsp90ab1 and MSN downregulated KDM3A that demethylated histones, together with PDL1 that inhibited immune responses. Conclusion: In contrast to inducing tumor-enhancing secretomes and chemoresistance in general by inhibiting varying oncogenic pathways in chemotherapy, this study presented the unexpected outcome of generation tumor-suppressive secretomes by activating the pro-tumorigenic Wnt pathway. The results shed light on the contrasting role of oncogenic signaling in tumor cells and osteoblast-derived secretomes, suggesting a counterintuitive option for the treatment of breast cancer-associated bone metastasis.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Misato Hase
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA,Graduate School of Engineering, Mie University, Mie 514, Japan
| | - Rongrong Zha
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yan Feng
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China,✉ Corresponding authors: Bai-Yan Li and Hiroki Yokota
| | - Hiroki Yokota
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA,✉ Corresponding authors: Bai-Yan Li and Hiroki Yokota
| |
Collapse
|
29
|
Xie S, Jiang X, Qin R, Song S, Lu Y, Wang L, Chen Y, Lu D. miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway. iScience 2021; 24:103271. [PMID: 34761190 PMCID: PMC8567365 DOI: 10.1016/j.isci.2021.103271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
miR-1307 is highly expressed in liver cancer and inhibits methyltransferase protein8. Thereby, miR-1307 inhibits the expression of KDM3A and KDM3B and increases the methylation modification of histone H3 lysine 9, which enhances the expression of endoplasmic-reticulum-related gene CALR. Of note, miR-1307 weakens the binding ability of OSTC to CDK2, CDK4, CyclinD1, and cyclinE and enhances the binding ability of CALR to CDK2, CDK4, CyclinD1, and cyclinE, decreasing of p21WAF1/CIP1, GADD45, pRB, and p18, and decreasing of ppRB. Furthermore, miR-1307 increases the activity of H-Ras, PKM2, and PLK1. Strikingly, miR-1307 reduces the binding ability of OSTC to ATG4 and enhances the binding ability of CALR to ATG4. Therefore, miR-1307 reduces the occurrence of autophagy based on ATG4-LC3-ATG3-ATG7-ATG5-ATG16L1-ATG12-ATG9- Beclin1. In particular, miR-1307 enhances the expression of PAK2, PLK1, PRKAR2A, MYBL1, and Trim44 and inhibits the expression of Sash1 and Smad5 via autophagy. Our observations suggest that miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway.
Collapse
Affiliation(s)
- Sijie Xie
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Xiaoxue Jiang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Rushi Qin
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Shuting Song
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Yanan Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Liyan Wang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Yingjie Chen
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | - Dongdong Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| |
Collapse
|
30
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
31
|
Zhao M, Wang S, Zuo A, Zhang J, Wen W, Jiang W, Chen H, Liang D, Sun J, Wang M. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell Mol Biol Lett 2021; 26:40. [PMID: 34479471 PMCID: PMC8414688 DOI: 10.1186/s11658-021-00283-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Endothelial cell (EC) injury accelerates the progression of diabetic macrovascular complications. Hypoxia is an important cause of EC injury. Hypoxia-inducible factor-1 alpha (HIF-1α) is an important hypoxia regulatory protein. Our previous studies showed that high-glucose and hypoxic conditions could upregulate HIF-1α expression and enhance EC inflammatory injury, independently of the nuclear factor kappa-B (NF-κB) pathway. However, it is not clear whether HIF-1α plays a role in vascular disease through epigenetic-related mechanisms. Methods We conducted gene expression analysis and molecular mechanistic studies in human umbilical vein endothelial cells (HUVECs) induced by hyperglycemia and hypoxia using RNA sequencing (RNA-seq) and small interfering HIF-1α (si-HIF-1α). We determined HIF-1α and Jumonji domain-containing protein 1 A (JMJD1A) expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot, analyzed inflammatory protein secretion in the cell supernatant by enzymelinked immunosorbent assay (ELISA), and assessed protein interaction between HIF-1α and JMJD1A by chromatin immunoprecipitation (Ch-IP). We used the Cell Counting Kit8 (CCK-8) assay to analyze cell viability, and assessed oxidative stress indicators by using a detection kit and flow cytometry. Results High glucose and hypoxia up-regulated HIF-1α expression, and down-regulated HIF-1α decreased the level of inflammation and oxidative stress in HUVECs. To determine the downstream pathways, we observed histone demethylases genes and related pathway by RNA-sEq. Among these, JMJD1A was the most upregulated gene in histone demethylases. Moreover, we observed that HIF-1α bound to the promoter of JMJD1A, and the ameliorative effects of si-HIF-1α on oxidative stress and inflammatory cytokines in high-glucose and hypoxia-induced HUVECs were reversed by JMJD1A overexpression. Furthermore, knockdown of JMJD1A decreased inflammatory and oxidative stress injury. To determine the JMJD1A-related factors, we conducted gene expression analysis on JMJD1A-knockdown HUVECs. We observed that downregulation of inflammation and the oxidative stress pathway were enriched and FOS and FOSB might be important protective transcription factors. Conclusions These findings provide novel evidence that the HIF-1α/JMJD1A signaling pathway is involved in inflammation and oxidative stress in HUVECs induced by high glucose and hypoxia. Also, this pathway might act as a novel regulator of oxidative stress and inflammatory-related events in response to diabetic vascular injury and thus contribute to the pathological progression of diabetes and vascular disease. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-021-00283-8.
