1
|
Basu S, Ulbricht Y, Rossol M. Healthy and premature aging of monocytes and macrophages. Front Immunol 2025; 16:1506165. [PMID: 40165963 PMCID: PMC11955604 DOI: 10.3389/fimmu.2025.1506165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Aging is associated with immunosenescence, a decline in immune functions, but also with inflammaging, a chronic, low-grade inflammation, contributing to immunosenescence. Monocytes and macrophages belong to the innate immune system and aging has a profound impact on these cells, leading to functional changes and most importantly, to the secretion of pro-inflammatory cytokines and thereby contributing to inflammaging. Rheumatoid arthritis (RA) is an autoimmune disease and age is an important risk factor for developing RA. RA is associated with the early development of age-related co-morbidities like cardiovascular manifestations and osteoporosis. The immune system of RA patients shows signs of premature aging like age-inappropriate increased production of myeloid cells, accelerated telomeric erosion, and the uncontrolled production of pro-inflammatory cytokines. In this review we discuss the influence of aging on monocytes and macrophages during healthy aging and premature aging in rheumatoid arthritis.
Collapse
Affiliation(s)
- Syamantak Basu
- Molecular Immunology, Faculty of Health Sciences, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Senftenberg, Germany
| | - Ying Ulbricht
- Molecular Immunology, Faculty of Health Sciences, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Senftenberg, Germany
| | - Manuela Rossol
- Molecular Immunology, Faculty of Health Sciences, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Environment and Natural Sciences, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
2
|
Lima FDS, Gonçalves CEDS, Fock RA. Zinc and aging: a narrative review of the effects on hematopoiesis and its link with diseases. Nutr Rev 2024; 82:1125-1137. [PMID: 37717139 DOI: 10.1093/nutrit/nuad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
There has been a global increase in the older population in recent decades and, as age advances, complex metabolic and epigenetic changes occur in the organism, and these may trigger some health complications commonly found among this population. Additionally, several changes occur in older people that can reduce the dietary intake or the process of nutrient absorption. In this way, tissues with high nutrient requirements are more affected. Hematopoiesis is the process of formation, development, and maturation of blood cells and is a process with a high turnover. This high demand makes the integrity of the hematopoietic process susceptible to various factors that impair physiological function, such as aging and micronutrient bioavailability. Among these micronutrients, Zinc is considered an important micronutrient, playing diverse roles across various tissues and cell types. Some of the alterations in hematopoiesis that appear as a consequence of aging and due to insufficient micronutrient intake are well described in the literature; however, not much is known about how zinc deficiency contributes towards the development of diseases seen in aging. Considering the importance of zinc to act on several biological processes, this narrative review discusses several studies related to the physiological requirements, deficiency, or excess of zinc, including studies in experimental models and humans, and aimed to shed light on the relationship between zinc and the regulation of hematopoietic tissue, exploring possible links between this mineral with common disorders that appear during aging.
Collapse
Affiliation(s)
- Fabiana Da Silva Lima
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Fabre MA, Vassiliou GS. The lifelong natural history of clonal hematopoiesis and its links to myeloid neoplasia. Blood 2024; 143:573-581. [PMID: 37992214 DOI: 10.1182/blood.2023019964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT The study of somatic mutations and the associated clonal mosaicism across the human body has transformed our understanding of aging and its links to cancer. In proliferative human tissues, stem cells compete for dominance, and those with an advantage expand clonally to outgrow their peers. In the hematopoietic system, such expansion is termed clonal hematopoiesis (CH). The forces driving competition, namely heterogeneity of the hematopoietic stem cell (HSC) pool and attrition of their environment, become increasingly prominent with age. As a result, CH becomes progressively more common through life to the point of becoming essentially ubiquitous. We are beginning to unravel the specific intracellular and extracellular factors underpinning clonal behavior, with somatic mutations in specific driver genes, inflammation, telomere maintenance, extraneous exposures, and inherited genetic variation among the important players. The inevitability of CH with age combined with its unequivocal links to myeloid cancers poses a scientific and clinical challenge. Specifically, we need to decipher the factors determining clonal behavior and develop prognostic tools to identify those at high risk of malignant progression, for whom preventive interventions may be warranted. Here, we discuss how recent advances in our understanding of the natural history of CH have provided important insights into these processes and helped define future avenues of investigation.
Collapse
Affiliation(s)
- Margarete A Fabre
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research & Development, AstraZeneca, Cambridge, United Kingdom
| | - George S Vassiliou
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Stuckey R, Bilbao-Sieyro C, Segura-Díaz A, Gómez-Casares MT. Molecular Studies for the Early Detection of Philadelphia-Negative Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:12700. [PMID: 37628880 PMCID: PMC10454334 DOI: 10.3390/ijms241612700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
JAK2 V617F is the predominant driver mutation in patients with Philadelphia-negative myeloproliferative neoplasms (MPN). JAK2 mutations are also frequent in clonal hematopoiesis of indeterminate potential (CHIP) in otherwise "healthy" individuals. However, the period between mutation acquisition and MPN diagnosis (known as latency) varies widely between individuals, with JAK2 mutations detectable several decades before diagnosis and even from birth in some individuals. Here, we will review the current evidence on the biological factors, such as additional mutations and chronic inflammation, which influence clonal expansion and may determine why some JAK2-mutated individuals will progress to an overt neoplasm during their lifetime while others will not. We will also introduce several germline variants that predispose individuals to CHIP (as well as MPN) identified from genome-wide association studies. Finally, we will explore possible mutation screening or interventions that could help to minimize MPN-associated cardiovascular complications or even delay malignant progression.
