1
|
Zhu Y, Gong Y, Wang Y, Jiang Z, Yao Y, Miao X, Wang S, Zhang Y, Cao J. Flurbiprofen axetil is involved in basal-like breast cancer metastasis via suppressing the MEK/ERK signaling pathway. Cell Biol Int 2025; 49:68-78. [PMID: 39364685 DOI: 10.1002/cbin.12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/12/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Flurbiprofen axetil is commonly utilized in clinical practice as one of the nonsteroidal anti-inflammatory drugs (NSAIDs) and is included in multimodal analgesia regimens postbreast cancer surgery. Numerous NSAIDs have been studied for their potential to both promote and inhibit cancer. Given the variability in their effects on tumors, further investigation into the specific role of flurbiprofen axetil is warranted. Therefore, the primary objective of this study was to assess the impact of flurbiprofen axetil on basal-like breast cancer (BLBC) metastasis and elucidate the underlying molecular mechanisms involved. The BLBC metastasis mouse model was established by caudal vein injection of tumor cells. The lung metastasis of breast cancer in mice and the effect of flurbiprofen axetil were assessed by in vivo bioluminescence imaging, hematoxylin and eosin staining and immunohistochemistry. In vitro, the results of flurbiprofen axetil on the proliferation, migration, and invasion of MDA-MB-231 human breast cancer cells and BT-549 human breast cancer cells were assessed by colony formation assay and transwell assay. The effects of flurbiprofen axetil on several tumor metastasis-related signaling pathway proteins were examined by western blot, and the reversal extent of the flurbiprofen axetil effect by Ro 67-7476 (ERK phosphorylation agonist) was detected by transwell assay. The results showed that flurbiprofen axetil significantly inhibited BLBC lung metastasis in mice. Flurbiprofen axetil similarly inhibited breast cancer cell migration and invasion in vitro but did not affect their proliferation. Mechanistic investigations have revealed that flurbiprofen axetil exerts a noteworthy inhibitory influence on the MEK/ERK pathway while exhibiting no significant alteration in the expression of other pathway proteins intricately associated with epithelial-mesenchymal transition. In conclusion, the inhibitory effect of flurbiprofen axetil on BLBC metastasis is characterized by its selectivity in targeting the MEK/ERK signaling pathway rather than exerting a broad impact on the global signaling pathway.
Collapse
Affiliation(s)
- Yalin Zhu
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
- Department of Anesthesiology, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Yi Gong
- Department of Respiratory Diseases and Critical Medicine, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou, Zhejiang, China
- Department of Respiratory Diseases and Critical Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yifei Wang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Zhengyu Jiang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
| | - Ying Yao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Shuoer Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Zhang
- Changhai Hospital, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
| | - Jianping Cao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Kashif M, Chandrabose K, Pandurangan AK. Plausible Action of N-(3,4-Dimethoxy-Phenyl)-6,7-Dimethoxyquinazoline-4-Amine (TKM01) as an Armor Against Alzheimer's Disease: In Silico and In Vivo Insights. J Biochem Mol Toxicol 2024; 38:e70048. [PMID: 39552492 DOI: 10.1002/jbt.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/24/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) affects millions of people and has limited treatment options, thus making it a global health concern. Amyloid β (Aβ), a disrupted cholinergic system with high acetylcholinesterase (AChE), oxidative stress (OS), reduced antioxidants, and neuroinflammation are key factors influencing AD progression. Prior research has shown that AChE can interact with Aβ and increase its accumulation and neurotoxicity, so targeting AChEs and Aβ could be a potential therapeutic approach for AD treatment. It has been known that nonsteroidal anti-inflammatory drugs (NSAIDs) can inhibit Aβ accumulation. Previously, TKM01, a derivative of 4-anilinoquinazoline, has demonstrated inhibitory effects against GSK-3β-a regulator in AD progression. The current research included molecular docking studies of NSAIDs and TKM01 with Aβ and AChEs as targets. TKM01 exhibited a higher binding affinity with Aβ among all tested compounds. Molecular dynamic (MD) simulations confirmed the stability of the protein-TKM01 complexes. TKM01 also exhibited favorable drug-likeness properties, and no hepatoxicity was visualized in comparison with other compounds. Further, in vitro assay showed an inhibitory action of TKM01 (50-1200 µg/mL) on AChEs. In the in vivo studies on zebrafish larvae brains, we found that TKM01 (120 and 240 µg/mL) reduced the levels of AChEs and lipid peroxidation (LPO) and increased antioxidant superoxide dismutase (SOD) and catalase (CAT) in AlCl3(80 µM)-induced AD-like model. Additionally, TKM01 treatment was found to decrease pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. The current study demonstrates that TKM01 can be used to treat AD. Nonetheless, experimental validation is needed to reveal the cellular, sub-cellular, and molecular mechanisms and possible implications at a clinical stage.
Collapse
Affiliation(s)
- Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Karthikeyan Chandrabose
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
3
|
Zaman FY, Orchard SG, Haydon A, Zalcberg JR. Non-aspirin non-steroidal anti-inflammatory drugs in colorectal cancer: a review of clinical studies. Br J Cancer 2022; 127:1735-1743. [PMID: 35764787 DOI: 10.1038/s41416-022-01882-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) chemoprevention is an area of interest. Non-steroidal anti-inflammatory drugs (NSAIDs) are anti-inflammatory agents which have been identified as cancer chemoprevention agents given that inflammation is thought to contribute to tumorigenesis. Most studies have demonstrated that the NSAID, aspirin, plays a beneficial role in the prevention of CRC and colonic adenomas. Non-aspirin NSAIDs (NA-NSAIDs) have also been studied in CRC chemoprevention. There is increasing literature around their role in pre-cancerous polyp prevention and in decreasing CRC incidence and CRC-related outcomes in certain high-risk subgroups. However, the use of NA-NSAIDs may be accompanied by increased risks of toxicity. Further studies are required to establish the associations between concurrent aspirin and NA-NSAID use, and CRC-related outcomes.
Collapse
Affiliation(s)
- Farzana Y Zaman
- Department of Medical Oncology, The Alfred Hospital, Alfred Health, Melbourne, VIC, Australia.
| | - Suzanne G Orchard
- School of Public Health and Preventive Medicine, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew Haydon
- Department of Medical Oncology, The Alfred Hospital, Alfred Health, Melbourne, VIC, Australia
| | - John R Zalcberg
- Department of Medical Oncology, The Alfred Hospital, Alfred Health, Melbourne, VIC, Australia.,Head of Cancer Research Program, School of Public Health and Preventive Medicine, Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606928. [PMID: 35799889 PMCID: PMC9256443 DOI: 10.1155/2022/2606928] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
Collapse
|
5
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
6
|
Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227:107879. [PMID: 33915177 DOI: 10.1016/j.pharmthera.2021.107879] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
7
|
Thompson PA, Huang C, Yang J, Wertheim BC, Roe D, Zhang X, Ding J, Chalasani P, Preece C, Martinez J, Chow HHS, Stopeck AT. Sulindac, a Nonselective NSAID, Reduces Breast Density in Postmenopausal Women with Breast Cancer Treated with Aromatase Inhibitors. Clin Cancer Res 2021; 27:5660-5668. [PMID: 34112707 DOI: 10.1158/1078-0432.ccr-21-0732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the effect of sulindac, a nonselective anti-inflammatory drug (NSAID), for activity to reduce breast density (BD), a risk factor for breast cancer. EXPERIMENTAL DESIGN An open-label phase II study was conducted to test the effect of 12 months' daily sulindac at 150 mg twice daily on change in percent BD in postmenopausal hormone receptor-positive breast cancer patients on aromatase inhibitor (AI) therapy. Change in percent BD in the contralateral, unaffected breast was measured by noncontrast magnetic resonance imaging (MRI) and reported as change in MRI percent BD (MRPD). A nonrandomized patient population on AI therapy (observation group) with comparable baseline BD was also followed for 12 months. Changes in tissue collagen after 6 months of sulindac treatment were explored using second-harmonic generated microscopy in a subset of women in the sulindac group who agreed to repeat breast biopsy. RESULTS In 43 women who completed 1 year of sulindac (86% of those accrued), relative MRPD significantly decreased by 9.8% [95% confidence interval (CI), -14.6 to -4.7] at 12 months, an absolute decrease of -1.4% (95% CI, -2.5 to -0.3). A significant decrease in mean breast tissue collagen fiber straightness (P = 0.032), an investigational biomarker of tissue inflammation, was also observed. MRPD (relative or absolute) did not change in the AI-only observation group (N = 40). CONCLUSIONS This is the first study to indicate that the NSAID sulindac may reduce BD. Additional studies are needed to verify these findings and determine if prostaglandin E2 inhibition by NSAIDs is important for BD or collagen modulation.
Collapse
Affiliation(s)
- Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York. .,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Chuan Huang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Radiology, Stony Brook University, Stony Brook, New York.,Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jie Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | | | - Denise Roe
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| | - Xiaoyue Zhang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - Jie Ding
- Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Pavani Chalasani
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona, Tucson, Arizona
| | - Christina Preece
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Jessica Martinez
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | | | - Alison T Stopeck
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
8
|
Wang N, Xi W, Lu S, Jiang J, Wang C, Zhu Z, Yan C, Liu J, Zhang J. A Novel Inflammatory-Nutritional Prognostic Scoring System for Stage III Gastric Cancer Patients With Radical Gastrectomy Followed by Adjuvant Chemotherapy. Front Oncol 2021; 11:650562. [PMID: 34195071 PMCID: PMC8238197 DOI: 10.3389/fonc.2021.650562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The present study was designed to explore the prognostic value of preoperative inflammatory and nutritional biomarkers in stage III gastric cancer (GC) patients with adjuvant chemotherapy and to develop a novel scoring system called the inflammatory-nutritional prognostic score (INPS). Methods A total of 513 patients with pathological stage III GC undergoing radical gastrectomy followed by adjuvant chemotherapy from 2010 to 2017 were enrolled in the study. Clinicopathological characteristics and blood test parameters of individual patients were collected. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used for feature selection to construct INPS. Survival curves were generated using the Kaplan-Meier method with log-rank tests. The nomogram was generated based on the result of the multivariate analysis using Cox's proportional hazards model. The model was assessed by the concordance index (C-index) and was internally validated by bootstraps. Results According to the results of Lasso Cox regression and K-M survival curves, INPS was determined as follows: a low body mass index (BMI) (<23 kg/m2), a low prealbumin (<180 mg/L), a high neutrophil-lymphocyte ratio (NLR) (≥2.7), a high platelet-lymphocyte ratio (PLR) (≥209.4), a low lymphocyte-monocyte ratio (LMR) (<2.8), and a low prognostic nutritional index (PNI) (<45.1); each were scored as 1, and the remaining values were scored as 0. The individual scores were then summed up to construct the INPS and further divided into 4 groups: Low Risk (INPS 0); Low-medium Risk (INPS 1); High-medium Risk (INPS 2-4); and High Risk (INPS 5-6). In multivariate analysis, INPS was an independent predictor of overall survival (OS) in stage III GC, with the 5-year OS rates of 70.8%, 57.4%, 41.5%, and 30.6%, respectively. The nomogram based on INPS and other independent predictors (gender, pT stage, pN stage, lymphovascular invasion, and CEA level) showed good predicting performance with a C-index of 0.707, which was superior to the TNM stage alone (C-index 0.645, p=0.008) and was internally validated with the corrected C-index of 0.693. Conclusion Preoperative INPS was an independent prognostic factor of stage III GC patients with radical surgery followed by adjuvant chemotherapy. The nomogram based on INPS may serve as a simple and potential model in risk stratification and guiding treatment strategies in clinical practice.