Collapse
Affiliation(s)
- Min Zhao
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shaoting Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Anna Zuo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Weiheng Wen
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Weiqiang Jiang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hong Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Donghui Liang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jia Sun
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Ming Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
32
|
Hou X, Li Q, Yang L, Yang Z, He J, Li Q, Li D. KDM1A and KDM3A promote tumor growth by upregulating cell cycle-associated genes in pancreatic cancer. Exp Biol Med (Maywood) 2021; 246:1869-1883. [PMID: 34171978 PMCID: PMC8424634 DOI: 10.1177/15353702211023473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic cancer is a highly malignant cancer of the pancreas with a very poor prognosis. Methylation of histone lysine residues is essential for regulating cancer physiology and pathophysiology, mediated by a set of methyltransferases (KMTs) and demethylases (KDMs). This study surveyed the expression of methylation regulators functioning at lysine 9 of histone 3 (H3K9) in pancreatic lesions and explored the underlying mechanisms. We analyzed KDM1A and KDM3A expression in clinical samples by immunohistochemical staining and searching the TCGA PAAD program and GEO datasets. Next, we identified the variation in tumor growth in vitro and in vivo after knockdown of KDM1A or KDM3A and explored the downstream regulators of KDM1A and KDM3A via RNA-seq, and gain- and loss-of-function assays. Eleven H3K9 methylation regulators were highly expressed in pancreatic cancer, and only KDM1A and KDM3A expression positively correlated with the clinicopathological characteristics in pancreatic cancer. High expression of KDM1A or KDM3A positively correlated with pathological grade, lymphatic metastasis, invasion, and clinical stage. Kaplan-Meier analysis indicated that a higher level of KDM1A or KDM3A led to a shorter survival period. Knockdown of KDM1A or KDM3A led to markedly impaired tumor growth in vitro and in vivo. Mechanistically, CCNA2, a cell cycle-associated gene was partially responsible for KDM1A knockdown-mediated effect and CDK6, also a cell cycle-associated gene was partially responsible for KDM3A knockdown-mediated effect on pancreatic cancer cells. Our study demonstrates that KDM1A and KDM3A are highly expressed in pancreatic cancer and are intimately correlated with clinicopathological factors and prognosis. The mechanism of action of KDM1A or KDM3A was both linked to the regulation of cell cycle-associated genes, such as CCNA2 or CDK6, respectively, by an H3K9-dependent pathway.
