1
|
Sur S, Stewart C, Liddle TA, Monteiro AM, Denizli I, Majumdar G, Stevenson TJ. Molecular basis of photoinduced seasonal energy rheostasis in Japanese quail (Coturnix japonica). Mol Cell Endocrinol 2025; 595:112415. [PMID: 39561917 DOI: 10.1016/j.mce.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Seasonal rhythms in photoperiod are a predictive cue used by many temperate-zone animals to time cycles of lipid accumulation. The neuroendocrine regulation of seasonal energy homeostasis and rheostasis are widely studied. However, the molecular pathways underlying tissue-specific adaptations remain poorly described. We conducted two experiments to examine long-term rheostatic changes in energy stability using the well-characterized photoperiodic response of the Japanese quail. In experiment 1, we exposed quails to photoperiodic transitions simulating the annual photic cycle and examined the morphology and fat deposition in liver, muscle, and adipose tissue. To identify changes in gene expression and molecular pathways during the vernal transition in lipid accumulation, we conducted transcriptomic analyses of adipose and liver tissues. Experiment 2 assessed whether the changes observed in Experiment 1 reflected constitutive levels or were due to time-of-day sampling. We identified increased expression of transcripts involved in adipocyte growth, such as Cysteine Rich Angiogenic Inducer 61 and Very Low-Density Lipoprotein Receptor, and in obesity-linked disease resistance, such as Insulin-Like Growth Factor Binding Protein 2 and Apolipoprotein D, in anticipation of body mass gain. Under long photoperiods, hepatic transcripts involved in fatty acid (FA) synthesis (FA Synthase, FA Desaturase 2) were down-regulated. Parallel upregulation of hepatic FA Translocase and Pyruvate Dehydrogenase Kinase 4 expression suggests increased FA uptake and inhibition of the pyruvate dehydrogenase complex. Our findings demonstrate tissue-specific biochemical and molecular changes that drive photoperiod-induced adipogenesis. These findings can be used to determine conserved pathways that enable animals to accumulate fat without developing metabolic diseases.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Calum Stewart
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Timothy A Liddle
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Ana Maria Monteiro
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Irem Denizli
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Gaurav Majumdar
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Department of Zoology, University of Allahabad, Uttar Pradesh, 211002, India.
| | - Tyler J Stevenson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Shijing T, Yinping P, Qiong Y, Deshuai L, Liancai Z, Jun T, Shaoyong L, Bochu W. Synthesis of TUDCA from chicken bile: immobilized dual-enzymatic system for producing artificial bear bile substitute. Microb Cell Fact 2024; 23:326. [PMID: 39623449 PMCID: PMC11613824 DOI: 10.1186/s12934-024-02592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Bear bile, a valuable animal-derived medicinal substance primarily composed of tauroursodeoxycholic acid (TUDCA), is widely distributed in the medicinal market across various countries due to its significant therapeutic potential. Given the extreme cruelty involved in bear bile extraction, researchers are focusing on developing synthetic bear bile powder as a more humane alternative. This review presents an industrially practical and environmentally friendly process for producing an artificial substitute for bear bile powder using inexpensive and readily available chicken bile powder through an immobilized 7α-,7β-HSDH dual-enzymatic syste. Current technology has facilitated the industrial production of TUDCA from Tauodeoxycholic acid (TCDCA) using chicken bile powder. The review begins by examining the chemical composition, structure, and properties of bear bile, followed by an outline of the pharmacological mechanisms and manufacturing methods of TUDCA, covering chemical synthesis and biotransformation methods, and a discussion on their respective advantages and disadvantages. Finally, the process of converting chicken bile powder into bear bile powder using an immobilized 7α-Hydroxysteroid Dehydrogenases(7α-HSDH) with 7β- Hydroxysteroid Dehydrogenases (7β-HSDH) dual-enzyme system is thoroughly explained. The main objective of this review is to propose a comprehensive strategy for the complete synthesis of artificial bear bile from chicken bile within a controlled laboratory setting.
