1
|
Brown JW, Lin X, Nicolazzi GA, Liu X, Nguyen T, Radyk MD, Burclaff J, Mills JC. Cathartocytosis: Jettisoning of Unwanted Material during Cellular Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.11.598489. [PMID: 38915707 PMCID: PMC11195262 DOI: 10.1101/2024.06.11.598489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Injury can cause differentiated cells to undergo massive reprogramming to become proliferative to repair tissue via a cellular program called paligenosis. Gastric digestive-enzyme-secreting chief cells use paligenosis to reprogram into progenitor-like Spasmolytic-Polypeptide Expressing Metaplasia (SPEM) cells. Stage 1 of paligenosis is the downscaling of mature cell architecture via a process involving lysosomes. Here, we noticed that sulfated glycoproteins were not only digested during paligenosis but also excreted into the gland lumen. Various genetic and pharmacological approaches showed that endoplasmic reticulum membranes and secretory granule cargo were also excreted and that the process proceeded in parallel with, but was mechanistically independent of autophagy. 3-dimensional light and electron-microscopy demonstrated that excretion occurred via unique, complex, multi-chambered invaginations of the apical plasma membrane. As this lysosome-independent cell cleansing process does not seem to have been priorly described, we termed it "cathartocytosis". Cathartocytosis allows a cell to rapidly eject excess material without waiting for autophagic and lysosomal digestion. We speculate the ejection of sulfated glycoproteins would aid in downscaling and might also help bind and flush pathogens away from tissue.
Collapse
|
2
|
He L, Zhang X, Zhang S, Wang Y, Hu W, Li J, Liu Y, Liao Y, Peng X, Li J, Zhao H, Wang L, Lv Y, Hu C, Yang S. H. Pylori-Facilitated TERT/Wnt/β-Catenin Triggers Spasmolytic Polypeptide-Expressing Metaplasia and Oxyntic Atrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401227. [PMID: 39587848 PMCID: PMC11744579 DOI: 10.1002/advs.202401227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/23/2024] [Indexed: 11/27/2024]
Abstract
Persistent H. pylori infection triggers the repair program of the mucosa, such as spasmolytic polypeptide-expressing metaplasia (SPEM). However, the mechanism underlying the initiation of SPEM in gastric tissues by H. pylori remains unclear. Here, an increase in telomerase reverse transcriptase (TERT) protein expression is observed in chief cells upon infection with cagA-positive H. pylori. Tert knockout significantly ameliorated H. pylori-induced SPEM and single-cell RNA sequencing demonstrated that the Wnt/β-Catenin pathway is suppressed in gastric cells with Tert knockout. Mechanism study revealed that CagA elevated TERT abundance by disrupting the interaction between TERT and its novel E3 ligase, SYVN1. Interestingly, Nitazoxanide effectively relieved SPEM via inhibition of the Wnt/β-Catenin signaling in vivo. This results clarified the mechanism underlying which CagA activated the TERT/Wnt/β-Catenin pathway, thus promoting the dedifferentiation of chief cells and the occurrence of SPEM in gastric mucosa. This highlights a molecular basis for targeting CagA-activated Wnt signaling in chief cells for the treatment of gastric precancerous lesions.
Collapse
Affiliation(s)
- Lijiao He
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiao Zhang
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
- Cancer Center of Daping HospitalArmy Medical UniversityChongqing400000China
| | - Shengwei Zhang
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
- Department of GastroenterologyThe 987th Hospital of the Joint Logistics Support Force of the People's Liberation Army of China, BaojiShaanxi721000China
| | - Yi Wang
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
- Biological Science Research CenterSouthwest UniversityChongqing400715China
| | - Weichao Hu
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jie Li
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yunyi Liu
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yu Liao
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xue Peng
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jianjun Li
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Haiyan Zhao
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Liting Wang
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
- Central LaboratoryArmy Medical UniversityChongqing400038China
| | - Yang‐Fan Lv
- Department of PathologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Chang‐Jiang Hu
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Shi‐Ming Yang
- Department of GastroenterologyThe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
3
|
Wang H, He K, Liu Y, Yang L, Wang Z, Wang H, Bai C, Liu J, Zhao L, Ma D, Liu Y. Expression and immune infiltration studies of IL-33-ST2-NF-κB signaling pathway in prostate cancer. Prostate 2024; 84:1398-1410. [PMID: 39113225 DOI: 10.1002/pros.24778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND To analyze the expression of interleukin-33 (IL-33), growth-stimulated expression gene 2 (ST2), nuclear factor-kappaB (NF-κB) and immune cell infiltration in prostate cancer, this study aims to provide an experimental basis for the clinical prevention and treatment of prostate cancer. METHODS The expression of IL-33 in PCa tissues was analyzed using TCGA, TIMER and HPA databases. Using the UALCAN database, the systematic exploration of the relationship between IL-33 and various clinicopathological parameters was conducted. The correlation between IL-33 expression and immune cell infiltration was investigated using TIMER, CIBERSORT and GEPIA databases. To verify these analyses, 22 cases of normal prostate (NP), 76 cases of benign prostatic hyperplasia (BPH), and 100 cases of PCa were recruited. Immunohistochemical staining was performed to examine the expression of IL-33, ST2, NF-κB, and the infiltration of immune cells. Correlations between these factors were then determined. RESULTS The expression of IL-33, ST2 and NF-κB was significantly lower in PCa tissues compared with NP (p < 0.05). IL-33 was not associated with age in PCa but showed associations with race, molecular characteristics, lymph node metastatic status, TP53 mutation and tumor grade. Furthermore, IL-33 was associated with immune cell infiltration. Positive correlations were observed between IL-33 and ST2 expressions, as well as between IL-33 and CD68+ macrophages in BPH and PCa. CONCLUSIONS IL-33, ST2 and NF-κB are lowly expressed in PCa tissues, their expression decreases with the increasing malignancy of cancer. IL-33, ST2 and NF-κB are factors associated with PCa immune infiltration. IL-33 has an inhibitory effect on prostate cancer through the IL-33/ST2/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Han Wang
- School of Basic Medical College, Beihua University, Jilin, China
| | - Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yuqi Liu
- School of Basic Medical College, Beihua University, Jilin, China
| | - Lijuan Yang
- School of Basic Medical College, Beihua University, Jilin, China
| | - Zhenjiang Wang
- School of Basic Medical College, Beihua University, Jilin, China
| | - Helin Wang
- School of Basic Medical College, Beihua University, Jilin, China
| | - Chengxia Bai
- School of Basic Medical College, Beihua University, Jilin, China
| | - Jian Liu
- People's hospital in Yushu city, Yushu, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Dongrui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanbo Liu
- School of Basic Medical College, Beihua University, Jilin, China
| |
Collapse
|
4
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
5
|
Fang S, Du S, Luo X, Qing X, Wang L, Ban Y, Song G, Yang Y, Wei W. The role of the S100A8/S100A9 in gastric tumor progression. Sci Rep 2024; 14:23574. [PMID: 39384957 PMCID: PMC11464527 DOI: 10.1038/s41598-024-74695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Gastric premalignant lesions can develop into cancer through multiple steps and inflammation plays a critical role. The aim of this study is to uncover the characteristics of macrophages and their gene expression in premalignant gastric lesions to identify novel biomarkers and potential targets for treatment. We used the computational algorithm CIBERSORT to estimate immune cell subsets present in gastric tissue. We applied WGCNA to identify inflammation-related modules and hub genes. Single-cell analysis was used to identify macrophage sub-clusters specific to pathology. In addition, the in-vitro experiment was performed to verify the mechanism of the key inflammatory factors in the growth of gastric cancer. WGCNA identified a module that was positively correlated with pathological changes and highly related to inflammation scores. Single-cell analysis revealed a macrophage subset, and we observed that S100A8 and S100A9 + macrophages made up a significantly higher proportion in early gastric cancer (EGC) tissues. Our functional enrichment analysis suggested that these macrophages may play a role in gastric tumorigenesis through the activation of the NFκB signaling pathway. In vitro experiments verified that S100A9 can promote the proliferation and migration of AGS cells through the TLR4-NFκB signaling pathway, and the S100A8/S100A9 inhibitor Paquinimod can inhibit their proliferation and migration. Our findings suggest that S100A8 and S100A9 + macrophages may activate the TLR4-NFκB signaling pathway to promote cell proliferation and migration leading to gastric tumor progression. Macrophages with high expression of S100A8/S100A9 are critical in the progression of gastric inflammation to cancer. Cytokine S100A9 can activate the TLR4-NFκB signaling pathway and promote the proliferation and migration of gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Shuangshuang Fang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sijing Du
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Luo
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangli Qing
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanran Ban
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, MetroHealth Medical Center/Case Western Reserve University, 2500 Metrohealth Dr, Cleveland, OH, 44109, USA.