Collapse
Affiliation(s)
- Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
| | - Cristina Bilbao-Sieyro
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
- Morphology Department, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Adrián Segura-Díaz
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
| | - María Teresa Gómez-Casares
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
- Department of Medical Sciences, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
5
|
Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. Int J Mol Sci 2023; 24:ijms24065862. [PMID: 36982935 PMCID: PMC10056303 DOI: 10.3390/ijms24065862] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) support haematopoiesis throughout life and give rise to the whole variety of cells of the immune system. Developing in the early embryo, passing through the precursor stage, and maturing into the first HSCs, they undergo a fairly large number of divisions while maintaining a high regenerative potential due to high repair activity. This potential is greatly reduced in adult HSCs. They go into a state of dormancy and anaerobic metabolism to maintain their stemness throughout life. However, with age, changes occur in the pool of HSCs that negatively affect haematopoiesis and the effectiveness of immunity. Niche aging and accumulation of mutations with age reduces the ability of HSCs to self-renew and changes their differentiation potential. This is accompanied by a decrease in clonal diversity and a disturbance of lymphopoiesis (decrease in the formation of naive T- and B-cells) and the predominance of myeloid haematopoiesis. Aging also affects mature cells, regardless of HSC, therefore, phagocytic activity and the intensity of the oxidative burst decrease, and the efficiency of processing and presentation of antigens by myeloid cells is impaired. Aging cells of innate and adaptive immunity produce factors that form a chronic inflammatory background. All these processes have a serious negative impact on the protective properties of the immune system, increasing inflammation, the risk of developing autoimmune, oncological, and cardiovascular diseases with age. Understanding the mechanisms of reducing the regenerative potential in a comparative analysis of embryonic and aging HSCs, the features of inflammatory aging will allow us to get closer to deciphering the programs for the development, aging, regeneration and rejuvenation of HSCs and the immune system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Valeriy Tereshchenko
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Tatiana N Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
6
|
Justin M, Randl ER, Kononenko V, Hočevar M, Drobne D, Rožman P. Morphological Characteristics of Young and Old Murine Hematopoietic Stem Cell Niches, as Modeled In Vitro. SCANNING 2023; 2023:5541050. [PMID: 37096016 PMCID: PMC10122596 DOI: 10.1155/2023/5541050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
The hematopoietic stem cell (HSC) niche undergoes detrimental changes with age. The molecular differences between young and old niches are well studied and understood; however, young and old niches have not yet been extensively characterized in terms of morphology. In the present work, a 2D stromal model of young and old HSC niches isolated from bone marrow was investigated using light and scanning electron microscopy (SEM) to characterize cell density after one, two, or three weeks of culturing, cell shape, and cell surface morphological features. Our work is aimed at identifying morphological differences between young and old niche cells that could be used to discriminate between their respective murine HSC niches. The results show several age-specific morphological characteristics. The old niches differ from the young ones in terms of lower cell proliferating capacity, increased cell size with a flattened appearance, increased number of adipocytes, and the presence of tunneling nanotubes. In addition, proliferating cell clusters are present in the young niches but not in the old niches. Together, these characteristics could be used as a relatively simple and reliable tool to discriminate between young and old murine HSC niches and as a complementary approach to imaging with specific cellular markers.
Collapse
Affiliation(s)
- Mojca Justin
- Blood Transfusion Centre of Slovenia, Ljubljana 1000, Slovenia
| | - Ema Rogač Randl
- Blood Transfusion Centre of Slovenia, Ljubljana 1000, Slovenia
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Matej Hočevar
- Institute of Metals and Technology, Ljubljana 1000, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Primož Rožman
- Blood Transfusion Centre of Slovenia, Ljubljana 1000, Slovenia
| |
Collapse
|
7
|
Stolzenbach V, Woods DC, Tilly JL. Non-neutral clonal selection and its potential role in mammalian germline stem cell dysfunction with advancing age. Front Cell Dev Biol 2022; 10:942652. [PMID: 36081905 PMCID: PMC9445274 DOI: 10.3389/fcell.2022.942652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of natural selection, or "survival of the fittest", refers to an evolutionary process in nature whereby traits emerge in individuals of a population through random gene alterations that enable those individuals to better adapt to changing environmental conditions. This genetic variance allows certain members of the population to gain an advantage over others in the same population to survive and reproduce in greater numbers under new environmental pressures, with the perpetuation of those advantageous traits in future progeny. Here we present that the behavior of adult stem cells in a tissue over time can, in many respects, be viewed in the same manner as evolution, with each stem cell clone being representative of an individual within a population. As stem cells divide or are subjected to cumulative oxidative damage over the lifespan of the organism, random genetic alterations are introduced into each clone that create variance in the population. These changes may occur in parallel to, or in response to, aging-associated changes in microenvironmental cues perceived by the stem cell population. While many of these alterations will be neutral or silent in terms of affecting cell function, a small fraction of these changes will enable certain clones to respond differently to shifts in microenvironmental conditions that arise with advancing age. In some cases, the same advantageous genetic changes that support survival and expansion of certain clones over others in the population (viz. non-neutral competition) could be detrimental to the downstream function of the differentiated stem cell descendants. In the context of the germline, such a situation would be devastating to successful propagation of the species across generations. However, even within a single generation, the “evolution” of stem cell lineages in the body over time can manifest into aging-related organ dysfunction and failure, as well as lead to chronic inflammation, hyperplasia, and cancer. Increased research efforts to evaluate stem cells within a population as individual entities will improve our understanding of how organisms age and how certain diseases develop, which in turn may open new opportunities for clinical detection and management of diverse pathologies.
Collapse
|
8
|
Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Dev Biol 2022; 10:925761. [PMID: 35923847 PMCID: PMC9340249 DOI: 10.3389/fcell.2022.925761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.