Collapse
Affiliation(s)
- Tang Shijing
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Pan Yinping
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Yang Qiong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Lou Deshuai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Zhu Liancai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| | - Tan Jun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Liu Shaoyong
- Shanghai Kaibao Pharmaceutical Co., LTD., Shanghai, 200030, People's Republic of China
| | - Wang Bochu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
3
|
Hamauzu Y, Ikeda E. In vitro and in vivo evaluation of the bile acid-binding properties of dried persimmon and its non-extractable proanthocyanidin fraction. Food Chem 2022; 373:131617. [PMID: 34802807 DOI: 10.1016/j.foodchem.2021.131617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/04/2022]
Abstract
Dried persimmons contain abundant insoluble tannins comprised of non-extractable proanthocyanidins (NEPAs). To determine the beneficial function of NEPAs, we studied the bile acid-binding ability of NEPAs using in vitro and in vivo experiments. For the in vitro evaluation, 70% (v/v) acetone-insoluble solids (AIS) with different NEPA levels was prepared from persimmon fruits during drying. AIS with higher NEPA levels displayed stronger bile acid-binding activity, and the highest NEPA levels can be obtained from mostly-dried fruits. The in vivo bile acid-excreting effect of dried persimmon powder (DP) and AIS was verified by feeding experiments using C57BL/6J mice. The average bile acid-excretion was in order of low-fat group (1.07 µmol/day) < high-fat (HF) group (3.03 µmol/day) < HF + AIS group (4.44 µmol/day) < HF + DP group (6.74 µmol/day). These results suggest that the bile acid-excreting function of the fruit is related to the presence of NEPAs, which are constitutive ingredients of dried persimmon.
Collapse
Affiliation(s)
- Yasunori Hamauzu
- Shinshu University, Department of Agricultural and Life Sciences, Faculty of Agriculture, 8304 Minamiminowa, Nagano 399-4598, Japan.
| | - Erika Ikeda
- Shinshu University, Department of Agricultural and Life Sciences, Faculty of Agriculture, 8304 Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
4
|
Kuipers F, de Boer JF, Staels B. Microbiome Modulation of the Host Adaptive Immunity through Bile Acid Modification. Cell Metab 2020; 31:445-447. [PMID: 32130878 DOI: 10.1016/j.cmet.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The microbiome is well known to influence the immune response of the host. Song et al. now show that the microbiome modulates adaptive immunity in mice through formation of bile acid species acting on RORγ+ regulatory T cells via the Vitamin D Receptor, thereby lowering the vulnerability for chemically induced colitis.
Collapse
Affiliation(s)
- Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands.
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, 59000 Lille, France
| |
Collapse
|
5
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Kim KH, Choi JM, Li F, Dong B, Wooton-Kee CR, Arizpe A, Anakk S, Jung SY, Hartig SM, Moore DD. Constitutive Androstane Receptor Differentially Regulates Bile Acid Homeostasis in Mouse Models of Intrahepatic Cholestasis. Hepatol Commun 2018; 3:147-159. [PMID: 30620001 PMCID: PMC6312660 DOI: 10.1002/hep4.1274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Bile acid (BA) homeostasis is tightly regulated by multiple transcription factors, including farnesoid X receptor (FXR) and small heterodimer partner (SHP). We previously reported that loss of the FXR/SHP axis causes severe intrahepatic cholestasis, similar to human progressive familial intrahepatic cholestasis type 5 (PFIC5). In this study, we found that constitutive androstane receptor (CAR) is endogenously activated in Fxr:Shp double knockout (DKO) mice. To test the hypothesis that CAR activation protects DKO mice from further liver damage, we generated Fxr;Shp;Car triple knockout (TKO) mice. In TKO mice, residual adenosine