| | - Yang Yang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Chief Researcher of China Academy of Chinese Medical Sciences, No. 6, Central South Road, Wangjing, Chaoyang District, Beijing, China.
| | - Wei Wei
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Chief Researcher of China Academy of Chinese Medical Sciences, No. 6, Central South Road, Wangjing, Chaoyang District, Beijing, China.
| |
Collapse
|
6
|
Contreras-Panta EW, Lee SH, Won Y, Norlander AE, Simmons AJ, Peebles RS, Lau KS, Choi E, Goldenring JR. Interleukin 13 Promotes Maturation and Proliferation in Metaplastic Gastroids. Cell Mol Gastroenterol Hepatol 2024; 18:101366. [PMID: 38815928 PMCID: PMC11292363 DOI: 10.1016/j.jcmgh.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND & AIMS Type 2 innate lymphoid cells (ILC2s) and interleukin-13 (IL-13) promote the onset of spasmolytic polypeptide-expressing metaplasia (SPEM) cells. However, little is known about molecular effects of IL-13 in SPEM cells. We now sought to establish a reliable organoid model, Meta1 gastroids, to model SPEM cells in vitro. We evaluated cellular and molecular effects of ILC2s and IL-13 on maturation and proliferation of SPEM cells. METHODS We performed single-cell RNA sequencing to characterize Meta1 gastroids, which were derived from stomachs of Mist1-Kras transgenic mice that displayed pyloric metaplasia. Cell sorting was used to isolate activated ILC2s from stomachs of IL-13-tdTomato reporter mice treated with L635. Three-dimensional co-culture was used to determine the effects of ILC2s on Meta1 gastroids. Mouse normal or metaplastic (Meta1) and human metaplastic gastroids were cultured with IL-13 to evaluate cell responses. Air-Liquid Interface culture was performed to test long-term culture effects of IL-13. In silico analysis determined possible STAT6-binding sites in gene promoter regions. STAT6 inhibition was performed to corroborate STAT6 role in SPEM cells maturation. RESULTS Meta1 gastroids showed the characteristics of SPEM cell lineages in vitro even after several passages. We demonstrated that co-culture with ILC2s or IL-13 treatment can induce phosphorylation of STAT6 in Meta1 and normal gastroids and promote the maturation and proliferation of SPEM cell lineages. IL-13 up-regulated expression of mucin-related proteins in human metaplastic gastroids. Inhibition of STAT6 blocked SPEM-related gene expression in Meta1 gastroids and maturation of SPEM in both normal and Meta1 gastroids. CONCLUSIONS IL-13 promotes the maturation and proliferation of SPEM cells consistent with gastric mucosal regeneration.
Collapse
Affiliation(s)
- Ela W Contreras-Panta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Su-Hyung Lee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yoonkyung Won
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Allison E Norlander
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
7
|
Dong J, Jiang W, Zhang W, Hu R, Huang Z, Guo T, Du T, Jiang X. Genetic association of circulating interleukins and risk of colorectal cancer: A bidirectional Mendelian randomization study. ENVIRONMENTAL TOXICOLOGY 2024; 39:2706-2716. [PMID: 38240193 DOI: 10.1002/tox.24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Previous studies have reported that inflammation, especially interleukin family members, plays an important role in the development of colorectal cancer (CRC). However, because of various confounders and the lack of clinical randomized controlled trial, the causal relationship between genetically predicted level of interleukin family and CRC risk has not been fully explained. OBJECTIVE Bi-directional Mendelian randomization (MR) was conducted to investigate the causal association between interleukin family members and CRC. METHODS Several genetic variables were extracted as instrumental variables (IVs) from summary data of genome-wide association studies (GWAS) for interleukin and CRC. IVs of interleukin family were obtained from recently published GWAS studies and the summary data of CRC was from FinnGen Biobank. After a series of quality control measures and strict screening, six models were used to evaluate the causal relationship. Pleiotropy, heterogeneity test, and a variety of sensitivity analysis were also used to estimate the robustness of the model results. RESULTS Genetically predicted higher circulating levels of IL-2 (odds ratio [OR]: 0.76; 95% confidence interval [CI]: 0.63-0.92; p = .0043), IL-17F(OR: 0.78; 95% CI: 0.62-1.00; p = .015), and IL-31 (OR: 0.88; 95% CI: 0.79-0.98; p = .023) were suggestively associated with decreased CRC risk. However, higher level of IL-10 (OR: 1.40; 95% CI: 1.18-1.65; p = .000094) was causally associated with increased risk of CRC. Reverse MR results indicated that the exposure of CRC was suggestively associated with higher levels of IL-36α (OR: 1.23; 95% CI: 1.01-1.49; p = .040) and IL-17RD (OR: 1.22; 95% CI, 1.00-1.48; p = .048) and lower level of IL-13 (OR: 0.78; 95% CI: 0.65-0.95; p = .013). The overall MR results did not provide evidence for causal relationships between other interleukins and CRC (p > .05). CONCLUSION We offer suggestive evidence supporting a potential causal relationship between circulating interleukins and CRC, underscoring the significance of targeting circulating interleukins as a strategy to mitigate the incidence of CRC.