Collapse
|
9
|
Fabre MA, de Almeida JG, Fiorillo E, Mitchell E, Damaskou A, Rak J, Orrù V, Marongiu M, Chapman MS, Vijayabaskar MS, Baxter J, Hardy C, Abascal F, Williams N, Nangalia J, Martincorena I, Campbell PJ, McKinney EF, Cucca F, Gerstung M, Vassiliou GS. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 2022; 606:335-342. [PMID: 35650444 PMCID: PMC9177423 DOI: 10.1038/s41586-022-04785-z] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Clonal expansions driven by somatic mutations become pervasive across human tissues with age, including in the haematopoietic system, where the phenomenon is termed clonal haematopoiesis1-4. The understanding of how and when clonal haematopoiesis develops, the factors that govern its behaviour, how it interacts with ageing and how these variables relate to malignant progression remains limited5,6. Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age or older over a median of 13 years. We find that 92.4% of clones expanded at a stable exponential rate over the study period, with different mutations driving substantially different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year (SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% per year, proportionately affecting slow drivers more substantially. By combining our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of haematopoietic colonies from 7 individuals from an older age group, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially expanded early in life and displayed slower growth in old age, in the context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations drove expansion only later in life, whereas TET2-mutant clones emerged across all ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of malignant progression. Our findings characterize the lifelong natural history of clonal haematopoiesis and give fundamental insights into the interactions between somatic mutation, ageing and clonal selection.
Collapse
Affiliation(s)
- Margarete A Fabre
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - José Guilherme de Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Aristi Damaskou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
| | - Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
| | - Michael Spencer Chapman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - M S Vijayabaskar
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Joanna Baxter
- Cambridge Blood and Stem Cell Biobank, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Claire Hardy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Federico Abascal
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Nicholas Williams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Lanusei, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Cambridge, UK.
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany.
| | - George S Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
11
|
Montazersaheb S, Ehsani A, Fathi E, Farahzadi R. Cellular and Molecular Mechanisms Involved in Hematopoietic Stem Cell Aging as a Clinical Prospect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2713483. [PMID: 35401928 PMCID: PMC8993567 DOI: 10.1155/2022/2713483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
There is a hot topic in stem cell research to investigate the process of hematopoietic stem cell (HSC) aging characterized by decreased self-renewal ability, myeloid-biased differentiation, impaired homing, and other abnormalities related to hematopoietic repair function. It is of crucial importance that HSCs preserve self-renewal and differentiation ability to maintain hematopoiesis under homeostatic states over time. Although HSC numbers increase with age in both mice and humans, this cannot compensate for functional defects of aged HSCs. The underlying mechanisms regarding HSC aging have been studied from various perspectives, but the exact molecular events remain unclear. Several cell-intrinsic and cell-extrinsic factors contribute to HSC aging including DNA damage responses, reactive oxygen species (ROS), altered epigenetic profiling, polarity, metabolic alterations, impaired autophagy, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, nuclear factor- (NF-) κB pathway, mTOR pathway, transforming growth factor-beta (TGF-β) pathway, and wingless-related integration site (Wnt) pathway. To determine how deficient HSCs develop during aging, we provide an overview of different hallmarks, age-related signaling pathways, and epigenetic modifications in young and aged HSCs. Knowing how such changes occur and progress will help researchers to develop medications and promote the quality of life for the elderly and possibly alleviate age-associated hematopoietic disorders. The present review is aimed at discussing the latest advancements of HSC aging and the role of HSC-intrinsic factors and related events of a bone marrow niche during HSC aging.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
13
|
Rea IM, Alexander HD. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Res Rev 2022; 73:101494. [PMID: 34688926 PMCID: PMC8530779 DOI: 10.1016/j.arr.2021.101494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Covid-19 endangers lives, has disrupted normal life, changed the way medicine is practised and is likely to alter our world for the foreseeable future. Almost two years on since the presumptive first diagnosis of COVID-19 in China, more than two hundred and fifty million cases have been confirmed and more than five million people have died globally, with the figures rising daily. One of the most striking aspects of COVID-19 illness is the marked difference in individuals' experiences of the disease. Some, most often younger groups, are asymptomatic, whereas others become severely ill with acute respiratory distress syndrome (ARDS), pneumonia or proceed to fatal organ disease. The highest death rates are in the older and oldest age groups and in people with co-morbidities such as diabetes, heart disease and obesity. Three major questions seem important to consider. What do we understand about changes in the immune system that might contribute to the older person's risk of developing severe COVID-19? What factors contribute to the higher morbidity and mortality in older people with COVID-19? How could immunocompetence in the older and the frailest individuals and populations be supported and enhanced to give protection from serious COVID-19 illness?
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom; Meadowlands Ambulatory Care Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| |
Collapse
|
14
|
Ducloux D, Legendre M, Bamoulid J, Saas P, Courivaud C, Crepin T. End-Stage Renal Disease-Related Accelerated Immune Senescence: Is Rejuvenation of the Immune System a Therapeutic Goal? Front Med (Lausanne) 2021; 8:720402. [PMID: 34540869 PMCID: PMC8446427 DOI: 10.3389/fmed.2021.720402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing, including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also concerns the immune system. Patients with ESRD have both immune senescence and chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune senescence is particularly characterised by premature loss of thymic function that is associated with hyporesponsiveness to vaccines, susceptibility to infections, and death. ESRD-related chronic inflammation has multiple causes and participates to accelerated cardiovascular disease. Although, both characterisation of immune senescence and its consequences are relatively well-known, mechanisms are more uncertain. However, prevention of immune senescence/inflammation or/and rejuvenation of the immune system are major goal to ameliorate clinical outcomes of ESRD patients.
