1
|
Lin CY, Chang MC, Kao CH. Comparing the Diagnostic Value of FDG PET or PET/CT With FDG PET/MR in Inflammatory Bowel Disease-A Systematic Review and Meta-analysis. Clin Nucl Med 2024; 49:e492-e500. [PMID: 38973081 DOI: 10.1097/rlu.0000000000005379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND The aim of this study was to compare the diagnostic value of 18 F-FDG PET or PET/CT with FDG PET/MR in patients with inflammatory bowel disease (IBD). METHODS A comprehensive search was performed in PubMed for studies reporting the diagnostic performance of FDG PET (PET/CT) and FDG PET/MR in IBD from the inception of the database to March 14, 2024, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Fourteen studies were included in this systematic review and meta-analysis. Pooled estimates of segment-based sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio for FDG PET (PET/CT) and FDG PET/MR were calculated alongside 95% confidence intervals. Summary receiver operating characteristic (SROC) curves were plotted, and the area under the SROC curve was determined alongside the Q * index. RESULTS The segment-based pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the SROC curve of FDG PET (PET/CT) for diagnosing IBD (9 studies) were 0.81, 0.86, 5.76, 0.22, 31.92, and 0.92, respectively. Those of FDG PET/MR (5 studies) were 0.78, 0.92, 10.97, 0.25, 51.79, and 0.95. There was no significant difference in the abilities of detecting or excluding IBD between FDG PET (PET/CT) and FDG PET/MR. CONCLUSIONS For diagnostic value in patients with IBD, there was no significant difference between FDG PET (PET/CT) and FDG PET/MR. Both FDG PET (PET/CT) and FDG PET/MR have demonstrated high diagnostic performance for accurate diagnosing in patients with IBD.
Collapse
Affiliation(s)
- Chun-Yi Lin
- From the Department of Nuclear Medicine, Changhua Christian Hospital, Changhua
| | - Ming-Che Chang
- From the Department of Nuclear Medicine, Changhua Christian Hospital, Changhua
| | | |
Collapse
|
2
|
Singh S, Singh R, Luthra S, Singla A, Tanvir F, Antaal H, Singh A, Singh H, Singh J, Kaur MS. Evolving Radiological Approaches in the Diagnosis and Monitoring of Arachnoiditis Ossificans. Cureus 2024; 16:e68399. [PMID: 39355477 PMCID: PMC11444744 DOI: 10.7759/cureus.68399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/03/2024] Open
Abstract
Arachnoiditis ossificans (AO) is a rare and complex neurological condition characterized by pathological calcification or ossification of the arachnoid membrane. Arachnoiditis ranks as the third most frequent cause of failed back surgery syndrome (FBSS). This narrative review explores the evolving radiological approaches in its diagnosis and monitoring. The historical perspective traces the progression from plain radiographs to advanced imaging techniques. Current radiological modalities, including X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), are discussed, highlighting their respective roles, advantages, and limitations. Emerging and advanced imaging modalities, such as high-resolution CT, 3T and 7T MRI, and PET/CT or PET/MRI, are examined for their potential to enhance diagnostic accuracy and monitoring capabilities. A comparative analysis of these imaging modalities considers their sensitivity, specificity, cost-effectiveness, and radiation exposure implications. The review also explores the crucial role of imaging in disease monitoring and treatment planning, including follow-up protocols, evaluation of disease progression, and guidance for interventional procedures. Future directions in the field are discussed, focusing on promising research areas, the potential of artificial intelligence and machine learning in image analysis, and identified gaps in current knowledge. The review emphasizes the importance of a multimodal imaging approach and the need for standardized protocols. It concludes that while significant advancements have been made, further research is necessary to fully understand the correlation between imaging findings and clinical outcomes. The continued evolution of radiological approaches is expected to significantly improve patient care and outcomes in AO.
Collapse
Affiliation(s)
- Sumerjit Singh
- Diagnostic Radiology, Government Medical College Amritsar, Amritsar, IND
| | - Ripudaman Singh
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Shivansh Luthra
- Medicine, Government Medical College Amritsar, Amritsar, IND
| | | | - Fnu Tanvir
- Internal Medicine, Government Medical College Amritsar, Amritsar, IND
| | - Harman Antaal
- Internal Medicine, Government Medical College Patiala, Patiala, IND
| | - Agamjit Singh
- Psychiatry, Punjab Institute of Medical Sciences, Jalandhar, IND
| | - Harmanjot Singh
- Internal Medicine, The White Medical College and Hospital, Bungal, IND
| | - Jaskaran Singh
- Internal Medicine, Sri Guru Ram Das University of Health Sciences and Research, Amritsar, IND
| | | |
Collapse
|
3
|
Liu M, Yao A, Li Z, Zhang J, Ren C, Sun Y, Ma G, Sun Y, Cheng J. Properties of [ 18F]FAPI monitoring of acute radiation pneumonia versus [ 18F]FDG in mouse models. Ann Nucl Med 2024; 38:360-368. [PMID: 38407800 PMCID: PMC11016509 DOI: 10.1007/s12149-024-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE In this study, the uptake characteristics of [18F]fibroblast activation protein inhibitor (FAPI) molecular imaging probe were investigated in acute radiation pneumonia and lung cancer xenografted mice before and after radiation to assess the future applicability of [18F]FAPI positron emission tomography/computed tomography (PET/CT) imaging in early radiotherapy response. METHODS Initially, the biodistribution of [18F]FAPI tracer in vivo were studied in healthy mice at each time-point. A comparison of [18F]FAPI and [18F]fluorodeoxyglucose (FDG) PET/CT imaging efficacy in normal ICR, LLC tumor-bearing mice was evaluated. A radiation pneumonia model was then investigated using a gamma counter, small animal PET/CT, and autoradiography. The uptake properties of [18F]FAPI in lung cancer and acute radiation pneumonia were investigated using autoradiography and PET/CT imaging in mice. RESULTS The tumor area was visible in [18F]FAPI imaging and the tracer was swiftly eliminated from normal tissues and organs. There was a significant increase of [18F]FDG absorption in lung tissue after radiotherapy compared to before radiotherapy, but no significant difference of [18F]FAPI uptake under the same condition. Furthermore, both the LLC tumor volume and the expression of FAP-ɑ decreased after thorax irradiation. Correspondingly, there was no notable [18F]FAPI uptake after irradiation, but there was an increase of [18F]FDG uptake in malignancies and lungs. CONCLUSIONS The background uptake of [18F]FAPI is negligible. Moreover, the uptake of [18F]FAPI may not be affected by acute radiation pneumonitis compared to [18F]FDG, which may be used to more accurately evaluate early radiotherapy response of lung cancer with acute radiation pneumonia.
Collapse
Affiliation(s)
- Mingyu Liu
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
- Department of Nuclear Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong Province, China
| | - An Yao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Zili Li
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Caiyue Ren
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yuyun Sun
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Guang Ma
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Yun Sun
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| | - Jingyi Cheng
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China.
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
| |
Collapse
|
4
|
Chaudhari AJ, Abdelhafez YG, Nardo L, Raychaudhuri SP. EXPLORing Arthritis with Total-body Positron Emission Tomography. Semin Musculoskelet Radiol 2023; 27:632-640. [PMID: 37935209 PMCID: PMC10689025 DOI: 10.1055/s-0043-1775746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Arthritis has significant adverse consequences on musculoskeletal tissues and often other organs of the body. Current methods for clinical evaluation of arthritis are suboptimal, and biomarkers that are objective and measurable indicators for monitoring of arthritis disease activity are in critical demand. Recently, total-body positron emission tomography (PET) has been developed that can collect imaging signals synchronously from the entire body at ultra-low doses and reduced scan times. These scanners have increased signal collection efficiency that overcomes several limitations of standard PET scanners in the evaluation of arthritis, and they may potentially provide biomarkers to assess local and systemic impact of the arthritis disease process. This article reviews current results from using total-body PET in the assessment of common arthritic conditions, and it outlines future opportunities and challenges.
Collapse
Affiliation(s)
| | - Yasser G. Abdelhafez
- Department of Radiology, University of California, Davis, Davis, California
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Lorenzo Nardo
- Department of Radiology, University of California, Davis, Davis, California
| | - Siba P. Raychaudhuri
- Department of Internal Medicine – Rheumatology, University of California, Davis, Davis, California
- Northern California Veterans Affairs Medical Center, Mather, California
| |
Collapse
|
5
|
Astrelina TA, Brunchukov VA, Kodina GE, Bubenshchikov VB, Larenkov AA, Lunev AS, Petrosova KA, Rastorgueva AA, Kobzeva IV, Usupzhanova DY, Nikitina VA, Malsagova KA, Kulikova LI, Samoilov AS, Pustovoyt VI. Biodistribution of Mesenchymal Stromal Cells Labeled with [ 89Zr]Zr-Oxine in Local Radiation Injuries in Laboratory Animals. Molecules 2023; 28:7169. [PMID: 37894647 PMCID: PMC10609482 DOI: 10.3390/molecules28207169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Tracking the migration pathways of living cells after their introduction into a patient's body is a topical issue in the field of cell therapy. Questions related to studying the possibility of long-term intravital biodistribution of mesenchymal stromal cells in the body currently remain open. METHODS Forty-nine laboratory animals were used in the study. Modeling of local radiation injuries was carried out, and the dynamics of the distribution of mesenchymal stromal cells labeled with [89Zr]Zr-oxine in the rat body were studied. RESULTS the obtained results of the labelled cell distribution allow us to assume that this procedure could be useful for visualization of local radiation injury using positron emission tomography. However, further research is needed to confirm this assumption. CONCLUSIONS intravenous injection leads to the initial accumulation of cells in the lungs and their subsequent redistribution to the liver, spleen, and kidneys. When locally injected into tissues, mesenchymal stromal cells are not distributed systemically in significant quantities.
