1
|
Oya Y, Kimura S, Uemura M, Fujimura Y, Hase K. Tear duct M cells exacerbate allergic conjunctivitis by facilitating germinal-center reactions. Mucosal Immunol 2025:S1933-0219(25)00009-1. [PMID: 39900200 DOI: 10.1016/j.mucimm.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/27/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
The ocular mucosal surface regularly encounters external materials in the air and tear fluids. Microfold (M) cells, specialized epithelial cells for antigen uptake, are present in tear duct-associated lymphoid tissue (TALT) within the nasolacrimal sac; however, their immunological significance is unclear. We generated Krt5-Cre Tnfrsf11aflox/flox mice, which lack functional M cells in the TALT, as evidenced by the absence of M-cell markers and reduced nanoparticle uptake. M cell deficiency resulted in fewer T follicular helper (Tfh) and germinal center (GC) B cells in the TALT under steady-state conditions. Upon induction of allergic conjunctivitis, control mice exhibited itching and increased Tfh and immunoglobulin E (IgE+) GC B cells in the TALT. However, M cell-deficient mice showed ameliorated allergic symptoms with fewer Tfh and IgE+ GC B cells. These findings suggest that M cells in TALT contribute to ocular surface immunosurveillance, whereas, upon allergen exposure, they play a critical role in the development of allergic conjunctivitis.
Collapse
Affiliation(s)
- Yuki Oya
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan.
| | - Maho Uemura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan; Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
| |
Collapse
|
2
|
Damigos S, Caliskan A, Wajant G, Giddins S, Moldovan A, Kuhn S, Putz E, Dandekar T, Rudel T, Westermann AJ, Zdzieblo D. A Multicellular In Vitro Model of the Human Intestine with Immunocompetent Features Highlights Host-Pathogen Interactions During Early Salmonella Typhimurium Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411233. [PMID: 39807570 DOI: 10.1002/advs.202411233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult. Macrophages, for instance, contribute to the immunocompetence of native tissue, yet their incorporation into human epithelial tissue models is challenging. A 3D immunocompetent tissue model of the human small intestine based on decellularized submucosa enriched with monocyte-derived macrophages (MDM) is established. The multicellular model recapitulated in vivo-like cellular diversity, especially the induction of GP2 positive microfold (M) cells. Infection studies with STm reveal that the pathogen physically interacts with these M-like cells. MDMs show trans-epithelial migration and phagocytosed STm within the model and the levels of inflammatory cytokines are induced upon STm infection. Infected epithelial cells are shed into the supernatant, potentially reflecting an intracellular reservoir of invasion-primed STm. Together, the 3D model of the human intestinal epithelium bears potential as an alternative to animals to identify human-specific processes underlying enteric bacterial infections.
Collapse
Affiliation(s)
- Spyridon Damigos
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Aylin Caliskan
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gisela Wajant
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Sara Giddins
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Adriana Moldovan
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sabine Kuhn
- Institute of Clinical Transfusion Medicine and Hemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Evelyn Putz
- Institute of Clinical Transfusion Medicine and Hemotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Daniela Zdzieblo
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97070, Würzburg, Germany
| |
Collapse
|
3
|
Bomidi C, Sawyer FM, Shroyer N, Conner M, Estes MK, Blutt SE. Loss of mucin 2 and MHC II molecules causes rare resistance to murine RV infection. J Virol 2024:e0150724. [PMID: 39727412 DOI: 10.1128/jvi.01507-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Enteric pathogen rotavirus (RV) primarily infects mature enterocytes at the tips of the intestinal villi; however, the role of secretory Paneth and goblet cells in RV pathogenesis remains unappreciated. Atoh1 knockout mice (Atoh1cKO) were used to conditionally delete Paneth, goblet, and enteroendocrine cells in the epithelium to investigate the role of secretory cells in RV infection. Unexpectedly, the number of infected enterocytes and the amount of RV shedding in the stool were greatly decreased following secretory cell deletion. Resistance to RV infection persisted for 7 days after virus inoculation, and Atoh1 knockout mice co-housed with infected wild-type mice were uninfected, based on lack of shedding virus, despite the highly infectious nature of RV. This response was directly proportional to the extent of secretory cell deletion, with infection predominantly occurring in areas containing intact secretory cells. RV infection of Muc2 knockout mice recapitulated the secretory cell deletion phenotype, indicating that goblet cell loss is responsible for attenuated infection. Transcriptome analysis of Atoh1cKO intestine via single-cell RNA sequencing revealed downregulation of MHC II molecules specifically in tip enterocytes, and MHC II-/- mice were likewise resistant to RV infection. These data suggest a previously unknown role for both MUC2 and MHC II expression in susceptibility to RV infection.IMPORTANCERotavirus (RV) is a highly contagious pathogen that primarily infects mature intestinal enterocytes. Murine rotavirus readily infects infant and adult mice, enabling evaluation of RV infection and immunity. We report that mice lacking secretory cells are one of the few genetically modified mouse lines not susceptible to murine rotavirus. Further investigation revealed loss of mucin 2 (MUC2) expression or major histocompatibility complex II (MCH II) expression recapitulated this rare resistance to rotavirus infection, suggesting a previously unrecognized link between secretory cell products and major histocompatibility complex II expression. Furthermore, these mouse models provide a platform to investigate rotavirus pathogenesis.