Collapse
Affiliation(s)
- Nan Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglun Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Liu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
McNeil JJ, Gibbs ,*P, Orchard SG, Lockery JE, Bernstein WB, Cao Y, Ford L, Haydon A, Kirpach B, Macrae F, McLean C, Millar J, Murray AM, Nelson MR, Polekhina G, Reid CM, Richmond E, Rodríguez LM, Shah RC, Tie J, Umar A, van Londen GJ, Ronaldson K, Wolfe R, Woods RL, Zalcberg J, Chan AT. Effect of Aspirin on Cancer Incidence and Mortality in Older Adults. J Natl Cancer Inst 2021; 113:258-265. [PMID: 32778876 PMCID: PMC7936068 DOI: 10.1093/jnci/djaa114] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND ASPirin in Reducing Events in the Elderly, a randomized, double-blind, placebo-controlled trial of daily low-dose aspirin (100 mg) in older adults, showed an increase in all-cause mortality, primarily due to cancer. In contrast, prior randomized controlled trials, mainly involving younger individuals, demonstrated a delayed cancer benefit with aspirin. We now report a detailed analysis of cancer incidence and mortality. METHODS 19 114 Australian and US community-dwelling participants aged 70 years and older (US minorities 65 years and older) without cardiovascular disease, dementia, or physical disability were randomly assigned and followed for a median of 4.7 years. Fatal and nonfatal cancer events, a prespecified secondary endpoint, were adjudicated based on clinical records. RESULTS 981 cancer events occurred in the aspirin and 952 in the placebo groups. There was no statistically significant difference between groups for all incident cancers (hazard ratio [HR] = 1.04, 95% confidence interval [CI] = 0.95 to 1.14), hematological cancer (HR = 0.98, 95% CI = 0.73 to 1.30), or all solid cancers (HR = 1.05, 95% CI = 0.95 to 1.15), including by specific tumor type. However, aspirin was associated with an increased risk of incident cancer that had metastasized (HR = 1.19, 95% CI = 1.00 to 1.43) or was stage 4 at diagnosis (HR = 1.22, 95% CI = 1.02 to 1.45), and with higher risk of death for cancers that presented at stages 3 (HR = 2.11, 95% CI = 1.03 to 4.33) or 4 (HR = 1.31, 95% CI = 1.04 to 1.64). CONCLUSIONS In older adults, aspirin treatment had an adverse effect on later stages of cancer evolution. These findings suggest that in older persons, aspirin may accelerate the progression of cancer and, thus, suggest caution with its use in this age group.
Collapse
Affiliation(s)
- John J McNeil
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - , *Peter Gibbs
- The Walter & Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; and Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Suzanne G Orchard
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jessica E Lockery
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | | | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Leslie Ford
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Haydon
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Brenda Kirpach
- Berman Center for Outcomes and Clinical Research, Hennepin Health Research Institute, Hennepin, HealthCare, Minneapolis, MN, USA
| | - Finlay Macrae
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia; and Department of Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Jeremy Millar
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anne M Murray
- Berman Center for Outcomes and Clinical Research, Hennepin Health Research Institute, Hennepin, HealthCare, Minneapolis, MN, USA
- Division of Geriatrics, Department of Medicine, Hennepin County Medical Center and University of Minnesota, Minneapolis, MN, USA
| | - Mark R Nelson
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Galina Polekhina
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Christopher M Reid
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- School of Public Health, Curtin University, Perth, WA, Australia
| | - Ellen Richmond
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Luz Maria Rodríguez
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Raj C Shah
- Department of Family Medicine and Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jeanne Tie
- The Walter & Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; and Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - G J van Londen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathlyn Ronaldson
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rory Wolfe
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn L Woods
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - John Zalcberg
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
10
|
Sperling CD, Verdoodt F, Aalborg GL, Dehlendorff C, Friis S, Kjaer SK. Non-aspirin NSAID use and mortality of endometrial cancer. A nationwide cohort study. Cancer Causes Control 2021; 32:515-523. [PMID: 33620641 DOI: 10.1007/s10552-021-01402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Laboratory studies have shown anti-neoplastic properties of non-aspirin NSAID; however, no studies have examined the influence of non-aspirin NSAIDs as potential adjuvant cancer therapy in women with endometrial cancer. We therefore examined the association between post-diagnostic use of non-aspirin NSAIDs and endometrial cancer mortality in Denmark. METHODS We identified all women with a primary endometrial cancer diagnosis between 2000 and 2012, who were alive one year after the diagnosis. Information on drug use, cause-specific mortality and potential confounders was obtained from nationwide health- and demographic registries. Cox regression models were used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between post-diagnostic non-aspirin NSAID use and endometrial cancer mortality. RESULTS Among 6 694 endometrial cancer patients with a maximum follow-up of 13 years, 753 women died from endometrial cancer. Post-diagnostic non-aspirin NSAID use (≥ 1 filled prescription) was associated with an overall HR of 1.15 (95% CI; 0.97-1.36) for endometrial cancer mortality, with higher HRs for the highest intensity of use (HR; 1.40, 95% CI; 1.11-1.77) and largest cumulative amount (HR; 1.56, 95% CI; 1.14-2.14). CONCLUSION Our findings yielded no evidence that use of non-aspirin NSAIDs was associated with reduced endometrial cancer. Rather, we observed that high-intensity and large cumulative amount of non-aspirin NSAID use may be associated with increased endometrial cancer mortality.
Collapse
Affiliation(s)
- Cecilie Dyg Sperling
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.
| | - Freija Verdoodt
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Gitte Lerche Aalborg
- Statistics and Data Analysis, Danish Cancer Society Research Center, Copenhagen, 210, Denmark
| | - Christian Dehlendorff
- Statistics and Data Analysis, Danish Cancer Society Research Center, Copenhagen, 210, Denmark
| | - Søren Friis
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne K Kjaer
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Terpinskaya TI, Osipov AV, Kryukova EV, Kudryavtsev DS, Kopylova NV, Yanchanka TL, Palukoshka AF, Gondarenko EA, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Mar Drugs 2021; 19:md19020118. [PMID: 33669933 PMCID: PMC7956437 DOI: 10.3390/md19020118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, β2 and β4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.
Collapse
Affiliation(s)
- Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Nina V. Kopylova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Tatsiana L. Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alena F. Palukoshka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Elena A. Gondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
- Correspondence: or ; Tel.: +7-495-3366522
| |
Collapse
|
12
|
Hurwitz LM, Michels KA, Cook MB, Pfeiffer RM, Trabert B. Associations between daily aspirin use and cancer risk across strata of major cancer risk factors in two large U.S. cohorts. Cancer Causes Control 2021; 32:57-65. [PMID: 33104910 PMCID: PMC7855934 DOI: 10.1007/s10552-020-01357-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Daily aspirin use has been shown to reduce risk of colorectal, and possibly other, cancers, but it is unknown if these benefits are consistent across subgroups of people with differing cancer risk factors. We investigated whether age, body mass index (BMI), smoking status, physical inactivity, and family history of cancer modify the effect of daily aspirin use on colorectal, ovarian, breast, endometrial and aggressive prostate cancer risk. METHODS We pooled 423,495 individuals from two prospective, U.S.-based studies: the NIH-AARP Diet and Health Study (1995-2011) and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (1993-2009). Using Cox proportional hazards regression, we examined associations between daily aspirin use (≥ 5 days/week) and risk of colorectal, ovarian, breast, endometrial, and aggressive prostate cancer, overall and across strata of risk factors. RESULTS Daily aspirin use was associated with a 15% reduction in colorectal cancer risk (hazard ratio [HR]: 0.85, 95% confidence interval [CI] 0.80-0.89). Risk reductions were generally consistent across strata of risk factors but attenuated with increasing BMI (p-interaction = 0.16). For ovarian cancer, there was no significant association overall (HR: 0.93, 95% CI 0.80-1.08) but reduced risk among obese women (HR: 0.73, 95% CI 0.52-0.98, p-interaction = 0.12). Weak or null associations were observed for breast, endometrial, and aggressive prostate cancer, with no strong effect modification observed. CONCLUSIONS Daily aspirin use appears to reduce colorectal cancer risk regardless of other risk factors, though the potential modifying effect of BMI warrants further investigation and may need to be considered in risk-benefit calculations for aspirin use.
Collapse
Affiliation(s)
- Lauren M Hurwitz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Kara A Michels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| |
Collapse
|
13
|
Mendoza-Almanza G, Burciaga-Hernández L, Maldonado V, Melendez-Zajgla J, Olmos J. Role of platelets and breast cancer stem cells in metastasis. World J Stem Cells 2020; 12:1237-1254. [PMID: 33312396 PMCID: PMC7705471 DOI: 10.4252/wjsc.v12.i11.1237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/23/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called "tumor-educated platelets." Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.