Collapse
Affiliation(s)
- Tatiana A. Astrelina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Vitaliy A. Brunchukov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Galina E. Kodina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Viktor B. Bubenshchikov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Anton A. Larenkov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Aleksandr S. Lunev
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Kristina A. Petrosova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Anna A. Rastorgueva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Irina V. Kobzeva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Daria Y. Usupzhanova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Victoria A. Nikitina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | | | - Ludmila I. Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 119121 Moscow, Russia;
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 119991 Pushchino, Russia
| | - Alexander S. Samoilov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| |
Collapse
|
6
|
Tang JM, McClennan A, Liu L, Hadway J, Ronald JA, Hicks JW, Hoffman L, Anazodo UC. A Protocol for Simultaneous In Vivo Imaging of Cardiac and Neuroinflammation in Dystrophin-Deficient MDX Mice Using [ 18F]FEPPA PET. Int J Mol Sci 2023; 24:ijms24087522. [PMID: 37108685 PMCID: PMC10144317 DOI: 10.3390/ijms24087522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder caused by dystrophin loss-notably within muscles and the central neurons system. DMD presents as cognitive weakness, progressive skeletal and cardiac muscle degeneration until pre-mature death from cardiac or respiratory failure. Innovative therapies have improved life expectancy; however, this is accompanied by increased late-onset heart failure and emergent cognitive degeneration. Thus, better assessment of dystrophic heart and brain pathophysiology is needed. Chronic inflammation is strongly associated with skeletal and cardiac muscle degeneration; however, neuroinflammation's role is largely unknown in DMD despite being prevalent in other neurodegenerative diseases. Here, we present an inflammatory marker translocator protein (TSPO) positron emission tomography (PET) protocol for in vivo concomitant assessment of immune cell response in hearts and brains of a dystrophin-deficient mouse model [mdx:utrn(+/-)]. Preliminary analysis of whole-body PET imaging using the TSPO radiotracer, [18F]FEPPA in four mdx:utrn(+/-) and six wildtype mice are presented with ex vivo TSPO-immunofluorescence tissue staining. The mdx:utrn(+/-) mice showed significant elevations in heart and brain [18F]FEPPA activity, which correlated with increased ex vivo fluorescence intensity, highlighting the potential of TSPO-PET to simultaneously assess presence of cardiac and neuroinflammation in dystrophic heart and brain, as well as in several organs within a DMD model.
Collapse
Affiliation(s)
- Joanne M Tang
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Andrew McClennan
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jennifer Hadway
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - John A Ronald
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Justin W Hicks
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Lisa Hoffman
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Udunna C Anazodo
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
7
|
Griffin MT, Werner TJ, Alavi A, Revheim ME. The value of FDG-PET/CT imaging in the assessment, monitoring, and management of COVID-19. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:283. [PMID: 37008755 PMCID: PMC10040919 DOI: 10.1140/epjp/s13360-023-03797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/11/2023] [Indexed: 06/19/2023]
Abstract
The pathogenesis of Coronavirus Disease 2019 (COVID-19) involves cytokine-driven recruitment and accumulation of inflammatory cells at sites of infection. These activated neutrophils, monocytes, and effector T cells are highly glycolytic and thus appear as [18]F-labeled fluorodeoxyglucose (FDG) avid sites on positron emission tomography (PET) imaging. FDG-PET-computed tomography (FDG-PET/CT) is a highly sensitive modality for the detection, monitoring, and assessing response related to COVID-19 disease activity that holds significant clinical relevance. To date, concerns over cost, access, and undue radiation exposure have limited the use of FDG-PET/CT in COVID-19 to a small number of individuals where PET-based interventions were already indicated. In this review, we summarize the existing literature on the use of FDG-PET in the detection and monitoring of COVID-19 with particular focus on several areas of clinical relevance that warrant future research: (1) incidental early detection of subclinical COVID-19 in patients who have undergone FDG-PET for other underlying diseases, (2) standardized quantitative assessment of COVID-19 disease burden at specific points in time, and (3) analysis of FDG-PET/CT data leading to better characterization of COVID-19 pathogenesis. Employing FDG-PET/CT for these purposes may allow for the earliest detection of COVID-19-associated venous thromboembolism (VTE), standardized monitoring of disease progression and response to treatment, and better characterization of the acute and chronic complications of this disease.
Collapse
Affiliation(s)
- Matthew T. Griffin
- Drexel University College of Medicine, Philadelphia, PA USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Thomas J. Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Postbox 4950, 0424 Nydalen, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Postbox 1078, 0316 Blindern, Oslo, Norway
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Postbox 4950, 0424 Oslo, Norway
| |
Collapse
|
8
|
Applegate CC, Deng H, Kleszynski BL, Cross TWL, Konopka CJ, Dobrucki LW, Nelson ER, Wallig MA, Smith AM, Swanson KS. Impact of administration route on nanocarrier biodistribution in a murine colitis model. JOURNAL OF EXPERIMENTAL NANOSCIENCE 2022; 17:599-616. [PMID: 36968097 PMCID: PMC10038121 DOI: 10.1080/17458080.2022.2134563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/18/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing worldwide. Although current diagnostic and disease monitoring tests for IBD sensitively detect gut inflammation, they lack the molecular and cellular specificity of positron emission tomography (PET). In this proof-of-concept study, we use a radiolabeled macrophage-targeted nanocarrier probe (64Cu-NOTA-D500) administered by oral, enema, and intraperitoneal routes to evaluate the delivery route dependence of biodistribution across healthy and diseased tissues in a murine model of dextran sodium sulfate (DSS)-induced colitis. High inter-subject variability of probe uptake in intestinal tissue was reduced by normalization to uptake in liver or total intestines. Differences in normalized uptake between healthy and DSS colitis animal intestines were highest for oral and IP routes. Differences in absolute liver uptake reflected a possible secondary diagnostic metric of IBD pathology. These results should inform the preclinical development of inflammation-targeted contrast agents for IBD and related gut disorders to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Hongping Deng
- Department of Bioengineering, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Brittany L. Kleszynski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Tzu-Wen L. Cross
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | | | - L. Wawrzyniec Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Erik R. Nelson
- Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Matthew A. Wallig
- Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Andrew M. Smith
- Department of Bioengineering, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, Urbana, Illinois, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| | - Kelly S. Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana – Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Masanam HB, Perumal G, Krishnan S, Singh SK, Jha NK, Chellappan DK, Dua K, Gupta PK, Narasimhan AK. Advances and opportunities in nanoimaging agents for the diagnosis of inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:1981-2005. [PMID: 36695290 DOI: 10.2217/nnm-2021-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The development of rapid, noninvasive diagnostics to detect lung diseases is a great need after the COVID-2019 outbreak. The nanotechnology-based approach has improved imaging and facilitates the early diagnosis of inflammatory lung diseases. The multifunctional properties of nanoprobes enable better spatial-temporal resolution and a high signal-to-noise ratio in imaging. Targeted nanoimaging agents have been used to bind specific tissues in inflammatory lungs for early-stage diagnosis. However, nanobased imaging approaches for inflammatory lung diseases are still in their infancy. This review provides a solution-focused approach to exploring medical imaging technologies and nanoprobes for the detection of inflammatory lung diseases. Prospects for the development of contrast agents for lung disease detection are also discussed.
Collapse
Affiliation(s)
- Hema Brindha Masanam
- Advanced Nano-Theranostics (ANTs), Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Govindaraj Perumal
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Velappanchavadi, Chennai, 600 077, India.,Department of Biomedical Engineering, Rajalakshmi Engineering College, Thandalam, Chennai, 602 105, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences & Research (SBSR), Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India.,Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India.,Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Ashwin Kumar Narasimhan
- Advanced Nano-Theranostics (ANTs), Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603 203, India
| |
Collapse
|
10
|
Vaiopoulos A, Kanakis M, Vaiopoulos G, Samanidis G, Kaklamanis P. Giant Cell Arteritis: Focusing on Current Aspects From the Clinic to Diagnosis and Treatment. Angiology 2022:33197221130564. [PMID: 36164723 DOI: 10.1177/00033197221130564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Giant cell arteritis (GCA) is a granulomatous arteritis involving large arteries, particularly the aorta and its major proximal branches, including the carotid and temporal arteries. GCA involves individuals over 50 years old. The etiopathogenesis of GCA may involve a genetic background triggered by unknown environmental factors (eg infections), the activation of dendritic cells as well as inflammatory and vascular remodeling. However, its pathogenetic mechanism still remains unclear, although progress has been made in recent years. In the past, inflammatory markers and arterial biopsy were considered as gold standard for the diagnosis of GCA. However, emerging imaging methods have been made more sensitive and specific for the diagnosis of GCA. Treatment includes biological and other modalities including interleukin-6 (IL-6) inhibitors.