Collapse
Affiliation(s)
- Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Faith M Sawyer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Noah Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Wang K, Liu Y, Zhang Z, Zheng Z, Tang W, Teng W, Mu X, Wang J, Zhang Y. Insights into oral lentinan immunomodulation: Dectin-1-mediated lymphatic transport from Peyer's patch M cells to mononuclear phagocytes. Carbohydr Polym 2024; 346:122586. [PMID: 39245482 DOI: 10.1016/j.carbpol.2024.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Lentinan (LNT), a natural polysaccharide, has been reported to exhibit immunomodulatory effects in the intestine after oral administration. Herein, we aimed to investigate the lymphatic transport of LNT in Peyer's patches (PPs) by traceable fluorescent labeling and to explore whether/how LNT contacts related immune cells. Near-infrared imaging confirmed the absorption of LNT in the small intestinal segment and its accumulation within PPs after oral administration. Subsequently, tissue imaging confirmed that M cells are the main cells responsible for transporting LNT to PPs, and an M cell model was established to explore the involvement of Dectin-1 in the absorption process. Systematic in vitro and in vivo studies revealed that the Dectin-1 further mediates the uptake of LNT by mononuclear phagocytes in PPs. Moreover, LNT can promote the proliferation and differentiation of mononuclear phagocytes, thereby activating immune responses. In summary, this study elucidates the pharmacokinetic mechanisms by which LNT exerts oral immunomodulatory effects, providing a theoretical basis for the development and application of other polysaccharides.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yuxuan Liu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zeming Zhang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenqi Tang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wangtianzi Teng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xu Mu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| |
Collapse
|
5
|
Paužuolis M, Samperio Ventayol P, Neyazi M, Bartfeld S. Organoids as a tool to study the impact of heterogeneity in gastrointestinal epithelium on host-pathogen interactions. Clin Exp Immunol 2024; 218:16-27. [PMID: 38245816 PMCID: PMC11404121 DOI: 10.1093/cei/uxae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelium of the gastrointestinal (GI) tract has been extensively characterized using advanced histological and RNA sequencing techniques, which has revealed great cellular diversity. Pathogens, such as viruses and bacteria, are highly adapted to their host and often exhibit not only species-specificity but also a preference or tropism for specific GI segments or even cell types-some of these preferences are so specific, that these pathogens still cannot be cultured invitro. Organoid technology now provides a tool to generate human cell types, which enables the study of host cell tropism. Focussing on the GI tract, we provide an overview about cellular differentiation in vivo and in organoids and how differentiation in organoids and their derived models is used to advance our understanding of viral, bacterial, and parasitic infection. We emphasize that it is central to understand the composition of the model, as the alteration of culture conditions yields different cell types which affects infection. We examine future directions for wider application of cellular heterogeneity and potential advanced model systems for GI tract infection studies.
Collapse
Affiliation(s)
- Mindaugas Paužuolis
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | | | - Mastura Neyazi
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Si-M/‘Der Simulierte Mensch’, Technische Universität Berlin and Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
He KY, Lei XY, Wu DH, Zhang L, Li JQ, Li QT, Yin WT, Zhao ZL, Liu H, Xiang XY, Zhu LJ, Cui CY, Wang KK, Wang JH, Lv L, Sun QH, Liu GL, Xu ZX, Jian YP. Akkermansia muciniphila protects the intestine from irradiation-induced injury by secretion of propionic acid. Gut Microbes 2023; 15:2293312. [PMID: 38087436 PMCID: PMC10730217 DOI: 10.1080/19490976.2023.2293312] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Intestinal dysbiosis frequently occurs in abdominal radiotherapy and contributes to irradiation (IR)-induced intestinal damage and inflammation. Akkermansia muciniphila (A. muciniphila) is a recently characterized probiotic, which is critical for maintaining the dynamics of the intestinal mucus layer and preserving intestinal microbiota homeostasis. However, the role of A. muciniphila in the alleviation of radiation enteritis remains unknown. In this study, we reported that the abundance of A. muciniphila was markedly reduced in the intestines of mice exposed to abdominal IR and in the feces of patients who received abdominal radiotherapy. Abundance of A. muciniphila in feces of radiotherapy patients was negatively correlated with the duration of diarrhea in patients. Administration of A. muciniphila substantially mitigated IR-induced intestinal damage and prevented mouse death. Analyzing the metabolic products of A. muciniphila revealed that propionic acid, a short-chain fatty acid secreted by the microbe, mediated the radioprotective effect. We further demonstrated that propionic acid bound to G-protein coupled receptor 43 (GRP43) on the surface of intestinal epithelia and increased histone acetylation and hence enhanced the expression of tight junction proteins occludin and ZO-1 and elevated the level of mucins, leading to enhanced integrity of intestinal epithelial barrier and reduced radiation-induced intestinal damage. Metformin, a first-line agent for the treatment of type II diabetes, promoted intestinal epithelial barrier integrity and reduced radiation intestinal damage through increasing the abundance of A. muciniphila. Together, our results demonstrated that A. muciniphila plays a critical role in the reduction of abdominal IR-induced intestinal damage. Application of probiotics or their regulators, such as metformin, could be an effective treatment for the protection of radiation exposure-damaged intestine.
Collapse
Affiliation(s)
- Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Qiu-Tong Li
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Wei-Tao Yin
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Zi-Long Zhao
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Huai Liu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Xiong-Yan Xiang
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Ling-Jun Zhu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Cui-Yun Cui
- Department of Blood Transfusion, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Ke-Ke Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Hua Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Lv
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qian-Hui Sun
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Guo-Long Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
8
|
Miao YB, Xu T, Gong Y, Chen A, Zou L, Jiang T, Shi Y. Cracking the intestinal lymphatic system window utilizing oral delivery vehicles for precise therapy. J Nanobiotechnology 2023; 21:263. [PMID: 37559085 PMCID: PMC10413705 DOI: 10.1186/s12951-023-01991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Oral administration is preferred over other drug delivery methods due to its safety, high patient compliance, ease of ingestion without discomfort, and tolerance of a wide range of medications. However, oral drug delivery is limited by the poor oral bioavailability of many drugs, caused by extreme conditions and absorption challenges in the gastrointestinal tract. This review thoroughly discusses the targeted drug vehicles to the intestinal lymphatic system (ILS). It explores the structure and physiological barriers of the ILS, highlighting its significance in dietary lipid and medication absorption and transport. The review presents various approaches to targeting the ILS using spatially precise vehicles, aiming to enhance bioavailability, achieve targeted delivery, and reduce first-pass metabolism with serve in clinic. Furthermore, the review outlines several methods for leveraging these vehicles to open the ILS window, paving the way for potential clinical applications in cancer treatment and oral vaccine delivery. By focusing on targeted drug vehicles to the ILS, this article emphasizes the critical role of these strategies in improving therapeutic efficacy and patient outcomes. Overall, this article emphasizes the critical role of targeted drug vehicles to the ILS and the potential impact of these strategies on improving therapeutic efficacy and patient outcomes.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Tianxing Xu