Collapse
Affiliation(s)
- Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanju Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renhao Hu
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiye Huang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Taohua Guo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Gong H, Zhao N, Zhu C, Luo L, Liu S. Treatment of gastric ulcer, traditional Chinese medicine may be a better choice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117793. [PMID: 38278376 DOI: 10.1016/j.jep.2024.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastric ulcer (GU) is the injury of the gastric mucosa caused by the stimulation of various pathogenic factors penetrating the deep mucosal muscle layer. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in treating GU due to its multitarget, multilevel, and multi-pathway effects. AIM OF THE STUDY To review the latest research progress in the treatment of GU by TCM, including clinical and experimental studies, focusing on the target and mechanism of action of drugs and providing a theoretical basis for the treatment of GU by natural herbs. MATERIALS AND METHODS Electronic databases (PubMed, Elsevier, Springer, Web of Science, and CNKI) were searched using the keywords "gastric ulcer", "gastric mucosal lesion", "TCM" and or paired with "peptic ulcer" and "natural drugs" for studies published in the last fifteen years until 2023. RESULTS TCM, including single components of natural products, Chinese patent medicines (CPM), and TCM decoction, is expected to treat GU by regulating various mechanisms, such as redox balance, inflammatory factors, angiogenesis, gastric mucosal protective factors, intestinal flora, apoptosis, and autophagy. CONCLUSIONS We discussed and summarized the mechanism of TCM in the treatment of GU, which provided a sufficient basis for TCM treatment of GU.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Gastroenterology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Lin Luo
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Liu K, Huang H, Xiong M, Wang Q, Chen X, Feng Y, Ma H, Chen W, Li X, Ye X. IL-33 Accelerates Chronic Atrophic Gastritis through AMPK-ULK1 Axis Mediated Autolysosomal Degradation of GKN1. Int J Biol Sci 2024; 20:2323-2338. [PMID: 38617533 PMCID: PMC11008276 DOI: 10.7150/ijbs.93573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Chronic atrophic gastritis (CAG) is a complex disease characterized by atrophy and inflammation in gastric mucosal tissue, especially with high expression of interleukins. However, the interaction and mechanisms between interleukins and gastric mucosal epithelial cells in CAG remain largely elusive. Here, we elucidate that IL-33 stands out as the predominant inflammatory factor in CAG, and its expression is induced by H. pylori and MNNG through the ROS-STAT3 signaling pathway. Furthermore, our findings reveal that the IL-33/ST2 axis is intricately involved in the progression of CAG. Utilizing phosphoproteomics mass spectrometry, we demonstrate that IL-33 enhances autophagy in gastric epithelial cells through the phosphorylation of AMPK-ULK1 axis. Notably, inhibiting autophagy alleviates CAG severity, while augmentation of autophagy exacerbates the disease. Additionally, ROS scavenging emerges as a promising strategy to ameliorate CAG by reducing IL-33 expression and inhibiting autophagy. Intriguingly, IL-33 stimulation promotes GKN1 degradation through the autolysosomal pathway. Clinically, the combined measurement of IL-33 and GKN1 in serum shows potential as diagnostic markers. Our findings unveil an IL-33-AMPK-ULK1 regulatory mechanism governing GKN1 protein stability in CAG, presenting potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Kewei Liu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongxia Huang
- Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Mengyuan Xiong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaojiao Wang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiantao Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yinqiong Feng
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Hang Ma
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400038, China
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Xuegang Li
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400038, China
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
10
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
11
|
Chong Y, Yu D, Lu Z, Nie F. Role and research progress of spasmolytic polypeptide‑expressing metaplasia in gastric cancer (Review). Int J Oncol 2024; 64:33. [PMID: 38299264 PMCID: PMC10836494 DOI: 10.3892/ijo.2024.5621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Gastric cancer ranks as one of the most prevalent cancers worldwide. While the incidence of gastric cancer in Western countries has notably diminished over the past century, it continues to be a leading cause of cancer‑related mortality on a global scale. The majority of gastric cancers in humans are attributed to chronic Helicobacter pylori infection and the progression of gastric cancer is often preceded by gastritis, atrophy, metaplasia and dysplasia. However, the precise mechanisms underlying the development of gastric cancer remain ambiguous, including the formation of gastric polyps and precancerous lesions. In humans, two types of precancerous metaplasia have been identified in relation to gastric malignancies: Intestinal metaplasia and spasmolytic polypeptide‑expressing metaplasia (SPEM). The role of SPEM in the induction of gastric cancer has gained recent attention and its link with early‑stage human gastric cancer is increasingly evident. To gain insight into SPEM, the present study reviewed the role and research progress of SPEM in gastric cancer.
Collapse
Affiliation(s)
- Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
12
|
Guo Y, Chen J, Huang Y, Ke S, Xie F, Li D, Li B, Lu H. Increased infiltration of CD4 + IL-17A + FOXP3 + T cells in Helicobacter pylori-induced gastritis. Eur J Immunol 2024; 54:e2350662. [PMID: 38366919 DOI: 10.1002/eji.202350662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Helicobacter pylori is one of the main predisposing factors for gastric cancer, causing chronic inflammation and proper glands atrophy in the gastric mucosa. Although H. pylori-induced inflammation is a key inducer of precancerous lesions in the gastric mucosa, it remains unclear which precise immune cell subsets are responsible for the progression of H. pylori-induced gastritis. Here, we observed an abundance of CD4+ IL-17A+ FOXP3+ T cells exhibiting a Th17-like phenotype within the microenvironment of H. pylori-induced gastritis. Mechanistically, H. pylori upregulated the expression of IL-6 in Dendritic cells and macrophages, by activating NF-κB signaling through the virulence factor CagA and thus, induced IL-17A expression in FOXP3+ T cells. Moreover, CD4+ IL-17A+ FOXP3+ T cells were positively associated with advanced precancerous lesions. Therefore, these findings offer essential insights into how FOXP3+ T cells sense inflammatory signals from the environment, such as IL-6, during H. pylori infections, thereby guiding the effector immune response and aggravating the gastritis.
Collapse
Affiliation(s)
- Yixian Guo
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinnan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Huang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Xie
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Privitera G, Williams JJ, De Salvo C. The Importance of Th2 Immune Responses in Mediating the Progression of Gastritis-Associated Metaplasia to Gastric Cancer. Cancers (Basel) 2024; 16:522. [PMID: 38339273 PMCID: PMC10854712 DOI: 10.3390/cancers16030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer is one of the leading causes of cancer deaths worldwide, with chronic gastritis representing the main predisposing factor initiating the cascade of events leading to metaplasia and eventually progressing to cancer. A widely accepted classification distinguishes between autoimmune and environmental atrophic gastritis, mediated, respectively, by T cells promoting the destruction of the oxyntic mucosa, and chronic H. pylori infection, which has also been identified as the major risk factor for gastric cancer. The original dogma posits Th1 immunity as a main causal factor for developing gastritis and metaplasia. Recently, however, it has become evident that Th2 immune responses play a major role in the events causing chronic inflammation leading to tumorigenesis, and in this context, many different cell types and cytokines are involved. In particular, the activity of cytokines, such as IL-33 and IL-13, and cell types, such as mast cells, M2 macrophages and eosinophils, are intertwined in the process, promoting chronic gastritis-dependent and more diffuse metaplasia. Herein, we provide an overview of the critical events driving the pathology of this disease, focusing on the most recent findings regarding the importance of Th2 immunity in gastritis and gastric metaplasia.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy
| | - Joseph J. Williams
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
| | - Carlo De Salvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
| |
Collapse
|
14
|
Lin Q, Tang Z, Qin Y, Deng X, Wei C, Liu F, Pan X, Liu D, Zhan T, Fang M. Clonorchis sinensis infection amplifies hepatocellular carcinoma stemness, predicting unfavorable prognosis. PLoS Negl Trop Dis 2024; 18:e0011906. [PMID: 38285640 PMCID: PMC10824460 DOI: 10.1371/journal.pntd.0011906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Extensive evidence links Clonorchis sinensis (C. sinensis) to cholangiocarcinoma; however, its association with hepatocellular carcinoma (HCC) is less acknowledged, and the underlying mechanism remains unclear. This study was designed to investigate the association between C. sinensis infection and HCC and reveal the relationship between C. sinensis infection and cancer stemness. METHODS A comprehensive analysis of 839 HCC patients categorized into C. sinensis (-) HCC and C. sinensis (+) HCC groups was conducted. Chi-square and Mann-Whitney U tests were used to assess the association between C. sinensis infection and clinical factors. Kaplan-Meier and Cox regression analyses were used to evaluate survival outcomes. Immunohistochemistry was used to determine CK19 and EpCAM expression in HCC specimens. RESULTS Compared to C. sinensis (-) HCC patients, C. sinensis (+) HCC patients exhibited advanced Barcelona Clinic Liver Cancer (BCLC) stage, higher male prevalence and more liver cirrhosis as well as elevated alpha-fetoprotein (AFP), carbohydrate antigen 19-9 (CA19-9), eosinophil, complement 3 (C3), and complement 4 (C4) values. C. sinensis infection correlated with shorter overall survival (OS) (p < 0.05) and recurrence-free survival (RFS) (p < 0.05). Furthermore, Cox multivariate analysis revealed that C. sinensis infection was an independent prognostic factor for OS in HCC patients. Importantly, C. sinensis infection upregulated the expression of HCC cancer stem cell markers CK19 and EpCAM. CONCLUSION HCC patients with C. sinensis infection exhibit a poor prognosis following hepatectomy. Moreover, C. sinensis infection promotes the acquisition of cancer stem cell-like characteristics, consequently accelerating the malignant progression of HCC. AUTHOR SUMMARY Clonorchis sinensis (C. sinensis) is a prominent food-borne parasite prevalent in regions such as China, particularly in Guangxi. C. sinensis has been associated with various hepatobiliary system injuries, encompassing inflammation, periductal fibrosis, cholangiocarcinoma and even hepatocellular carcinoma (HCC). A substantial body of evidence links C. sinensis to cholangiocarcinoma, However, the connection between C. sinensis and HCC and the intricate mechanisms underlying its contribution to HCC development remain incompletely elucidated. Our study demonstrates clear clinicopathological associations between C. sinensis and HCC, such as gender, BCLC stage, liver cirrhosis, MVI, AFP, CA19-9, circulating eosinophils and complements. Furthermore, we found that the co-occurrence of C. sinensis exhibited a significant association with shorter OS and RFS in patients diagnosed with HCC. A major finding was that C. sinensis infection promotes the acquisition of cancer stem cell-like characteristics, consequently accelerating the malignant progression of HCC. Our results provide a more comprehensive comprehension of the interplay between C. sinensis and HCC, shedding fresh light on the carcinogenic potential of C. sinensis.