Collapse
Affiliation(s)
- Aristeidis Vaiopoulos
- 2nd Department of Dermatology and Venereology, 69038Attikon University General Hospital, Athens, Greece
| | - Meletios Kanakis
- Department of Pediatric and Congenital Heart Surgery, 69106Onassis Cardiac Surgery Center, Athens, Greece
| | - George Vaiopoulos
- Department of Physiology, Medical School, 68989National and Kapodistrian University of Athens, Athens, Greece
| | - George Samanidis
- First Department of Adult Cardiac Surgery, 69106Onassis Cardiac Surgery Center, Athens, Greece
| | | |
Collapse
|
11
|
Chandekar KR, Satapathy S, Singh H, Bhattacharya A. Molecular imaging as a tool for evaluation of COVID-19 sequelae – A review of literature. World J Radiol 2022; 14:194-208. [PMID: 36160629 PMCID: PMC9350609 DOI: 10.4329/wjr.v14.i7.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel viral pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 primarily involves the lungs. Nucleic acid testing based on reverse-transcription polymerase chain reaction of respiratory samples is the current gold standard for the diagnosis of SARS-CoV-2 infection. Imaging modalities have an established role in triaging, diagnosis, evaluation of disease severity, monitoring disease progression, extra-pulmonary involvement, and complications. As our understanding of the disease improves, there has been substantial evidence to highlight its potential for multi-systemic involvement and development of long-term sequelae. Molecular imaging techniques are highly sensitive, allowing non-invasive visualization of physiological or pathological processes at a cellular or molecular level with potential for detection of functional changes earlier than conventional radiological imaging. The purpose of this review article is to highlight the evolving role of molecular imaging in evaluation of COVID-19 sequelae. Though not ideal for diagnosis, the various modalities of molecular imaging play an important role in assessing pulmonary and extra-pulmonary sequelae of COVID-19. Perfusion imaging using single photon emission computed tomography fused with computed tomography (CT) can be utilized as a first-line imaging modality for COVID-19 related pulmonary embolism. 18F-fluorodeoxyglucose positron emission tomography (PET)/CT is a sensitive tool to detect multi-systemic inflammation, including myocardial and vascular inflammation. PET in conjunction with magnetic resonance imaging helps in better characterization of neurological sequelae of COVID-19. Despite the fact that the majority of published literature is retrospective in nature with limited sample sizes, it is clear that molecular imaging provides additional valuable information (complimentary to anatomical imaging) with semi-quantitative or quantitative parameters to define inflammatory burden and can be used to guide therapeutic strategies and assess response. However, widespread clinical applicability remains a challenge owing to longer image acquisition times and the need for adoption of infection control protocols.
Collapse
Affiliation(s)
- Kunal R Chandekar
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Swayamjeet Satapathy
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Harmandeep Singh
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anish Bhattacharya
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
12
|
Bai Z, Zhou T, Yu Z, Chen Y, Dong L. Clinical value of 18F-FDG PET/CT in IgG4-related disease. Ann Nucl Med 2022; 36:651-660. [PMID: 35604531 DOI: 10.1007/s12149-022-01749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the clinical value of 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in IgG4-related disease (IgG4-RD). METHODS Seventy two patients diagnosed with IgG4-RD who underwent PET/CT were included. Correlations between clinical variables and PET/CT findings were analyzed by Spearman's correlation test. Conventional radiology was compared to PET/CT to evaluate detection discrepancies. The detection ability of insidious organ involvement by PET/CT at disease onset was investigated. The utility value of PET/CT for the 2019 ACR/EULAR classification criteria was analyzed with the multivariate logistic analysis and ROC curve. RESULTS SUVmax of main involved organ was positively correlated with IgG4-RD Responder Index (IgG4-RD RI), serum and tissue IgG4 levels and IgG4/IgG ratio, serum eosinophils counts and number of involved organs, while negatively correlated with serum IgM levels. PET/CT was superior in detecting organ/tissue involvements including prostate, gastrointestinal tract and lung compared with conventional imaging. For patients with pancreato-hepato-biliary or head-neck involvements at onset, PET/CT showed superiority in detecting insidious lesions. Multivariate analysis showed that disease duration, multiple-organ involvement, SUVmax of main involved organ and mean SUVmax of all involved organs were significantly associated with the fulfillment of the 2019 ACR/EULAR classification criteria. ROC curves indicated that the cut-off value for SUVmax of main involved organ and mean SUVmax of all involved organs for fulfillment of the 2019 ACR/EULAR classification criteria for IgG4-RD were 4.1 and 3.5, respectively. CONCLUSION 18F-FDG PET/CT has potential capacity to monitor disease activity, evaluate organ involvements and assist in the classification criteria in IgG4-RD.
Collapse
Affiliation(s)
- Zhiqian Bai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095th Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Tianshu Zhou
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095th Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Zhihua Yu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Chen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095th Jiefang Avenue, Wuhan, 430022, Hubei, China.
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095th Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
13
|
Aarnio M, Fredrikson M, Lampa E, Sörensen J, Gordh T, Linnman C. Whiplash injuries associated with experienced pain and disability can be visualized with [11C]-D-deprenyl positron emission tomography and computed tomography. Pain 2022; 163:489-495. [PMID: 34232928 PMCID: PMC8832543 DOI: 10.1097/j.pain.0000000000002381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Knowledge of etiological mechanisms underlying whiplash-associated disorders is incomplete. Localisation and quantification of peripheral musculoskeletal injury and inflammation in whiplash-associated disorders would facilitate diagnosis, strengthen patients' subjective pain reports, and aid clinical decisions, all of which could lead to improved treatment. In this longitudinal observational study, we evaluated combined [11C]-D-deprenyl positron emission tomography and computed tomography after acute whiplash injury and at 6-month follow-up. Sixteen adult patients (mean age 33 years) with whiplash injury grade II were recruited at the emergency department. [11C]-D-deprenyl positron emission tomography and computed tomography, subjective pain levels, self-rated neck disability, and active cervical range of motion were recorded within 7 days after injury and again at 6-month follow-up. Imaging results showed possible tissue injuries after acute whiplash with an altered [11C]-D-deprenyl uptake in the cervical bone structures and facet joints, associated with subjective pain locale and levels, as well as self-rated disability. At follow-up, some patients had recovered and some showed persistent symptoms and reductions in [11C]-D-deprenyl uptake correlated to reductions in pain levels. These findings help identify affected peripheral structures in whiplash injury and strengthen the idea that positron emission tomography and computed tomography detectable organic lesions in peripheral tissue are relevant for the development of persistent pain and disability in whiplash injury.
Collapse
Affiliation(s)
- Mikko Aarnio
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, Sweden
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Lampa
- UCR, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- PET Centre, Department of Medical Imaging, Uppsala University Hospital, Sweden
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, Sweden
| | - Clas Linnman
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
14
|
Varani M, Galli F, Bentivoglio V, Signore A. Particles and nanoparticles in nuclear medicine: Basic principles and instrumentation. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Extracellular Matrix Components as Diagnostic Tools in Inflammatory Bowel Disease. BIOLOGY 2021; 10:biology10101024. [PMID: 34681123 PMCID: PMC8533508 DOI: 10.3390/biology10101024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary For decades, the extracellular matrix (ECM) has been defined as a structure component playing a rather neglected role in the human body. In recent years, research has shed light on the role of ECM within cellular processes, including proliferation, migration and differentiation, as well as in inflammation. In inflammation, ECM composition is constantly being remodeled and undergoes dynamic and rapid changes. Tracking these changes could serve as a novel diagnostic tool. Inflammatory bowel disease is accompanied by complications such as fibrosis, stenosis and fistulas. All of these structural complications involve excessive synthesis or degradation of ECM. With this review, we explored whether the analysis of ECM composition can be of support in diagnosing inflammatory bowel disease and whether changes within ECM can help to predict a complicated disease course early on. Abstract Work from the last years indicates that the extracellular matrix (ECM) plays a direct role in various cellular processes, including proliferation, migration and differentiation. Besides homeostatic processes, its regulatory function in inflammation becomes more and more evident. In inflammation, such as inflammatory bowel disease, the ECM composition is constantly remodeled, and this can result in a structuring of fistulizing disease course. Thus, tracking early ECM changes might bear the potential to predict the disease course. In this review, we provide an overview of relevant diagnostic methods, focusing on ECM changes.
Collapse
|
16
|
Wahl RL, Dilsizian V, Palestro CJ. At Last, 18F-FDG for Inflammation and Infection! J Nucl Med 2021; 62:1048-1049. [PMID: 33893189 DOI: 10.2967/jnumed.121.262446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/27/2023] Open
Affiliation(s)
- Richard L Wahl
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri;
| | - Vasken Dilsizian
- University of Maryland School of Medicine, Baltimore, Maryland; and
| | | |
Collapse
|
17
|
Bayer AS, Chambers HF. Prosthetic Valve Endocarditis Diagnosis and Management- New Paradigm Shift Narratives. Clin Infect Dis 2021; 72:1687-1692. [PMID: 33458755 DOI: 10.1093/cid/ciab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Prosthetic valve endocarditis (PVE) is a major infectious disease problem due to the increasing numbers of patients undergoing valve replacement surgery. PVE can present diagnostic difficulties echocardiographically, especially when complicating transvascular placement techniques. Moreover, outbreaks of unusual PVE pathogens, such as Mycobacterium chimaera, have presented major diagnostic and therapeutic dilemmas.