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Tao Jiang
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
- Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
9
|
Chepngeno J, Amimo JO, Michael H, Raev SA, Jung K, Lee MV, Damtie D, Omwando A, Vlasova AN, Saif LJ. Vitamin A deficiency and vitamin A supplementation affect innate and T cell immune responses to rotavirus A infection in a conventional sow model. Front Immunol 2023; 14:1188757. [PMID: 37180172 PMCID: PMC10166828 DOI: 10.3389/fimmu.2023.1188757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Rotavirus A (RVA) causes ~200,000 diarrheal deaths annually in children <5yrs, mostly in low- and middle-income countries. Risk factors include nutritional status, social factors, breastfeeding status, and immunodeficiency. We evaluated the effects of vitamin A (VA) deficiency/VA supplementation and RVA exposure (anamnestic) on innate and T cell immune responses in RVA seropositive pregnant and lactating sows and passive protection of their piglets post-RVA challenge. Sows were fed VA deficient (VAD) or sufficient (VAS) diets starting at gestation day (GD)30. A subset of VAD sows received VA supplementation from GD|76 (30,000IU/day, VAD+VA). Sows (6 groups) were inoculated with porcine RVA G5P[7] (OSU strain) or Minimal Essential Medium (mock) at GD~90: VAD+RVA; VAS+RVA; VAD+VA+RVA; VAD-mock; VAS-mock; and VAD+VA-mock. Blood, milk, and gut-associated tissues were collected from sows at several time points to examine innate [natural killer (NK), dendritic (DC) cells], T cell responses and changes in genes involved in the gut-mammary gland (MG)-immunological axis trafficking. Clinical signs of RVA were evaluated post inoculation of sows and post-challenge of piglets. We observed decreased frequencies of NK cells, total and MHCII+ plasmacytoid DCs, conventional DCs, CD103+ DCs and CD4+/CD8+ and T regulatory cells (Tregs) and NK cell activity in VAD+RVA sows. Polymeric Ig receptor and retinoic acid receptor alpha (RARα) genes were downregulated in mesenteric lymph nodes and ileum of VAD+RVA sows. Interestingly, RVA-specific IFN-γ producing CD4+/CD8+ T cells were increased in VAD-Mock sows, coinciding with increased IL-22 suggesting inflammation in these sows. VA supplementation to VAD+RVA sows restored frequencies of NK cells and pDCs, and NK activity, but not tissue cDCs and blood Tregs. In conclusion, similar to our recent observations of decreased B cell responses in VAD sows that led to decreased passive immune protection of their piglets, VAD impaired innate and T cell responses in sows, while VA supplementation to VAD sows restored some, but not all responses. Our data reiterate the importance of maintaining adequate VA levels and RVA immunization in pregnant and lactating mothers to achieve optimal immune responses, efficient function of the gut-MG-immune cell-axis and to improve passive protection of their piglets.
Collapse
Affiliation(s)
- Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Joshua O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Husheem Michael
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Sergei A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Marcia V. Lee
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Debasu Damtie
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- The Ohio State University Global One Health LLC, Eastern Africa Regional Office, Addis Ababa, Ethiopia
| | - Alfred Omwando
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Park JI, Cho SW, Kang JH, Park TE. Intestinal Peyer's Patches: Structure, Function, and In Vitro Modeling. Tissue Eng Regen Med 2023; 20:341-353. [PMID: 37079198 PMCID: PMC10117255 DOI: 10.1007/s13770-023-00543-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGOUND Considering the important role of the Peyer's patches (PPs) in gut immune balance, understanding of the detailed mechanisms that control and regulate the antigens in PPs can facilitate the development of immune therapeutic strategies against the gut inflammatory diseases. METHODS In this review, we summarize the unique structure and function of intestinal PPs and current technologies to establish in vitro intestinal PP system focusing on M cell within the follicle-associated epithelium and IgA+ B cell models for studying mucosal immune networks. Furthermore, multidisciplinary approaches to establish more physiologically relevant PP model were proposed. RESULTS PPs are surrounded by follicle-associated epithelium containing microfold (M) cells, which serve as special gateways for luminal antigen transport across the gut epithelium. The transported antigens are processed by immune cells within PPs and then, antigen-specific mucosal immune response or mucosal tolerance is initiated, depending on the response of underlying mucosal immune cells. So far, there is no high fidelity (patho)physiological model of PPs; however, there have been several efforts to recapitulate the key steps of mucosal immunity in PPs such as antigen transport through M cells and mucosal IgA responses. CONCLUSION Current in vitro PP models are not sufficient to recapitulate how mucosal immune system works in PPs. Advanced three-dimensional cell culture technologies would enable to recapitulate the function of PPs, and bridge the gap between animal models and human.
Collapse
Affiliation(s)
- Jung In Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea.
| |
Collapse
|
11
|
Dotsenko V, Sioofy-Khojine AB, Hyöty H, Viiri K. Human intestinal organoid models for celiac disease research. Methods Cell Biol 2023; 179:173-193. [PMID: 37625874 DOI: 10.1016/bs.mcb.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Celiac disease pathogenesis, in addition to immune cell component, encompasses pathogenic events also in the duodenal epithelium. In celiac disease patients, exposure to dietary gluten induces drastic changes in epithelial differentiation and elicit cellular response to inflammatory cytokines. The autoantigen in celiac disease, transglutaminase 2 (TG2) enzyme, has been also suggested to play its pathogenic gliadin deamidation event in the intestinal epithelium. Therefore in vitro epithelial cell-line models have been exploited in the past to study these pathogenic mechanisms, but they are hampered by their simplistic nature lacking proper cell-type composition and intestinal environ. Moreover, these cell models harbor many cancer-related mutations in tumor suppressor genes making them unsuitable for studying cell differentiation. Intestinal organoids provide a near-native epithelial cell model to study pathogenic agents and mechanisms related to celiac disease. Here we describe protocols to initiate and maintain celiac patient-derived organoid cultures and how to grow them in alternative ways allowing their exploitation in different kind of experiments.
Collapse
Affiliation(s)
- Valeriia Dotsenko
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland
| | | | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
12
|
Gebert JT, Scribano F, Engevik KA, Perry JL, Hyser JM. Gastrointestinal organoids in the study of viral infections. Am J Physiol Gastrointest Liver Physiol 2023; 324:G51-G59. [PMID: 36414538 PMCID: PMC9799139 DOI: 10.1152/ajpgi.00152.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Viruses are among the most prevalent enteric pathogens. Although virologists historically relied on cell lines and animal models, human intestinal organoids (HIOs) continue to grow in popularity. HIOs are nontransformed, stem cell-derived, ex vivo cell cultures that maintain the cell type diversity of the intestinal epithelium. They offer higher throughput than standard animal models while more accurately mimicking the native tissue of infection than transformed cell lines. Here, we review recent literature that highlights virological advances facilitated by HIOs. We discuss the variations and limitations of HIOs, how HIOs have allowed for the cultivation of previously uncultivatable viruses, and how they have offered insight into tropism, entry, replication kinetics, and host-pathogen interactions. In each case, we discuss exemplary viruses and archetypal studies. We discuss how the speed and flexibility of HIO-based studies contributed to our knowledge of SARS-CoV-2 and antiviral therapeutics. Finally, we discuss the current limitations of HIOs and future directions to overcome these.