Collapse
Affiliation(s)
- Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Fengfei Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| | - Dengyu Liu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Tingzheng Zhan
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
- Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Guangxi Medical University Cancer Hospital, Nanning, People’s Republic of China
| |
Collapse
|
15
|
Kim H, Jang B, Zhang C, Caldwell B, Park DJ, Kong SH, Lee HJ, Yang HK, Goldenring JR, Choi E. Targeting Stem Cells and Dysplastic Features With Dual MEK/ERK and STAT3 Suppression in Gastric Carcinogenesis. Gastroenterology 2024; 166:117-131. [PMID: 37802423 PMCID: PMC10841458 DOI: 10.1053/j.gastro.2023.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUNDS & AIMS Precancerous metaplasia progression to dysplasia can increase the risk of gastric cancers. However, effective strategies to specifically target these precancerous lesions are currently lacking. To address this, we aimed to identify key signaling pathways that are upregulated during metaplasia progression and critical for stem cell survival and function in dysplasia. METHODS To assess the response to chemotherapeutic drugs, we used metaplastic and dysplastic organoids derived from Mist1-Kras mice and 20 human precancerous organoid lines established from patients with gastric cancer. Phospho-antibody array analysis and single-cell RNA-sequencing were performed to identify target cell populations and signaling pathways affected by pyrvinium, a putative anticancer drug. Pyrvinium was administered to Mist1-Kras mice to evaluate drug effectiveness in vivo. RESULTS Although pyrvinium treatment resulted in growth arrest in metaplastic organoids, it induced cell death in dysplastic organoids. Pyrvinium treatment significantly downregulated phosphorylation of ERK and signal transducer and activator of transcription 3 (STAT3) as well as STAT3-target genes. Single-cell RNA-sequencing data analyses revealed that pyrvinium specifically targeted CD133+/CD166+ stem cell populations, as well as proliferating cells in dysplastic organoids. Pyrvinium inhibited metaplasia progression and facilitated the restoration of normal oxyntic glands in Mist1-Kras mice. Furthermore, pyrvinium exhibited suppressive effects on the growth and survival of human organoids with dysplastic features, through simultaneous blocking of the MEK/ERK and STAT3 signaling pathways. CONCLUSIONS Through its dual blockade of MEK/ERK and STAT3 signaling pathways, pyrvinium can effectively induce growth arrest in metaplasia and cell death in dysplasia. Therefore, our findings suggest that pyrvinium is a promising chemotherapeutic agent for reprogramming the precancerous milieu to prevent gastric cancer development.
Collapse
Affiliation(s)
- Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Do-Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - James R Goldenring
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
16
|
Cicek B, Danısman B, Yildirim S, Yuce N, Nikitovic D, Bolat I, Kuzucu M, Ceyran E, Bardas E, Golokhvast KS, Tsatsakis A, Taghizadehghalehjoughi A. Flavonoid-Rich Sambucus nigra Berry Extract Enhances Nrf2/HO-1 Signaling Pathway Activation and Exerts Antiulcerative Effects In Vivo. Int J Mol Sci 2023; 24:15486. [PMID: 37895164 PMCID: PMC10607857 DOI: 10.3390/ijms242015486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Sambucus nigra (SN) berry extract is characterized by high antioxidant and anti-inflammatory activity. The current study aimed to investigate the effect of SN berry extract against indomethacin (IND)-induced gastric ulcer in rats and the mechanism involved. SN berry extract alleviated IND-induced gastric ulcers, as shown by assessing pathological manifestations in the gastric mucosa. These protective effects are attributed to attenuated oxidative damage to the gastric mucosa, correlated to increased activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), enhanced glutathione (GSH) levels, total antioxidant capacity (TAC), and upregulation of the Nrf2/HO-1 cascade. Moreover, oxidative stress markers, including malondialdehyde (MDA) and total oxidant status (TOS), were downregulated in SN-extract-treated animals. Furthermore, SN berry extract suppressed gastric mucosal inflammation by downregulating interleukin (IL)-33, IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels, and attenuating myeloperoxidase (MPO) activity. The protective effects of SN berry extract were similar to those exerted by esomeprazole (ESO), an acid-secretion-suppressive drug. In conclusion, SN berry extract has antiulcerative effects, alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey; (B.C.); (E.B.)
| | - Betul Danısman
- Department of Biophysics, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey;
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey; (S.Y.); (I.B.)
| | - Neslihan Yuce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey; (S.Y.); (I.B.)
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey;
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, 41000 Agri, Turkey;
| | - Ebru Bardas
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey; (B.C.); (E.B.)
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, 2B Centralnaya Street, 630501 Krasnoobsk, Russia;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey;
| |
Collapse
|
17
|
Chatterjee A, Azevedo-Martins JM, Stachler MD. Interleukin-33 as a Potential Therapeutic Target in Gastric Cancer Patients: Current Insights. Onco Targets Ther 2023; 16:675-687. [PMID: 37583706 PMCID: PMC10424681 DOI: 10.2147/ott.s389120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer is a significant global health problem as it is the fifth most prevalent cancer worldwide and the fourth leading cause of cancer-related mortality. While cytotoxic chemotherapy remains the primary treatment for advanced GC, response rates are limited. Recent progresses, focused on molecular signalling within gastric cancer, have ignited new hope for potential therapeutic targets that may improve survival and/or reduce the toxic effects of traditional therapies. Carcinomas are generally initiated when critical regulatory genes get mutated, but the progression to malignancy is usually supported by the non-neoplastic cells that create a conducive environment for transformation and progression to occur. Interleukin 33 (IL-33) functions as a dual activity cytokine as it is also a nuclear factor. IL-33 is usually present in the nuclei of the cells. Upon tissue damage, it is released into the extracellular space and binds to its receptor, suppression of tumorigenicity 2 (ST2) L, which is expressed on the membranes of the target cells. IL-33 signalling activates the T Helper 2 (Th2) immune response among other responses. Although the studies on the role of IL-33 in gastric cancer are still in the early stages, they have revealed potentially important (though sometimes conflicting) functions or roles in cancer development and progression. The pro-tumorigenic roles include induction and the recruitment of tumor-associated immune cells, promoting metaplasia progression, and inducing stem cell like and EMT properties in gastric cancer cells. Therapeutic interventions to disrupt these functions may provide a unique strategy for gastric cancer prevention and treatment. This review aims to provide a summary of the role of IL-33 in GC, state its multiple functions in relation to GC, and show potential avenues for promising therapeutic investigation.