Collapse
Affiliation(s)
- Arnold S Bayer
- The Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Henry F Chambers
- The Department of Medicine, Division of HIV, Infectious Diseases and Global Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco School of Medicine, San Francisco, California, USA
| |
Collapse
|
18
|
Córdoba-Adaya JC, Oros-Pantoja R, Torres-García E, Morales-Ávila E, Aranda-Lara L, Santillán-Benítez JG, Hernández-Herrera NO, Otero G, Isaac-Olivé K. Evaluation of doxorubicin-induced early multi-organ toxicity in male CD1 mice by biodistribution of 18F-FDG and 67Ga-citrate. Pilot study. Toxicol Mech Methods 2021; 31:546-558. [PMID: 34057017 DOI: 10.1080/15376516.2021.1937420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The search for methods that identify early toxicity, induced by chemotherapy, is urgent. Changes in the biodistribution of radiopharmaceuticals could give information on early toxicity. Ten-week-old CD1 male mice were divided into four groups. Two groups were administered a weekly dose of 5 mg/kg of doxorubicin hydrochloride (DOX) for 5 weeks and the control groups were administered saline solution. One week after the end of treatment, the biodistribution of 18F-FDG and 67Ga-citrate were carried out, as was the quantification of plasma enzymes CK, CK-MB, LDH and AST. All enzymes were higher in the treated animals, but only significant (p < 0.05) in the case of CK-MB. 18F-FDG uptake increased in all organs of treated animals except retroperitoneal fat, being significant in spleen, brain, heart, liver, lung, kidney, and inguinal fat. 67Ga-citrate had a more complex pattern. The uptake in the DOX group was higher in spleen, lung, kidney, testes, and gonadal fat, it did not change in brain, heart, and liver, and it was lower in the rest of the organs. It only showed significant differences in lung and pancreas. A thorough discussion of the possible causes that produced the change in biodistributions of both radiopharmaceuticals is included. The pilot study showed that both radiopharmaceuticals could identify early multi-organ toxicity induced by DOX. Although 18F-FDG seems to be better, 67Ga-citrato should not be ruled out a priori. The detection of early toxicity would serve to adopt treatments that prevent its progression, thus improving patient's quality of life.
Collapse
Affiliation(s)
- Julio César Córdoba-Adaya
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Rigoberto Oros-Pantoja
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Enrique Morales-Ávila
- Laboratorio de Farmacia y Toxicología, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Jonnathan G Santillán-Benítez
- Laboratorio de Farmacia y Toxicología, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Gloria Otero
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
19
|
Ke L, Wang L, Yu J, Meng X. Prognostic Significance of SUVmax Combined With Lactate Dehydrogenase in Advanced Lung Cancer Patients Treated With Immune Checkpoint Inhibitor Plus Chemotherapy: A Retrospective Study. Front Oncol 2021; 11:652312. [PMID: 34094942 PMCID: PMC8171668 DOI: 10.3389/fonc.2021.652312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose This research aims to investigate the predictive capacity of PET/CT quantitative parameters combined with haematological parameters in advanced lung cancer patients treated with immune checkpoint inhibitor (ICI) plus chemotherapy. Methods A total of 120 patients who underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) were enrolled before therapy. The following parameters were calculated: the maximum, mean, and peak standardized uptake value (SUVmax, SUVmean, and SUVpeak, respectively); total tumour volume (MTV) and total lesion glycolysis (TLG); and whole-body metabolic values (MTVwb, TLGwb, SUVmeanwb, and SUVmaxwb). Lactate dehydrogenase (LDH) levels, absolute neutrophil count, absolute platelet count, albumin levels and derived neutrophil to lymphocyte ratio (dNLR) were also computed. The associations between the variables and therapy outcome (evaluated by iRECIST) were analyzed. Results Based on iRECIST, 32 of 120 patients showed iPD, 43 iSD, 36 iPR and 9 iCR. Multivariate analysis found that SUVmax, MTVwb, LDH and absolute platelet count were associated with treatment response (P =0.015, P =0.005, P <0.001 and P =0.015, respectively). Kaplan-Meier survival analyses showed that SUVmax ≥11.42 and LDH ≥245 U/L were associated with shorter OS (P = 0.001 and P = 0.004, respectively). Multivariate Cox regression revealed that SUVmax and LDH alone were not correlated with survival prognosis (p>0.05), but the combination of SUVmax and LDH was independently associated with OS (P=0.015, P=0.001, respectively). The median survival time (MST) for the low (LDH<245 and SUVmax<11.42), intermediate(LDH<245 or SUVmax<11.42), and high(SUVmax≥11.42 and LDH≥245) groups was 24.10 months (95% CI: 19.43 to 28.77), 17.41 months (95% CI: 15.83 to 18.99), and 13.76 months (95% CI: 12.51 to 15.02), respectively. Conclusion This study identified that SUVmax plus LDH correlated with the survival outcome in patients with advanced lung cancer receiving PD-1/PD-L1 blockade plus chemotherapy.
Collapse
Affiliation(s)
- Linping Ke
- Department of Clinical Medicine, Weifang Medical University, Weifang, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lu Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Radiation Oncology, School of Medicine, Shandong University, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
20
|
The critical role of FDG-PET/CT imaging in assessing systemic manifestations of COVID-19 infection. Eur J Nucl Med Mol Imaging 2021; 48:956-962. [PMID: 33416953 PMCID: PMC7791152 DOI: 10.1007/s00259-020-05148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Peñate Medina T, Kolb JP, Hüttmann G, Huber R, Peñate Medina O, Ha L, Ulloa P, Larsen N, Ferrari A, Rafecas M, Ellrichmann M, Pravdivtseva MS, Anikeeva M, Humbert J, Both M, Hundt JE, Hövener JB. Imaging Inflammation - From Whole Body Imaging to Cellular Resolution. Front Immunol 2021; 12:692222. [PMID: 34248987 PMCID: PMC8264453 DOI: 10.3389/fimmu.2021.692222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Imaging techniques have evolved impressively lately, allowing whole new concepts like multimodal imaging, personal medicine, theranostic therapies, and molecular imaging to increase general awareness of possiblities of imaging to medicine field. Here, we have collected the selected (3D) imaging modalities and evaluated the recent findings on preclinical and clinical inflammation imaging. The focus has been on the feasibility of imaging to aid in inflammation precision medicine, and the key challenges and opportunities of the imaging modalities are presented. Some examples of the current usage in clinics/close to clinics have been brought out as an example. This review evaluates the future prospects of the imaging technologies for clinical applications in precision medicine from the pre-clinical development point of view.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| | - Jan Philip Kolb
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Gießen, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Oula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Institute for Experimental Cancer Research (IET), University of Kiel, Kiel, Germany
| | - Linh Ha
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), University of Lübeck, Lübeck, Germany
| | - Mark Ellrichmann
- Interdisciplinary Endoscopy, Medical Department1, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mariia Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| |
Collapse
|
22
|
FDG PET/CT Suggesting Pulmonary Artery Involvement of Takayasu Arteritis. Clin Nucl Med 2020; 45:732-734. [PMID: 32604110 DOI: 10.1097/rlu.0000000000003149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pulmonary artery involvement can occur in about half of the patients suffering Takayasu arteritis. Increased FDG activity in the aorta and its main branches in patients with Takayasu arteritis on PET/CT had been well-reported. However, the FDG PET/CT appearance of pulmonary artery involvement in Takayasu arteritis is less known. We present FDG PET/CT findings in a 37-year-old patient with known Takayasu arteritis. The images showed rim-like FDG activity in opacities in the left lung, which was later proven due to narrowed left main pulmonary artery.
Collapse
|
23
|
Müller C, Schibli R, Maurer B. Can Nuclear Imaging of Activated Macrophages with Folic Acid-Based Radiotracers Serve as a Prognostic Means to Identify COVID-19 Patients at Risk? Pharmaceuticals (Basel) 2020; 13:ph13090238. [PMID: 32916949 PMCID: PMC7559490 DOI: 10.3390/ph13090238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Herein, we discuss the potential role of folic acid-based radiopharmaceuticals for macrophage imaging to support clinical decision-making in patients with COVID-19. Activated macrophages play an important role during coronavirus infections. Exuberant host responses, i.e., a cytokine storm with increase of macrophage-related cytokines, such as TNFα, IL-1β, and IL-6 can lead to life-threatening complications, such as acute respiratory distress syndrome (ARDS), which develops in approximately 20% of the patients. Diverse immune modulating therapies are currently being tested in clinical trials. In a preclinical proof-of-concept study in experimental interstitial lung disease, we showed the potential of 18F-AzaFol, an 18F-labeled folic acid-based radiotracer, as a specific novel imaging tool for the visualization and monitoring of macrophage-driven lung diseases. 18F-AzaFol binds to the folate receptor-beta (FRβ) that is expressed on activated macrophages involved in inflammatory conditions. In a recent multicenter cancer trial, 18F-AzaFol was successfully and safely applied (NCT03242993). It is supposed that the visualization of activated macrophage-related disease processes by folate radiotracer-based nuclear imaging can support clinical decision-making by identifying COVID-19 patients at risk of a severe disease progression with a potentially lethal outcome.