Collapse
Affiliation(s)
- J Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Francesca Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Jacob L Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
- Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Yang JY, Liu MJ, Lv L, Guo JR, He KY, Zhang H, Wang KK, Cui CY, Yan BZ, Du DD, Wang JH, Ding Q, Liu GL, Xu ZX, Jian YP. Metformin alleviates irradiation-induced intestinal injury by activation of FXR in intestinal epithelia. Front Microbiol 2022; 13:932294. [PMID: 36312920 PMCID: PMC9608595 DOI: 10.3389/fmicb.2022.932294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Abdominal irradiation (IR) destroys the intestinal mucosal barrier, leading to severe intestinal infection. There is an urgent need to find safe and effective treatments to reduce IR-induced intestinal injury. In this study, we reported that metformin protected mice from abdominal IR-induced intestinal injury by improving the composition and diversity of intestinal flora. The elimination of intestinal microbiota (Abx) abrogated the protective effects of metformin on irradiated mice. We further characterized that treatment of metformin increased the murine intestinal abundance of Lactobacillus, which mediated the radioprotective effect. The administration of Lactobacillus or fecal microbiota transplantation (FMT) into Abx mice considerably lessened IR-induced intestinal damage and restored the radioprotective function of metformin in Abx mice. In addition, applying the murine intestinal organoid model, we demonstrated that IR inhibited the formation of intestinal organoids, and metformin alone bore no protective effect on organoids after IR. However, a combination of metformin and Lactobacillus or Lactobacillus alone displayed a strong radioprotection on the organoid formation. We demonstrated that metformin/Lactobacillus activated the farnesoid X receptor (FXR) signaling in intestinal epithelial cells and hence upregulated tight junction proteins and mucins in intestinal epithelia, increased the number of goblet cells, and augmented the mucus layer thickness to maintain the integrity of intestinal epithelial barrier, which eventually contributed to reduced radiation intestinal injury. In addition, we found that Lactobacillus abundance was significantly increased in the intestine of patients receiving metformin while undergoing abdominal radiotherapy and the abundance was negatively correlated with the diarrhea duration of patients. In conclusion, our results demonstrate that metformin possesses a protective effect on IR-induced intestinal injury by upregulating the abundance of Lactobacillus in the intestine.
Collapse
Affiliation(s)
- Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Lv
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Hong Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Ke-Ke Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Yun Cui
- Department of Blood Transfusion, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Bei-Zhan Yan
- Department of Blood Transfusion, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Du
- Department of Internal Medicine, Ningjin County People's Hospital, Dezhou, China
| | - Jin-Hua Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guo-Long Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Guo-Long Liu
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Zhi-Xiang Xu
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
- Yong-Ping Jian
| |
Collapse
|
14
|
Retinoic Acid Promotes the In Vitro Growth, Patterning and Improves the Cellular Composition of Human Pluripotent Stem-Cell-Derived Intestinal Organoids. Int J Mol Sci 2022; 23:ijms23158624. [PMID: 35955755 PMCID: PMC9368900 DOI: 10.3390/ijms23158624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human intestinal organoids (HIOs) generated from human pluripotent stem cells hold great promise for modeling human development and as a possible source of tissue for transplantation. HIOs generate all of the main epithelial and mesenchymal cell types found in the developing human intestine and mature into intestinal tissue with crypts and villi following transplantation into immunocompromised mice. However, incomplete in vitro patterning and the presence of contaminating neurons could hinder their use for regenerative medicine in humans. Based on studies in model organisms, we hypothesized that the treatment of HIOs with all trans retinoic acid (ATRA) would improve their in vitro growth and patterning. We found that ATRA not only improved the patterning of HIOs, ATRA also increased organoid forming efficiency, improved epithelial growth, enriched intestinal subepithelial myofibroblasts (ISEMFs) and reduced neuronal contamination in HIOs. Taken together, our studies demonstrate how the manipulation of a single developmental signaling pathway can be used to improve the survival, patterning and cellular composition of HIOs.
Collapse
|
15
|
Mechanisms for the Invasion and Dissemination of Salmonella. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:2655801. [PMID: 35722038 PMCID: PMC9203224 DOI: 10.1155/2022/2655801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Salmonella enterica is a gastroenteric Gram-negative bacterium that can infect both humans and animals and causes millions of illnesses per year around the world. Salmonella infections usually occur after the consumption of contaminated food or water. Infections with Salmonella species can cause diseases ranging from enterocolitis to typhoid fever. Salmonella has developed multiple strategies to invade and establish a systemic infection in the host. Different cell types, including epithelial cells, macrophages, dendritic cells, and M cells, are important in the infection process of Salmonella. Dissemination throughout the body and colonization of remote organs are hallmarks of Salmonella infection. There are several routes for the dissemination of Salmonella typhimurium. This review summarizes the current understanding of the infection mechanisms of Salmonella. Additionally, different routes of Salmonella infection will be discussed. In this review, the strategies used by Salmonella enterica to establish persistent infection will be discussed. Understanding both the bacterial and host factors leading to the successful colonization of Salmonella enterica may enable the rational design of effective therapeutic strategies.
Collapse
|
16
|
Smith D, Price DRG, Faber MN, Chapuis AF, McNeilly TN. Advancing animal health and disease research in the lab with three-dimensional cell culture systems. Vet Rec 2022; 191:e1528. [PMID: 35338777 DOI: 10.1002/vetr.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
The development of three-dimensional cell culture systems representative of tissues from animals of veterinary interest is accelerating research that seeks to address specific questions tied to animal health. In terms of their relevance and complexity, these in vitro models can be seen as a midpoint between the more reductionist single-cell culture systems and complex live animals. Organoids in particular represent a significant development due to their organised multicellular structure that more closely represents in vivo tissues than any other cell culture technology previously developed. In this review, we provide an overview of the different three-dimensional cell culture systems available to veterinary researchers and give examples of their application in contexts relating to animal health.