Collapse
Affiliation(s)
- Xuyang Hou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qiuguo Li
- Department of General Surgery, Hunan Chest Hospital, Changsha 410006, China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhulin Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Daming Li
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
33
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
34
|
Kato H, Tateishi K, Fujiwara H, Ijichi H, Yamamoto K, Nakatsuka T, Kakiuchi M, Sano M, Kudo Y, Hayakawa Y, Nakagawa H, Tanaka Y, Otsuka M, Hirata Y, Tachibana M, Shinkai Y, Koike K. Deletion of Histone Methyltransferase G9a Suppresses Mutant Kras-driven Pancreatic Carcinogenesis. Cancer Genomics Proteomics 2021; 17:695-705. [PMID: 33099471 DOI: 10.21873/cgp.20224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM The entire mechanisms by which epigenetic modifiers contribute to the development of pancreatic cancer remain unknown. Although the histone methyltransferase G9a is a promising target in human cancers, its role in pancreatic carcinogenesis has been under-studied. The aim of the study was to examine the role of G9a in pancreatic carcinogenesis by a gene-targeting mouse model. MATERIALS AND METHODS We established pancreas-specific G9aflox/flox mice and crossed them with Ptf1aCre/; KrasG12D/+ (KC) mice, which spontaneously develop pancreatic cancer. The phenotypes of the resulting KC mice with G9a deletion were examined. We analyzed transcriptomic data by microarray and genome-wide chromatin accessibility by transposase-accessible chromatin using sequencing. We established pancreatic organoids from KC mice. RESULTS G9a deficiency impaired the progression of pancreatic intraepithelial neoplasia (PanIN) and prolonged the survival of KC mice. The number of phosphorylated Erk-positive cells and Dclk1-positive cells, which are reported to be essential for the progression of PanIN, were decreased by G9a deletion. UNC0638, an inhibitor of G9a, suppressed the growth of organoids and increased global chromatin accessibility, especially around the regions including the protein phosphatase 2A genes. CONCLUSION Thus, our study suggested the functional interaction of G9a, Dclk1 and Mapk pathway in the Kras-driven pancreatic carcinogenesis. The inhibition of G9a may suppress the initiation of oncogenic Kras-driven pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Kakiuchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Sano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Advanced Science Institute, Saitama, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Hu S, Cao P, Kong K, Han P, Deng Y, Li F, Zhao B. MicroRNA-449a delays lung cancer development through inhibiting KDM3A/HIF-1α axis. J Transl Med 2021; 19:224. [PMID: 34044859 PMCID: PMC8157436 DOI: 10.1186/s12967-021-02881-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Background It has been established that microRNA (miR)-449a is anti-tumorigenic in cancers, including lung cancer. Therefore, this study further explored miR-449a-mediated mechanism in lung cancer, mainly focusing on lysine demethylase 3A/hypoxia-induced factor-1α (KDM3A/HIF-1α) axis. Methods miR-449a, KDM3A and HIF-1α levels in lung cancer tissues and cell lines (A549, H1299 and H460) were measured. Loss- and gain-of-function assays were performed and then cell proliferation, cell cycle, apoptosis, invasion and migration were traced. The relationship between KDM3A, miR-449a and HIF-1α was verified. Tumor growth in vivo was also monitored. Results Both lung cancer tissues and cells exhibited reduced miR-449a and raised KDM3A and HIF-1α levels. miR-449a interacted with KDM3A; HIF-1α could bind with KDM3A. Up-regulating miR-449a hindered while suppressing miR-449a induced lung cancer development via mediating HIF-1α. Elevating KDM3A promoted cellular aggression while down-regulating KDM3A had the opposite effects. Up-regulating KDM3A or HIF-1α negated up-regulated miR-449a-induced effects on cellular growth in lung cancer. Restoring miR-449a impaired tumorigenesis in vivo in lung cancer. Conclusion It is eventually concluded that miR-449a delays lung cancer development through suppressing KDM3A/HIF-1α axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02881-8.