Collapse
Affiliation(s)
| | | | - Vilma Maldonado
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Melendez-Zajgla
- Génómica funcional del cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Olmos
- Biotecnología Marina, Centro de Investigación Científica y de Estudios Superiores de Ensenada, Ensenada 22860, Mexico
| |
Collapse
|
14
|
Usha T, Middha SK, Kukanur AA, Shravani RV, Anupama MN, Harshitha N, Rahamath A, Kukanuri SA, Goyal AK. Drug Repurposing Approaches: Existing Leads For Novel Threats And Drug Targets. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-110124. [PMID: 32957901 DOI: 10.2174/1389203721666200921152853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022]
Abstract
Drug Repurposing (DR) is an alternative to the traditional drug discovery process. It is cost and time effective, with high returns and low risk process that can tackle the increasing need for interventions for varied diseases and new outbreaks. Repurposing of old drugs for other diseases has gained a wider attention, as there have been several old drugs approved by FDA for new diseases. In the global emergency of COVID19 pandemic, this is one of the strategies implemented in repurposing of old anti-infective, anti-rheumatic and anti-thrombotic drugs. The goal of the current review is to elaborate the process of DR, its advantages, repurposed drugs for a plethora of disorders, and the evolution of related academic publications. Further, detailed are the computational approaches: literature mining and semantic inference, network-based drug repositioning, signature matching, retrospective clinical analysis, molecular docking and experimental phenotypic screening. We discuss the legal and economical potential barriers in DR, existent collaborative models and recommendations for overcoming these hurdles and leveraging the complete potential of DR in finding new indications.
Collapse
Affiliation(s)
- Talambedu Usha
- Department of Biochemistry, Bangalore University, Bengaluru, Karnataka. India
| | - Sushil K Middha
- DBT-BIF Centre, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women(mLAC), Bengaluru, Karnataka. India
| | | | | | | | | | - Ameena Rahamath
- Department of Biochemistry, mLAC, Bengaluru, Karnataka. India
| | | | - Arvind K Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar783370, BTAD, Assam. India
| |
Collapse
|
15
|
Diclofenac Enhances Docosahexaenoic Acid-Induced Apoptosis in Vitro in Lung Cancer Cells. Cancers (Basel) 2020; 12:cancers12092683. [PMID: 32962236 PMCID: PMC7564004 DOI: 10.3390/cancers12092683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs) have limited anticancer capacities when used alone. We examined whether combining NSAIDs with docosahexaenoic (DHA) would increase their anticancer activity on lung cancer cell lines. Our results indicate that combining DHA and NSAIDs increased their anticancer activities by altering the expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data suggest that DHA combined with low dose diclofenac provides more significant anticancer potential, which can be further developed for chemoprevention and adjunct therapy in lung cancer. Abstract Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs) show anticancer activities through diverse molecular mechanisms. However, the anticancer capacities of either PUFAs or NSAIDs alone is limited. We examined whether combining NSAIDs with docosahexaenoic (DHA), commonly derived from fish oils, would possibly synergize their anticancer activity. We determined the viability of lung cancer cell lines (NCI-H1573, A549, NCI-H1299, and NCI-H1975) after exposure to DHA and various NSAIDs. We further conducted cell apoptosis assays and analyzed apoptosis-associated proteins and some key proteins in the RAS/MEK/ERK and PI3K/Akt pathways using western blot analysis. We also determined the impact of the treatment on the expression of inducible cancer-related genes using nCounter PanCancer Pathways gene expression analysis. The results showed that the combination of DHA and NSAIDs increased suppression of cell viability in all the lung cancer cell lines tested compared to each of the compounds used alone, with diclofenac being the most potent NSAID tested. This synergistic effect is especially significant in A549 and NCI-H1573 cells. The combination treatment was more effective at inhibiting clonogenic cell growth and anchorage-independent growth in soft agar, inducing caspase-dependent apoptosis, and altering expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data from this study demonstrate that DHA combined with low dose diclofenac provides greater anticancer potential, which can be further developed for chemoprevention and adjunct therapy in lung cancer.
Collapse
|
16
|
Salla M, Pandya V, Bhullar KS, Kerek E, Wong YF, Losch R, Ou J, Aldawsari FS, Velazquez-Martinez C, Thiesen A, Dyck JRB, Hubbard BP, Baksh S. Resveratrol and Resveratrol-Aspirin Hybrid Compounds as Potent Intestinal Anti-Inflammatory and Anti-Tumor Drugs. Molecules 2020; 25:molecules25173849. [PMID: 32847114 PMCID: PMC7503224 DOI: 10.3390/molecules25173849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (3,4,5-Trihydroxy-trans-stilbene) is a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects. It is one of the most promising natural molecules in the prevention and treatment of chronic diseases and autoimmune disorders. One of the key limitations in the clinical use of resveratrol is its extensive metabolic processing to its glucuronides and sulfates. It has been estimated that around 75% of this polyphenol is excreted via feces and urine. To possibly alleviate the extensive metabolic processing and improve bioavailability, we have added segments of acetylsalicylic acid to resveratrol in an attempt to maintain the functional properties of both. We initially characterized resveratrol-aspirin derivatives as products that can inhibit cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) activity, DNA methyltransferase (DNMT) activity, and cyclooxygenase (COX) activity. In this study, we provide a detailed analysis of how resveratrol and its aspirin derivatives can inhibit nuclear factor kappa B (NFκB) activation, cytokine production, the growth rate of cancer cells, and in vivo alleviate intestinal inflammation and tumor growth. We identified resveratrol derivatives C3 and C11 as closely preserving resveratrol bioactivities of growth inhibition of cancer cells, inhibition of NFκB activation, activation of sirtuin, and 5’ adenosine monophosphate-activated protein kinase (AMPK) activity. We speculate that the aspirin derivatives of resveratrol would be more metabolically stable, resulting in increased efficacy for treating immune disorders and as an anti-cancer agent.
Collapse
Affiliation(s)
- Mohamed Salla
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
| | - Vrajesh Pandya
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
| | - Khushwant S. Bhullar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (K.S.B.); (E.K.); (J.R.B.D.); (B.P.H.)
| | - Evan Kerek
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (K.S.B.); (E.K.); (J.R.B.D.); (B.P.H.)
| | - Yoke Fuan Wong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Robyn Losch
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
| | - Joe Ou
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
| | - Fahad S. Aldawsari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada or (F.S.A.); (C.V.-M.)
- Saudi Food and Drug Authority Laboratories, 3292 Northern Ring Road, Riyadh 13312, Saudi Arabia
| | - Carlos Velazquez-Martinez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada or (F.S.A.); (C.V.-M.)
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Jason R. B. Dyck
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (K.S.B.); (E.K.); (J.R.B.D.); (B.P.H.)
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Basil P. Hubbard
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (K.S.B.); (E.K.); (J.R.B.D.); (B.P.H.)
| | - Shairaz Baksh
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
- Member, Cancer Research Institute of Northern Alberta and Women and Children’s Health Research Institute, Edmonton, AB T6G 2E1, Canada
- BioImmuno Designs, Inc., 4560 TEC Centre, 10230 Jasper Avenue, Edmonton, AB T5J 4P6, Canada
- Correspondence: ; Tel.: +1-780-239-0518
| |
Collapse
|
17
|
Bruserud Ø, Aarstad HH, Tvedt THA. Combined C-Reactive Protein and Novel Inflammatory Parameters as a Predictor in Cancer-What Can We Learn from the Hematological Experience? Cancers (Basel) 2020; 12:cancers12071966. [PMID: 32707721 PMCID: PMC7409204 DOI: 10.3390/cancers12071966] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The acute phase reaction is a systemic response to acute or chronic inflammation. The serum level of C-reactive protein (CRP) is the only acute phase biomarker widely used in routine clinical practice, including its uses for prognostics and therapy monitoring in cancer patients. Although Interleukin 6 (IL6) is a main trigger of the acute phase reactions, a series of acute phase reactants can contribute (e.g., other members in IL6 family or IL1 subfamily, and tumor necrosis factor α). However, the experience from patients receiving intensive chemotherapy for hematological malignancies has shown that, besides CRP, other biomarkers (e.g., cytokines, soluble cytokine receptors, soluble adhesion molecules) also have altered systemic levels as a part of the acute phase reaction in these immunocompromised patients. Furthermore, CRP and white blood cell counts can serve as a dual prognostic predictor in solid tumors and hematological malignancies. Recent studies also suggest that biomarker profiles as well as alternative inflammatory mediators should be further developed to optimize the predictive utility in cancer patients. Finally, the experience from allogeneic stem cell transplantation suggests that selected acute phase reactants together with specific markers of organ damages are useful for predicting or diagnosing graft versus host disease. Acute phase proteins may also be useful to identify patients (at risk of) developing severe immune-mediated toxicity after anticancer immunotherapy. To conclude, future studies of acute phase predictors in human malignancies should not only investigate the conventional inflammatory mediators (e.g., CRP, white blood cell counts) but also combinations of novel inflammatory parameters with specific markers of organ damages.
Collapse
Affiliation(s)
- Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway;
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence: ; Tel.: +47-5597-2997
| | - Helene Hersvik Aarstad
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway;
| | | |
Collapse
|
18
|
Barry EL, Fedirko V, Uppal K, Ma C, Liu K, Mott LA, Peacock JL, Passarelli MN, Baron JA, Jones DP. Metabolomics Analysis of Aspirin's Effects in Human Colon Tissue and Associations with Adenoma Risk. Cancer Prev Res (Phila) 2020; 13:863-876. [PMID: 32655007 DOI: 10.1158/1940-6207.capr-20-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Although substantial evidence supports aspirin's efficacy in colorectal cancer chemoprevention, key molecular mechanisms are uncertain. An untargeted metabolomics approach with high-resolution mass spectrometry was used to elucidate metabolic effects of aspirin treatment in human colon tissue. We measured 10,269 metabolic features in normal mucosal biopsies collected at colonoscopy after approximately 3 years of randomized treatment with placebo, 81 or 325 mg/day aspirin from 325 participants in the Aspirin/Folate Polyp Prevention Study. Linear regression was used to identify aspirin-associated metabolic features and network analysis was used to identify pathways and predict metabolite identities. Poisson regression was used to examine metabolic features associations with colorectal adenoma risk. We detected 471 aspirin-associated metabolic features. Aside from the carnitine shuttle, aspirin-associated metabolic pathways were largely distinct for 81 mg aspirin (e.g., pyrimidine metabolism) and 325 mg (e.g., arachidonic acid metabolism). Among aspirin-associated metabolic features, we discovered three that were associated with adenoma risk and could contribute to the chemopreventive effect of aspirin treatment, and which have also previously been associated with colorectal cancer: creatinine, glycerol 3-phosphate, and linoleate. The last two of these are in the glycerophospholipid metabolism pathway, which was associated with 81 mg aspirin treatment and provides precursors for the synthesis of eicosanoids from arachidonic acid upstream of cyclooxygenase inhibition by aspirin. Conversely, carnitine shuttle metabolites were increased with aspirin treatment and associated with increased adenoma risk. Thus, our untargeted metabolomics approach has identified novel metabolites and pathways that may underlie the effects of aspirin during early colorectal carcinogenesis.