Collapse
Affiliation(s)
- David Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Marc N Faber
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Ambre F Chapuis
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, UK
| |
Collapse
|
17
|
Fasciano AC, Dasanayake GS, Estes MK, Zachos NC, Breault DT, Isberg RR, Tan S, Mecsas J. Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes 2022; 13:1988390. [PMID: 34793276 PMCID: PMC8604394 DOI: 10.1080/19490976.2021.1988390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many pathogens use M cells to access the underlying Peyer's patches and spread to systemic sites via the lymph as demonstrated by ligated loop murine intestinal models. However, the study of interactions between M cells and microbial pathogens has stalled due to the lack of cell culture systems. To overcome this obstacle, we use human ileal enteroid-derived monolayers containing five intestinal cell types including M cells to study the interactions between the enteric pathogen, Yersinia pseudotuberculosis (Yptb), and M cells. The Yptb type three secretion system (T3SS) effector Yops inhibit host defenses including phagocytosis and are critical for colonization of the intestine and Peyer's patches. Therefore, it is not understood how Yptb traverses through M cells to breach the epithelium. By growing Yptb under two physiological conditions that mimic the early infectious stage (low T3SS-expression) or host-adapted stage (high T3SS-expression), we found that large numbers of Yptb specifically associated with M cells, recapitulating murine studies. Transcytosis through M cells was significantly higher by Yptb expressing low levels of T3SS, because YopE and YopH prevented Yptb uptake. YopE also caused M cells to extrude from the epithelium without inducing cell-death or disrupting monolayer integrity. Sequential infection with early infectious stage Yptb reduced host-adapted Yptb association with M cells. These data underscore the strength of enteroids as a model by discovering that Yops impede M cell function, indicating that early infectious stage Yptb more effectively penetrates M cells while the host may defend against M cell penetration of host-adapted Yptb.
Collapse
Affiliation(s)
- Alyssa C. Fasciano
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA
| | - Gaya S. Dasanayake
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Nicholas C. Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Ralph R. Isberg
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA,CONTACT Joan Mecsas Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| |
Collapse
|
18
|
Adachi H, Kudo M, Ishiyama S, Mochizuki K. Protein restriction during the fetal period upregulates IL1B and IL13 while suppressing MUC2 expression in the jejunum of mice after weaning. Nutrition 2022; 98:111605. [DOI: 10.1016/j.nut.2022.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
|
19
|
CD169 + macrophages in lymph node and spleen critically depend on dual RANK and LTbetaR signaling. Proc Natl Acad Sci U S A 2022; 119:2108540119. [PMID: 35031565 PMCID: PMC8784161 DOI: 10.1073/pnas.2108540119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
The CD169+ macrophages that play an important role in the fight against infections and cancer are receptive to environmental signals for their differentiation. We show that lymph node and splenic CD169+ macrophages require both LTβR and RANK signaling since the conditional deficiency of either receptor results in their disappearance. Using a reporter mouse, we observe RANKL expression by a splenic mesenchymal cell subset and show that it participates in CD169+ macrophage differentiation. Their absence leads to a reduced viral capture and a greatly attenuated virus-specific CD8+ T cell expansion. Thus, tight control mechanisms operate for the precise positioning of these macrophages at sites where numerous immune-stimulatory forces converge. CD169+ macrophages reside in lymph node (LN) and spleen and play an important role in the immune defense against pathogens. As resident macrophages, they are responsive to environmental cues to shape their tissue-specific identity. We have previously shown that LN CD169+ macrophages require RANKL for formation of their niche and their differentiation. Here, we demonstrate that they are also dependent on direct lymphotoxin beta (LTβ) receptor (R) signaling. In the absence or the reduced expression of either RANK or LTβR, their differentiation is perturbed, generating myeloid cells expressing SIGN-R1 in LNs. Conditions of combined haploinsufficiencies of RANK and LTβR revealed that both receptors contribute equally to LN CD169+ macrophage differentiation. In the spleen, the Cd169-directed ablation of either receptor results in a selective loss of marginal metallophilic macrophages (MMMs). Using a RANKL reporter mouse, we identify splenic marginal zone stromal cells as a source of RANKL and demonstrate that it participates in MMM differentiation. The loss of MMMs had no effect on the splenic B cell compartments but compromised viral capture and the expansion of virus-specific CD8+ T cells. Taken together, the data provide evidence that CD169+ macrophage differentiation in LN and spleen requires dual signals from LTβR and RANK with implications for the immune response.
Collapse
|
20
|
Jian YP, Yang G, Zhang LH, Liang JY, Zhou HL, Wang YS, Xu ZX. Lactobacillus plantarum alleviates irradiation-induced intestinal injury by activation of FXR-FGF15 signaling in intestinal epithelia. J Cell Physiol 2021; 237:1845-1856. [PMID: 34881818 DOI: 10.1002/jcp.30651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022]
Abstract
Abdominal irradiation (IR) may destroy the intestinal mucosal barrier, leading to severe intestinal infection and multiple organ dysfunction syndromes. The role of intestinal microbiota in the development of IR-induced intestinal injury remains largely unknown. Herein, we reported that abdominal IR altered the composition of the microbiota and reduced the abundance and diversity of the gut microbiome. Alterations of bacteria, in particular reduction of Lactobacillus, played a critical role in IR-induced intestinal injury. Fecal microbiota transplant (FMT) from normal mice or administration of Lactobacillus plantarum to intestinal microbiota-eliminated mice substantially reduced IR-induced intestinal damage and prevented mice from IR-induced death. We further characterized that L. plantarum activated the farnesoid X receptor (FXR) - fibroblast growth factor 15 (FGF15) signaling in intestinal epithelial cells and hence promoted DNA-damage repair. Application of GW4064, an activator of FXR, to microbiota eliminated mice markedly mitigated IR-induced intestinal damage, reduced intestinal epithelial cell death and promoted the survival of IR mice. In contrast, suppression of FXR with Gly-β-MCA, a bile acid and an intestine-selective and high-affinity FXR inhibitor, abrogated L. Plantarum-mediated protection on the ileum of IR mice. Taken together, our findings not only provide new insights into the role of intestinal flora in radiation-induced intestinal injury but also shed new light on the application of probiotics for the protection of radiation-damaged individuals.