Collapse
Affiliation(s)
- Annesha Chatterjee
- University of California San Francisco, Department of Pathology, San Francisco, CA, USA
| | | | - Matthew D Stachler
- University of California San Francisco, Department of Pathology, San Francisco, CA, USA
| |
Collapse
|
18
|
Choi EL, Taheri N, Chandra A, Hayashi Y. Cellular Senescence, Inflammation, and Cancer in the Gastrointestinal Tract. Int J Mol Sci 2023; 24:9810. [PMID: 37372958 PMCID: PMC10298598 DOI: 10.3390/ijms24129810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Due to modern medical advancements, greater proportions of the population will continue to age with longer life spans. Increased life span, however, does not always correlate with improved health span, and may result in an increase in aging-related diseases and disorders. These diseases are often attributed to cellular senescence, in which cells become disengaged from the cell cycle and inert to cell death. These cells are characterized by a proinflammatory secretome. The proinflammatory senescence-associated secretory phenotype, although part of a natural function intended to prevent further DNA damage, creates a microenvironment suited to tumor progression. This microenvironment is most evident in the gastrointestinal tract (GI), where a combination of bacterial infections, senescent cells, and inflammatory proteins can lead to oncogenesis. Thus, it is important to find potential senescence biomarkers as targets of novel therapies for GI diseases and disorders including cancers. However, finding therapeutic targets in the GI microenvironment to reduce the risk of GI tumor onset may also be of value. This review summarizes the effects of cellular senescence on GI aging, inflammation, and cancers, and aims to improve our understanding of these processes with a goal of enhancing future therapy.
Collapse
Affiliation(s)
- Egan L. Choi
- Graduate Research Education Program (Choi), Mayo Clinic, Rochester, MN 55905, USA;
| | - Negar Taheri
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Division of Gastroenterology and Hepatology (Taheri and Hayashi), Mayo Clinic, Rochester, MN 55905, USA
| | - Abhishek Chandra
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Robert and Arlene Kogod Center on Aging (Chandra), Mayo Clinic, Rochester, MN 55905, USA
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Division of Gastroenterology and Hepatology (Taheri and Hayashi), Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Zeng X, Yang M, Ye T, Feng J, Xu X, Yang H, Wang X, Bao L, Li R, Xue B, Zang J, Huang Y. Mitochondrial GRIM-19 loss in parietal cells promotes spasmolytic polypeptide-expressing metaplasia through NLR family pyrin domain-containing 3 (NLRP3)-mediated IL-33 activation via a reactive oxygen species (ROS) -NRF2- Heme oxygenase-1(HO-1)-NF-кB axis. Free Radic Biol Med 2023; 202:46-61. [PMID: 36990300 DOI: 10.1016/j.freeradbiomed.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.
Collapse
Affiliation(s)
- Xin Zeng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Meihua Yang
- Departments of Neurology, Washington University School of Medicine and Barnes-Jewish Hospital, Saint Louis, 63110, MO, USA
| | - Tingbo Ye
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinmei Feng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohui Xu
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huaan Yang
- Department of Urologic Surgery, Yubei District People's Hospital, Chongqing, 401120, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Molecular Biology for Infectious Diseases, Chongqing Medical University, Chongqing, 40016, China
| | - Liming Bao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Rui Li
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Bingqian Xue
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinbao Zang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Huang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
20
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
21
|
Kwon JW, Seok SH, Kim S, An HW, Choudhury AD, Woo SH, Oh JS, Kim JK, Voon DC, Kim DY, Park JW. A synergistic partnership between IL-33/ST2 and Wnt pathway through Bcl-xL drives gastric cancer stemness and metastasis. Oncogene 2023; 42:501-515. [PMID: 36526851 DOI: 10.1038/s41388-022-02575-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
ST2 functions as a receptor for the cytokine IL-33. It has been implicated in carcinogenesis. In this study, we sought to mechanistically determine how ST2 and IL-33 function to support cancer stem cell (CSC) activity and drive gastric cancer (GC) pathogenesis. ST2+ subpopulation spontaneously arose during gastric tumorigenesis. A thorough evaluation of ST2 and IL-33 expression in gastric tumors revealed that they show an overlapping expression pattern, notably in poor differentiated GC and metastasis foci. Moreover, their expression levels are clinically correlated to cancer progression. Using a genetic model of CSC-driven gastric carcinogenesis, ST2+ subpopulation displays increased tumorigenicity, chemoresistance and metastatic potentials through increased survival fitness endowed by an elevated MAPK-regulated Bcl-xL. The IL-33/ST2 axis enhances the self-renewal and survival of GC stem cells and organoids. Importantly, we observed a synergistic cooperation between IL-33/ST2 and the canonical Wnt pathway in transactivating Wnt-dependent transcription and supporting CSC activity, a partnership that was abrogated by inhibiting Bcl-xL. Concordant with this, ST2+ subpopulation was targeted by MEK1/2 and Bcl-xL-specific inhibitors. These findings establish ST2 as a functional CSC marker that fortifies the Wnt signal while availing a novel therapeutic strategy to suppress GC progression by targeting the IL-33/ST2/Bcl-xL signaling axis.
Collapse
Affiliation(s)
- Jong-Wan Kwon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do, 24341, South Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do, 24341, South Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Hyeok-Won An
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do, 24341, South Korea
| | - Anahita Dev Choudhury
- Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan.,Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jeong-Seop Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Dominic C Voon
- Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan. .,Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do, 24341, South Korea.
| |
Collapse
|
22
|
Liu L, Wang Y, Zhao Y, Zhang W, Liu J, Wang F, Wang P, Tang X. Global knowledge mapping and emerging trends in research between spasmolytic polypeptide-expressing metaplasia and gastric carcinogenesis: A bibliometric analysis from 2002 to 2022. Front Cell Infect Microbiol 2023; 12:1108378. [PMID: 36776551 PMCID: PMC9912936 DOI: 10.3389/fcimb.2022.1108378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/30/2023] Open
Abstract
Background Spasmolytic polypeptide expression metaplasia (SPEM) occurs in the corpus of the stomach and is closely related to inflammations caused by H. pylori infection. Recently, SPEM was suggested as one of the dubious precancerous lesions of gastric cancer (GC). Thus, further research on SPEM cell transdifferentiation and its underlying mechanisms could facilitate the development of new molecular targets improving the therapeutics of GC. Using bibliometrics, we analyzed publications, summarized the research hotspots and provided references for scientific researchers engaged in related research fields. Methods We searched the Web of Science Core Collection (WoSCC) for publications related to SPEM-GC from 2002 to 2022. The VOSviewer, SCImago, CiteSpace and R software were used to visualize and analyze the data. Gene targets identified in the keyword list were analyzed for functional enrichment using the KEGG and GO databases. Results Of the 292 articles identified in the initial search, we observed a stable trend in SPEM-GC research but rapid growth in the number of citations. The United States was the leader in terms of quality publications and international cooperation among them. The total number of articles published by Chinese scholars was second to the United States. Additionally, despite its low centrality and average citation frequency, China has become one of the world's most dynamic countries in academics. In terms of productivity, Vanderbilt University was identified as the most productive institution. Further, we also observed that Gastroenterology was the highest co-cited journal, and Goldenring Jr. was the most prolific author with the largest centrality. Conclusion SPEM could serve as an initial step in diagnosing gastric precancerous lesions. Current hotspots and frontiers of research include SPEM cell lineage differentiation, interaction with H. pylori, disturbances of the mucosal microenvironment, biomarkers, clinical diagnosis and outcomes of SPEM, as well as the development of proliferative SPEM animal models. However, further research and collaboration are still required. The findings presented in this study can be used as reference for the research status of SPEM-GC and determine new directions for future studies.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiong Liu
- Department of Pathology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xudong Tang,
| |
Collapse
|
23
|
RUNX3 in Stem Cell and Cancer Biology. Cells 2023; 12:cells12030408. [PMID: 36766749 PMCID: PMC9913995 DOI: 10.3390/cells12030408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The runt-related transcription factors (RUNX) play prominent roles in cell cycle progression, differentiation, apoptosis, immunity and epithelial-mesenchymal transition. There are three members in the mammalian RUNX family, each with distinct tissue expression profiles. RUNX genes play unique and redundant roles during development and adult tissue homeostasis. The ability of RUNX proteins to influence signaling pathways, such as Wnt, TGFβ and Hippo-YAP, suggests that they integrate signals from the environment to dictate cell fate decisions. All RUNX genes hold master regulator roles, albeit in different tissues, and all have been implicated in cancer. Paradoxically, RUNX genes exert tumor suppressive and oncogenic functions, depending on tumor type and stage. Unlike RUNX1 and 2, the role of RUNX3 in stem cells is poorly understood. A recent study using cancer-derived RUNX3 mutation R122C revealed a gatekeeper role for RUNX3 in gastric epithelial stem cell homeostasis. The corpora of RUNX3R122C/R122C mice showed a dramatic increase in proliferating stem cells as well as inhibition of differentiation. Tellingly, RUNX3R122C/R122C mice also exhibited a precancerous phenotype. This review focuses on the impact of RUNX3 dysregulation on (1) stem cell fate and (2) the molecular mechanisms underpinning early carcinogenesis.