Collapse
Affiliation(s)
- Cristina Müller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.M.); (R.S.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.M.); (R.S.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Britta Maurer
- Center for Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-255-22-66
| |
Collapse
|
24
|
Kubínová K, Mann H, Vrána J, Vencovský J. How Imaging Can Assist with Diagnosis and Monitoring of Disease in Myositis. Curr Rheumatol Rep 2020; 22:62. [DOI: 10.1007/s11926-020-00939-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Copper Coordination Compounds as Biologically Active Agents. Int J Mol Sci 2020; 21:E3965. [PMID: 32486510 PMCID: PMC7312030 DOI: 10.3390/ijms21113965] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022] Open
Abstract
Copper-containing coordination compounds attract wide attention due to the redox activity and biogenicity of copper ions, providing multiple pathways of biological activity. The pharmacological properties of metal complexes can be fine-tuned by varying the nature of the ligand and donor atoms. Copper-containing coordination compounds are effective antitumor agents, constituting a less expensive and safer alternative to classical platinum-containing chemotherapy, and are also effective as antimicrobial, antituberculosis, antimalarial, antifugal, and anti-inflammatory drugs. 64Сu-labeled coordination compounds are promising PET imaging agents for diagnosing malignant pathologies, including head and neck cancer, as well as the hallmark of Alzheimer's disease amyloid-β (Aβ). In this review article, we summarize different strategies for possible use of coordination compounds in the treatment and diagnosis of various diseases, and also various studies of the mechanisms of antitumor and antimicrobial action.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexey Naumov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Dmitry Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
- Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad’ 9, 125047 Moscow, Russia
| |
Collapse
|
26
|
Tana M, di Carlo S, Romano M, Alessandri M, Schiavone C, Montagnani A. FDG-PET/CT Assessment of Pulmonary Sarcoidosis: A Guide for Internists. Curr Med Imaging 2020; 15:21-25. [PMID: 31964323 DOI: 10.2174/1573405614666180528101755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/03/2017] [Accepted: 04/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND 18F-fluorodeoxyglucose positron emission tomography integrated with computed tomography (18-F-FDG-PET/CT) is getting wide consensus in the diagnosis and staging of neoplastic disorders and represents a useful tool in the assessment of various inflammatory conditions. DISCUSSION Sarcoidosis is an uncommon disease characterized by the systemic formation of noncaseating granulomas. Lungs are the sites most often affected, and investigation with high resolution computed tomography and biopsy is essential to achieve a correct diagnosis. 18-F-FDGPET/ CT is effective in the assessment of pulmonary sarcoidosis by demonstrating pulmonary and extrathoracic involvement and findings correlate well with pulmonary function in patients affected. CONCLUSION This review would illustrate the usefulness and limits of 18-F-FDG-PET/CT in the assessment of pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Marco Tana
- Internal Medicine Unit, USL Sudest Toscana, Grosseto, Italy
| | | | | | | | - Cosima Schiavone
- Department of Internistic Ultrasound, G. D'Annunzio University, Chieti, Italy
| | | |
Collapse
|
27
|
Maccarone MT. FDG-PET Scan in Sarcoidosis: Clinical and Imaging Indications. Curr Med Imaging 2020; 15:4-9. [PMID: 31964321 DOI: 10.2174/1573405614666180626120832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/03/2017] [Accepted: 04/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sarcoidosis is an unknown etiology multisystem inflammatory disease in which noncaseating granulomas (a collections of inflammatory cells) form and grow in various organs, involving predominantly lungs, intrathoracic lymph node, skin and eyes. It most commonly affects patients between 20 and 40 years old of age but it could be observed at any age (female predominance; rare in Asians). DISCUSSION The areas of the body usually affected by sarcoidosis are lungs, skin, or lymph nodes; pulmonary and mediastinal involvement is seen in over of 90% of patients. Less commonly eyes, liver, heart, and brain are involved. Any organ, however, can be affected. Early diagnosis of sarcoidosis can be difficult due to few signs and symptoms in its early stages, and when disease does occur, it may mimic other pathologies, and is made up with chest X-ray, Computed Tomography (CT)-High Resolution CT (HRCT), gallium scans. Fluoro-Deoxy Glucose- Positron Emission Tomography (FDG-PET) is another useful tool to assess the extent of disease and has a potential to evaluate the clinical management of patients responding or not to the treatment. CONCLUSION In this review, we would summarize in brief the clinical indications of PDG-PET in sarcoidosis and report the imaging features of the main organs involved in this disease.
Collapse
Affiliation(s)
- Marica T Maccarone
- AUSL Pescara- Radiology Division, Spirito Santo Hospital Pescara, Pescara, Italy
| |
Collapse
|
28
|
Schniering J, Benešová M, Brunner M, Haller S, Cohrs S, Frauenfelder T, Vrugt B, Feghali-Bostwick C, Schibli R, Distler O, Müller C, Maurer B. 18F-AzaFol for Detection of Folate Receptor-β Positive Macrophages in Experimental Interstitial Lung Disease-A Proof-of-Concept Study. Front Immunol 2019; 10:2724. [PMID: 31824505 PMCID: PMC6883947 DOI: 10.3389/fimmu.2019.02724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Interstitial lung disease (ILD) is a common and severe complication in rheumatic diseases. Folate receptor-β is expressed on activated, but not resting macrophages which play a key role in dysregulated tissue repair including ILD. We therefore aimed to pre-clinically evaluate the potential of 18F-AzaFol-based PET/CT (positron emission computed tomography/computed tomography) for the specific detection of macrophage-driven pathophysiologic processes in experimental ILD. Methods: The pulmonary expression of folate receptor-β was analyzed in patients with different subtypes of ILD as well as in bleomycin (BLM)-treated mice and respective controls using immunohistochemistry. PET/CT was performed at days 3, 7, and 14 after BLM instillation using the 18F-based folate radiotracer 18F-AzaFol. The specific pulmonary accumulation of the radiotracer was assessed by ex vivo PET/CT scans and quantified by ex vivo biodistribution studies. Results: Folate receptor-β expression was 3- to 4-fold increased in patients with fibrotic ILD, including idiopathic pulmonary fibrosis and connective tissue disease-related ILD, and significantly correlated with the degree of lung remodeling. A similar increase in the expression of folate receptor-β was observed in experimental lung fibrosis, where it also correlated with disease extent. In the mouse model of BLM-induced ILD, pulmonary accumulation of 18F-AzaFol reflected macrophage-related disease development with good correlation of folate receptor-β positivity with radiotracer uptake. In the ex vivo imaging and biodistribution studies, the maximum lung accumulation was observed at day 7 with a mean accumulation of 1.01 ± 0.30% injected activity/lung in BLM-treated vs. control animals (0.31 ± 0.06% % injected activity/lung; p < 0.01). Conclusion: Our preclinical proof-of-concept study demonstrated the potential of 18F-AzaFol as a novel imaging tool for the visualization of macrophage-driven fibrotic lung diseases.
Collapse
Affiliation(s)
- Janine Schniering
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Matthias Brunner
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie Haller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Bart Vrugt
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Britta Maurer
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Positron emission tomography (PET) combined with computed tomography (CT) has proven useful as a cancer screening technique in patients with inflammatory myopathy, mainly dermatomyositis. In this review, we focus on advances in this direction and other potential applications of PET/CT in patients with inflammatory myopathy. RECENT FINDINGS Cancer screening by PET/CT seems suitable and cost-effective in patients with myositis. It has also shown value as a hybrid technique for diagnosing myositis versus controls and could be of interest for differentiating between polymyositis and sporadic inclusion body myositis. Quantification of muscle activity by PET/CT seems reliable. Preliminary data suggest that it could also be used to diagnose and measure the activity of the disease in the lung. PET/CT should be in the toolbox of physicians managing patients with myositis. The multiple applications of PET/CT include its value for cancer screening, measuring the activity of the disease in muscle, and helping to differentiate between myositis phenotypes. The possibility to diagnose and monitor inflammatory lung activity remains to be demonstrated in well-designed studies.
Collapse
|
30
|
An update on the unparalleled impact of FDG-PET imaging on the day-to-day practice of medicine with emphasis on management of infectious/inflammatory disorders. Eur J Nucl Med Mol Imaging 2019; 47:18-27. [DOI: 10.1007/s00259-019-04490-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
|
31
|
Motegi SI, Fujiwara C, Sekiguchi A, Hara K, Yamaguchi K, Maeno T, Higuchi T, Hirasawa H, Kodaira S, Tomonaga H, Tsushima Y, Ishikawa O. Clinical value of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography for interstitial lung disease and myositis in patients with dermatomyositis. J Dermatol 2019; 46:213-218. [PMID: 30614031 DOI: 10.1111/1346-8138.14758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
18 F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is usually used to screen malignancy in patients with dermatomyositis (DM). Additionally, it is well known that FDG-PET/CT provides valuable information for evaluating the activity of several inflammatory diseases, such as sarcoidosis, atherosclerosis, inflammatory bowel disease and rheumatoid arthritis. Therefore, the objective of this study was to evaluate the clinical usefulness of FDG-PET/CT for the detection of inflammatory lesions and disease activity of both myopathy and interstitial lung disease (ILD) in DM patients. We measured the maximum standardized uptake value (SUVmax) in the muscles and lungs in 22 DM patients, and compared with magnetic resonance imaging (MRI) and high-resolution computed tomography (HRCT) findings in the same muscle and lung regions as well as with clinical findings. We found that the location of increased FDG uptake was nearly consistent with the region of ILD and myositis detected by HRCT or MRI, respectively. There was a significant positive correlation between lung HRCT score and SUVmax in each lung. Serum Krebs von den Lungen-6 levels also revealed significant positive correlation with total SUVmax of right and left lungs. Regarding FDG-PET/CT and myopathy, total SUVmax in the muscles was significantly correlated with serum cytokeratin levels. Our results suggest that FDG uptake (SUVmax) might be useful for not only the detection of malignant tumors, but also the evaluation of the location and activity of ILD and myositis in DM patients.