triphosphate (ATP) binding cassette, subfamily B member 11 (ABCB11; alias bile salt export pump [BSEP]) function and fecal BA excretion are completely impaired, resulting in severe hepatic and biliary damage due to excess BA overload. In addition, we discovered that pharmacologic CAR activation has different effects on intrahepatic cholestasis of different etiologies. In DKO mice, CAR agonist 1,4‐bis[2‐(3,5‐dichloropyridyloxy)]benzene (TCPOBOP; here on TC) treatment attenuated cholestatic liver injury, as expected. However, in the PFIC2 model Bsep knockout (BKO) mice, TC treatment exhibited opposite effects that reflect increased BA accumulation and liver injury. These contrasting results may be linked to differential regulation of systemic cholesterol homeostasis in DKO and BKO livers. TC treatment selectively up‐regulated hepatic cholesterol levels in BKO mice, supporting de novo BA synthesis. Conclusion: CAR activation in DKO mice is generally protective against cholestatic liver injury in these mice, which model PFIC5, but not in the PFIC2 model BKO mice. Our results emphasize the importance of the genetic and physiologic background when implementing targeted therapies to treat intrahepatic cholestasis.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | - Jong Min Choi
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | - Feng Li
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Center for Drug Discovery Baylor College of Medicine Houston TX
| | - Bingning Dong
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | | | - Armando Arizpe
- School of Natural Science University of Texas Austin Austin TX
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology University of Illinois at Urbana-Champaign Urbana IL
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine Houston TX
| | - Sean M Hartig
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine Baylor College of Medicine Houston TX
| | - David D Moore
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| |
Collapse
|
7
|
Paalvast Y, Gerding A, Wang Y, Bloks VW, van Dijk TH, Havinga R, Willems van Dijk K, Rensen PCN, Bakker BM, Kuivenhoven JA, Groen AK. Male apoE*3-Leiden.CETP mice on high-fat high-cholesterol diet exhibit a biphasic dyslipidemic response, mimicking the changes in plasma lipids observed through life in men. Physiol Rep 2017; 5:e13376. [PMID: 29038350 PMCID: PMC5641925 DOI: 10.14814/phy2.13376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
Physiological adaptations resulting in the development of the metabolic syndrome in man occur over a time span of several decades. This combined with the prohibitive financial cost and ethical concerns to measure key metabolic parameters repeatedly in subjects for the major part of their life span makes that comprehensive longitudinal human data sets are virtually nonexistent. While experimental mice are often used, little is known whether this species is in fact an adequate model to better understand the mechanisms that drive the metabolic syndrome in man. We took up the challenge to study the response of male apoE*3-Leiden.CETP mice (with a humanized lipid profile) to a high-fat high-cholesterol diet for 6 months. Study parameters include body weight, food intake, plasma and liver lipids, hepatic transcriptome, VLDL - triglyceride production and importantly the use of stable isotopes to measure hepatic de novo lipogenesis, gluconeogenesis, and biliary/fecal sterol secretion to assess metabolic fluxes. The key observations include (1) high inter-individual variation; (2) a largely unaffected hepatic transcriptome at 2, 3, and 6 months; (3) a biphasic response curve of the main metabolic features over time; and (4) maximum insulin resistance preceding dyslipidemia. The biphasic response in plasma triglyceride and total cholesterol appears to mimic that of men in cross-sectional studies. Combined, these observations suggest that studies such as these can help to delineate the causes of metabolic derangements in patients suffering from metabolic syndrome.