Collapse
Affiliation(s)
- Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| |
Collapse
|
15
|
Afaghi H, Sharifi F, Moodi M, AnaniSarab G, Kazemi T, Miri-Moghaddam E, Tahergorabi Z. Prevalence of anemia and associated factors among the elderly population in South Khorasan, Birjand, 2019. Med J Islam Repub Iran 2021; 35:86. [PMID: 34291010 PMCID: PMC8285552 DOI: 10.47176/mjiri.35.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 11/09/2022] Open
Abstract
Background: Anemia is a multifactorial and common public health problem in geriatric age groups, especially in developing countries. Therefore, this study was designed to study the prevalence of anemia and associated factors among the elderly population in Birjand, Iran, in 2019. Methods: This was a cross-sectional approach to the baseline data of the Birjand longitudinal aging study (BLAS) in which 1396 people aged ≥ 60 years were screened for the presence of anemia based on the World Health Organization (WHO) criteria. For each participant, a standard questionnaire was administered. Furthermore, the height, weight, and body mass index (BMI) were calculated. Blood samples were obtained from each participant for hematological examination. Hemoglobin, hematocrit, and other indices of cell blood count were measured using an automatic cell counter. The prevalence rates were estimated using survey analysis with the weight of Birjand county older population. Univariate and multivariable logistic regression analyses were applied to detect the associated factor with anemia. Results: The mean age of the participants was 69.73±7.66 years. The crude prevalence of anemia was 11.10%, and the age-standardized prevalence based on the standard WHO population 2000-2025 was equal to 16.78% (12.81%-21.66%) (15.95% [10.41%-23.69%] in women and 17.32% (12.65%-23.25%) in men. Mild and normocytic anemia were the predominant types. The mean hemoglobin, hematocrit, mean cell volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were lower in women than in men and the mean platelet count in women was higher (p<0.001). In the final multivariate logistic regression model, only age groups, BMI, fish consumption, and chronic kidney disease (CKD) were related to anemia. Conclusion: In conclusion, our findings showed the association of anemia with some risk factors and diseases. Anemia in geriatric age groups is often underdiagnosed; hence, identification of subgroups at risk for anemia and its associated risk factors in geriatric groups has a paramount importance in preventing adverse outcomes.
Collapse
Affiliation(s)
- Hakimeh Afaghi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Gholamreza AnaniSarab
- Department of Medical Laboratory Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Tooba Kazemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
16
|
Udroiu I, Sgura A. Growing and aging of hematopoietic stem cells. World J Stem Cells 2021; 13:594-604. [PMID: 34249229 PMCID: PMC8246248 DOI: 10.4252/wjsc.v13.i6.594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
In the hematopoietic system, a small number of stem cells produce a progeny of several distinct lineages. During ontogeny, they arise in the aorta-gonad-mesonephros region of the embryo and the placenta, afterwards colonise the liver and finally the bone marrow. After this fetal phase of rapid expansion, the number of hematopoietic stem cells continues to grow, in order to sustain the increasing blood volume of the developing newborn, and eventually reaches a steady-state. The kinetics of this growth are mirrored by the rates of telomere shortening in leukocytes. During adulthood, hematopoietic stem cells undergo a very small number of cell divisions. Nonetheless, they are subjected to aging, eventually reducing their potential to produce differentiated progeny. The causal relationships between telomere shortening, DNA damage, epigenetic changes, and aging have still to be elucidated.
Collapse
Affiliation(s)
- Ion Udroiu
- Department of Science, Roma Tre University, Rome 00146, Italy
| | - Antonella Sgura
- Department of Science, Roma Tre University, Rome 00146, Italy
| |
Collapse
|
17
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
18
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
20
|
Smith MA, Culver-Cochran AE, Adelman ER, Rhyasen GW, Ma A, Figueroa ME, Starczynowski DT. TNFAIP3 Plays a Role in Aging of the Hematopoietic System. Front Immunol 2020; 11:536442. [PMID: 33224133 PMCID: PMC7670064 DOI: 10.3389/fimmu.2020.536442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) experience a functional decline in response to chronic inflammation or aging. Haploinsufficiency of A20, or TNFAIP3, an innate immune regulator, is associated with a variety of autoimmune, inflammatory, and hematologic malignancies. Based on a prior analysis of epigenomic and transcriptomic changes during normal human aging, we find that the expression of A20 is significantly reduced in aged HSPC as compared to young HSPC. Here, we show that the partial reduction of A20 expression in young HSPC results in characteristic features of aging. Specifically, heterozygous deletion of A20 in hematopoietic cells resulted in expansion of the HSPC pool, reduced HSPC fitness, and myeloid-biased hematopoiesis. These findings suggest that altered expression of A20 in HSPC contributes to an aging-like phenotype, and that there may be a common underlying mechanism for diminished HSPC function between inflammatory states and aging.
Collapse
Affiliation(s)
- Molly A Smith
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Ashley E Culver-Cochran
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Emmalee R Adelman
- Department of Human Genetics, University of Miami, Miami, FL, United States
| | - Garrett W Rhyasen
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Maria E Figueroa
- Department of Human Genetics, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
21
|
Jayarajan J, Milsom MD. The role of the stem cell epigenome in normal aging and rejuvenative therapy. Hum Mol Genet 2020; 29:R236-R247. [PMID: 32744315 DOI: 10.1093/hmg/ddaa167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are ultimately responsible for the lifelong maintenance of regenerating of tissues during both homeostasis and following injury. Hence, the functional attrition of adult stem cells is thought to be an important driving factor behind the progressive functional decline of tissues and organs that is observed during aging. The mechanistic cause underlying this age-associated exhaustion of functional stem cells is likely to be complex and multifactorial. However, it is clear that progressive remodeling of the epigenome and the resulting deregulation of gene expression programs can be considered a hallmark of aging, and is likely a key factor in mediating altered biological function of aged stem cells. In this review, we outline cell intrinsic and extrinsic mediators of epigenome remodeling during aging; discuss how such changes can impact on stem cell function; and describe how resetting the aged epigenome may rejuvenate some of the biological characteristics of stem cells.