Collapse
Affiliation(s)
- Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
36
|
Liu J, Feng Y, Zeng X, He M, Gong Y, Liu Y. Extracellular vesicles-encapsulated let-7i shed from bone mesenchymal stem cells suppress lung cancer via KDM3A/DCLK1/FXYD3 axis. J Cell Mol Med 2020; 25:1911-1926. [PMID: 33350586 PMCID: PMC7882949 DOI: 10.1111/jcmm.15866] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has suggested that extracellular vesicles (EVs) play a crucial role in lung cancer treatment. Thus, we aimed to investigate the modulatory role of bone marrow mesenchymal stem cell (BMSC)-EV-derived let-7i and their molecular mechanism in lung cancer progression. Microarray-based analysis was applied to predict lung cancer-related miRNAs and their downstream genes. RT-qPCR and Western blot analyses were conducted to determine Let-7i, lysine demethylase 3A (KDM3A), doublecortin-like kinase 1 (DCLK1) and FXYD domain-containing ion transport regulator 3 (FXYD3) expressions, after which dual-luciferase reporter gene assay and ChIP assay were used to identify the relationship among them. After loss- and gain-of-function assays, the effects of let-7i, KDM3A, DCLK1 and FXYD3 on the biological characteristics of lung cancer cells were assessed. Finally, tumour growth in nude mice was assessed by xenograft tumours in nude mice. Bioinformatics analysis screened out the let-7i and its downstream gene, that is KDM3A. The findings showed the presence of a high expression of KDM3A and DCLK1 and reduced expression of let-7i and FXYD3 in lung cancer. KDM3A elevated DCLK1 by removing the methylation of H3K9me2. Moreover, DCLK1 suppressed the FXYD3 expression. BMSC-EV-derived let-7i resulted in the down-regulation of KDM3A expression and reversed its promoting role in lung cancer development. Consistently, in vivo experiments in nude mice also confirmed that tumour growth was suppressed by the BMSC-EV-derived let-7i. In conclusion, our findings demonstrated that the BMSC-EV-derived let-7i possesses an inhibitory role in lung cancer progression through the KDM3A/DCLK1/FXYD3 axis, suggesting a new molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Jiefeng Liu
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yuhua Feng
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Zeng
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Miao He
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yujing Gong
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Tuft and Cancer Stem Cell Marker DCLK1: A New Target to Enhance Anti-Tumor Immunity in the Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12123801. [PMID: 33348546 PMCID: PMC7766931 DOI: 10.3390/cancers12123801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Doublecortin-like kinase 1 (DCLK1) is a tumor stem cell marker in colon, pancreatic, and potentially other cancers that has received wide attention recently. Aside from its role as a tuft cell marker in normal tissue and as a tumor stem cell marker in cancer, previous studies have demonstrated that silencing DCLK1 functionally reduces stemness, epithelial mesenchymal transition (EMT), and tumorigenesis in cancers. More recently, DCLK1′s role in regulating the inflammatory, pre-cancer, and tumor microenvironment including its ability to modulate immune cell mechanisms has started to come into focus. Importantly, clinically viable therapeutic means of targeting DCLK1 have finally become available in the form of kinase inhibitors, monoclonal antibodies, and chimeric antigen receptor T cells (CAR-T). Herein, we comprehensively review the mechanistic role of DCLK1 in the tumor microenvironment, assess the potential for targeting DCLK1 in colon, pancreatic and renal cancer. Abstract Microtubule-associated doublecortin-like kinase 1 (DCLK1) is an accepted marker of tuft cells (TCs) and several kinds of cancer stem cells (CSCs), and emerging evidence suggests that DCLK1-positive TCs participate in the initiation and formation of inflammation-associated cancer. DCLK1-expressing CSCs regulate multiple biological processes in cancer, promote resistance to therapy, and are associated with metastasis. In solid tumor cancers, tumor epithelia, immune cells, cancer-associated fibroblasts, endothelial cells and blood vessels, extracellular matrix, and hypoxia all support a CSC phenotype characterized by drug resistance, recurrence, and metastasis. Recently, studies have shown that DCLK1-positive CSCs are associated with epithelial-mesenchymal transition, angiogenesis, and immune checkpoint. Emerging data concerning targeting DCLK1 with small molecular inhibitors, monoclonal antibodies, and chimeric antigen receptor T-cells shows promising effects on inhibiting tumor growth and regulating the tumor immune microenvironment. Overall, DCLK1 is reaching maturity as an anti-cancer target and therapies directed against it may have potential against CSCs directly, in remodeling the tumor microenvironment, and as immunotherapies.