Collapse
Affiliation(s)
- Yared Paalvast
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Gerding
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Yanan Wang
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
- Department Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Ko Willems van Dijk
- Department Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
- Department of Vascular Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Wellman AS, Metukuri MR, Kazgan N, Xu X, Xu Q, Ren NSX, Czopik A, Shanahan MT, Kang A, Chen W, Azcarate-Peril MA, Gulati AS, Fargo DC, Guarente L, Li X. Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation During Aging in Mice by Altering the Intestinal Microbiota. Gastroenterology 2017; 153:772-786. [PMID: 28552621 PMCID: PMC5581719 DOI: 10.1053/j.gastro.2017.05.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Intestinal epithelial homeostasis is maintained by complex interactions among epithelial cells, commensal gut microorganisms, and immune cells. Disruption of this homeostasis is associated with disorders such as inflammatory bowel disease (IBD), but the mechanisms of this process are not clear. We investigated how Sirtuin 1 (SIRT1), a conserved mammalian NAD+-dependent protein deacetylase, senses environmental stress to alter intestinal integrity. METHODS We performed studies of mice with disruption of Sirt1 specifically in the intestinal epithelium (SIRT1 iKO, villin-Cre+, Sirt1flox/flox mice) and control mice (villin-Cre-, Sirt1flox/flox) on a C57BL/6 background. Acute colitis was induced in some mice by addition of 2.5% dextran sodium sulfate to drinking water for 5-9 consecutive days. Some mice were given antibiotics via their drinking water for 4 weeks to deplete their microbiota. Some mice were fed with a cholestyramine-containing diet for 7 days to sequester their bile acids. Feces were collected and proportions of microbiota were analyzed by 16S rRNA amplicon sequencing and quantitative PCR. Intestines were collected from mice and gene expression profiles were compared by microarray and quantitative PCR analyses. We compared levels of specific mRNAs between colon tissues from age-matched patients with ulcerative colitis (n=10) vs without IBD (n=8, controls). RESULTS Mice with intestinal deletion of SIRT1 (SIRT1 iKO) had abnormal activation of Paneth cells starting at the age of 5-8 months, with increased activation of NF-κB, stress pathways, and spontaneous inflammation at 22-24 months of age, compared with control mice. SIRT1 iKO mice also had altered fecal microbiota starting at 4-6 months of age compared with control mice, in part because of altered bile acid metabolism. Moreover, SIRT1 iKO mice with defective gut microbiota developed more severe colitis than control mice. Intestinal tissues from patients with ulcerative colitis expressed significantly lower levels of SIRT1 mRNA than controls. Intestinal tissues from SIRT1 iKO mice given antibiotics, however, did not have signs of inflammation at 22-24 months of age, and did not develop more severe colitis than control mice at 4-6 months. CONCLUSIONS In analyses of intestinal tissues, colitis induction, and gut microbiota in mice with intestinal epithelial disruption of SIRT1, we found this protein to prevent intestinal inflammation by regulating the gut microbiota. SIRT1 might therefore be an important mediator of host-microbiome interactions. Agents designed to activate SIRT1 might be developed as treatments for IBDs.
Collapse
Affiliation(s)
- Alicia S Wellman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mallikarjuna R Metukuri
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nevzat Kazgan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Natalie S X Ren
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Agnieszka Czopik
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael T Shanahan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ashley Kang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; NIEHS Scholars Connect Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Willa Chen
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology and Microbiome Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ajay S Gulati
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Leonard Guarente
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.
| |
Collapse
|
9
|
Suzuki A, Yuen NA, Ilic K, Miller RT, Reese MJ, Brown HR, Ambroso JI, Falls JG, Hunt CM. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBase™. Regul Toxicol Pharmacol 2015; 72:481-90. [PMID: 25988394 DOI: 10.1016/j.yrtph.2015.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
Polypharmacy is common, and may modify mechanisms of drug-induced liver injury. We examined the effect of these drug-drug interactions on liver safety reports of four drugs highly associated with hepatotoxicity. In the WHO VigiBase™, liver event reports were examined for acetaminophen, isoniazid, valproic acid, and amoxicillin/clavulanic acid. Then, we evaluated the liver event reporting frequency of these 4 drugs in the presence of co-reported medications. Each of the 4 primary drugs was reported as having more than 2000 liver events, and co-reported with more than 600 different medications. Overall, the effect of 2275 co-reported drugs (316 drug classes) on the reporting frequency was analyzed. Decreased liver event reporting frequency was associated with 245 drugs/122 drug classes, including anti-TNFα, opioids, and folic acid. Increased liver event reporting frequency was associated with 170 drugs/82 drug classes; in particular, halogenated hydrocarbons, carboxamides, and bile acid sequestrants. After adjusting for age, gender, and other co-reported drug classes, multiple co-reported drug classes were significantly associated with decreased/increased liver event reporting frequency in a drug-specific/unspecific manner. In conclusion, co-reported medications were associated with changes in the liver event reporting frequency of drugs commonly associated with hepatotoxicity, suggesting that comedications may modify drug hepatic safety.