Collapse
|
24
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
25
|
Wu E, Zhu J, Ma Z, Tuo B, Terai S, Mizuno K, Li T, Liu X. Gastric alarmin release: A warning signal in the development of gastric mucosal diseases. Front Immunol 2022; 13:1008047. [PMID: 36275647 PMCID: PMC9583272 DOI: 10.3389/fimmu.2022.1008047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alarmins exist outside cells and are early warning signals to the immune system; as such, alarmin receptors are widely distributed on various immune cells. Alarmins, proinflammatory molecular patterns associated with tissue damage, are usually released into the extracellular space, where they induce immune responses and participate in the damage and repair processes of mucosal diseases.In the stomach, gastric alarmin release has been shown to be involved in gastric mucosal inflammation, antibacterial defense, adaptive immunity, and wound healing; moreover, this release causes damage and results in the development of gastric mucosal diseases, including various types of gastritis, ulcers, and gastric cancer. Therefore, it is necessary to understand the role of alarmins in gastric mucosal diseases. This review focuses on the contribution of alarmins, including IL33, HMGB1, defensins and cathelicidins, to the gastric mucosal barrier and their role in gastric mucosal diseases. Here, we offer a new perspective on the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenichi Mizuno
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xuemei Liu, ; Taolang Li,
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xuemei Liu, ; Taolang Li,
| |
Collapse
|
26
|
Yeoh WJ, Vu VP, Krebs P. IL-33 biology in cancer: An update and future perspectives. Cytokine 2022; 157:155961. [PMID: 35843125 DOI: 10.1016/j.cyto.2022.155961] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
28
|
Tang H, Yang Q, Tang Q, Li X, Ding W, Chen W. Integrated transcriptomics unravels implications of glycosylation-regulating signature in diagnosis, prognosis and therapeutic benefits of hepatocellular carcinoma. Comput Biol Med 2022; 148:105886. [DOI: 10.1016/j.compbiomed.2022.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 11/27/2022]
|
29
|
Zhang YX, Wang HX, Li QX, Chen AX, Wang XX, Zhou S, Xie ST, Li HZ, Wang JJ, Zhang Q, Zhang XY, Zhu JN. A comparative study of vestibular improvement and gastrointestinal effect of betahistine and gastrodin in mice. Biomed Pharmacother 2022; 153:113344. [PMID: 35780620 DOI: 10.1016/j.biopha.2022.113344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Betahistine and gastrodin are the first-line medications for vestibular disorders in clinical practice, nevertheless, their amelioration effects on vestibular dysfunctions still lack direct comparison and their unexpected extra-vestibular effects remain elusive. Recent clinical studies have indicated that both of them may have effects on the gastrointestinal (GI) tract. Therefore, we purposed to systematically compare both vestibular and GI effects induced by betahistine and gastrodin and tried to elucidate the mechanisms underlying their GI effects. Our results showed that betahistine and gastrodin indeed had similar therapeutic effects on vestibular-associated motor dysfunction induced by unilateral labyrinthectomy. However, betahistine reduced total GI motility with gastric hypomotility and colonic hypermotility, whereas gastrodin did not influence total GI motility with only slight colonic hypermotility. In addition, betahistine, at normal dosages, induced a slight injury of gastric mucosa. These GI effects may be due to the different effects of betahistine and gastrodin on substance P and vasoactive intestinal peptide secretion in stomach and/or colon, and agonistic/anatgonistic effects of betahistine on histamine H1 and H3 receptors expressed in GI mucosal cells and H3 receptors distributed on nerves within the myenteric and submucosal plexuses. Furthermore, treatment of betahistine and gastrodin had potential effects on gut microbiota composition, which could lead to changes in host-microbiota homeostasis in turn. These results demonstrate that gastrodin has a consistent improvement effect on vestibular functions compared with betahistine but less effect on GI functions and gut microbiota, suggesting that gastrodin may be more suitable for vestibular disease patients with GI dysfunction.
Collapse
Affiliation(s)
- Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Xiao Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ao-Xue Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiao-Xia Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
30
|
Liabeuf D, Oshima M, Stange DE, Sigal M. Stem Cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology 2022; 162:1067-1087. [PMID: 34942172 DOI: 10.1053/j.gastro.2021.12.252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Several genetic and environmental factors increase gastric cancer (GC) risk, with Helicobacter pylori being the main environmental agent. GC is thought to emerge through a sequence of morphological changes that have been elucidated on the molecular level. New technologies have shed light onto pathways that are altered in GC, involving mutational and epigenetic changes and altered signaling pathways. Using various new model systems and innovative approaches, the relevance of such alterations for the emergence and progression of GC has been validated. Here, we highlight the key strategies and the resulting achievements. A major step is the characterization of epithelial stem cell behavior in the healthy stomach. These data, obtained through new reporter mouse lines and lineage tracing, enabled insights into the processes that control cellular proliferation, self-renewal, and differentiation of gastric stem cells. It has become evident that these cells and pathways are often deregulated in carcinogenesis. Second, insights into how H pylori colonizes gastric glands, directly interacts with stem cells, and alters cellular and genomic integrity, as well as the characterization of tissue responses to infection, provide a comprehensive picture of how this bacterium contributes to gastric carcinogenesis. Third, the development of stem cell- and tissue-specific reporter mice have driven our understanding of the signals and mutations that promote different types of GC and now also enable the study of more advanced, metastasized stages. Finally, organoids from human tissue have allowed insights into gastric carcinogenesis by validating mutational and signaling alterations in human primary cells and opening a route to predicting responses to personalized treatment.