Collapse
Affiliation(s)
- Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Li-Hong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Ji-Yong Liang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China.,School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
21
|
Co JY, Margalef-Català M, Monack DM, Amieva MR. Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nat Protoc 2021; 16:5171-5192. [PMID: 34663962 PMCID: PMC8841224 DOI: 10.1038/s41596-021-00607-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Human epithelial organoids-3D spheroids derived from adult tissue stem cells-enable investigation of epithelial physiology and disease and host interactions with microorganisms, viruses and bioactive molecules. One challenge in using organoids is the difficulty in accessing the apical, or luminal, surface of the epithelium, which is enclosed within the organoid interior. This protocol describes a method we previously developed to control human and mouse organoid polarity in suspension culture such that the apical surface faces outward to the medium (apical-out organoids). Our protocol establishes apical-out polarity rapidly (24-48 h), preserves epithelial integrity, maintains secretory and absorptive functions and allows regulation of differentiation. Here, we provide a detailed description of the organoid polarity reversal method, compatible characterization assays and an example of an application of the technology-specifically the impact of host-microbe interactions on epithelial function. Control of organoid polarity expands the possibilities of organoid use in gastrointestinal and respiratory health and disease research.
Collapse
Affiliation(s)
- Julia Y Co
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mar Margalef-Català
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Manuel R Amieva
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
García-Rodríguez I, van Eijk H, Koen G, Pajkrt D, Sridhar A, Wolthers KC. Parechovirus A Infection of the Intestinal Epithelium: Differences Between Genotypes A1 and A3. Front Cell Infect Microbiol 2021; 11:740662. [PMID: 34790587 PMCID: PMC8591172 DOI: 10.3389/fcimb.2021.740662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Human parechovirus (PeV-A), one of the species within the Picornaviridae family, is known to cause disease in humans. The most commonly detected genotypes are PeV-A1, associated with mild gastrointestinal disease in young children, and PeV-A3, linked to severe disease with neurological symptoms in neonates. As PeV-A are detectable in stool and nasopharyngeal samples, entry is speculated to occur via the respiratory and gastro-intestinal routes. In this study, we characterized PeV-A1 and PeV-A3 replication and tropism in the intestinal epithelium using a primary 2D model based on human fetal enteroids. This model was permissive to infection with lab-adapted strains and clinical isolates of PeV-A1, but for PeV-A3, infection could only be established with clinical isolates. Replication was highest with infection established from the basolateral side with apical shedding for both genotypes. Compared to PeV-A1, replication kinetics of PeV-A3 were slower. Interestingly, there was a difference in cell tropism with PeV-A1 infecting both Paneth cells and enterocytes, while PeV-A3 infected mainly goblet cells. This difference in cell tropism may explain the difference in replication kinetics and associated disease in humans.
Collapse
Affiliation(s)
- Inés García-Rodríguez
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hetty van Eijk
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
24
|
Staab JF, Lemme-Dumit JM, Latanich R, Pasetti MF, Zachos NC. Co-Culture System of Human Enteroids/Colonoids with Innate Immune Cells. ACTA ACUST UNITED AC 2021; 131:e113. [PMID: 33166041 DOI: 10.1002/cpim.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human intestinal enteroids derived from adult stem cells offer a relevant ex vivo system to study biological processes of the human gut. They recreate cellular and functional features of the intestinal epithelium of the small intestine (enteroids) or colon (colonoids) albeit limited by the lack of associated cell types that help maintain tissue homeostasis and respond to external challenges. In the gut, innate immune cells interact with the epithelium, support barrier function, and deploy effector functions. We have established a co-culture system of enteroid/colonoid monolayers and underlying macrophages and polymorphonuclear neutrophils to recapitulate the cellular framework of the human intestinal epithelial niche. Enteroids are generated from biopsies or resected tissue from any segment of the human gut and maintained in long-term cultures as three-dimensional structures through supplementation of stem cell growth factors. Immune cells are isolated from fresh human whole blood or frozen peripheral blood mononuclear cells (PBMC). Monocytes from PBMC are differentiated into macrophages by cytokine stimulation prior to co-culture. The methods are divided into the two main components of the model: (1) generating enteroid/colonoid monolayers and isolating immune cells and (2) assembly of enteroid/colonoid-immune cell co-cultures with separate apical and basolateral compartments. Co-cultures containing macrophages can be maintained for 48 hr while those involving neutrophils, due to their shorter life span, remain viable for 4 hr. Enteroid-immune co-cultures enable multiple outcome measures, including transepithelial resistance, production of cytokines/chemokines, phenotypic analysis of immune cells, tissue immunofluorescence imaging, protein or mRNA expression, antigen or microbe uptake, and other cellular functions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Seeding enteroid fragments onto Transwells for monolayer formation Alternate Protocol: Seeding enteroid fragments for monolayer formation using trituration Basic Protocol 2: Isolation of monocytes and derivation of immune cells from human peripheral blood Basic Protocol 3: Isolation of neutrophils from human peripheral blood Basic Protocol 4: Assembly of enteroid/macrophage or enteroid/neutrophil co-culture.
Collapse
Affiliation(s)
- Janet F Staab
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jose M Lemme-Dumit
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcella F Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Li Y, Jia Y, Cui T, Zhang J. IL-6/STAT3 signaling pathway regulates the proliferation and damage of intestinal epithelial cells in patients with ulcerative colitis via H3K27ac. Exp Ther Med 2021; 22:890. [PMID: 34194568 PMCID: PMC8237277 DOI: 10.3892/etm.2021.10322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effect of the IL-6/STAT3 signaling pathway on intestinal epithelial barrier injury in patients with ulcerative colitis (UC). Fifty-two patients with UC and 21 healthy subjects were recruited. The expression level of IL-6 in plasma was determined by ELISA. Normal human colon mucosal epithelial NCM460 cells were treated with IL-6 or plasma from the patients with UC. Then, the transepithelial electrical resistance value, fluorescein yellow permeability and zonulin release were evaluated. Using reverse transcription-quantitative (q)PCR and western blotting, claudin (CLDN) 1 and CLDN2 expression levels were analyzed. Furthermore, western blotting was used to detect phosphorylation of STAT3. Chromatin immunoprecipitation-qPCR was performed to investigate the enrichment of H3K27ac in the promoter regions of CLDN1 and CLDN2. The present study revealed that IL-6 content was elevated in the plasma from patients with UC and increased with the progression of the disease. IL-6 was also observed to induce intestinal epithelial cell barrier injury and regulate barrier function by influencing the expression of tight junction-related proteins, as well as STAT3. The IL-6/STAT3 signaling pathway regulated transcription of CLDN1 and CLDN2 by affecting the enrichment of histone H3K27ac in their promoter regions. Thus, the significantly increased expression level of IL-6 in the peripheral blood of patients with UC indicates a positive association with the development of UC. Furthermore, the IL-6/STAT3 signaling pathway influences the function of the intestinal barrier by affecting the H3K27ac level in intestinal epithelial cells.