Collapse
Affiliation(s)
- Ayako Suzuki
- Gastroenterology, Central Arkansas Veterans Healthcare System and Gastroenterology and Hepatology, Univ. of Arkansas for Med. Sciences, Little Rock, AR, United States.
| | - Nancy A Yuen
- Clinical Safety, GlaxoSmithKline, Research Triangle Park, NC, United States
| | - Katarina Ilic
- Pharmacovigilance and Risk Management, Raptor Pharmaceuticals, CA, United States
| | - Richard T Miller
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, NC, United States
| | - Melinda J Reese
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, NC, United States
| | - H Roger Brown
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, NC, United States
| | - Jeffrey I Ambroso
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, NC, United States
| | - J Gregory Falls
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, NC, United States
| | - Christine M Hunt
- Gastroenterology, Duke University Medical Center and Durham Veterans Administration Medical Center, Durham, NC, United States.
| |
Collapse
|
10
|
Singhal R, Harrill AH, Menguy-Vacheron F, Jayyosi Z, Benzerdjeb H, Watkins PB. Benign elevations in serum aminotransferases and biomarkers of hepatotoxicity in healthy volunteers treated with cholestyramine. BMC Pharmacol Toxicol 2014; 15:42. [PMID: 25086653 PMCID: PMC4130124 DOI: 10.1186/2050-6511-15-42] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/03/2014] [Indexed: 12/16/2022] Open
Abstract
Background There are currently no serum biomarkers capable of distinguishing elevations in serum alanine aminotransferase (ALT) that portend serious liver injury potential from benign elevations such as those occurring during cholestyramine treatment. The aim of the research was to test the hypothesis that newly proposed biomarkers of hepatotoxicity would not significantly rise in serum during elevations in serum ALT associated with cholestyramine treatment, which has never been associated with clinically relevant liver injury. Methods In a double-blind placebo-controlled trial, cholestyramine (8g) was administered for 11 days to healthy adult volunteers. Serum from subjects with elevations in alanine aminotransferase (ALT) exceeding three-fold the upper limit of normal (ULN) were utilized for biomarker quantification. Results In 11 of 67 subjects, cholestyramine treatment resulted in ALT elevation by >3x ULN (mean 6.9 fold; range 3–28 fold). In these 11 subjects, there was a 22.4-fold mean increase in serum levels of miR-122 relative to baseline, supporting a liver origin of the serum ALT. Significant elevations were noted in mean levels of necrosis biomarkers sorbitol dehydrogenase (8.1 fold), cytokeratin 18 (2.1 fold) and HMGB1 (1.7 fold). Caspase-cleaved cytokeratin 18, a biomarker of apoptosis was also significantly elevated (1.7 fold). A rise in glutamate dehydrogenase (7.3 fold) may support mitochondrial dysfunction. Conclusion All toxicity biomarkers measured in this study were elevated along with ALT, confirming the liver origin and reflecting both hepatocyte necrosis and apoptosis. Since cholestyramine treatment has no clinical liver safety concerns, we conclude that interpretation of the biomarkers studied may not be straightforward in the context of assessing liver safety of new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul B Watkins
- The Hamner-University of North Carolina Institute for Drug Safety Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Petrof EO, Khoruts A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology 2014; 146:1573-1582. [PMID: 24412527 PMCID: PMC4221437 DOI: 10.1053/j.gastro.2014.01.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022]
Abstract
The epidemic of Clostridium difficile infection fueled by new virulent strains of the organism has led to increased use of fecal microbiota transplantation (FMT). The procedure is effective for even the most desperate cases after failure of multiple courses of antibiotics. The approach recognizes microbiota to be integral to normal human physiology, and microbiota being used in FMT represents a new class of therapeutics. Imbalance in the composition and altered activity of the microbiota are associated with many diseases. Consequently, there is growing interest in applying FMT to non-C difficile indications. However, this may succeed only if microbiota therapeutics are developed systematically, based on mechanistic understanding, and applying up-to-date principles of microbial ecology. We discuss 2 pathways in the development of this new therapeutic class: whole microbial communities separated from donor stool and an assembly of specific fecal microorganisms grown in vitro.