Collapse
Affiliation(s)
- Dylan Liabeuf
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Sigal
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
31
|
Abstract
Complex multicellular organisms have evolved specific mechanisms to replenish cells in homeostasis and during repair. Here, we discuss how emerging technologies (e.g., single-cell RNA sequencing) challenge the concept that tissue renewal is fueled by unidirectional differentiation from a resident stem cell. We now understand that cell plasticity, i.e., cells adaptively changing differentiation state or identity, is a central tissue renewal mechanism. For example, mature cells can access an evolutionarily conserved program (paligenosis) to reenter the cell cycle and regenerate damaged tissue. Most tissues lack dedicated stem cells and rely on plasticity to regenerate lost cells. Plasticity benefits multicellular organisms, yet it also carries risks. For one, when long-lived cells undergo paligenotic, cyclical proliferation and redif-ferentiation, they can accumulate and propagate acquired mutations that activate oncogenes and increase the potential for developing cancer. Lastly, we propose a new framework for classifying patterns of cell proliferation in homeostasis and regeneration, with stem cells representing just one of the diverse methods that adult tissues employ.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles J. Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Departments of Pathology and Immunology and Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Departments of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
32
|
Goldenring JR, Mills JC. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology 2022; 162:415-430. [PMID: 34728185 PMCID: PMC8792220 DOI: 10.1053/j.gastro.2021.10.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 02/03/2023]
Abstract
The mucosa of the body of the stomach (ie, the gastric corpus) uses 2 overlapping, depth-dependent mechanisms to respond to injury. Superficial injury heals via surface cells with histopathologic changes like foveolar hyperplasia. Deeper, usually chronic, injury/inflammation, most frequently induced by the carcinogenic bacteria Helicobacter pylori, elicits glandular histopathologic alterations, initially manifesting as pyloric (also known as pseudopyloric) metaplasia. In this pyloric metaplasia, corpus glands become antrum (pylorus)-like with loss of acid-secreting parietal cells (atrophic gastritis), expansion of foveolar cells, and reprogramming of digestive enzyme-secreting chief cells into deep antral gland-like mucous cells. After acute parietal cell loss, chief cells can reprogram through an orderly stepwise progression (paligenosis) initiated by interleukin-13-secreting innate lymphoid cells (ILC2s). First, massive lysosomal activation helps mitigate reactive oxygen species and remove damaged organelles. Second, mucus and wound-healing proteins (eg, TFF2) and other transcriptional alterations are induced, at which point the reprogrammed chief cells are recognized as mucus-secreting spasmolytic polypeptide-expressing metaplasia cells. In chronic severe injury, glands with pyloric metaplasia can harbor both actively proliferating spasmolytic polypeptide-expressing metaplasia cells and eventually intestine-like cells. Gastric glands with such lineage confusion (mixed incomplete intestinal metaplasia and proliferative spasmolytic polypeptide-expressing metaplasia) may be at particular risk for progression to dysplasia and cancer. A pyloric-like pattern of metaplasia after injury also occurs in other gastrointestinal organs including esophagus, pancreas, and intestines, and the paligenosis program itself seems broadly conserved across tissues and species. Here we discuss aspects of metaplasia in stomach, incorporating data derived from animal models and work on human cells and tissues in correlation with diagnostic and clinical implications.
Collapse
Affiliation(s)
- James R Goldenring
- Nashville Veterans Affairs Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Medicine, Baylor College of Medicine, Houston, Texas; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
33
|
Douchi D, Yamamura A, Matsuo J, Lee JW, Nuttonmanit N, Melissa Lim YH, Suda K, Shimura M, Chen S, Pang S, Kohu K, Kaneko M, Kiyonari H, Kaneda A, Yoshida H, Taniuchi I, Osato M, Yang H, Unno M, Bok-Yan So J, Yeoh KG, Huey Chuang LS, Bae SC, Ito Y. A Point Mutation R122C in RUNX3 Promotes the Expansion of Isthmus Stem Cells and Inhibits Their Differentiation in the Stomach. Cell Mol Gastroenterol Hepatol 2022; 13:1317-1345. [PMID: 35074568 PMCID: PMC8933847 DOI: 10.1016/j.jcmgh.2022.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS RUNX transcription factors play pivotal roles in embryonic development and neoplasia. We previously identified the single missense mutation R122C in RUNX3 from human gastric cancer. However, how RUNX3R122C mutation disrupts stem cell homeostasis and promotes gastric carcinogenesis remained unclear. METHODS To understand the oncogenic nature of this mutation in vivo, we generated the RUNX3R122C knock-in mice. Stomach tissues were harvested, followed by histologic and immunofluorescence staining, organoid culture, flow cytometry to isolate gastric corpus isthmus and nonisthmus epithelial cells, and RNA extraction for transcriptomic analysis. RESULTS The corpus tissue of RUNX3R122C/R122C homozygous mice showed a precancerous phenotype such as spasmolytic polypeptide-expressing metaplasia. We observed mucous neck cell hyperplasia; massive reduction of pit, parietal, and chief cell populations; as well as a dramatic increase in the number of rapidly proliferating isthmus stem/progenitor cells in the corpus of RUNX3R122C/R122C mice. Transcriptomic analyses of the isolated epithelial cells showed that the cell-cycle-related MYC target gene signature was enriched in the corpus epithelial cells of RUNX3R122C/R122C mice compared with the wild-type corpus. Mechanistically, RUNX3R122C mutant protein disrupted the regulation of the restriction point where cells decide to enter either a proliferative or quiescent state, thereby driving stem cell expansion and limiting the ability of cells to terminally differentiate. CONCLUSIONS RUNX3R122C missense mutation is associated with the continuous cycling of isthmus stem/progenitor cells, maturation arrest, and development of a precancerous state. This work highlights the importance of RUNX3 in the prevention of metaplasia and gastric cancer.
Collapse
Affiliation(s)
- Daisuke Douchi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamamura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jung-Won Lee
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, South Korea
| | - Napat Nuttonmanit
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yi Hui Melissa Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kazuto Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Shimura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sabirah Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - ShuChin Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kazuyoshi Kohu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, Yokohama, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jimmy Bok-Yan So
- Department of Surgery, National University Health System, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, National University of Singapore, Singapore
| | | | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju, South Korea
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
34
|
Hoft SG, Noto CN, DiPaolo RJ. Two Distinct Etiologies of Gastric Cancer: Infection and Autoimmunity. Front Cell Dev Biol 2021; 9:752346. [PMID: 34900999 PMCID: PMC8661534 DOI: 10.3389/fcell.2021.752346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of mortality worldwide. The risk of developing gastric adenocarcinoma, which comprises >90% of gastric cancers, is multifactorial, but most associated with Helicobacter pylori infection. Autoimmune gastritis is a chronic autoinflammatory syndrome where self-reactive immune cells are activated by gastric epithelial cell autoantigens. This cause of gastritis is more so associated with the development of neuroendocrine tumors. However, in both autoimmune and infection-induced gastritis, high risk metaplastic lesions develop within the gastric mucosa. This warrants concern for carcinogenesis in both inflammatory settings. There are many similarities and differences in disease progression between these two etiologies of chronic gastritis. Both diseases have an increased risk of gastric adenocarcinoma development, but each have their own unique comorbidities. Autoimmune gastritis is a primary cause of pernicious anemia, whereas chronic infection typically causes gastrointestinal ulceration. Both immune responses are driven by T cells, primarily CD4+ T cells of the IFN-γ producing, Th1 phenotype. Neutrophilic infiltrates help clear H. pylori infection, but neutrophils are not necessarily recruited in the autoimmune setting. There have also been hypotheses that infection with H. pylori initiates autoimmune gastritis, but the literature is far from definitive with evidence of infection-independent autoimmune gastric disease. Gastric cancer incidence is increasing among young women in the United States, a population at higher risk of developing autoimmune disease, and H. pylori infection rates are falling. Therefore, a better understanding of these two chronic inflammatory diseases is needed to identify their roles in initiating gastric cancer.