Collapse
Affiliation(s)
- Jeyan Jayarajan
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM).,DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
22
|
Fang Y, An N, Zhu L, Gu Y, Qian J, Jiang G, Zhao R, Wei W, Xu L, Zhang G, Yao X, Yuan N, Zhang S, Zhao Y, Wang J. Autophagy-Sirt3 axis decelerates hematopoietic aging. Aging Cell 2020; 19:e13232. [PMID: 32951306 PMCID: PMC7576273 DOI: 10.1111/acel.13232] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/05/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy suppresses mitochondrial metabolism to preserve hematopoietic stem cells (HSCs) in mice. However, the mechanism by which autophagy regulates hematopoietic aging, in particular in humans, has largely been unexplored. Here, we demonstrate that reduction of autophagy in both hematopoietic cells and their stem cells is associated with aged hematopoiesis in human population. Mechanistically, autophagy delays hematopoietic aging by activating the downstream expression of Sirt3, a key mitochondrial protein capable of rejuvenating blood. Sirt3 is the most abundant Sirtuin family member in HSC‐enriched population, though it declines as the capacity for autophagy deteriorates with aging. Activation of autophagy upregulates Sirt3 in wild‐type mice, whereas in autophagy‐defective mice, Sirt3 expression is crippled in the entire hematopoietic hierarchy, but forced expression of Sirt3 in HSC‐enriched cells reduces oxidative stress and prevents accelerated hematopoietic aging from autophagy defect. Importantly, the upregulation of Sirt3 by manipulation of autophagy is validated in human HSC‐enriched cells. Thus, our results identify an autophagy‐Sirt3 axis in regulating hematopoietic aging and suggest a possible interventional solution to human blood rejuvenation via activation of the axis.
Collapse
Affiliation(s)
- Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University School of Medicine Suzhou China
| | - Ni An
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
| | - Lingjiang Zhu
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
| | - Yue Gu
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
| | - Jiawei Qian
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
| | - Gaoyue Jiang
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
| | - Ruijin Zhao
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
| | - Gaochuan Zhang
- School of Biology and Basic Medical Sciences Soochow University Suzhou China
| | - Xingyun Yao
- School of Biology and Basic Medical Sciences Soochow University Suzhou China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University School of Medicine Suzhou China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University School of Medicine Suzhou China
| | - Yun Zhao
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University School of Medicine Suzhou China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute Jiangsu Institute of Hematology Institute of Blood and Marrow Transplantation Collaborative Innovation Center of Hematology National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital Soochow University School of Medicine Suzhou China
- Department of Hematopoietic Engineering Susky Life SciTech (Suzhou) Co., LTD. Suzhou China
- State Key Laboratory of Radiation Medicine and Radioprotection Soochow University School of Medicine Suzhou China
| |
Collapse
|
23
|
Böhm L, Helbing DL, Oraha N, Morrison H. The peripheral nervous system in hematopoietic stem cell aging. Mech Ageing Dev 2020; 191:111329. [PMID: 32795470 DOI: 10.1016/j.mad.2020.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Hematopoietic stem cell performance and identity, crucial for homeostasis of the blood-forming system, is governed by extrinsic factors found in the bone marrow microenvironment. Communication within hematopoietic stem cell niches occurs via soluble factors or cell-to-cell contacts between niche and blood-forming cells - which in turn are influenced by systemic factors distributed by the bone marrow extracellular fluid. Although hematopoietic cell-intrinsic aging contributes to the aging phenotype of the hematopoietic system, the architecture and cellular composition of the bone marrow microenvironment have emerged to be highly dynamic during aging and suggested as a major driver for the functional limitations of the blood system observable in old individuals. Recent attention has been paid to the interface between the peripheral nervous system and blood-forming cells in the bone marrow in several clinical contexts and in aging - the latter is reviewed here.
Collapse
Affiliation(s)
- Leopold Böhm
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Faculty of Medicine, University Hospital Jena and Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Dario-Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Faculty of Medicine, University Hospital Jena and Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Nova Oraha
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Faculty of Medicine, University Hospital Jena and Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| |
Collapse
|
24
|
Lin KY, Wang WD, Lin CH, Rastegari E, Su YH, Chang YT, Liao YF, Chang YC, Pi H, Yu BY, Chen SH, Lin CY, Lu MY, Su TY, Tzou FY, Chan CC, Hsu HJ. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 2020; 11:3147. [PMID: 32561720 PMCID: PMC7305233 DOI: 10.1038/s41467-020-16858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chieh Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Haiwei Pi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Bo-Yi Yu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
25
|
Bobkova NV, Poltavtseva RA, Leonov SV, Sukhikh GT. Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. BIOCHEMISTRY (MOSCOW) 2020; 85:S108-S130. [PMID: 32087056 DOI: 10.1134/s0006297920140060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It had been commonly believed for a long time, that once established, degeneration of the central nervous system (CNS) is irreparable, and that adult person merely cannot restore dead or injured neurons. The existence of stem cells (SCs) in the mature brain, an organ with minimal regenerative ability, had been ignored for many years. Currently accepted that specific structures of the adult brain contain neural SCs (NSCs) that can self-renew and generate terminally differentiated brain cells, including neurons and glia. However, their contribution to the regulation of brain activity and brain regeneration in natural aging and pathology is still a subject of ongoing studies. Since the 1970s, when Fuad Lechin suggested the existence of repair mechanisms in the brain, new exhilarating data from scientists around the world have expanded our knowledge on the mechanisms implicated in the generation of various cell phenotypes supporting the brain, regulation of brain activity by these newly generated cells, and participation of SCs in brain homeostasis and regeneration. The prospects of the SC research are truthfully infinite and hitherto challenging to forecast. Once researchers resolve the issues regarding SC expansion and maintenance, the implementation of the SC-based platform could help to treat tissues and organs impaired or damaged in many devastating human diseases. Over the past 10 years, the number of studies on SCs has increased exponentially, and we have already become witnesses of crucial discoveries in SC biology. Comprehension of the mechanisms of neurogenesis regulation is essential for the development of new therapeutic approaches for currently incurable neurodegenerative diseases and neuroblastomas. In this review, we present the latest achievements in this fast-moving field and discuss essential aspects of NSC biology, including SC regulation by hormones, neurotransmitters, and transcription factors, along with the achievements of genetic and chemical reprogramming for the safe use of SCs in vitro and in vivo.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - R A Poltavtseva
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology (National Research University), The Phystech School of Biological and Medical Physics, Dolgoprudny, Moscow Region, 141700, Russia
| | - G T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia.