Collapse
Affiliation(s)
- Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenichiro Hara
- Department of Allergy Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koichi Yamaguchi
- Department of Allergy Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshitaka Maeno
- Department of Allergy Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiromi Hirasawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sayaka Kodaira
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroyasu Tomonaga
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
32
|
Alavi A, Werner TJ, Høilund-Carlsen PF. What can be and what cannot be accomplished with PET to detect and characterize atherosclerotic plaques. J Nucl Cardiol 2018; 25:2012-2015. [PMID: 28695405 DOI: 10.1007/s12350-017-0977-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
33
|
Schniering J, Benešová M, Brunner M, Haller S, Cohrs S, Frauenfelder T, Vrugt B, Feghali-Bostwick CA, Schibli R, Distler O, Mueller C, Maurer B. Visualisation of interstitial lung disease by molecular imaging of integrin αvβ3 and somatostatin receptor 2. Ann Rheum Dis 2018; 78:218-227. [PMID: 30448769 DOI: 10.1136/annrheumdis-2018-214322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate integrin αvβ3 (alpha-v-beta-3)-targeted and somatostatin receptor 2 (SSTR2)-targeted nuclear imaging for the visualisation of interstitial lung disease (ILD). METHODS The pulmonary expression of integrin αvβ3 and SSTR2 was analysed in patients with different forms of ILD as well as in bleomycin (BLM)-treated mice and respective controls using immunohistochemistry. Single photon emission CT/CT (SPECT/CT) was performed on days 3, 7 and 14 after BLM instillation using the integrin αvβ3-targeting 177Lu-DOTA-RGD and the SSTR2-targeting 177Lu-DOTA-NOC radiotracer. The specific pulmonary accumulation of the radiotracers over time was assessed by in vivo and ex vivo SPECT/CT scans and by biodistribution studies. RESULTS Expression of integrin αvβ3 and SSTR2 was substantially increased in human ILD regardless of the subtype. Similarly, in lungs of BLM-challenged mice, but not of controls, both imaging targets were stage-specifically overexpressed. While integrin αvβ3 was most abundantly upregulated on day 7, the inflammatory stage of BLM-induced lung fibrosis, SSTR2 expression peaked on day 14, the established fibrotic stage. In agreement with the findings on tissue level, targeted nuclear imaging using SPECT/CT specifically detected both imaging targets ex vivo and in vivo, and thus visualised different stages of experimental ILD. CONCLUSION Our preclinical proof-of-concept study suggests that specific visualisation of molecular processes in ILD by targeted nuclear imaging is feasible. If transferred into clinics, where imaging is considered an integral part of patients' management, the additional information derived from specific imaging tools could represent a first step towards precision medicine in ILD.
Collapse
Affiliation(s)
- Janine Schniering
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Matthias Brunner
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie Haller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Bart Vrugt
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Carol A Feghali-Bostwick
- Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Cristina Mueller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Britta Maurer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Moghbel M, Al-Zaghal A, Werner TJ, Constantinescu CM, Høilund-Carlsen PF, Alavi A. The Role of PET in Evaluating Atherosclerosis: A Critical Review. Semin Nucl Med 2018; 48:488-497. [DOI: 10.1053/j.semnuclmed.2018.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Alavi A, Høilund-Carlsen PF. Letter from the Guest Editors. Semin Nucl Med 2018; 48:485-487. [PMID: 30322474 DOI: 10.1053/j.semnuclmed.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104.
| | | |
Collapse
|
36
|
Al-Zaghal A, Raynor WY, Seraj SM, Werner TJ, Alavi A. FDG-PET imaging to detect and characterize underlying causes of fever of unknown origin: an unavoidable path for the foreseeable future. Eur J Nucl Med Mol Imaging 2018; 46:2-7. [DOI: 10.1007/s00259-018-4164-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Schniering J, Guo L, Brunner M, Schibli R, Ye S, Distler O, Béhé M, Maurer B. Evaluation of 99mTc-rhAnnexin V-128 SPECT/CT as a diagnostic tool for early stages of interstitial lung disease associated with systemic sclerosis. Arthritis Res Ther 2018; 20:183. [PMID: 30115119 PMCID: PMC6097327 DOI: 10.1186/s13075-018-1681-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background Given the need for early detection of organ involvement in systemic sclerosis, we evaluated 99mTc-rhAnnexin V-128 for the detection of early stages of interstitial lung disease (ILD) in respective animal models using single photon emission computed tomography (SPECT/CT). Methods In bleomycin (BLM)-challenged mice, fos-related antigen 2 (Fra-2) transgenic (tg) mice and respective controls, lung injury was evaluated by analysis of hematoxylin and eosin (HE) and Sirius red staining, with semi-quantification of fibrosis by the Ashcroft score. Apoptotic cells were identified by TUNEL assay, cleaved caspase 3 staining and double staining with specific cell markers. To detect early stages of lung remodeling by visualization of apoptosis, mice were injected intravenously with 99mTc-rhAnnexin V-128 and imaged by small animal SPECT/CT. For confirmation, biodistribution and ex vivo autoradiography studies were performed. Results In BLM-induced lung fibrosis, inflammatory infiltrates occurred as early as day 3 with peak at day 7, whereas pulmonary fibrosis developed from day 7 and was most pronounced at day 21. In accordance, the number of apoptotic cells was highest at day 3 compared with saline controls and then decreased over time. Epithelial cells (E-cadherin+) and inflammatory cells (CD45+) were the primary cells undergoing apoptosis in the earliest remodeling stages of experimental ILD. This was also true in the pathophysiologically different Fra-2 tg mice, where apoptosis of CD45+ cells occurred in the inflammatory stage. In accordance with the findings on tissue level, at day 3 in the BLM and at week 16 in the Fra-2 tg model, biodistribution and/or ex vivo autoradiography showed increased pulmonary uptake of 99mTc-rhAnnexin V-128 compared with controls. However, accumulation of the radiotracer and thus the signal intensity in lungs was too low to allow the differentiation of healthy and injured lungs in vivo. Conclusion At the tissue level, 99mTc-rhAnnexin V-128 successfully demonstrated early stages of ILD in two animal models by detection of apoptotic epithelial and/or inflammatory cells. In vivo, however, we did not detect early lung injury. It remains to be investigated whether the same applies to human ILD. Electronic supplementary material The online version of this article (10.1186/s13075-018-1681-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine Schniering
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Li Guo
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland.,Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Matthias Brunner
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Villigen-PSI, Switzerland.,Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, Villigen-PSI, Switzerland
| | - Britta Maurer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland.
| |
Collapse
|
38
|
Eshghi N, Garland LL, Nia E, Betancourt R, Krupinski E, Kuo PH. 18F-FDG PET/CT Can Predict Development of Thyroiditis Due to Immunotherapy for Lung Cancer. J Nucl Med Technol 2018; 46:260-264. [PMID: 29599403 DOI: 10.2967/jnmt.117.204933] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Our primary purpose was to determine whether increased 18F-FDG uptake in the thyroid gland predicts development of thyroiditis with subsequent hypothyroidism in patients undergoing immunotherapy with nivolumab for lung cancer. Secondarily, we determined whether 18F-FDG uptake in the thyroid gland correlates with number of administered cycles of nivolumab. Methods: Retrospective chart review over 2 y found 18 lung cancer patients treated with nivolumab who underwent 18F-FDG PET/CT before and during therapy. SUVmean, SUVmax, and total lesion glycolysis of the thyroid gland were measured. SUVs were also measured for the pituitary gland, liver, and spleen. Patients underwent monthly thyroid testing. PET/CT parameters were analyzed by unpaired t testing for differences between 2 groups (patients who developed hypothyroidism and those who did not). Correlation between development of thyroiditis and number of cycles of nivolumab was also tested. Results: Six of 18 patients developed hypothyroidism. The t test comparing the 2 groups demonstrated significant differences in SUVmean (P = 0.04), SUVmax (P = 0.04), and total lesion glycolysis (P = 0.02) of the thyroid gland. Two of 4 patients who developed thyroiditis and had increased 18F-FDG uptake in the thyroid gland had a normal TSH level at the time of follow-up 18F-FDG PET/CT. Patients who developed thyroiditis with subsequent hypothyroidism stayed longer on therapy (10.6 cycles) than patients without thyroiditis (7.6 cycles), but the trend was not statistically significant. No significant difference in PET/CT parameters was observed for pituitary gland, liver, or spleen. Conclusion:18F-FDG PET/CT can predict the development of thyroiditis with subsequent hypothyroidism before laboratory testing. Further study is required to confirm the positive trend between thyroiditis and duration of therapy.