Collapse
|
38
|
Kalyanaraman A, Gnanasampanthapandian D, Shanmughan P, Kishore P, Ramalingam S, Arunachalam R, Jayaraman S, Kaliappan I, Munuswamy-Ramanujam G, Ramachandran I, Sambandam Y, Anbalagan M, Chandrakesan P, Palaniyandi K. Tamoxifen induces stem-like phenotypes and multidrug resistance by altering epigenetic regulators in ERα+ breast cancer cells. Stem Cell Investig 2020; 7:20. [PMID: 33294429 DOI: 10.21037/sci-2020-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
Abstract
Background To understand the mechanism underlying tamoxifen-induced multidrug resistance (MDR) and stem-like phenotypes in breast cancer cells, we treated the MCF-7 cells with 4-hydroxy-tamoxifen (TAM) for 6 months continuously and established MCF-7 tamoxifen resistance (TR) phenotypes. Methods In the present study, the following methods were used: cell viability assay, colony formation, cell cycle analysis, ALDEFLUOR assay, mammosphere formation assay, chromatin immunoprecipitation (ChIP) assay, PCR array, western blot analysis and quantitative reverse transcription polymerase chain reaction (QRT-PCR). Results The expression of ERα was significantly higher in MCF7-TR cells when compared with parental MCF-7 cells. MCF7-TR cells exposed to TAM showed a significant increase in the proliferation and rate of colony formation. The number of cancer stem cells was higher in MCF7-TR cells as observed by the increase in the number of ALDH+ cells. Furthermore, the number of mammospheres formed from the FACS-sorted ALDH+ cells was higher in MCF7-TR cells. Using PCR array analysis, we were able to identify that the long-term exposure of TAM leads to alterations in the epigenetic and MDR stem cell marker genes. Furthermore, western blot analysis demonstrated elevated levels of Notch-1 expression in MCF-TR cells compared with MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay revealed that Notch-1 enhanced the cyclin D1 expression significantly in these cells. In addition, we observed that MCF7-TR cells were resistant to doxorubicin but not the MCF-7 cells. Conclusions In the present study, we conclude that the treatment with tamoxifen induces multiple epigenetic alterations that lead to the development of MDR and stem-like phenotypes in breast cancers. Therefore, our study provides better insights to develop novel treatment regime to control the progression of breast cancer.
Collapse
Affiliation(s)
- Aparna Kalyanaraman
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Prasad Shanmughan
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Puneet Kishore
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Rathnaswami Arunachalam
- Department of Surgical Gastroenterology, SRM Medical College Hospital and Research Center, Kattankulathur, Kancheepuram, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Velappanchavadi, Chennai, India
| | - Ilango Kaliappan
- Departmemt of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ganesh Munuswamy-Ramanujam
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, India
| | - Yuvaraj Sambandam
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, India
| | | | | | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| |
Collapse
|
39
|
Stoica AF, Chang CH, Pauklin S. Molecular Therapeutics of Pancreatic Ductal Adenocarcinoma: Targeted Pathways and the Role of Cancer Stem Cells. Trends Pharmacol Sci 2020; 41:977-993. [PMID: 33092892 DOI: 10.1016/j.tips.2020.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans due to late detection and highly metastatic characteristics. PDAC cells vary in their tumorigenic capabilities with the presence of a subset of PDAC cells known as pancreatic cancer stem cells (CSCs), which are more resistant to currently used therapeutics. Here, we describe the role of CSCs and tumour stroma in developing therapeutic strategies for PDAC and suggest that developmental plasticity could be considered a hallmark of cancers. We provide an overview of the molecular targets in PDAC treatments, including targeted therapies of cellular processes such as proliferation, evasion of growth suppressors, activating metastasis, and metabolic effects. Since PDAC is an inflammation-driven cancer, we also revisit therapeutic strategies targeting inflammation and immunotherapy. Lastly, we suggest that targeting epigenetic mechanisms opens therapeutic routes for heterogeneous cancer cell populations, including CSCs.
Collapse
Affiliation(s)
- Andrei-Florian Stoica
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
40
|
Liu J, Li D, Zhang X, Li Y, Ou J. Histone Demethylase KDM3A Promotes Cervical Cancer Malignancy Through the ETS1/KIF14/Hedgehog Axis. Onco Targets Ther 2020; 13:11957-11973. [PMID: 33239895 PMCID: PMC7682655 DOI: 10.2147/ott.s276559] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Lysine demethylase 3A (KDM3A) has been increasingly recognized as an important epigenetic regulator involved in cancer development. This study aims to explore the relevance of KDM3A to cervical cancer (CC) progression and the molecules involved. Materials and Methods Tumor and the adjacent tissues from CC patients were collected. KDM3A expression in tissues and CC cell lines and its correlation with the survival and prognosis of patients were determined. Malignant potentials of CC cells and the angiogenesis ability of HUVECs were measured to evaluate the function of KDM3A on CC progression. The interactions among KDM3A, H3K9me2 and ETS1, and the binding between ETS1 and KIF14 were validated through ChIP and luciferase assays. Altered expression of ETS1 and KIF14 was introduced to explore their roles in CC development. Results KDM3A was abundantly expressed in CC tissues and cells and linked to dismal prognosis of CC patients. Knockdown of KDM3A suppressed malignant behaviors of CC cells. KDM3A was found to increase ETS1 expression through the demethylation of H3K9me2. Overexpression of ETS1 blocked the inhibiting roles of sh-KDM3A. ETS1 could bind to the promoter region of KIF14 to trigger its transcription. Overexpression ofKIF14aggravated the malignant behaviors of CC cells and the angiogenesis ability of HUVECs, and it activated the Hedgehog signaling pathway. Artificial activation of Hedgehog by Sag1.5 diminished the effects of sh-KDM3A. These changes were reproduced in vivo. Conclusion This study evidenced that KDM3A promotes ETS1-mediated KIF14 transcription to promote CC progression with the involvement of the Hedgehog activation.