| |
Collapse
|
26
|
Thomas R, Wang W, Su DM. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. IMMUNITY & AGEING 2020; 17:2. [PMID: 31988649 PMCID: PMC6971920 DOI: 10.1186/s12979-020-0173-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.
Collapse
Affiliation(s)
- Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Dong-Ming Su
- 2Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107 USA
| |
Collapse
|
27
|
Banerjee T, Calvi LM, Becker MW, Liesveld JL. Flaming and fanning: The Spectrum of inflammatory influences in myelodysplastic syndromes. Blood Rev 2019; 36:57-69. [PMID: 31036385 PMCID: PMC6711159 DOI: 10.1016/j.blre.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
The myelodysplastic syndromes (MDS) represent neoplasms derived from the expansion of mutated clonal hematopoietic cells which often demonstrate aberrant differentiation potential with resultant cytopenias and a propensity to evolve into acute myelogenous leukemia. While multiple mutations have been identified which may serve as drivers of the MDS clone, there is accumulating evidence that MDS clones and subclones are subject to modulation by the marrow microenvironment and its inflammatory milieu. There is also a strong link between autoimmune disorders and MDS. In this review, we examine the role of inflammatory cytokines, toll like receptors, pyroptosis, stromal cells, and cellular inflammatory mediators in MDS initiation, propagation, and progression. These contributions in a background of mutational, epigenetic, and aging changes in the marrow are also reviewed. Such inflammatory mediators may be subject to therapeutic agents which will enhance suppression of the MDS clone with potential to improve therapeutic outcomes in this disease which is usually incurable in aged patients not eligible for stem cell transplantation.
Collapse
Affiliation(s)
- Titas Banerjee
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Laura M Calvi
- Division of Endocrinology and Metabolism, Department of Medicine, and the James P Wilmot Cancer Institute, USA.
| | - Michael W Becker
- Division of Hematology/Oncology, Department of Medicine, James P Wilmot Cancer Institute, USA.
| | - Jane L Liesveld
- Division of Hematology/Oncology, Department of Medicine, James P Wilmot Cancer Institute, USA.
| |
Collapse
|
28
|
Nangalia J, Mitchell E, Green AR. Clonal approaches to understanding the impact of mutations on hematologic disease development. Blood 2019; 133:1436-1445. [PMID: 30728143 DOI: 10.1182/blood-2018-11-835405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing-based assays have shown great promise in allowing multi-"omic" characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; and
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; and
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|
29
|
Lee J, Yoon SR, Choi I, Jung H. Causes and Mechanisms of Hematopoietic Stem Cell Aging. Int J Mol Sci 2019; 20:ijms20061272. [PMID: 30871268 PMCID: PMC6470724 DOI: 10.3390/ijms20061272] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022] Open
Abstract
Many elderly people suffer from hematological diseases known to be highly age-dependent. Hematopoietic stem cells (HSCs) maintain the immune system by producing all blood cells throughout the lifetime of an organism. Recent reports have suggested that HSCs are susceptible to age-related stress and gradually lose their self-renewal and regeneration capacity with aging. HSC aging is driven by cell-intrinsic and -extrinsic factors that result in the disruption of the immune system. Thus, the study of HSC aging is important to our understanding of age-related immune diseases and can also provide potential strategies to improve quality of life in the elderly. In this review, we delineate our understanding of the phenotypes, causes, and molecular mechanisms involved in HSC aging.
Collapse
Affiliation(s)
- Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
30
|
|
31
|
Udroiu I, Sgura A. Rates of erythropoiesis in mammals and their relationship with lifespan and hematopoietic stem cells aging. Biogerontology 2019; 20:445-456. [PMID: 30834479 DOI: 10.1007/s10522-019-09804-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 03/02/2023]
Abstract
Investigations on possible links between hematological parameters and longevity are nearly absent. We tested the hypothesis that a fast rate of erythropoiesis, causing an earlier aging of the hematopoietic stem cells pool, contributes to a shorter lifespan. With this aim, we employed a new quantity, daily produced red blood cells per gram of body mass, as a measure of mass-specific rate of erythropoiesis. We found that among mammals rate of erythropoiesis and maximum lifespan are significantly correlated, independently from mass residuals. This seems to be confirmed also by intra-species comparisons and, although with limited data, by the significant correlation of rate of erythropoiesis and rate of telomere shortening in leukocytes (a proxy for hematopoietic stem cell telomere shortening). In our view, this may give a link of causality between rate of erythropoiesis and maximum lifespan. Further studies could test a similar hypothesis also for other kinds of stem cells.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| | - Antonella Sgura
- Dipartimento di Scienze, Università degli Studi Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| |
Collapse
|
32
|
Jurecic R. Hematopoietic Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:195-211. [PMID: 31487025 DOI: 10.1007/978-3-030-24108-7_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) maintain lifelong production of mature blood cells and regenerate the hematopoietic system after cytotoxic injury. Use of expanding cell surface marker panels and advanced functional analyses have revealed the presence of several immunophenotypically different HSC subsets with distinct self-renewal and repopulating capacity and bias toward selective lineage differentiation. This chapter summarizes current understanding of the phenotypic and functional heterogeneity within the HSC pool, with emphasis on the immunophenotypes and functional features of several known HSC subsets, and their roles in steady-state and emergency hematopoiesis, and in aging. The chapter also highlights some of the future research directions to elucidate further the biology and function of different HSC subsets in health and disease states.