Collapse
Affiliation(s)
- Elaine O. Petrof
- Department of Medicine, Division of Infectious Diseases & Gastrointestinal Research Unit; Queens University and Kingston General Hospital, Kingston, ON, Canada
| | - Alexander Khoruts
- Center for Immunology and Department of Medicine, Division of Gastroenterology; University of Minnesota, MN, USA
| |
Collapse
|
12
|
Karavia EA, Zvintzou E, Petropoulou PI, Xepapadaki E, Constantinou C, Kypreos KE. HDL quality and functionality: what can proteins and genes predict? Expert Rev Cardiovasc Ther 2014; 12:521-32. [DOI: 10.1586/14779072.2014.896741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Abstract
Gallstone disease (GSD) is one of the most common biliary tract disorders worldwide. The prevalence, however, varies from 5.9-21.9% in Western society to 3.1-10.7% in Asia. Most gallstones (75%) are silent. Approximately half of symptomatic gallstone carriers experience a second episode of biliary pain within 1 year. These individuals are at increased risk of developing acute cholecystitis, acute cholangitis, and biliary pancreatitis. As can be expected, these complications burden health care systems because of their invasive nature and surgical cost. Factors that contribute to gallstone formation include supersaturation of cholesterol in bile, gallbladder hypomotility, destabilization of bile by kinetic protein factors, and abnormal mucins. Epidemiologic studies have implicated multiple environmental factors and some common genetic elements in gallstone formation. Genetic factors that influence gallstone formation have been elaborated from linkage studies of twins, families, and ethnicities. Accumulating evidence suggests that genetic factors play a role in GSD.
Collapse
Affiliation(s)
- Shih-Chang Chuang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
14
|
Lecanu L, Yao ZX, McCourty A, Sidahmed EK, Orellana ME, Burnier MN, Papadopoulos V. Control of hypercholesterolemia and atherosclerosis using the cholesterol recognition/interaction amino acid sequence of the translocator protein TSPO. Steroids 2013; 78. [PMID: 23182766 PMCID: PMC3552137 DOI: 10.1016/j.steroids.2012.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The translocator protein (18-kDa) TSPO is an ubiquitous high affinity cholesterol-binding protein reported to be present in the endothelial and smooth muscle cells of the blood vessels; its expression dramatically increased in macrophages found in atherosclerotic plaques. A domain in the carboxy-terminus of TSPO was identified and characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide could be used as an hypocholesterolemic, with potential anti-atherogenic properties, agent. We report herein the therapeutic benefit that resulted for the administration of the VLNYYVWR human CRAC sequence to guinea pigs fed with a high cholesterol diet and ApoE knock-out B6.129P2-Apoetm1Unc/J mice. CRAC treatment (3 and 30mg/kg once daily for 6 weeks) resulted in reduced circulating cholesterol levels in guinea pigs fed with 2% high cholesterol diet and ApoE knock-out B6.129P2-Apoetm1Unc/J mice. In high cholesterol fed guinea pigs, CRAC treatment administered once daily induced an increase in circulating HDL, decreased total, free and LDL cholesterol, and removed atheroma deposits in the aorta in a dose-dependent manner. The treatment also prevented the high cholesterol diet-induced increase in serum creatine kinase, total and isoforms, markers of neurological, cardiac and muscular damage. No toxicity was observed. Taken together these results support a role of TSPO in lipid homeostasis and atherosclerosis and indicate that CRAC may constitute a novel and safe treatment of hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Laurent Lecanu
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Parolini C, Caligari S, Gilio D, Manzini S, Busnelli M, Montagnani M, Locatelli M, Diani E, Giavarini F, Caruso D, Roda E, Roda A, Sirtori CR, Chiesa G. Reduced biliary sterol output with no change in total faecal excretion in mice expressing a human apolipoprotein A-I variant. Liver Int 2012; 32:1363-71. [PMID: 22845860 DOI: 10.1111/j.1478-3231.2012.02855.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/07/2012] [Accepted: 06/28/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Apolipoprotein (apo)A-I(M) (ilano), is a molecular variant of apoA-I(wild-type), associated with dramatically low HDL-cholesterol levels, but no increased risk for cardiovascular disease. In view of the present uncertainties on the role of apoA-I in liver cholesterol removal by way of bile acids and neutral sterols, and of the greater capacity of apoA-I(M) (ilano) to remove arterial cholesterol, biliary sterol metabolism was evaluated in transgenic mice expressing apoA-I(M) (ilano). METHODS ApoA-I(M) (ilano) mice were fed a high-cholesterol/high-fat diet, and compared with human apoA-I(wild-type) mice. Plasma lipid levels, hepatic bile flow and composition, hepatic and intestinal cholesterol and bile acid content, and faecal sterol content were measured. Moreover, the expression of hepatic ABCA1, SR-B1 and that of hepatic and intestinal genes involved in bile acid metabolism were evaluated. RESULTS The dietary treatment led to a strong elevation in HDL-cholesterol levels in A-I(M) (ilano) mice, associated with an increased expression of hepatic ABCA1. ApoA-I(M) (ilano) mice showed lower cholesterol output from the liver compared with apoA-I(wild-type) mice, in the absence of liver sterol accumulation. Faecal excretion of neutral sterols and bile acids was similar in the two mouse lines. CONCLUSIONS In spite of a different response to the dietary challenge, with an increased ABCA1 expression and a lower hepatic cholesterol output in apoA-I(M) (ilano) mice, the net sterol excretion is comparable in the two transgenic lines.