Collapse
Affiliation(s)
- Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Emory University and Winship Cancer Institute, Atlanta, Georgia
| | - Karan Uppal
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Chunyu Ma
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Ken Liu
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Leila A Mott
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Janet L Peacock
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- School of Population Health and Environmental Sciences, King's College, London, UK
| | - Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Khadge S, Sharp JG, Thiele GM, McGuire TR, Talmadge JE. Fatty Acid Mediators in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:125-153. [PMID: 32578175 DOI: 10.1007/978-3-030-43093-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Vanderbilt University, Nashville, TN, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - James E Talmadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
20
|
Lee SH, Moon HJ, Lee YS, Kang CD, Kim SH. Potentiation of TRAIL‑induced cell death by nonsteroidal anti‑inflammatory drug in human hepatocellular carcinoma cells through the ER stress‑dependent autophagy pathway. Oncol Rep 2020; 44:1136-1148. [PMID: 32705218 PMCID: PMC7388578 DOI: 10.3892/or.2020.7662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed primary liver malignancy. The limited success with relapse of the disease in HCC therapy is frequently associated with the acquired resistance to anticancer drugs. To develop a strategy and design for overcoming the resistance of HCC cells to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death, we evaluated the efficacy of a non-steroidal anti-inflammatory drug (NSAID) in combination with TRAIL against TRAIL-resistant HCC cells expressing a high level of CD44. We revealed by MTT and western blotting, respectively, that celecoxib (CCB), an NSAID, and 2,5-dimethyl celecoxib (DMC), a non-cyclooxygenase (COX)-2 inhibitor analog of CCB, were able to sensitize TRAIL-resistant HCC cells to TRAIL, implicating a COX-independent mechanism. CCB dose-dependently enhanced LC3-II and reduced p62 levels through AMPK activation and inhibition of the Akt/mTOR pathway and upregulated expression of ATF4/CHOP, leading to activation of endoplasmic reticulum (ER) stress-dependent autophagy. The TRAIL sensitization capacity of CCB in TRAIL-resistant HCC cells was abrogated by an ER stress inhibitor. In addition, we also revealed by flow cytometry and western blotting, respectively, that accelerated downregulation of TRAIL-mediated c-FLIP expression, DR5 activation and CD44 degradation/downregulation by NSAID resulted in activation of caspases and poly(ADP-ribose) polymerase (PARP), leading to the sensitization of TRAIL-resistant HCC cells to TRAIL and thereby reversal of TRAIL resistance. From these results, we propose that NSAID in combination with TRAIL may improve the antitumor activity of TRAIL in TRAIL-resistant HCC, and this approach may serve as a novel strategy that maximizes the therapeutic efficacy of TRAIL for clinical application.
Collapse
Affiliation(s)
- Su-Hoon Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Hyun-Jung Moon
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Young-Shin Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Gyeongsangnam‑do 626‑870, Republic of Korea
| |
Collapse
|
21
|
Hurwitz LM, Kulac I, Gumuskaya B, Valle JABD, Benedetti I, Pan F, Liu JO, Marrone MT, Arnold KB, Goodman PJ, Tangen CM, Lucia MS, Thompson IM, Drake CG, Isaacs WB, Nelson WG, De Marzo AM, Platz EA. Use of Aspirin and Statins in Relation to Inflammation in Benign Prostate Tissue in the Placebo Arm of the Prostate Cancer Prevention Trial. Cancer Prev Res (Phila) 2020; 13:853-862. [PMID: 32581009 DOI: 10.1158/1940-6207.capr-19-0450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/03/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Aspirin and statin use may lower the risk of advanced/fatal prostate cancer, possibly by reducing intraprostatic inflammation. To test this hypothesis, we investigated the association of aspirin and statin use with the presence and extent of intraprostatic inflammation, and the abundance of specific immune cell types, in benign prostate tissue from a subset of men from the placebo arm of the Prostate Cancer Prevention Trial. Men were classified as aspirin or statin users if they reported use at baseline or during the 7-year trial. Presence and extent of inflammation were assessed, and markers of specific immune cell types (CD4, CD8, FoxP3, CD68, and c-KIT) were scored, in slides from end-of-study prostate biopsies taken irrespective of clinical indication, per trial protocol. Logistic regression was used to estimate associations between medication use and inflammation measures, adjusted for potential confounders. Of 357 men included, 61% reported aspirin use and 32% reported statin use. Prevalence and extent of inflammation were not associated with medication use. However, aspirin users were more likely to have low FoxP3, a T regulatory cell marker [OR, 5.60; 95% confidence interval (CI), 1.16-27.07], and statin users were more likely to have low CD68, a macrophage marker (OR, 1.63; 95% CI, 0.81-3.27). If confirmed, these results suggest that these medications may alter the immune milieu of the prostate, which could potentially mediate effects of these medications on advanced/fatal prostate cancer risk.
Collapse
Affiliation(s)
- Lauren M Hurwitz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ibrahim Kulac
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Koç University School of Medicine, Istanbul, Turkey
| | - Berrak Gumuskaya
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ines Benedetti
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Basic Sciences, School of Medicine, University of Cartagena, Cartagena, Colombia
| | - Fan Pan
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael T Marrone
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kathryn B Arnold
- SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Phyllis J Goodman
- SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Catherine M Tangen
- SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - M Scott Lucia
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ian M Thompson
- CHRISTUS Santa Rosa Hospital Medical Center, San Antonio, Texas
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - William B Isaacs
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
23
|
Hernandez-Sanabria E, Heiremans E, Calatayud Arroyo M, Props R, Leclercq L, Snoeys J, Van de Wiele T. Short-term supplementation of celecoxib-shifted butyrate production on a simulated model of the gut microbial ecosystem and ameliorated in vitro inflammation. NPJ Biofilms Microbiomes 2020; 6:9. [PMID: 32075981 PMCID: PMC7031363 DOI: 10.1038/s41522-020-0119-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
Celecoxib has been effective in the prevention and treatment of chronic inflammatory disorders through inhibition of altered cyclooxygenase-2 (COX-2) pathways. Despite the benefits, continuous administration may increase risk of cardiovascular events. Understanding microbiome-drug-host interactions is fundamental for improving drug disposition and safety responses of colon-targeted formulations, but little information is available on the bidirectional interaction between individual microbiomes and celecoxib. Here, we conducted in vitro batch incubations of human faecal microbiota to obtain a mechanistic proof-of-concept of the short-term impact of celecoxib on activity and composition of colon bacterial communities. Celecoxib-exposed microbiota shifted metabolic activity and community composition, whereas total transcriptionally active bacterial population was not significantly changed. Butyrate production decreased by 50% in a donor-dependent manner, suggesting that celecoxib impacts in vitro fermentation. Microbiota-derived acetate has been associated with inhibition of cancer markers and our results suggest uptake of acetate for bacterial functions when celecoxib was supplied, which potentially favoured bacterial competition for acetyl-CoA. We further assessed whether colon microbiota modulates anti-inflammatory efficacy of celecoxib using a simplified inflammation model, and a novel in vitro simulation of the enterohepatic metabolism. Celecoxib was responsible for only 5% of the variance in bacterial community composition but celecoxib-exposed microbiota preserved barrier function and decreased concentrations of IL-8 and CXCL16 in a donor-dependent manner in our two models simulating gut inflammatory milieu. Our results suggest that celecoxib-microbiome-host interactions may not only elicit adaptations in community composition but also in microbiota functionality, and these may need to be considered for guaranteeing efficient COX-2 inhibition.
Collapse
Affiliation(s)
- Emma Hernandez-Sanabria
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Evelien Heiremans
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marta Calatayud Arroyo
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ruben Props
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Laurent Leclercq
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, Antwerp, 2340, Belgium
| | - Jan Snoeys
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, Antwerp, 2340, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
24
|
Kong WJ, Vernieri C, Foiani M, Jiang JD. Berberine in the treatment of metabolism-related chronic diseases: A drug cloud (dCloud) effect to target multifactorial disorders. Pharmacol Ther 2020; 209:107496. [PMID: 32001311 DOI: 10.1016/j.pharmthera.2020.107496] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022]
Abstract
Berberine (BBR) is a multi-target drug (MTD) that has proven effective in the treatment of metabolism-related chronic diseases (CDs). However, the mode of action (MOA) of BBR remains to be clarified. At a cellular level, the inhibitory effect of BBR on mitochondrial enzymes is probably responsible for many of its biological activities, including the activation of low-density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK) and insulin receptor (InsR); these biological activities contribute to ameliorate peripheral blood metabolic profiles, e.g. by reducing plasma lipids and glucose levels, thus improving signs and symptoms of metabolic disorders. In this perspective, BBR acts as a targeted therapy. However, it also exerts pleiotropic systemic activities on some root causes of CDs that include antioxidant / anti-inflammatory effects and modifications of gut microbiota composition and metabolism, which may also contribute to its disease-modifying effects. After reviewing the different MOA of BBR, here we propose that BBR acts through a drug-cloud (dCloud) mechanism, as different to a drug-target effect. The dCloud here is defined as a group of terminal molecular events induced by the drug (or/and related metabolites), as well as the network connections among them. In this scenario, the therapeutic efficacy of BBR is the result of its dCloud effect acting on symptoms/signs as well as on root causes of the diseases. The dCloud concept is applicable to other established MTDs, such as aspirin, metformin, statins as well as to nutrient starvation, thus providing a novel instrument for the design of effective therapies against multifactorial metabolism-related CDs.
Collapse
Affiliation(s)
- Wei-Jia Kong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China
| | - Claudio Vernieri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; University of Milan, Italy.