Collapse
Affiliation(s)
| | - Linda L Garland
- Department of Medicine, Section of Hematology and Medical Oncology, Banner University Medical Center, Tucson, Arizona
| | - Emily Nia
- Breast Imaging Section, Department of Radiology, University of Texas M.D. Anderson Cancer Center, Housten, Texas
| | - Robert Betancourt
- Department of Medicine, Banner University Medical Center, Tucson, Arizona
| | - Elizabeth Krupinski
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia; and
| | - Phillip H Kuo
- Departments of Medical Imaging and Medicine, Banner University Medical Center, and Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|
39
|
Molecular modeling and preclinical evaluation of radioiodinated tenoxicam for inflammatory disease diagnosis. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5770-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Lamichhane N, Udayakumar TS, D'Souza WD, Simone CB, Raghavan SR, Polf J, Mahmood J. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules 2018; 23:molecules23020288. [PMID: 29385755 PMCID: PMC6017282 DOI: 10.3390/molecules23020288] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Liposomes have been extensively studied and are used in the treatment of several diseases. Liposomes improve the therapeutic efficacy by enhancing drug absorption while avoiding or minimizing rapid degradation and side effects, prolonging the biological half-life and reducing toxicity. The unique feature of liposomes is that they are biocompatible and biodegradable lipids, and are inert and non-immunogenic. Liposomes can compartmentalize and solubilize both hydrophilic and hydrophobic materials. All these properties of liposomes and their flexibility for surface modification to add targeting moieties make liposomes more attractive candidates for use as drug delivery vehicles. There are many novel liposomal formulations that are in various stages of development, to enhance therapeutic effectiveness of new and established drugs that are in preclinical and clinical trials. Recent developments in multimodality imaging to better diagnose disease and monitor treatments embarked on using liposomes as diagnostic tool. Conjugating liposomes with different labeling probes enables precise localization of these liposomal formulations using various modalities such as PET, SPECT, and MRI. In this review, we will briefly review the clinical applications of liposomal formulation and their potential imaging properties.
Collapse
Affiliation(s)
- Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | - Warren D D'Souza
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Javed Mahmood
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Sudo M, Wada Y, Narita I, Mba B, Houchens N. A Strong Diagnosis of Weakness. J Hosp Med 2017; 12:989-993. [PMID: 29236098 DOI: 10.12788/jhm.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Masanori Sudo
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoko Wada
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benjamin Mba
- Department of Medicine, Stroger Hospital of Cook County, Chicago, Illinois, USA
- Rush University Medical Center, Chicago, Illinois, USA
| | - Nathan Houchens
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
42
|
Fernando A, Pattison J, Horsfield C, D'Cruz D, Cook G, O'Brien T. [ 18F]-Fluorodeoxyglucose Positron Emission Tomography in the Diagnosis, Treatment Stratification, and Monitoring of Patients with Retroperitoneal Fibrosis: A Prospective Clinical Study. Eur Urol 2017; 71:926-933. [PMID: 27876167 DOI: 10.1016/j.eururo.2016.10.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/26/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The ability to distinguish malignant from benign retroperitoneal fibrosis (RPF) and to select patients who are likely to respond to steroid treatment using a noninvasive test would be a major step forward in the management of patients with RPF. OBJECTIVE To prospectively evaluate the potential of [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) to improve clinical decision-making and management of RPF. DESIGN, SETTING, AND PARTICIPANTS A total of 122 RPF patients were assessed and managed by a multidisciplinary RPF service between January 2012 and December 2015. Of these, 78 patients underwent 101 FDG-PET scans, as well as computed tomography and blood tests. Management was based on the findings from these investigations. Median follow-up was 16 mo. RESULTS AND LIMITATIONS Of the 24 patients with negative [18F]-FDG-PET, none (0%) had malignancy on biopsy (negative predictive value 100%). [18F]-FDG-PET identified malignancy in 4/4 patients (100%) before biopsy. All four patients had highly avid PET (maximum standardised uptake value ≥4) with atypical avidity distribution. [18F]-FDG-PET revealed avidity in 19/38 patients (50%) with normal inflammatory markers and no avidity in 10/63 patients (16%) with raised marker levels. Patients with highly avid PET were significantly more likely to respond to steroids compared to those with low avidity (9/11 [82%] vs 3/24 [12%]; p<0.01) or negative PET (9/11 [82%] vs 0/14 [0%]; p<0.01). Limitations include the small number of patients and the predominance of tertiary referrals, which may represent patients with particularly problematic RPF. CONCLUSIONS This study has established a promising role for [18F]-FDG-PET in optimising and individualising the treatment of RPF. PATIENT SUMMARY This study shows that [18F]-fluorodeoxyglucose positron emission tomography scans could reduce the need for biopsy in patients with retroperitoneal fibrosis (RPF). This technique can distinguish cancer from noncancerous RPF, and may be better than blood tests in assessing and monitoring RPF. It also appears to predict a patient's response to steroids, which should allow more individualised treatment.
Collapse
Affiliation(s)
- Archie Fernando
- The Urology Centre, Guy's and St Thomas' Hospital Foundation Trust, London, UK.
| | - James Pattison
- Department of Nephrology, Guy's and St Thomas' Hospital Foundation Trust, London, UK
| | - Catherine Horsfield
- Department of Histopathology, Guy's and St Thomas' Hospital Foundation Trust, London, UK
| | - David D'Cruz
- Department of Rheumatology and Immunology, Guy's and St Thomas' Hospital Foundation Trust, London, UK
| | - Gary Cook
- King's College London & Guy's & St Thomas' PET Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London and Guy's & St Thomas' Hospital Foundation Trust, London, UK
| | - Tim O'Brien
- The Urology Centre, Guy's and St Thomas' Hospital Foundation Trust, London, UK
| |
Collapse
|
43
|
Thulasidoss K, Asokan L, Chandra P, Rejliwal P. The clinical conundrum of diagnosing and treating systemic sarcoidosis in a high TB burden area. BMJ Case Rep 2017; 2017:bcr-2016-218741. [PMID: 28500120 DOI: 10.1136/bcr-2016-218741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 53-year-old woman from Southern India presented with weight loss, anorexia, fever and asthenia. Whole body positron emission tomography/computed tomography (PET-CT) showed fluorodeoxyglucose-avid mediastinal and abdominal lymphadenopathy with hepatic, splenic, parotid and lacrimal glandular inflammations. Endoscopic ultrasound-guided fine needle aspiration of subcarinal lymph node showed non-caseating granulomas. Initial serum ACE level was elevated but with normal calcium. Despite the suspicion of sarcoidosis, a trial of antituberculosis therapy was started empirically due to similar presentations of disseminated tuberculosis (TB) in this high endemic area. The patient subsequently deteriorated and was admitted with symptomatic hypercalcaemia. Her subsequent ACE levels were very high, supportive of a diagnosis of systemic sarcoidosis. She was given steroid pulse therapy, and 5 months later had fully recovered. This case highlights the challenges faced by physicians in high TB-endemic areas when managing granulomatous diseases as they are concerned about missing TB, the difficulties in diagnosing sarcoidosis and the role of pulse steroid therapy.
Collapse
|
44
|
Association of lung fluorodeoxyglucose uptake with radiation pneumonitis after concurrent chemoradiation for non-small cell lung cancer. Clin Transl Radiat Oncol 2017; 4:1-7. [PMID: 29594201 PMCID: PMC5833918 DOI: 10.1016/j.ctro.2017.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/08/2017] [Accepted: 04/08/2017] [Indexed: 11/22/2022] Open
Abstract
Background Increased uptake of fluorodeoxyglucose (FDG) by lung tissue could reflect inflammatory changes related to radiation pneumonitis (RP). In this secondary analysis of a clinical trial, we examined potential associations between posttreatment lung FDG uptake and RP severity in patients with non-small cell lung cancer (NSCLC) for up to 12 months after concurrent chemoradiation (CRT). Methods Subjects were 152 patients with NSCLC who had received concurrent CRT as part of the prospective trial NCT00915005. The following lung FDG variables were evaluated after CRT: maximum, mean, and peak standardized uptake values (SUVmax, SUVmean, SUVpeak) and global lung glycolysis (GLG; lung SUVmean × lung volume). RP severity was scored with the Common Terminology Criteria for Adverse Events v3.0. Results Significant associations were noted between PET findings and RP severity at 1–6 months (all P < 0.05), but not at 7–12 months after therapy (all P > 0.05). Lung FDG uptake at 1–3 months after treatment predicted later development of grade ≥2 RP (all P < 0.05), with cutoff values as follows: 4.54 for SUVmax, 3.69 for SUVpeak, 0.78 for SUVmean, and 2295 for GLG. Conclusions Lung FDG uptake correlated significantly with RP severity during the first 6 months after CRT. The cutoff values seem clinically meaningful for identifying patients at risk of developing RP after such therapy.