Collapse
Affiliation(s)
- Jinyu Liu
- Frist Department of Gynecologic Oncology, Jilin Cancer Hospital, Changchun 130012, Jilin, People's Republic of China
| | - Dongqing Li
- Second Department of Gynecologic Oncology, Jilin Cancer Hospital, Changchun 130012, Jilin, People's Republic of China
| | - Xin Zhang
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, People's Republic of China
| | - Yanyan Li
- Frist Department of Gynecologic Oncology, Jilin Cancer Hospital, Changchun 130012, Jilin, People's Republic of China
| | - Jian Ou
- Department of Gynecological Oncology Radiotherapy, Jilin Cancer Hospital, Changchun 130012, Jilin, People's Republic of China
| |
Collapse
|
41
|
Li J, Yuan S, Norgard RJ, Yan F, Sun YH, Kim IK, Merrell AJ, Sela Y, Jiang Y, Bhanu NV, Garcia BA, Vonderheide RH, Blanco A, Stanger BZ. Epigenetic and Transcriptional Control of the Epidermal Growth Factor Receptor Regulates the Tumor Immune Microenvironment in Pancreatic Cancer. Cancer Discov 2020; 11:736-753. [PMID: 33158848 DOI: 10.1158/2159-8290.cd-20-0519] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Although immunotherapy has revolutionized cancer care, patients with pancreatic ductal adenocarcinoma (PDA) rarely respond to these treatments, a failure that is attributed to poor infiltration and activation of T cells in the tumor microenvironment (TME). We performed an in vivo CRISPR screen and identified lysine demethylase 3A (KDM3A) as a potent epigenetic regulator of immunotherapy response in PDA. Mechanistically, KDM3A acts through Krueppel-like factor 5 (KLF5) and SMAD family member 4 (SMAD4) to regulate the expression of the epidermal growth factor receptor (EGFR). Ablation of KDM3A, KLF5, SMAD4, or EGFR in tumor cells altered the immune TME and sensitized tumors to combination immunotherapy, whereas treatment of established tumors with an EGFR inhibitor, erlotinib, prompted a dose-dependent increase in intratumoral T cells. This study defines an epigenetic-transcriptional mechanism by which tumor cells modulate their immune microenvironment and highlights the potential of EGFR inhibitors as immunotherapy sensitizers in PDA. SIGNIFICANCE: PDA remains refractory to immunotherapies. Here, we performed an in vivo CRISPR screen and identified an epigenetic-transcriptional network that regulates antitumor immunity by converging on EGFR. Pharmacologic inhibition of EGFR is sufficient to rewire the immune microenvironment. These results offer a readily accessible immunotherapy-sensitizing strategy for PDA.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salina Yuan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fangxue Yan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yu H Sun
- Center for RNA Biology, Department of Biochemistry and Biophysics, Department of Biology, University of Rochester Medical Center, Rochester, New York
| | - Il-Kyu Kim
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allyson J Merrell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yogev Sela
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yanqing Jiang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natarajan V Bhanu
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Yang T, Tang H, Risch HA, Olson SH, Petersen G, Bracci PM, Gallinger S, Hung R, Neale RE, Scelo G, Duell EJ, Kurtz RC, Khaw KT, Severi G, Sund M, Wareham N, Amos CI, Li D, Wei P. Incorporating multiple sets of eQTL weights into gene-by-environment interaction analysis identifies novel susceptibility loci for pancreatic cancer. Genet Epidemiol 2020; 44:880-892. [PMID: 32779232 PMCID: PMC7657998 DOI: 10.1002/gepi.22348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 11/11/2022]
Abstract
It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene-by-environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data-adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case-Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome-wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking-related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.