Collapse
Affiliation(s)
- Yanrong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yujie Jia
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Tingfang Cui
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jiayuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
26
|
Triana S, Stanifer ML, Metz‐Zumaran C, Shahraz M, Mukenhirn M, Kee C, Serger C, Koschny R, Ordoñez‐Rueda D, Paulsen M, Benes V, Boulant S, Alexandrov T. Single-cell transcriptomics reveals immune response of intestinal cell types to viral infection. Mol Syst Biol 2021; 17:e9833. [PMID: 34309190 PMCID: PMC8311733 DOI: 10.15252/msb.20209833] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Human intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a framework combining single-cell RNA-Seq and highly multiplex RNA FISH and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages and induces expression of the cell proliferation marker MKI67. Intriguingly, each intestinal epithelial cell lineage exhibits a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our framework is applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.
Collapse
Affiliation(s)
- Sergio Triana
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular VirologyHeidelberg UniversityHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Camila Metz‐Zumaran
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Mohammed Shahraz
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Markus Mukenhirn
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Carmon Kee
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Clara Serger
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Ronald Koschny
- Department of Internal Medicine IVInterdisciplinary Endoscopy CenterUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ordoñez‐Rueda
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Malte Paulsen
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Vladimir Benes
- Genomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Steeve Boulant
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
27
|
Crawford SE, Ramani S, Blutt SE, Estes MK. Organoids to Dissect Gastrointestinal Virus-Host Interactions: What Have We Learned? Viruses 2021; 13:999. [PMID: 34071878 PMCID: PMC8230193 DOI: 10.3390/v13060999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, knowledge of human host-enteric pathogen interactions has been elucidated from studies using cancer cells, animal models, clinical data, and occasionally, controlled human infection models. Although much has been learned from these studies, an understanding of the complex interactions between human viruses and the human intestinal epithelium was initially limited by the lack of nontransformed culture systems, which recapitulate the relevant heterogenous cell types that comprise the intestinal villus epithelium. New investigations using multicellular, physiologically active, organotypic cultures produced from intestinal stem cells isolated from biopsies or surgical specimens provide an exciting new avenue for understanding human specific pathogens and revealing previously unknown host-microbe interactions that affect replication and outcomes of human infections. Here, we summarize recent biologic discoveries using human intestinal organoids and human enteric viral pathogens.
Collapse
Affiliation(s)
- Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Han X, Mslati MA, Davies E, Chen Y, Allaire JM, Vallance BA. Creating a More Perfect Union: Modeling Intestinal Bacteria-Epithelial Interactions Using Organoids. Cell Mol Gastroenterol Hepatol 2021; 12:769-782. [PMID: 33895425 PMCID: PMC8273413 DOI: 10.1016/j.jcmgh.2021.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023]
Abstract
Intestinal organoids have become indispensable tools for many gastrointestinal researchers, advancing their studies of nontransformed intestinal epithelial cells, and their roles in an array of diseases, including inflammatory bowel disease and colon cancer. In many cases. these diseases, as well as many enteric infections, reflect pathogenic interactions between bacteria and the gut epithelium. The complexity of studying this microbe-epithelial interface in vivo has led to significant focus on modeling this cross-talk using organoid models. Considering how quickly the organoid field is advancing, it can be difficult to keep up to date with the latest techniques, as well as their respective strengths and weaknesses. This review addresses the advantages of using organoids derived from adult stem cells and the recently identified differences that biopsy location and patient age can have on organoids and their interactions with microbes. Several approaches to introducing bacteria in a relevant (apical) manner (ie, microinjecting 3-dimensional spheroids, polarity-reversed organoids, and 2-dimensional monolayers) also are addressed, as are the key readouts that can be obtained using these models. Lastly, the potential for new approaches, such as air-liquid interface, to facilitate studying bacterial interactions with important but understudied epithelial subsets such as goblet cells and their products, is evaluated.
Collapse
Affiliation(s)
- Xiao Han
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias A Mslati
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Davies
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yan Chen
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joannie M Allaire
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bruce A Vallance
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Triana S, Metz‐Zumaran C, Ramirez C, Kee C, Doldan P, Shahraz M, Schraivogel D, Gschwind AR, Sharma AK, Steinmetz LM, Herrmann C, Alexandrov T, Boulant S, Stanifer ML. Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut. Mol Syst Biol 2021; 17:e10232. [PMID: 33904651 PMCID: PMC8077299 DOI: 10.15252/msb.202110232] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
Exacerbated pro-inflammatory immune response contributes to COVID-19 pathology. However, despite the mounting evidence about SARS-CoV-2 infecting the human gut, little is known about the antiviral programs triggered in this organ. To address this gap, we performed single-cell transcriptomics of SARS-CoV-2-infected intestinal organoids. We identified a subpopulation of enterocytes as the prime target of SARS-CoV-2 and, interestingly, found the lack of positive correlation between susceptibility to infection and the expression of ACE2. Infected cells activated strong pro-inflammatory programs and produced interferon, while expression of interferon-stimulated genes was limited to bystander cells due to SARS-CoV-2 suppressing the autocrine action of interferon. These findings reveal that SARS-CoV-2 curtails the immune response and highlights the gut as a pro-inflammatory reservoir that should be considered to fully understand SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Sergio Triana
- Structural and Computational Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Camila Metz‐Zumaran
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
| | - Carlos Ramirez
- Health Data Science UnitMedical Faculty University Heidelberg and BioQuantHeidelbergGermany
| | - Carmon Kee
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Patricio Doldan
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Mohammed Shahraz
- Structural and Computational Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
| | - Andreas R Gschwind
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Ashwini K Sharma
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
- Health Data Science UnitMedical Faculty University Heidelberg and BioQuantHeidelbergGermany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
- Stanford Genome Technology CenterPalo AltoCAUSA
| | - Carl Herrmann
- Health Data Science UnitMedical Faculty University Heidelberg and BioQuantHeidelbergGermany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
- Molecular Medicine Partnership Unit (MMPU)European Molecular Biology LaboratoryHeidelbergGermany
| | - Steeve Boulant
- Department of Infectious Diseases, VirologyHeidelberg University HospitalHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Megan L Stanifer
- Department of Infectious DiseasesMolecular VirologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
30
|
Kayisoglu Ö, Schlegel N, Bartfeld S. Gastrointestinal epithelial innate immunity-regionalization and organoids as new model. J Mol Med (Berl) 2021; 99:517-530. [PMID: 33538854 PMCID: PMC8026474 DOI: 10.1007/s00109-021-02043-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.