Collapse
Affiliation(s)
- Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
35
|
Zhang B, Wu X, Li J, Ning A, Zhang B, Liu J, Song L, Yan C, Sun X, Zheng K, Wu Z. Hepatic progenitor cells promote the repair of schistosomiasis liver injury by inhibiting IL-33 secretion in mice. Stem Cell Res Ther 2021; 12:546. [PMID: 34674752 PMCID: PMC8529826 DOI: 10.1186/s13287-021-02589-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/04/2021] [Indexed: 01/20/2023] Open
Abstract
Background Hepatic schistosomiasis, a chronic liver injury induced by long-term Schistosoma japonicum (S. japonicum) infection, is characterized by egg granulomas and fibrotic pathology. Hepatic progenitor cells (HPCs), which are nearly absent or quiescent in normal liver, play vital roles in chronic and severe liver injury. But their role in the progression of liver injury during infection remains unknown. Methods In this study, the hepatic egg granulomas, fibrosis and proliferation of HPCs were analyzed in the mice model of S. japonicum infection at different infectious stages. For validating the role of HPCs in hepatic injury, tumor necrosis factor-like-weak inducer of apoptosis (TWEAK) and TWEAK blocking antibody were used to manipulate the proliferation of HPCs in wild-type and IL-33−/− mice infected with S. japonicum. Results We found that the proliferation of HPCs was accompanied by inflammatory granulomas and fibrosis formation. HPCs expansion promoted liver regeneration and inhibited inflammatory egg granulomas, as well as the deposition of fibrotic collagen. Interestingly, the expression of IL-33 was negatively associated with HPCs’ expansion. There were no obvious differences of liver injury caused by infection between wild-type and IL-33−/− mice with HPCs’ expansion. However, liver injury was more attenuated in IL-33−/− mice than wild-type mice when the proliferation of HPCs was inhibited by anti-TWEAK. Conclusions Our data uncovered a protective role of HPCs in hepatic schistosomiasis in an IL-33-dependent manner, which might provide a promising progenitor cell therapy for hepatic schistosomiasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02589-y.
Collapse
Affiliation(s)
- Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - An Ning
- Jiangxi Provincial Institute of Parasitic Diseases, Nanchang, Jiangxi, China
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiahua Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Langui Song
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Key Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Noto CN, Hoft SG, Bockerstett KA, Jackson NM, Ford EL, Vest LS, DiPaolo RJ. IL13 Acts Directly on Gastric Epithelial Cells to Promote Metaplasia Development During Chronic Gastritis. Cell Mol Gastroenterol Hepatol 2021; 13:623-642. [PMID: 34587523 PMCID: PMC8715193 DOI: 10.1016/j.jcmgh.2021.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS It is well established that chronic inflammation promotes gastric cancer-associated metaplasia, but little is known regarding the mechanisms by which immune cells and cytokines regulate metaplastic cellular changes. The goals of this study were to identify interleukin 13 (IL13)-producing immune cells, determine the gastric epithelial cell response(s) to IL13, and establish the role(s) of IL13 in metaplasia development. METHODS Experiments used an established mouse model of autoimmune gastritis (TxA23), TxA23×Il4ra-/- mice, which develop gastritis but do not express the IL4/IL13-receptor subunit IL4Rα, and TxA23×Il13-Yfp mice, which express yellow fluorescent protein in IL13-producing cells. Flow cytometry was used to measure IL13 secretion and identify IL13-producing immune cells. Mouse and human gastric organoids were cultured with IL13 to determine epithelial cell response(s) to IL13. Single-cell RNA sequencing was performed on gastric epithelial cells from healthy and inflamed mouse stomachs. Mice with gastritis were administered IL13-neutralizing antibodies and stomachs were analyzed by histopathology and immunofluorescence. RESULTS We identified 6 unique subsets of IL13-producing immune cells in the inflamed stomach. Organoid cultures showed that IL13 acts directly on gastric epithelium to induce a metaplastic phenotype. IL4Rα-deficient mice did not progress to metaplasia. Single-cell RNA sequencing determined that gastric epithelial cells from IL4Rα-deficient mice up-regulated inflammatory genes but failed to up-regulate metaplasia-associated transcripts. Neutralization of IL13 significantly reduced and reversed metaplasia development in mice with gastritis. CONCLUSIONS IL13 is made by a variety of immune cell subsets during chronic gastritis and promotes gastric cancer-associated metaplastic epithelial cell changes. Neutralization of IL13 reduces metaplasia severity during chronic gastritis.
Collapse
Affiliation(s)
- Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kevin A Bockerstett
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Nicholas M Jackson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Eric L Ford
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Luke S Vest
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
37
|
Noto CN, DiPaolo RJ. More Testosterone, Less Aggression…At Least in the Stomach. Gastroenterology 2021; 161:420-422. [PMID: 34048783 PMCID: PMC8802191 DOI: 10.1053/j.gastro.2021.05.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022]
|
38
|
Ouladan S, Gregorieff A. Taking a Step Back: Insights into the Mechanisms Regulating Gut Epithelial Dedifferentiation. Int J Mol Sci 2021; 22:ijms22137043. [PMID: 34208872 PMCID: PMC8268356 DOI: 10.3390/ijms22137043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 01/22/2023] Open
Abstract
Despite the environmental constraints imposed upon the intestinal epithelium, this tissue must perform essential functions such as nutrient absorption and hormonal regulation, while also acting as a critical barrier to the outside world. These functions depend on a variety of specialized cell types that are constantly renewed by a rapidly proliferating population of intestinal stem cells (ISCs) residing at the base of the crypts of Lieberkühn. The niche components and signals regulating crypt morphogenesis and maintenance of homeostatic ISCs have been intensely studied over the last decades. Increasingly, however, researchers are turning their attention to unraveling the mechanisms driving gut epithelial regeneration due to physical damage or infection. It is now well established that injury to the gut barrier triggers major cell fate changes, demonstrating the highly plastic nature of the gut epithelium. In particular, lineage tracing and transcriptional profiling experiments have uncovered several injury-induced stem-cell populations and molecular markers of the regenerative state. Despite the progress achieved in recent years, several questions remain unresolved, particularly regarding the mechanisms driving dedifferentiation of the gut epithelium. In this review, we summarize the latest studies, primarily from murine models, that define the regenerative processes governing the gut epithelium and discuss areas that will require more in-depth investigation.
Collapse
Affiliation(s)
- Shaida Ouladan
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada;
- McGill Regenerative Medicine Network, Montréal, QC H3A 1A3, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada;
- McGill Regenerative Medicine Network, Montréal, QC H3A 1A3, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
39
|
Du J, Guan W, Shen X. IL-33 in Gastric Metaplasia-Implications for Therapeutic Targets. Gastroenterology 2021; 160:2629-2630. [PMID: 33548236 DOI: 10.1053/j.gastro.2021.01.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Junfeng Du
- Medical Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaofei Shen
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Affiliation(s)
- Carlo De Salvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
41
|
Pisani LF, Tontini GE, Gentile C, Marinoni B, Teani I, Nandi N, Creo P, Asti E, Bonavina L, Vecchi M, Pastorelli L. Proinflammatory Interleukin-33 Induces Dichotomic Effects on Cell Proliferation in Normal Gastric Epithelium and Gastric Cancer. Int J Mol Sci 2021; 22:ijms22115792. [PMID: 34071419 PMCID: PMC8197967 DOI: 10.3390/ijms22115792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.
Collapse
Affiliation(s)
- Laura Francesca Pisani
- Gastroenterology ans Endoscopy Unit, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (L.F.P.); (P.C.)
| | - Gian Eugenio Tontini
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Carmine Gentile
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
| | - Beatrice Marinoni
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
| | - Isabella Teani
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
| | - Nicoletta Nandi
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
| | - Pasquale Creo
- Gastroenterology ans Endoscopy Unit, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy; (L.F.P.); (P.C.)
| | - Emanuele Asti
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
- Division of General Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Luigi Bonavina
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milano, Italy; (G.E.T.); (C.G.); (B.M.); (I.T.); (N.N.); (E.A.); (L.B.)
- Division of General Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Gastroenterology and Liver Unit, ASST Santi Paolo e Carlo, Ospedale San Paolo, 20100 Milano, Italy
| | - Luca Pastorelli
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Department of Pathophysiology and Trasplantation, Università degli Studi di Milano, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-0252774683
| |
Collapse
|