Collapse
Affiliation(s)
- Tianzhong Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Divison of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Hongwei Tang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Gloria Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Paige M. Bracci
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Rayjean Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Rachel E. Neale
- Cancer Aetiology and Prevention Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Eric J. Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program Catalan Institute of Oncology - Bellvitge Biomedical Research Institute (ICO-IDIBELL) Avda. Gran Via 199-203 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Robert C. Kurtz
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, UK
| | - Gianluca Severi
- Gustave Roussy, F-94805, Villejuif, France
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, 94805, Villejuif, France
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Sweden
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Geismann C, Arlt A. Coming in the Air: Hypoxia Meets Epigenetics in Pancreatic Cancer. Cells 2020; 9:cells9112353. [PMID: 33113836 PMCID: PMC7694089 DOI: 10.3390/cells9112353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
With a five-year survival rate under 9%, pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest tumors. Although the treatment options are slightly improving, PDAC is the second leading cause of cancer related death in 2020 in the US. In addition to a pronounced desmoplastic stroma reaction, pancreatic cancer is characterized by one of the lowest levels of oxygen availability within the tumor mass and these hypoxic conditions are known to contribute to tumor development and progression. In this context, the major hypoxia associated transcription factor family, HIF, regulates hundreds of genes involved in angiogenesis, metabolism, migration, invasion, immune escape and therapy resistance. Current research implications show, that hypoxia also modulates diverse areas of epigenetic mechanisms like non-coding RNAs, histone modifications or DNA methylation, which cooperate with the hypoxia-induced transcription factors as well as directly regulate the hypoxic response pathways. In this review, we will focus on hypoxia-mediated epigenetic alterations and their impact on pancreatic cancer.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24105 Kiel, Germany;
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24105 Kiel, Germany;
- Department for Gastroenterology, European Medical School (EMS), Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
- Correspondence: ; Tel.: +49-441-403-2581
| |
Collapse
|
44
|
The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther 2020; 5:143. [PMID: 32747629 PMCID: PMC7398912 DOI: 10.1038/s41392-020-00252-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Digestive cancers are the leading cause of cancer-related death worldwide and have high risks of morbidity and mortality. Histone methylation, which is mediated mainly by lysine methyltransferases, lysine demethylases, and protein arginine methyltransferases, has emerged as an essential mechanism regulating pathological processes in digestive cancers. Under certain conditions, aberrant expression of these modifiers leads to abnormal histone methylation or demethylation in the corresponding cancer-related genes, which contributes to different processes and phenotypes, such as carcinogenesis, proliferation, metabolic reprogramming, epithelial–mesenchymal transition, invasion, and migration, during digestive cancer development. In this review, we focus on the association between histone methylation regulation and the development of digestive cancers, including gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer, as well as on its clinical application prospects, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|
45
|
Sui Y, Gu R, Janknecht R. Crucial Functions of the JMJD1/KDM3 Epigenetic Regulators in Cancer. Mol Cancer Res 2020; 19:3-13. [PMID: 32605929 DOI: 10.1158/1541-7786.mcr-20-0404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic changes are one underlying cause for cancer development and often due to dysregulation of enzymes modifying DNA or histones. Most Jumonji C domain-containing (JMJD) proteins are histone lysine demethylases (KDM) and therefore epigenetic regulators. One JMJD subfamily consists of JMJD1A/KDM3A, JMJD1B/KDM3B, and JMJD1C/KDM3C that are roughly 50% identical at the amino acid level. All three JMJD1 proteins are capable of removing dimethyl and monomethyl marks from lysine 9 on histone H3 and might also demethylate histone H4 on arginine 3 and nonhistone proteins. Analysis of knockout mice revealed critical roles for JMJD1 proteins in fertility, obesity, metabolic syndrome, and heart disease. Importantly, a plethora of studies demonstrated that especially