Collapse
Affiliation(s)
- Roland Jurecic
- Department of Microbiology & Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
33
|
Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:15-40. [PMID: 29882209 DOI: 10.1007/5584_2018_217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Lidonnici MR, Ferrari G. Gene therapy and gene editing strategies for hemoglobinopathies. Blood Cells Mol Dis 2018; 70:87-101. [DOI: 10.1016/j.bcmd.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 10/24/2022]
|
35
|
Sarkaria SM, Decker M, Ding L. Bone Marrow Micro-Environment in Normal and Deranged Hematopoiesis: Opportunities for Regenerative Medicine and Therapies. Bioessays 2018; 40:10.1002/bies.201700190. [PMID: 29384206 PMCID: PMC5872840 DOI: 10.1002/bies.201700190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/24/2017] [Indexed: 12/11/2022]
Abstract
Various cell types cooperate to create a highly organized and dynamic micro-environmental niche in the bone marrow. Over the past several years, the field has increasingly recognized the critical roles of the interplay between bone marrow environment and hematopoietic cells in normal and deranged hematopoiesis. These advances rely on several new technologies that have allowed us to characterize the identity and roles of these niches in great detail. Here, we review the progress of the last several years, list some of the outstanding questions in the field and propose ways to target the diseased environment to better treat hematologic diseases. Understanding the extrinsic regulation by the niche will help boost hematopoiesis for regenerative medicine. Based on natural development of hematologic malignancies, we propose that combinatory targeting the niche and hematopoietic intrinsic mechanisms in early stages of hematopoietic malignancies may help eliminate minimal residual disease and have the highest efficacy.
Collapse
Affiliation(s)
| | | | - Lei Ding
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
36
|
Chung SS, Park CY. Aging, hematopoiesis, and the myelodysplastic syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:73-78. [PMID: 29222239 PMCID: PMC6142578 DOI: 10.1182/asheducation-2017.1.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aging hematopoietic system undergoes numerous changes, including reduced production of red blood cells and lymphocytes as well as a relative increase in the production of myeloid cells. Emerging evidence indicates that many of these changes are due to selection pressures from cell-intrinsic and cell-extrinsic factors that result in clonal shifts in the hematopoietic stem cell (HSC) pool, resulting in predominant HSC clones that exhibit the functional characteristics associated with HSC aging. Given the recent descriptions of clonal hematopoiesis in aged populations, the increased risk of developing hematologic malignancies in individuals with clonal hematopoiesis, and the many similarities in hematopoietic aging and acquired bone marrow failure (BMF) syndromes, such as myelodysplastic syndromes (MDS), this raises significant questions regarding the relationship between aging hematopoiesis and MDS, including the factors that regulate HSC aging, whether clonal hematopoiesis is required for the development of MDS, and even whether BMF is an inevitable consequence of aging. In this article, we will review our current understanding of these processes and the potential intersections among them.
Collapse
Affiliation(s)
- Stephen S. Chung
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Christopher Y. Park
- Department of Pathology, New York University School of Medicine, New York, NY
| |
Collapse
|
37
|
Aging, hematopoiesis, and the myelodysplastic syndromes. Blood Adv 2017; 1:2572-2578. [PMID: 29296910 DOI: 10.1182/bloodadvances.2017009852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023] Open
Abstract
The aging hematopoietic system undergoes numerous changes, including reduced production of red blood cells and lymphocytes as well as a relative increase in the production of myeloid cells. Emerging evidence indicates that many of these changes are due to selection pressures from cell-intrinsic and cell-extrinsic factors that result in clonal shifts in the hematopoietic stem cell (HSC) pool, resulting in predominant HSC clones that exhibit the functional characteristics associated with HSC aging. Given the recent descriptions of clonal hematopoiesis in aged populations, the increased risk of developing hematologic malignancies in individuals with clonal hematopoiesis, and the many similarities in hematopoietic aging and acquired bone marrow failure (BMF) syndromes, such as myelodysplastic syndromes (MDS), this raises significant questions regarding the relationship between aging hematopoiesis and MDS, including the factors that regulate HSC aging, whether clonal hematopoiesis is required for the development of MDS, and even whether BMF is an inevitable consequence of aging. In this article, we will review our current understanding of these processes and the potential intersections among them.
Collapse
|
38
|
Cooper JN, Young NS. Clonality in context: hematopoietic clones in their marrow environment. Blood 2017; 130:2363-2372. [PMID: 29046282 PMCID: PMC5709788 DOI: 10.1182/blood-2017-07-794362] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 11/20/2022] Open
Abstract
Clonal hematopoiesis occurs normally, especially with aging, and in the setting of disease, not only in myeloid cancers but in bone marrow failure as well. In cancer, malignant clones are characterized by recurrent somatic mutations in specific sets of genes, but the direct relationship of such mutations to leukemogenesis, when they occur in cells of an apparently healthy older individual or after recovery from immune aplastic anemia, is uncertain. Here we emphasize a view of clonal evolution that stresses natural selection over deterministic ontogeny, and we stress the selective role of the environment of the marrow and organism. Clonal hematopoieses after chemotherapy, in marrow failure, and with aging serve as models. We caution against the overinterpretation of clinical results of genomic testing in the absence of a better understanding of clonal selection and evolution.