Collapse
|
45
|
Parisi MT, Bermo MS, Alessio AM, Sharp SE, Gelfand MJ, Shulkin BL. Optimization of Pediatric PET/CT. Semin Nucl Med 2017; 47:258-274. [PMID: 28417855 DOI: 10.1053/j.semnuclmed.2017.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PET/CT, the most common form of hybrid imaging, has transformed oncologic imaging and is increasingly being used for nononcologic applications as well. Performing PET/CT in children poses unique challenges. Not only are children more sensitive to the effects of radiation than adults but, following radiation exposure, children have a longer postexposure life expectancy in which to exhibit adverse radiation effects. Both the PET and CT components of the study contribute to the total patient radiation dose, which is one of the most important risks of the study in this population. Another risk in children, not typically encountered in adults, is potential neurotoxicity related to the frequent need for general anesthesia in this patient population. Optimizing pediatric PET/CT requires making improvements to both the PET and the CT components of the procedure while decreasing the potential for risk. This can be accomplished through judicious performance of imaging, the use of recommended pediatric 18fluorine-2-fluoro-2-deoxy-d-glucose (18F-FDG) administered activities, thoughtful selection of pediatric-specific CT imaging parameters, careful patient preparation, and use of appropriate patient immobilization. In this article, we will review a variety of strategies for radiation dose optimization in pediatric 18F-FDG-PET/CT focusing on these processes. Awareness of and careful selection of pediatric-specific CT imaging parameters designed for appropriate diagnostic, localization, or attenuation correction only CT, in conjunction with the use of recommended radiotracer administered activities, will help to ensure image quality while limiting patient radiation exposure. Patient preparation, an important determinant of image quality, is another focus of this review. Appropriate preparative measures are even more crucial in children in whom there is a higher incidence of brown fat, which can interfere with study interpretation. Finally, we will discuss measures to improve the patient experience, the resource use, the departmental workflow, and the diagnostic performance of the study through the use of appropriate technology, all in the context of minimizing procedure-related risks.
Collapse
Affiliation(s)
- Marguerite T Parisi
- Departments of Radiology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA; Departments of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA.
| | - Mohammed S Bermo
- Department of Nuclear Medicine, University of Washington School of Medicine, Seattle, WA
| | - Adam M Alessio
- Departments of Radiology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA
| | - Susan E Sharp
- Departments of Radiology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinatti, OH
| | - Michael J Gelfand
- Departments of Radiology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinatti, OH
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
46
|
Kniess T, Laube M, Wüst F, Pietzsch J. Technetium-99m based small molecule radiopharmaceuticals and radiotracers targeting inflammation and infection. Dalton Trans 2017; 46:14435-14451. [DOI: 10.1039/c7dt01735a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
99mTc-labeled antibiotics, antifungal drugs, antimicrobial peptides and COX-2 inhibitors are comprehensively reviewed.
Collapse
Affiliation(s)
- Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
| | - Frank Wüst
- University of Alberta
- Department of Oncology
- 11560 University Avenue
- Edmonton
- Canada
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Radiopharmaceutical Cancer Research
- 01328 Dresden
- Germany
- Technische Universität Dresden
| |
Collapse
|
47
|
Diagnostic performance of 18F-FDG-labeled white blood cell PET/CT for cyst infection in patients with autosomal dominant polycystic kidney disease: a prospective study. Nucl Med Commun 2016; 37:493-8. [PMID: 27014954 DOI: 10.1097/mnm.0000000000000466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cyst infection (CI) is a common problem in patients with autosomal dominant polycystic kidney disease (ADPKD) and the accurate detection of infected cysts is very important. We evaluated the diagnostic performance of fluorine-18 fluorodeoxyglucose-labeled white blood cell (WBC) PET/computed tomography (CT) for detection of infected cysts in patients with ADPKD. PATIENTS AND METHODS Seventeen patients with ADPKD (male : female, 6 : 11; age, 53±9 years) and suspected CI were enrolled in this prospective study. Patients were classified as having definite/probable/possible CI. All patients underwent WBC PET/CT within 2 days of starting antibiotic treatment. The degree of WBC accumulation was evaluated qualitatively by nuclear medicine physicians. The diagnostic performance of WBC PET/CT was evaluated by sensitivity, specificity, positive predictive values, and negative predictive values. These values were compared with those generated from CT scans and MRI. RESULTS Seven patients were classified as having renal CI (definite 6, probable 1). In this group, WBC PET/CT showed six positive findings and one equivocal finding. Seven patients were diagnosed with possible infection. In this group, WBC PET/CT showed six negative findings and one indeterminate finding. The diagnostic performance of WBC PET/CT showed advantages over CT or MRI scans (sensitivity 85.7%, specificity 87.5%, positive predictive value 85.7%, negative predictive value 87.5%). CONCLUSION This prospective study shows that WBC PET/CT can provide an accurate diagnosis of CI in patients with ADPKD.
Collapse
|
48
|
Caobelli F, Evangelista L, Quartuccio N, Familiari D, Altini C, Castello A, Cucinotta M, Di Dato R, Ferrari C, Kokomani A, Laghai I, Laudicella R, Migliari S, Orsini F, Pignata SA, Popescu C, Puta E, Ricci M, Seghezzi S, Sindoni A, Sollini M, Sturiale L, Svyridenka A, Vergura V, Alongi P, Young AIMN Working Group. Role of molecular imaging in the management of patients affected by inflammatory bowel disease: State-of-the-art. World J Radiol 2016; 8:829-845. [PMID: 27843542 PMCID: PMC5084061 DOI: 10.4329/wjr.v8.i10.829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To present the current state-of-the art of molecular imaging in the management of patients affected by inflammatory bowel disease (IBD).
METHODS A systematic review of the literature was performed in order to find important original articles on the role of molecular imaging in the management of patients affected by IBD. The search was updated until February 2016 and limited to articles in English.
RESULTS Fifty-five original articles were included in this review, highlighting the role of single photon emission tomography and positron emission tomography.
CONCLUSION To date, molecular imaging represents a useful tool to detect active disease in IBD. However, the available data need to be validated in prospective multicenter studies on larger patient samples.
Collapse
|
49
|
Shim JJ, Lee JW, Jeon MH, Lee SM. Recurrent surgical site infection of the spine diagnosed by dual (18)F-NaF-bone PET/CT with early-phase scan. Skeletal Radiol 2016; 45:1313-6. [PMID: 27388912 DOI: 10.1007/s00256-016-2429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 02/02/2023]
Abstract
We report a case of a 31-year-old man who showed recurrently elevated level of the serum inflammatory marker C-reactive protein (CRP) after spinal operation. He underwent (18)F-flurodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) and dual (18)F-sodium-fluoride ((18)F-NaF) PET/CT with an additional early-phase scan to find a hidden inflammation focus. Only mildly increased (18)F-FDG was found at the surgical site of T11 spine on (18)F-FDG PET/CT. In contrast, dual (18)F-NaF bone PET/CT with early-phase scan demonstrated focal active inflammation at the surgical site of T11 spine. After a revision operation of the T11 spine, serum CRP level decreased to the normal range without any symptom or sign of inflammation. Inflammatory focus in the surgical site of the spine can be detected with using dual (18)F-NaF bone PET/CT scan with early-phase scan.
Collapse
Affiliation(s)
- Jai-Joon Shim
- Department of Neurosurgery, Soonchunhyang University Hospital, Cheonan, South Korea
| | - Jeong Won Lee
- Department of Nuclear Medicine, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon, South Korea
| | - Min Hyok Jeon
- Division of Infectious Disease, Department of Internal Medicine, Soonchunhyang University Hospital, Cheonan, South Korea
| | - Sang Mi Lee
- Department of Nuclear Medicine, Soonchunhyang University Hospital, 23-20 Byeongmyeong-dong, Dongnam-gu, Cheonan, Chungcheongnam-do, 330-721, South Korea.
| |
Collapse
|
50
|
Increased 18F-FDG uptake suggests synovial inflammatory reaction with osteoarthritis: preliminary in-vivo results in humans. Nucl Med Commun 2016; 36:1215-9. [PMID: 26367212 DOI: 10.1097/mnm.0000000000000376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The aim of this prospective study was to compare the metabolic activity of the knee joints of a group of patients with painful knees clinically (such as recurrent joint pain, joint instability, and functional limitations) consistent with osteoarthritis and those of another group of patients without such complaints, using [F]-2-fluoro-2-deoxy-D-glucose (F-FDG)-PET imaging. METHODS A total of 97 patients who participated in either painful joint prosthesis or diabetic foot research studies involving F-FDG-PET scans were asked to complete a knee pain questionnaire. The patients were asked whether they experienced pain in any joint, and if so, which joints were affected. RESULTS A total of 18 knee joints without prosthesis were reported to be painful. The maximum standardized uptake values (SUVmax) of the middle joint space and lateral synovial tissue of these 18 knees were measured and compared with those of a set of patients with control asymptomatic knees. The average SUVmax of the middle part of the joint space in the painful knees was 1.35±0.59 compared with an average SUVmax value of 0.86±0.14 in the control group (P=0.0176). The average SUVmax of the synovium in the lateral part of the painful joints was 1.17±0.49 compared with 0.73±0.31 in the control group (P=0.0161). CONCLUSION These data indicate that increased F-FDG uptake is associated with knee pain in osteoarthritis patients and that there is a positive relationship between the two parameters.
Collapse
|