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China; State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
25
|
Sperling CD, Verdoodt F, Aalborg GL, Dehlendorff C, Friis S, Kjaer SK. Low-dose aspirin use and endometrial cancer mortality—a Danish nationwide cohort study. Int J Epidemiol 2019; 49:330-337. [DOI: 10.1093/ije/dyz253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Accumulating evidence suggests that aspirin use may improve survival in cancer patients, however, for endometrial cancer, epidemiological evidence is limited and results are equivocal. In a nationwide cohort study, we examined the association between post-diagnostic low-dose aspirin use and endometrial cancer mortality.
Methods
From the Danish Cancer Registry, we identified all women with a primary diagnosis of endometrial cancer. Women diagnosed between 2000 and 2012, aged 30–84 years, who had no history of cancer (except non-melanoma skin cancer) and were alive 1 year after the cancer diagnosis were eligible. We obtained information on pre- and post-diagnostic use (≥1 prescription) of low-dose aspirin, mortality and potential confounding factors from nationwide registries. Using Cox regression models, we estimated adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between post-diagnostic low-dose aspirin use and endometrial cancer mortality. The exposure was modelled as both time-varying as well as time-fixed within exposure windows of 1 and 5 years.
Results
We identified 6694 endometrial cancer patients with a maximum follow-up of 13 years. In the time-varying analysis, post-diagnostic low-dose aspirin use was associated with a HR of 1.10 (95% CI 0.90–1.33) for endometrial cancer mortality. We found no indication of a dose–response association according to increasing tablet strength, cumulative amount or duration of use, and the HRs were similar for pre-diagnostic and post-diagnostic low-dose aspirin use compared with non-use.
Conclusions
We found no indication that post-diagnostic low-dose aspirin use was associated with reduced mortality for endometrial cancer; rather our findings suggested a concern for increased mortality.
Collapse
Affiliation(s)
- Cecilie D Sperling
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Freija Verdoodt
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Gitte L Aalborg
- Unit of Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christian Dehlendorff
- Unit of Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Søren Friis
- Unit of Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne K Kjaer
- Unit of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Mrowka P, Glodkowska-Mrowka E. PPARγ Agonists in Combination Cancer Therapies. Curr Cancer Drug Targets 2019; 20:197-215. [PMID: 31814555 DOI: 10.2174/1568009619666191209102015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor acting as a transcription factor involved in the regulation of energy metabolism, cell cycle, cell differentiation, and apoptosis. These unique properties constitute a strong therapeutic potential that place PPARγ agonists as one of the most interesting and widely studied anticancer molecules. Although PPARγ agonists exert significant, antiproliferative and tumoricidal activity in vitro, their anticancer efficacy in animal models is ambiguous, and their effectiveness in clinical trials in monotherapy is unsatisfactory. However, due to pleiotropic effects of PPARγ activation in normal and tumor cells, PPARγ ligands interact with many antitumor treatment modalities and synergistically potentiate their effectiveness. The most spectacular example is a combination of PPARγ ligands with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In this setting, PPARγ activation sensitizes leukemic stem cells, resistant to any previous form of treatment, to targeted therapy. Thus, this combination is believed to be the first pharmacological therapy able to cure CML patients. Within the last decade, a significant body of data confirming the benefits of the addition of PPARγ ligands to various antitumor therapies, including chemotherapy, hormonotherapy, targeted therapy, and immunotherapy, has been published. Although the majority of these studies have been carried out in vitro or animal tumor models, a few successful attempts to introduce PPARγ ligands into anticancer therapy in humans have been recently made. In this review, we aim to summarize shines and shadows of targeting PPARγ in antitumor therapies.
Collapse
Affiliation(s)
- Piotr Mrowka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
27
|
Barnard ME, Beeghly-Fadiel A, Milne GL, Akam EY, Chan AT, Eliassen AH, Rosner BA, Shu XO, Terry KL, Xiang YB, Zheng W, Tworoger SS. Urinary PGE-M Levels and Risk of Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:1845-1852. [PMID: 31387969 PMCID: PMC6825569 DOI: 10.1158/1055-9965.epi-19-0597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Regular aspirin use may lower ovarian cancer risk by blocking the cyclooxygenase enzymes, resulting in lower expression of prostaglandins, including prostaglandin E2 (PGE2). We evaluated whether higher prediagnosis PGE-M (a urinary biomarker of PGE2) was associated with increased ovarian cancer risk in three prospective cohorts. METHODS We conducted a case-control study nested in the Nurses' Health Study (NHS), NHSII, and Shanghai Women's Health Study. Our analyses included 304 cases of epithelial ovarian cancer diagnosed from 1996 to 2015 and 600 matched controls. We measured urinary PGE-M using LC/MS with normalization to creatinine. Measures from each study were recalibrated to a common standard. We estimated ORs and 95% confidence intervals (CI) using conditional logistic regression, with PGE-M levels modeled in quartiles. Multivariable models were adjusted for ovarian cancer risk factors. RESULTS There was no evidence of an association between urinary PGE-M levels and ovarian cancer risk for women with PGE-M levels in the top versus bottom quartile (OR = 0.80; 95% CI, 0.51-1.27; P trend = 0.37). We did not observe heterogeneity by histotype (P = 0.53), and there was no evidence of effect modification by body mass index (P interaction = 0.82), aspirin use (P interaction = 0.59), or smoking (P interaction = 0.14). CONCLUSIONS Prediagnosis urinary PGE-M levels were not significantly associated with ovarian cancer risk. Larger sample sizes are needed to consider a more modest association and to evaluate associations for specific tumor subtypes. IMPACT Systemic prostaglandin levels do not appear strongly associated with ovarian cancer risk. Future research into aspirin use and ovarian cancer risk should consider local prostaglandins and prostaglandin-independent mechanisms.
Collapse
Affiliation(s)
- Mollie E Barnard
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eftitan Y Akam
- Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
28
|
Barnard ME, Poole EM, Curhan GC, Eliassen AH, Rosner BA, Terry KL, Tworoger SS. Association of Analgesic Use With Risk of Ovarian Cancer in the Nurses' Health Studies. JAMA Oncol 2019; 4:1675-1682. [PMID: 30286239 DOI: 10.1001/jamaoncol.2018.4149] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Ovarian cancer is a highly fatal malignant neoplasm with few modifiable risk factors. Case-control studies have reported a modest reduced risk of ovarian cancer among women who frequently use aspirin or regularly use low-dose aspirin. Objective To evaluate whether regular aspirin or nonaspirin nonsteroidal anti-inflammatory drug (NSAID) use and patterns of use are associated with lower ovarian cancer risk. Design, Setting, and Participants This cohort study analyzed NSAID use and ovarian cancer diagnosis data from 2 prospective cohorts, 93 664 women in the Nurses' Health Study (NHS), who were followed up from 1980 to 2014, and 111 834 in the Nurses' Health Study II (NHSII), who were followed up from 1989 to 2015. Follow-up was completed on June 30, 2014, for the NHS and June 30, 2015, for NHSII. Data were analyzed from June 13, 2016, to September 18, 2017. Exposures For each analgesic type (aspirin, low-dose aspirin, nonaspirin NSAIDs, and acetaminophen), timing, duration, frequency, and number of tablets used were evaluated; exposure information was updated every 2 to 4 years. Main Outcomes and Measures Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% CIs for associations of aspirin, nonaspirin NSAIDs, and acetaminophen with risk of epithelial ovarian cancer. All statistical tests were 2-sided, with a significance level of .05. Results In the NHS, the mean (SD) age at baseline (1980) was 45.9 (7.2) years, and 93% of participants identified as non-Hispanic white. In the NHSII, the mean age at baseline (1989) was 34.2 (4.7) years, and 92% identified as non-Hispanic white. Among the 205 498 women in both cohorts, there were 1054 cases of incident epithelial ovarian cancer. Significant associations between aspirin and ovarian cancer risk were not observed when current vs nonuse of any aspirin was evaluated regardless of dose (HR, 0.99; 95% CI, 0.83-1.19). However, when low-dose (≤100-mg) and standard-dose (325-mg) aspirin were evaluated separately, an inverse association for low-dose aspirin (HR, 0.77; 95% CI, 0.61-0.96), but no association for standard-dose aspirin (HR, 1.17; 95% CI, 0.92-1.49) was observed. Current use of nonaspirin NSAIDs was positively associated with risk of ovarian cancer compared with nonuse (HR, 1.19; 95% CI, 1.00-1.41), and significant positive trends for duration of use (P = .02 for trend) and cumulative average tablets per week (P = .03 for trend) were observed. There were no clear associations for the use of acetaminophen. Conclusions and Relevance These results appear to be consistent with case-control studies that show a reduced risk of ovarian cancer among regular users of low-dose aspirin. An increased risk of ovarian cancer with long-term high-quantity use of other analgesics, particularly nonaspirin NSAIDs, was observed, although this finding requires confirmation.
Collapse
Affiliation(s)
- Mollie E Barnard
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gary C Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
29
|
Elias A, Shebaby WN, Nehme B, Faour W, Bassil BS, Hakim JE, Iskandar R, Dib-Jalbout N, Mroueh M, Daher C, Taleb RI. In Vitro and In Vivo Evaluation of the Anticancer and Anti-inflammatory Activities of 2-Himachelen-7-ol isolated from Cedrus Libani. Sci Rep 2019; 9:12855. [PMID: 31492934 PMCID: PMC6731217 DOI: 10.1038/s41598-019-49374-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cedrus libani is a majestic evergreen tree native to the Mediterranean mountains of Lebanon, Syria and Turkey. In this study, the tree heart wood was extracted using hexane to produce C. libani oil extract (CLOE) as a dark oil. GCMS analysis of CLOE identified up to 30 compounds whereby 2-himachalen-7-ol (7-HC) was the most abundant (40%). 7-HC was isolated using column chromatography and the identity of the white crystalline solid was confirmed via NMR spectroscopy and X-Ray Crystallography. 7-HC demonstrated potent cytotoxic activity against several human cancer cell lines including brain (SF-268, IC50 8.1 μg/mL) and colon (HT-29, IC50 10.1 μg/mL; Caco-2, IC50 9.9 μg/mL) with ovarian (Sk-OV-3, IC50 > 50 μg/mL) cells being the most resistant. However, while HT-29 displayed resistance to Cisplatin, 7-HC was 8–10 folds more potent. Co-treatment with 7-HC and Cisplatin showed a significant synergistic anti-proliferative effect against SF-268, HT-29 and Caco-2 cells. 7-HC also exhibited significant anti-inflammatory effect in formalin-induced paw edema in rats. Western blot analysis revealed that 7-HC displayed dose dependent inhibition of LPS-induced COX-2 protein expression in isolated rat monocytes. The present study demonstrates that 7-HC possesses promising anticancer and anti-inflammatory activities, and may serve as a lead molecule in cancer therapy.