JMJD1A and JMJD1C are overexpressed in various tumors, stimulate cancer cell proliferation and invasion, and facilitate efficient tumor growth. However, JMJD1A may also inhibit the formation of germ cell tumors. Likewise, JMJD1B appears to be a tumor suppressor in acute myeloid leukemia, but a tumor promoter in other cancers. Notably, by reducing methylation levels on histone H3 lysine 9, JMJD1 proteins can profoundly alter the transcriptome and thereby affect tumorigenesis, including through upregulating oncogenes such as CCND1, JUN, and MYC This epigenetic activity of JMJD1 proteins is sensitive to heavy metals, oncometabolites, oxygen, and reactive oxygen species, whose levels are frequently altered within cancer cells. In conclusion, inhibition of JMJD1 enzymatic activity through small molecules is predicted to be beneficial in many different cancers, but not in the few malignancies where JMJD1 proteins apparently exert tumor-suppressive functions.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ruicai Gu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
46
|
Yoo J, Jeon YH, Cho HY, Lee SW, Kim GW, Lee DH, Kwon SH. Advances in Histone Demethylase KDM3A as a Cancer Therapeutic Target. Cancers (Basel) 2020; 12:cancers12051098. [PMID: 32354028 PMCID: PMC7280979 DOI: 10.3390/cancers12051098] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Lysine-specific histone demethylase 3 (KDM3) subfamily proteins are H3K9me2/me1 histone demethylases that promote gene expression. The KDM3 subfamily primarily consists of four proteins (KDM3A−D). All four proteins contain the catalytic Jumonji C domain (JmjC) at their C-termini, but whether KDM3C has demethylase activity is under debate. In addition, KDM3 proteins contain a zinc-finger domain for DNA binding and an LXXLL motif for interacting with nuclear receptors. Of the KDM3 proteins, KDM3A is especially deregulated or overexpressed in multiple cancers, making it a potential cancer therapeutic target. However, no KDM3A-selective inhibitors have been identified to date because of the lack of structural information. Uncovering the distinct physiological and pathological functions of KDM3A and their structure will give insight into the development of novel selective inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM3A in cancer. We also discuss existing KDM3A-related inhibitors and review their potential as therapeutic agents for overcoming cancer.
Collapse
Affiliation(s)
- Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Ha Young Cho
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-32-749-4513
| |
Collapse
|
47
|
Fu F, Zhang Y, Gao Z, Zhao Y, Wen Z, Han H, Li Y, Chen H. Development and validation of a five-gene model to predict postoperative brain metastasis in operable lung adenocarcinoma. Int J Cancer 2020; 147:584-592. [PMID: 32181877 DOI: 10.1002/ijc.32981] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
One of the most common sites of extra-thoracic distant metastasis of nonsmall-cell lung cancer is the brain. Our study was performed to discover genes associated with postoperative brain metastasis in operable lung adenocarcinoma (LUAD). RNA seq was performed in specimens of primary LUAD from seven patients with brain metastases and 45 patients without recurrence. Immunohistochemical (IHC) assays of the differentially expressed genes were conducted in 272 surgical-resected LUAD specimens. LASSO Cox regression was used to filter genes related to brain metastasis and construct brain metastasis score (BMS). GSE31210 and GSE50081 were used as validation datasets of the model. Gene Set Enrichment Analysis was performed in patients stratified by risk of brain metastasis in the TCGA database. Through the initial screening, eight genes (CDK1, KPNA2, KIF11, ASPM, CEP55, HJURP, TYMS and TTK) were selected for IHC analyses. The BMS based on protein expression levels of five genes (TYMS, CDK1, HJURP, CEP55 and KIF11) was highly predictive of brain metastasis in our cohort (12-month AUC: 0.791, 36-month AUC: 0.766, 60-month AUC: 0.812). The validation of BMS on overall survival of GSE31210 and GSE50081 also showed excellent predictive value (GSE31210, 12-month AUC: 0.682, 36-month AUC: 0.713, 60-month AUC: 0.762; GSE50081, 12-month AUC: 0.706, 36-month AUC: 0.700, 60-month AUC: 0.724). Further analyses showed high BMS was associated with pathways of cell cycle and DNA repair. A five-gene predictive model exhibits potential clinical utility for the prediction of postoperative brain metastasis and the individual management of patients with LUAD after radical resection.
Collapse
Affiliation(s)
- Fangqiu Fu
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhendong Gao
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhao
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhexu Wen
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Han Han
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|