Collapse
Affiliation(s)
- James N Cooper
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
39
|
Unraveling the mechanisms behind iron overload and ineffective hematopoiesis in myelodysplastic syndromes. Leuk Res 2017; 62:108-115. [DOI: 10.1016/j.leukres.2017.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
|
40
|
Poulos MG, Ramalingam P, Gutkin MC, Llanos P, Gilleran K, Rabbany SY, Butler JM. Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J Clin Invest 2017; 127:4163-4178. [PMID: 29035282 DOI: 10.1172/jci93940] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Age-related changes in the hematopoietic compartment are primarily attributed to cell-intrinsic alterations in hematopoietic stem cells (HSCs); however, the contribution of the aged microenvironment has not been adequately evaluated. Understanding the role of the bone marrow (BM) microenvironment in supporting HSC function may prove to be beneficial in treating age-related functional hematopoietic decline. Here, we determined that aging of endothelial cells (ECs), a critical component of the BM microenvironment, was sufficient to drive hematopoietic aging phenotypes in young HSCs. We used an ex vivo hematopoietic stem and progenitor cell/EC (HSPC/EC) coculture system as well as in vivo EC infusions following myelosuppressive injury in mice to demonstrate that aged ECs impair the repopulating activity of young HSCs and impart a myeloid bias. Conversely, young ECs restored the repopulating capacity of aged HSCs but were unable to reverse the intrinsic myeloid bias. Infusion of young, HSC-supportive BM ECs enhanced hematopoietic recovery following myelosuppressive injury and restored endogenous HSC function in aged mice. Coinfusion of young ECs augmented aged HSC engraftment and enhanced overall survival in lethally irradiated mice by mitigating damage to the BM vascular microenvironment. These data lay the groundwork for the exploration of EC therapies that can serve as adjuvant modalities to enhance HSC engraftment and accelerate hematopoietic recovery in the elderly population following myelosuppressive regimens.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Medicine.,Department of Surgery, and.,Ansary Stem Cell Institute, Weill Cornell Medical College, New York, New York, USA
| | - Pradeep Ramalingam
- Department of Medicine.,Department of Surgery, and.,Ansary Stem Cell Institute, Weill Cornell Medical College, New York, New York, USA
| | - Michael C Gutkin
- Department of Medicine.,Department of Surgery, and.,Ansary Stem Cell Institute, Weill Cornell Medical College, New York, New York, USA
| | - Pierre Llanos
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, New York, USA
| | - Katherine Gilleran
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, New York, USA
| | - Sina Y Rabbany
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, New York, USA
| | - Jason M Butler
- Department of Medicine.,Department of Surgery, and.,Ansary Stem Cell Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
41
|
Richter R, Forssmann W, Henschler R. Current Developments in Mobilization of Hematopoietic Stem and Progenitor Cells and Their Interaction with Niches in Bone Marrow. Transfus Med Hemother 2017. [PMID: 28626366 DOI: 10.1159/000477262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The clinical application of hematopoietic stem and progenitor cells (HSPCs) has evolved from a highly experimental stage in the 1980s to a currently clinically established treatment for more than 20,000 patients annually who suffer from hematological malignancies and other severe diseases. Studies in numerous murine models have demonstrated that HSPCs reside in distinct niches within the bone marrow environment. Whereas transplanted HSPCs travel through the bloodstream and home to sites of hematopoiesis, HSPCs can be mobilized from these niches into the blood either physiologically or induced by pharmaceutical drugs. Firstly, this review aims to give a synopsis of milestones defining niches and mobilization pathways for HSPCs, including the identification of several cell types involved such as osteoblasts, adventitial reticular cells, endothelial cells, monocytic cells, and granulocytic cells. The main factors that anchor HSPCs in the niche, and/or induce their quiescence are vascular cell adhesion molecule(VCAM)-1, CD44, hematopoietic growth factors, e.g. stem cell factor (SCF) and FLT3 Ligand, chemokines including CXCL12, growth-regulated protein beta and IL-8, proteases, peptides, and other chemical transmitters such as nucleotides. In the second part of the review, we revise the current understanding of HSPC mobilization. Here, we discuss which mechanisms found to be active in HSPC mobilization correspond to the mechanisms relevant for HSPC interaction with niche cells, but also deal with other mediators and signals that target individual cell types and receptors to mobilize HSPCs. A multitude of questions remain to be addressed for a better understanding of HSPC biology and its implications for therapy, including more comprehensive concepts for regulatory circuits such as calcium homeostasis and parathormone, metabolic regulation such as by leptin, the significance of autonomic nervous system, the consequences of alteration of niches in aged patients, or the identification of more easily accessible markers to better predict the efficiency of HSPC mobilization.
Collapse
Affiliation(s)
- Rudolf Richter
- Department of Internal Medicine, Clinic of Immunology, Hanover Medical School, Hanover, Germany.,MVZ Labor PD Dr. Volkmann & Kollegen, Karlsruhe, Germany
| | - Wolfgang Forssmann
- Department of Internal Medicine, Clinic of Immunology, Hanover Medical School, Hanover, Germany
| | - Reinhard Henschler
- Swiss Red Cross Blood Transfusion Services Zurich and Chur, Zurich, Switzerland
| |
Collapse
|