Collapse
Affiliation(s)
- Andree Elias
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Wassim N Shebaby
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Bilal Nehme
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Wissam Faour
- School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Bassem S Bassil
- Faculty of Arts and Sciences, University of Balamand, PO Box 100, Tripoli, Lebanon
| | - Joelle El Hakim
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Rita Iskandar
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Nahia Dib-Jalbout
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Mohamad Mroueh
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Costantine Daher
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Robin I Taleb
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
30
|
Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer 2019; 120:871-882. [PMID: 30936499 PMCID: PMC6734657 DOI: 10.1038/s41416-019-0441-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Significant progress in the development of new immunotherapies has led to successful clinical trials for malignant melanoma and non-small cell lung cancer; however, for the majority of solid tumours of the gastrointestinal tract, little or no progress has been seen. The efficacy of immunotherapies is limited by the complexities of a diverse set of immune cells, and interactions between the tumour cells and all other cells in the local microenvironment of solid tumours. A large fraction of immune cells present in and around solid tumours derive from the innate arm of the immune system and using these cells against tumours offers an alternative immunotherapeutic option, especially as current strategies largely harness the adaptive arm of the immune system. This option is currently being investigated and attempts at using the innate immune system for gastrointestinal cancers are showing initial results. Several important factors, including cytokines, chemotherapeutics and the microbiome, influence the plasticity and functionality of innate (myeloid) cells in the microenvironment, and this complexity of regulation has limited translation into successful trials so far. In this review, current concepts of the immunobiology of the innate arm in the tumour microenvironment are presented in the context of clinical translation.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,German Translational Cancer Consortium (DKTK), Heidelberg, Germany.,Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. .,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany. .,Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany.
| |
Collapse
|
31
|
Kanikarla-Marie P, Kopetz S, Hawk ET, Millward SW, Sood AK, Gresele P, Overman M, Honn K, Menter DG. Bioactive lipid metabolism in platelet "first responder" and cancer biology. Cancer Metastasis Rev 2019; 37:439-454. [PMID: 30112590 DOI: 10.1007/s10555-018-9755-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelets can serve as "first responders" in cancer and metastasis. This is partly due to bioactive lipid metabolism that drives both platelet and cancer biology. The two primary eicosanoid metabolites that maintain platelet rapid response homeostasis are prostacyclin made by endothelial cells that inhibits platelet function, which is counterbalanced by thromboxane produced by platelets during activation, aggregation, and platelet recruitment. Both of these arachidonic acid metabolites are inherently unstable due to their chemical structure. Tumor cells by contrast predominantly make more chemically stable prostaglandin E2, which is the primary bioactive lipid associated with inflammation and oncogenesis. Pharmacological, clinical, and epidemiologic studies demonstrate that non-steroidal anti-inflammatory drugs (NSAIDs), which target cyclooxygenases, can help prevent cancer. Much of the molecular and biological impact of these drugs is generally accepted in the field. Cyclooxygenases catalyze the rate-limiting production of substrate used by all synthase molecules, including those that produce prostaglandins along with prostacyclin and thromboxane. Additional eicosanoid metabolites include lipoxygenases, leukotrienes, and resolvins that can also influence platelets, inflammation, and carcinogenesis. Our knowledge base and technology are now progressing toward identifying newer molecular and cellular interactions that are leading to revealing additional targets. This review endeavors to summarize new developments in the field.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Scott Kopetz
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Ernest T Hawk
- Office of the Vice President Cancer Prevention and Population Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Steven W Millward
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Michael Overman
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Kenneth Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA.,Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA.,Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA.,Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
32
|
Abstract
Inflammation in the tumor microenvironment is a strong promoter of tumor growth. Substantial epidemiologic evidence suggests that aspirin, which suppresses inflammation, reduces the risk of cancer. The mechanism by which aspirin inhibits cancer has remained unclear, and toxicity has limited its clinical use. Aspirin not only blocks the biosynthesis of prostaglandins, but also stimulates the endogenous production of anti-inflammatory and proresolving mediators termed aspirin-triggered specialized proresolving mediators (AT-SPMs), such as aspirin-triggered resolvins (AT-RvDs) and lipoxins (AT-LXs). Using genetic and pharmacologic manipulation of a proresolving receptor, we demonstrate that AT-RvDs mediate the antitumor activity of aspirin. Moreover, treatment of mice with AT-RvDs (e.g., AT-RvD1 and AT-RvD3) or AT-LXA4 inhibited primary tumor growth by enhancing macrophage phagocytosis of tumor cell debris and counter-regulating macrophage-secreted proinflammatory cytokines, including migration inhibitory factor, plasminogen activator inhibitor-1, and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. Thus, the pro-resolution activity of AT-resolvins and AT-lipoxins may explain some of aspirin's broad anticancer activity. These AT-SPMs are active at considerably lower concentrations than aspirin, and thus may provide a nontoxic approach to harnessing aspirin's anticancer activity.
Collapse
|
33
|
Ogino S, Nowak JA, Hamada T, Milner DA, Nishihara R. Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. ANNUAL REVIEW OF PATHOLOGY 2019; 14:83-103. [PMID: 30125150 PMCID: PMC6345592 DOI: 10.1146/annurev-pathmechdis-012418-012818] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence indicates that diet, nutrition, lifestyle, the environment, the microbiome, and other exogenous factors have pathogenic roles and also influence the genome, epigenome, transcriptome, proteome, and metabolome of tumor and nonneoplastic cells, including immune cells. With the need for big-data research, pathology must transform to integrate data science fields, including epidemiology, biostatistics, and bioinformatics. The research framework of molecular pathological epidemiology (MPE) demonstrates the strengths of such an interdisciplinary integration, having been used to study breast, lung, prostate, and colorectal cancers. The MPE research paradigm not only can provide novel insights into interactions among environment, tumor, and host but also opens new research frontiers. New developments-such as computational digital pathology, systems biology, artificial intelligence, and in vivo pathology technologies-will further transform pathology and MPE. Although it is necessary to address the rarity of transdisciplinary education and training programs, MPE provides an exemplary model of integrative scientific approaches and contributes to advancements in precision medicine, therapy, and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA;
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Mohammadi M, Ataei S, Ardalani K, Mehrpooya M. Evaluation of potential drug-drug interactions in patients with hematologic malignancies at a referral hematology–oncology hospital: A single-center experience. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2019. [DOI: 10.4103/jrptps.jrptps_67_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
El-Ashmawy NE, Al-Ashmawy GM, Kamel AA. Docosahexaenoic acid-flurbiprofen combination ameliorates metaflammation in rats fed on high-carbohydrate high-fat diet. Biomed Pharmacother 2018; 109:233-241. [PMID: 30396081 DOI: 10.1016/j.biopha.2018.10.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Potential benefits of combining docosahexaenoic acid (DHA), an omega-3 fatty acid with flurbiprofen (Flu), a non-steroidal anti-inflammatory drug in ameliorating obesity remain to be elucidated. This study aimed to investigate the possible protective effects of DHA and Flu, either alone or in combination, against obesity-induced metaflammation and to clarify the underlying molecular mechanisms. METHODS Seventy-five male Wistar rats were divided into five groups: normal diet (ND) group, high-carbohydrate high-fat diet (HCHFD) control group, DHA group (HCHFD + 200 mg/kg DHA), Flu group (HCHFD + 10 mg/kg Flu), and DHA + Flu group (HCHFD + DHA + Flu). Treatments were administered orally daily for 8 consecutive weeks, parallel with the start of diets. RESULTS Plasma levels of glucose, insulin, and TGs were significantly reduced in DHA, Flu, and DHA + Flu treated groups, while HDL-C concentrations were significantly elevated in the same groups, compared to HCHFD control group. Only Flu and DHA + Flu groups showed a significant decrease in plasma levels of leptin, TC, and LDL-C, relative to HCHFD control group. Concentrations of phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) and resolvin D1 (RvD1) in epididymal adipose tissue (EAT) were significantly increased in the three treated groups, compared with HCHFD control group. Expression of AMPK-α1 subunit in EAT was significantly increased, whereas expression of nuclear factor kappa B (NF-κB) was significantly decreased in EAT of the three treated groups, relative to HCHFD control group. CONCLUSIONS Docosahexaenoic acid-flurbiprofen combination showed an ameliorative effect on obesity-associated metaflammation and its consequences in rats.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| |
Collapse
|
36
|
Barnard ME, Hecht JL, Rice MS, Gupta M, Harris HR, Eliassen AH, Rosner BA, Terry KL, Tworoger SS. Anti-Inflammatory Drug Use and Ovarian Cancer Risk by COX1/COX2 Expression and Infiltration of Tumor-Associated Macrophages. Cancer Epidemiol Biomarkers Prev 2018; 27:1509-1517. [PMID: 30377203 DOI: 10.1158/1055-9965.epi-18-0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/16/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drug (NSAID) use may affect ovarian cancer risk via prostaglandin synthesis and tumor-associated macrophage (TAM) infiltration. We evaluated if associations between aspirin or non-aspirin NSAID use and ovarian cancer risk differed by tumor expression of prostaglandin-related (COX1, COX2) and TAM-related (CD68, CD163) markers. METHODS We evaluated cases and matched controls from the Nurses' Health Study (NHS), NHSII, and New England Case-Control Study (NECC). Cases with IHC data on COX1 and COX2 (n = 532) or CD68 and CD163 (n = 530) were included. We used polytomous logistic regression, adjusted for ovarian cancer risk factors, to estimate OR for NSAID use and ovarian cancer risk by marker level. RESULTS Recent aspirin use had a nonsignificant inverse association and recent non-aspirin NSAID use had no association with ovarian cancer risk. NSAID use was not differentially associated with ovarian cancer by COX1 or COX2 expression. However, recent aspirin use was associated with lower ovarian cancer risk for high [OR 0.54; 95% confidence interval (CI), 0.37-0.78], but not low (OR 1.50; 95% CI, 0.97-2.31), CD163 density (P heterogeneity < 0.001). Similar results were observed for aspirin duration and tablets and for recent non-aspirin NSAID use. Results were not clearly different by macrophage density defined by the less specific macrophage marker, CD68. CONCLUSIONS NSAID use was inversely associated with risk of ovarian cancer with high density CD163, a marker for M2-type, immunosuppressive macrophages. However, the relationship did not differ by prostaglandin synthesis markers. IMPACT Future research should explore prostaglandin-independent mechanisms for the association between NSAID use and ovarian cancer risk, including immune mechanisms.