Collapse
Affiliation(s)
- Özge Kayisoglu
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Oberduerrbacher Strasse 6, Wuerzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
31
|
García-Rodríguez I, Sridhar A, Pajkrt D, Wolthers KC. Put Some Guts into It: Intestinal Organoid Models to Study Viral Infection. Viruses 2020; 12:v12111288. [PMID: 33187072 PMCID: PMC7697248 DOI: 10.3390/v12111288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The knowledge about enteric viral infection has vastly increased over the last eight years due to the development of intestinal organoids and enteroids that suppose a step forward from conventional studies using cell lines. Intestinal organoids and enteroids are three-dimensional (3D) models that closely mimic intestinal cellular heterogeneity and organization. The barrier function within these models has been adapted to facilitate viral studies. In this review, several adaptations (such as organoid-derived two-dimensional (2D) monolayers) and original intestinal 3D models are discussed. The specific advantages and applications, as well as improvements of each model are analyzed and an insight into the possible path for the field is given.
Collapse
Affiliation(s)
- Inés García-Rodríguez
- OrganoVIR Lab, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (I.G.-R.); (A.S.)
- Department of Pediatrics Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands;
| | - Adithya Sridhar
- OrganoVIR Lab, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (I.G.-R.); (A.S.)
- Department of Pediatrics Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands;
| | - Dasja Pajkrt
- Department of Pediatrics Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands;
| | - Katja C. Wolthers
- OrganoVIR Lab, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (I.G.-R.); (A.S.)
- Correspondence:
| |
Collapse
|
32
|
Otero CE, Langel SN, Blasi M, Permar SR. Maternal antibody interference contributes to reduced rotavirus vaccine efficacy in developing countries. PLoS Pathog 2020; 16:e1009010. [PMID: 33211756 PMCID: PMC7676686 DOI: 10.1371/journal.ppat.1009010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income countries (LMICs) compared to high-income countries. This review summarizes current research into the mechanisms behind this phenomenon, with a particular focus on the evidence that maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational studies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in serum and breast milk, and infant responses to RV vaccination. However, a causal link between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to be definitively established, partially due to limitations in current animal models of RV disease. The characteristics of Abs mediating interference and the mechanism(s) involved have yet to be determined, and these may differ from mechanisms of matAb interference for parenterally administered vaccines due to the contribution of mucosal immunity conferred via breast milk. Increased vaccine doses and later age of vaccine administration have been strategies applied to overcome matAb interference, but these approaches are difficult to safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of relevant animal models of matAb interference is needed to determine what alternative approaches or vaccine designs can safely and effectively overcome matAb interference of infant RV vaccination.
Collapse
Affiliation(s)
- Claire E. Otero
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephanie N. Langel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
33
|
Tallan A, Feng Z. Virus spread in the liver: mechanisms, commonalities, and unanswered questions. Future Virol 2020; 15:707-715. [PMID: 33250929 DOI: 10.2217/fvl-2020-0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The liver is home to five known human hepatitis viruses (hepatitis A virus-hepatitis E virus). Despite being phylogenetically unrelated, these viruses replicate and spread in the liver without causing apparent cytopathic effects, and all have evolved strategies to counteract antibody-mediated inhibition of virus spread. In this review, we discuss the current understanding regarding the spread mechanisms for these viruses with an attempt to extract common principles and identify key questions for future studies.
Collapse
Affiliation(s)
- Alexi Tallan
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zongdi Feng
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus OH 43210, USA
| |
Collapse
|
34
|
Ding S, Liang TJ. Is SARS-CoV-2 Also an Enteric Pathogen With Potential Fecal-Oral Transmission? A COVID-19 Virological and Clinical Review. Gastroenterology 2020; 159:53-61. [PMID: 32353371 PMCID: PMC7184994 DOI: 10.1053/j.gastro.2020.04.052] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
In as few as 3 months, coronavirus disease 2019 (COVID-19) has spread and ravaged the world at an unprecedented speed in modern history, rivaling the 1918 flu pandemic. Severe acute respiratory syndrome coronavirus-2, the culprit virus, is highly contagious and stable in the environment and transmits predominantly among humans via the respiratory route. Accumulating evidence suggest that this virus, like many of its related viruses, may also be an enteric virus that can spread via the fecal-oral route. Such a hypothesis would also contribute to the rapidity and proliferation of this pandemic. Here we briefly summarize what is known about this family of viruses and literature basis of the hypothesis that severe acute respiratory syndrome coronavirus-2 is capable of infecting the gastrointestinal tract and shedding in the environment for potential human-to-human transmission.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri.
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland,Correspondence Address correspondence to: T. Jake Liang, MD, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg10-9B16, 10 Center Drive, Bethesda, MD
| |
Collapse
|
35
|
Fasciano AC, Mecsas J. Eat Your Vitamin A: A Role for Retinoic Acid in the Development of Microfold Cells. Gastroenterology 2020; 159:34-36. [PMID: 32413355 DOI: 10.1053/j.gastro.2020.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Alyssa C Fasciano
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences and, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
36
|
Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020; 5:5/47/eabc3582. [PMID: 32404436 DOI: 10.1101/2020.04.21.054015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA are frequently observed in COVID-19 patients. However, it is unclear whether SARS-CoV-2 replicates in the human intestine and contributes to possible fecal-oral transmission. Here, we report productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. Expression of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, facilitated SARS-CoV-2 spike fusogenic activity and promoted virus entry into host cells. We also demonstrate that viruses released into the intestinal lumen were inactivated by simulated human colonic fluid, and infectious virus was not recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.
Collapse
Affiliation(s)
- Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi M Sonnek
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin F Brulois
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harry B Greenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Ciorba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
37
|
Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020; 5:eabc3582. [PMID: 32404436 PMCID: PMC7285829 DOI: 10.1126/sciimmunol.abc3582] [Citation(s) in RCA: 747] [Impact Index Per Article: 149.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA are frequently observed in COVID-19 patients. However, it is unclear whether SARS-CoV-2 replicates in the human intestine and contributes to possible fecal-oral transmission. Here, we report productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. Expression of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, facilitated SARS-CoV-2 spike fusogenic activity and promoted virus entry into host cells. We also demonstrate that viruses released into the intestinal lumen were inactivated by simulated human colonic fluid, and infectious virus was not recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.
Collapse
Affiliation(s)
- Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi M Sonnek
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin F Brulois
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harry B Greenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Ciorba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|