Collapse
Affiliation(s)
- Mollie E Barnard
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Megan S Rice
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mamta Gupta
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
37
|
Nikolova I, Marinov L, Georgieva A, Toshkova R, Malchev M, Voynikov Y, Kostadinova I. Metamizole (dipyrone) – cytotoxic and antiproliferative effects on HeLa, HT-29 and MCF-7 cancer cell lines. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1511382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Irina Nikolova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Lyubomir Marinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Ani Georgieva
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Reneta Toshkova
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Martin Malchev
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka Kostadinova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
38
|
Ricon I, Hanalis-Miller T, Haldar R, Jacoby R, Ben-Eliyahu S. Perioperative biobehavioral interventions to prevent cancer recurrence through combined inhibition of β-adrenergic and cyclooxygenase 2 signaling. Cancer 2018; 125:45-56. [DOI: 10.1002/cncr.31594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Itay Ricon
- Psychoneuroimmunology Laboratory, School of Psychological Sciences; Tel Aviv University; Tel Aviv Israel
| | - Tsipi Hanalis-Miller
- Psychoneuroimmunology Laboratory, School of Psychological Sciences; Tel Aviv University; Tel Aviv Israel
| | - Rita Haldar
- Psychoneuroimmunology Laboratory, School of Psychological Sciences; Tel Aviv University; Tel Aviv Israel
| | - Rebecca Jacoby
- Medical Psychology Graduate Program, School of Behavioral Sciences; Tel Aviv-Yaffo Academic College; Tel Aviv Israel
| | - Shamgar Ben-Eliyahu
- Psychoneuroimmunology Laboratory, School of Psychological Sciences; Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience, Tel Aviv University; Israel
| |
Collapse
|
39
|
Verdoodt F, Dehlendorff C, Friis S, Kjaer SK. Non-aspirin NSAID use and ovarian cancer mortality. Gynecol Oncol 2018; 150:331-337. [PMID: 29960709 DOI: 10.1016/j.ygyno.2018.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Preclinical studies suggest that non-aspirin non-steroidal anti-inflammatory drugs (NSAIDs) may improve survival of ovarian cancer. We examined the association between non-aspirin NSAID use and ovarian cancer mortality. METHODS All women in Denmark with a first diagnosis of epithelial ovarian cancer between 2000 and 2012 were identified. We obtained information on drug use, mortality outcomes, and potential confounding factors from nationwide registries. Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between postdiagnosis non-aspirin NSAID use (≥1 prescription) and ovarian cancer-specific or other-cause mortality compared with non-use (no prescriptions). The influence of competing risks was evaluated using the sub-distribution hazards model proposed by Fine and Gray. RESULTS Among 4117 patients, any postdiagnosis use of non-aspirin NSAIDs was not associated with either ovarian cancer (HR = 0.97, 95% CI = 0.87-1.08) or other-cause (HR = 0.99, 95% CI = 0.77-1.27) mortality, however, inverse associations for ovarian cancer mortality were observed with high cumulative (HR = 0.75, 95% CI = 0.60-0.94) or high-intensity (HR = 0.86, 95% CI = 0.72-1.03) postdiagnosis use of non-aspirin NSAIDs. The associations differed substantially with histological subtype of ovarian cancer, with only inverse associations observed for serous ovarian cancer (HR = 0.87, 95% CI = 0.77-0.99). Among a smaller number of patients with a non-serous tumor, postdiagnosis non-aspirin NSAID use was associated with increased ovarian cancer mortality. CONCLUSIONS Any postdiagnosis use of non-aspirin NSAIDs did not influence ovarian cancer mortality overall, however, more intensive use was associated with improved survival of serous ovarian cancer.
Collapse
Affiliation(s)
- Freija Verdoodt
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christian Dehlendorff
- Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Søren Friis
- Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Susanne K Kjaer
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, Giovannucci EL, Nishihara R, Giannakis M, Garrett WS, Song M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 2018; 67:1168-1180. [PMID: 29437869 PMCID: PMC5943183 DOI: 10.1136/gutjnl-2017-315537] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy strategies targeting immune checkpoints such as the CTLA4 and CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) T-cell coreceptor pathways are revolutionising oncology. The approval of pembrolizumab use for solid tumours with high-level microsatellite instability or mismatch repair deficiency by the US Food and Drug Administration highlights promise of precision immuno-oncology. However, despite evidence indicating influences of exogenous and endogenous factors such as diet, nutrients, alcohol, smoking, obesity, lifestyle, environmental exposures and microbiome on tumour-immune interactions, integrative analyses of those factors and immunity lag behind. Immune cell analyses in the tumour microenvironment have not adequately been integrated into large-scale studies. Addressing this gap, the transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to integrate tumour immunology into population health sciences, and link the exposures and germline genetics (eg, HLA genotypes) to tumour and immune characteristics. Multilevel research using bioinformatics, in vivo pathology and omics (genomics, epigenomics, transcriptomics, proteomics and metabolomics) technologies is possible with use of tissue, peripheral blood circulating cells, cell-free plasma, stool, sputum, urine and other body fluids. This immunology-MPE model can synergise with experimental immunology, microbiology and systems biology. GI neoplasms represent exemplary diseases for the immunology-MPE model, given rich microbiota and immune tissues of intestines, and the well-established carcinogenic role of intestinal inflammation. Proof-of-principle studies on colorectal cancer provided insights into immunomodulating effects of aspirin, vitamin D, inflammatory diets and omega-3 polyunsaturated fatty acids. The integrated immunology-MPE model can contribute to better understanding of environment-tumour-immune interactions, and effective immunoprevention and immunotherapy strategies for precision medicine.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Gunaydin C, Bilge SS. Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian J Med 2018; 50:116-121. [PMID: 30002579 DOI: 10.5152/eurasianjmed.2018.0010] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used for their anti-inflammatory, analgesic, and antipyretic effects. NSAIDs generally work by blocking the production of prostaglandins (PGs) through the inhibition of two cyclooxygenase enzymes. PGs are key factors in many cellular processes, such as gastrointestinal cytoprotection, hemostasis and thrombosis, inflammation, renal hemodynamics, turnover of cartilage, and angiogenesis. Interest has grown in the various effects of NSAIDs during the last decade. Epidemiological studies have revealed the reduced risk of several cancer types and neurodegenerative diseases by prolonged use of NSAIDs. Recent advances in the understanding of the cellular and molecular mechanisms of NSAIDs will accelerate the processes of discovery and clinical implementation. This review summarizes the molecular mechanisms of NSAIDs on the body systems.
Collapse
Affiliation(s)
- Caner Gunaydin
- Department of Pharmacology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - S Sirri Bilge
- Department of Pharmacology, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| |
Collapse
|
42
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev 2018; 36:305-329. [PMID: 28752248 PMCID: PMC5557869 DOI: 10.1007/s10555-017-9683-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between coagulation and cancer development has been observed for centuries. However, the connection between inflammation and malignancy is also well-recognized. The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells. Therefore, the anticancer potential of anti-platelet therapy has been intensively investigated for many years. Anti-platelet agents may prevent cancer, decrease tumor growth, and metastatic potential, as well as improve survival of cancer patients. On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as "cancers follow bleeding." The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.
| | - Dominika Hempel
- Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA.,Departments of Chemistry, Wayne State University, Detroit, MI, 48202, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, 48202, USA
| |
Collapse
|
43
|
Baroni MD, Colombo S, Martegani E. Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:344-356. [PMID: 29992130 PMCID: PMC6035838 DOI: 10.15698/mic2018.07.640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Aspirin and its main metabolite salicylate are promising molecules in preventing cancer and metabolic diseases. S. cerevisiae cells have been used to study some of their effects: (i) salicylate induces the reversible inhibition of both glucose transport and the biosyntheses of glucose-derived sugar phosphates, (ii) Aspirin/salicylate causes apoptosis associated with superoxide radical accumulation or early cell necrosis in MnSOD-deficient cells growing in ethanol or in glucose, respectively. So, treatment with (acetyl)-salicylic acid can alter the yeast metabolism and is associated with cell death. We describe here the dramatic effects of salicylate on cellular control of the exit from a quiescence state. The growth recovery of long-term stationary phase cells was strongly inhibited in the presence of salicylate, to a degree proportional to the drug concentration. At high salicylate concentration, growth reactivation was completely repressed and associated with a dramatic loss of cell viability. Strikingly, both of these phenotypes were fully suppressed by increasing the cAMP signal without any variation of the exponential growth rate. Upon nutrient exhaustion, salicylate induced a premature lethal cell cycle arrest in the budded-G2/M phase that cannot be suppressed by PKA activation. We discuss how the dramatic antagonism between cAMP and salicylate could be conserved and impinge common targets in yeast and humans. Targeting quiescence of cancer cells with stem-like properties and their growth recovery from dormancy are major challenges in cancer therapy. If mechanisms underlying cAMP-salicylate antagonism will be defined in our model, this might have significant therapeutic implications.
Collapse
Affiliation(s)
| | - Sonia Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| | - Enzo Martegani
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| |
Collapse
|
44
|
Gungor H, Ilhan N, Eroksuz H. The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer. Biomed Pharmacother 2018; 102:221-229. [PMID: 29562216 DOI: 10.1016/j.biopha.2018.03.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is an important cause of cancer-related deaths worldwide. Early diagnosis and treatment of CRCs are of importance for improving the survival. In the present study, we studied the effects of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effects on tumor development incidence and angiogenesis in experimental CRC rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and two NSAIDs (celecoxib and diclofenac) were given orally as chemopreventive agents. Histopathological and immuno histochemical evaluations were performed in colorectal tissue samples, whereas angiogenesis parameters were studied in blood samples. Histopathological examination showed that adenocarcinoma (62.5%), dysplastic changes (31.25%) and inflammattory changes (6.25%) were detected in DMH group, whereas no pathological change was observed in control rats. In treatment groups, there was marked decrease in adenocarcinoma rate (30% and 10%, respectively). A significant increase was detected in MMP-2, MMP-9 levels and MMP-2/TIMP-2 ratio in DMH group as compared with controls and treatment groups. In immunohistochemical evaluations, there was an increase in intensity and extent of staining of MMP-2 and MMP-9 in DMH group as compared to controls and treatment groups. The decrease in celecoxib group was more prominent. Overall, it was concluded that NSAIDs, particularly cyclooxygenase-2 (COX-2) inhibitors, might have a protective effect on CRC development and slow down progression of tumor in a DMH-induced experimental cancer model. One of the possible mechanisms in the chemoprevention of colon cancer seems to be inhibition of angiogenesis by diclofenac and celecoxib.
Collapse
Affiliation(s)
- Hilal Gungor
- Department of Medical Biochemistry, Firat University, Medical Faculty, Elazig, Turkey
| | - Nevin Ilhan
- Department of Medical Biochemistry, Firat University, Medical Faculty, Elazig, Turkey.
| | - Hatice Eroksuz
- Department of Pathology, Firat University, Faculty of Veterinary Medicine, Elazig, Turkey
| |
Collapse
|
45
|
Galipeau PC, Oman KM, Paulson TG, Sanchez CA, Zhang Q, Marty JA, Delrow JJ, Kuhner MK, Vaughan TL, Reid BJ, Li X. NSAID use and somatic exomic mutations in Barrett's esophagus. Genome Med 2018; 10:17. [PMID: 29486792 PMCID: PMC5830331 DOI: 10.1186/s13073-018-0520-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been shown to protect against tetraploidy, aneuploidy, and chromosomal alterations in the metaplastic condition Barrett’s esophagus (BE) and to lower the incidence and mortality of esophageal adenocarcinoma (EA). The esophagus is exposed to both intrinsic and extrinsic mutagens resulting from gastric reflux, chronic inflammation, and exposure to environmental carcinogens such as those found in cigarettes. Here we test the hypothesis that NSAID use inhibits accumulation of point mutations/indels during somatic genomic evolution in BE. Methods Whole exome sequences were generated from 82 purified epithelial biopsies and paired blood samples from a cross-sectional study of 41 NSAID users and 41 non-users matched by sex, age, smoking, and continuous time using or not using NSAIDs. Results NSAID use reduced overall frequency of point mutations across the spectrum of mutation types, lowered the frequency of mutations even when adjusted for both TP53 mutation and smoking status, and decreased the prevalence of clones with high variant allele frequency. Never smokers who consistently used NSAIDs had fewer point mutations in signature 17, which is commonly found in EA. NSAID users had, on average, a 50% reduction in functional gene mutations in nine cancer-associated pathways and also had less diversity in pathway mutational burden compared to non-users. Conclusions These results indicate NSAID use functions to limit overall mutations on which selection can act and supports a model in which specific mutant cell populations survive or expand better in the absence of NSAIDs. Electronic supplementary material The online version of this article (10.1186/s13073-018-0520-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia C Galipeau
- Division of Human Biology, Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave N, Seattle, WA, 98109-1024, USA
| | - Kenji M Oman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave N, Seattle, WA, 98109-1024, USA
| | - Thomas G Paulson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave N, Seattle, WA, 98109-1024, USA
| | - Carissa A Sanchez
- Division of Human Biology, Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave N, Seattle, WA, 98109-1024, USA
| | - Qing Zhang
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA, 98109-1024, USA
| | - Jerry A Marty
- Genomics Shared Resource, Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA, 98109-1024, USA
| | - Jeffrey J Delrow
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA, 98109-1024, USA
| | - Mary K Kuhner
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Ave NE, Seattle, WA, 98195-5065, USA
| | - Thomas L Vaughan
- Department of Epidemiology, University of Washington, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA, 98109-1024, USA
| | - Brian J Reid
- Division of Human Biology, Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave N, Seattle, WA, 98109-1024, USA.,Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Ave NE, Seattle, WA, 98195-5065, USA.,Department of Medicine, University of Washington, Division of Human Biology, Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA, 98109-1024, USA
| | - Xiaohong Li
- Division of Human Biology, Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave N, Seattle, WA, 98109-1024, USA.
| |
Collapse
|
46
|
Lichtenberger LM, Phan T, Fang D, Dial EJ. Chemoprevention with phosphatidylcholine non-steroidal anti-inflammatory drugs in vivo and in vitro. Oncol Lett 2018; 15:6688-6694. [PMID: 29616131 DOI: 10.3892/ol.2018.8098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
The chemopreventive activity of non-steroidal anti-inflammatory drugs (NSAIDs), particularly aspirin, has been well demonstrated in preclinical and clinical studies. However, the primary side effect from this class of drug is gastrointestinal (GI) bleeding, which has limited the widespread use of NSAIDs for the prevention of cancer. The development of GI-safer NSAIDs, which are associated with phosphatidylcholine (PC) may provide a solution to this therapeutic problem. In the present study, the efficacy of two NSAIDs, aspirin and indomethacin, were compared using murine colon cancer cell line MC-26. Each NSAID was assessed alone and in combination with PC, using in vitro and in vivo systems. The results reveal that the PC-associated NSAIDs had a significantly higher degree of protection against cancer cell growth compared with the unmodified NSAIDs. It was also observed that Aspirin-PC and Indomethacin-PC prevented the metastatic spread of cancer cells in a syngeneic mouse model. These results support the potential use of PC-NSAIDs for the chemoprevention of colorectal cancer.
Collapse
Affiliation(s)
- Lenard M Lichtenberger
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Tri Phan
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Dexing Fang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Elizabeth J Dial
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
47
|
Mandracchia D, Trapani A, Perteghella S, Sorrenti M, Catenacci L, Torre ML, Trapani G, Tripodo G. pH-sensitive inulin-based nanomicelles for intestinal site-specific and controlled release of celecoxib. Carbohydr Polym 2018; 181:570-578. [DOI: 10.1016/j.carbpol.2017.11.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022]
|
48
|
Abstract
In this review, we address selected areas that are central to the state-of-the-art of cancer prevention science. The emphasis on prevention as a viable and critical approach to decreasing cancer mortality has gained traction in recent years, evidenced by its inclusion in the US Vice President's Cancer Initiative (also termed 'Moonshot'). Cancer prevention occurs by arresting, slowing down, or reversing the carcinogenic process before invasion into surrounding tissue or by avoiding or blocking causative exposure. An important challenge is to identify individuals who will benefit most from preventive interventions with the least possible harm. Preventive interventions range from avoiding known carcinogens (e.g., tobacco or asbestos) to intervening with anticarcinogenic strategies (behavioral modifications , such as diet and exercise; medications; nutritional agents; and vaccination against causative agents). Here, we focus on active intervention with measures involving pharmaceutical and immunological agents.
Collapse
Affiliation(s)
- Barbara K Dunn
- National Cancer Institute, Division of Cancer Prevention, 9609 Medical Center Drive, MSC 9787, Bethesda, MD 20892-9787, USA
| | - Barnett S Kramer
- National Cancer Institute, Division of Cancer Prevention, 9609 Medical Center Drive, MSC 9787, Bethesda, MD 20892-9787, USA
| |
Collapse
|
49
|
Moon HJ, Kim HB, Lee SH, Jeun SE, Kang CD, Kim SH. Sensitization of multidrug-resistant cancer cells to Hsp90 inhibitors by NSAIDs-induced apoptotic and autophagic cell death. Oncotarget 2018. [PMID: 29541415 PMCID: PMC5834263 DOI: 10.18632/oncotarget.24130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSAIDs (non-steroidal anti-inflammatory drugs) have potential use as anticancer agents, either alone or in combination with other cancer therapies. We found that NSAIDs including celecoxib (CCB) and ibuprofen (IBU) significantly potentiated the cytotoxicity of Hsp90 inhibitors in human multidrug-resistant (MDR) cells expressing high levels of mutant p53 (mutp53) protein and P-glycoprotein (P-gp), and reversed Hsp90 inhibitor resistance caused by activation of heat shock factor 1 (HSF1) and by up-regulation of heat shock proteins (Hsps) and P-gp. Inhibition of Akt/mTOR and STAT3 pathways by CCB induced autophagy, which promoted the degradation of mutp53, one of Hsp90 client proteins, and subsequently down-regulated HSF1/Hsps and P-gp. Inhibition of autophagy prevented mutp53 degradation and CCB-induced apoptosis, and inhibition of caspase-3-mediated apoptotic pathway by Z-DEVD-FMK did not completely block CCB-induced cell death in MDR cells, suggesting that autophagic and apoptotic cell death may contribute to CCB-induced cytotoxicity in MDR cells. Furthermore, CCB and IBU suppressed Hsp90 inhibitor-induced HSF1/Hsp70/P-gp activity and mutp53 expression in MDR cells. Our results suggest that NSAIDs can be used as potential Hsp90 inhibitor chemosensitizers and reverse resistance of MDR cells to Hsp90 inhibitors via induction of apoptosis and autophagy. These results might enable the use of lower, less toxic doses of Hsp90 inhibitors and facilitate the design of practically applicable, novel combination therapy for the treatment of MDR cancer.
Collapse
Affiliation(s)
- Hyun-Jung Moon
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Hak-Bong Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Su-Hoon Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - So-Eun Jeun
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| |
Collapse
|
50
|
Aspirin use and ovarian cancer mortality in a Danish nationwide cohort study. Br J Cancer 2018; 118:611-615. [PMID: 29315293 PMCID: PMC5830597 DOI: 10.1038/bjc.2017.449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Increasing data suggest that aspirin use may improve cancer survival; however, the evidence is sparse for ovarian cancer. METHODS We examined the association between postdiagnosis use of low-dose aspirin and mortality in a nationwide cohort of women with epithelial ovarian cancer between 2000 and 2012. Information on filled prescriptions of low-dose aspirin, dates and causes of death, and potential confounding factors was obtained from nationwide Danish registries. We used Cox regression models to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) for ovarian cancer-specific or other-cause mortality associated with low-dose aspirin use. RESULTS Among 4117 patients, postdiagnosis use of low-dose aspirin was associated with HRs of 1.02 (95% CI: 0.87-1.20) for ovarian cancer mortality and 1.06 (95% CI: 0.77-1.47) for other-cause mortality. Hazard ratios remained neutral according to patterns of low-dose aspirin use, including prediagnosis use or established mortality predictors. CONCLUSIONS Low-dose aspirin use did not reduce mortality among ovarian cancer patients.
Collapse
|