Collapse
Affiliation(s)
- Cinzia Parolini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sberna AL, Assem M, Gautier T, Grober J, Guiu B, Jeannin A, Pais de Barros JP, Athias A, Lagrost L, Masson D. Constitutive androstane receptor activation stimulates faecal bile acid excretion and reverse cholesterol transport in mice. J Hepatol 2011; 55:154-61. [PMID: 21145854 DOI: 10.1016/j.jhep.2010.10.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/29/2010] [Accepted: 10/18/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS The constitutive androstane receptor (CAR) is a nuclear receptor expressed in the liver and involved in xenobiotic metabolism. The aim of this study was to assess whether pharmacological CAR activation could affect neutral sterol and bile acid elimination under conditions of cholesterol overload. METHODS Wild type, Car-/-, ApoE-/-, and low-density lipoprotein receptor (Ldlr)-/- mice fed a western-type diet were treated with the CAR agonist TCPOBOP. RESULTS CAR activation was associated with a decrease in faecal cholesterol output related to the repression of the Abcg5/g8 cholesterol transporters. In contrast, TCPOBOP treatment induced a marked increase (up to three fold, p<0.01) in the elimination of faecal bile acids. In the liver, it was related to the coordinated induction of genes involved in synthesis, sulfo-conjugation, and excretion of bile acids as well as the repression of the ileal apical sodium-dependent bile acid transporter. Importantly, cholesterol accumulation was reduced in the liver of TCPOBOP-treated animals. In all cases, TCPOBOP had no effect in Car-/- mice. To determine directly whether CAR activation could affect the elimination of endogenous cholesterol, kinetic studies were performed with high-density lipoproteins (HDL) labelled with (3)H-cholesteryl esters. We observed that TCPOBOP-treated mice excreted more HDL cholesterol-derived bile acids in their faeces. Finally, long-term CAR activation was associated with decreases in cholesterol content of the whole body and atherosclerosis susceptibility. CONCLUSIONS CAR is involved in the control of cholesterol and bile acid homeostasis, increasing reverse cholesterol transport under hyperlipidemic conditions.
Collapse
Affiliation(s)
- Anne Laure Sberna
- Institut Fédératif de Recherche Santé-STIC, Université de Bourgogne-BP87900, 21079 Dijon Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Amigo L, Quiñones V, Leiva A, Busso D, Zanlungo S, Nervi F, Rigotti A. Apolipoprotein A-I deficiency does not affect biliary lipid secretion and gallstone formation in mice. Liver Int 2011; 31:263-71. [PMID: 21134113 DOI: 10.1111/j.1478-3231.2010.02421.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Apolipoprotein A-I (apo A-I) is the main protein component of plasma high-density lipoproteins (HDL) and a key determinant of HDL cholesterol levels and metabolism. The relevance of HDL in controlling the traffic of cholesterol from plasma into bile has been partially addressed. The aim of this study was to evaluate the role of apo A-I expression in controlling the secretion of biliary lipids as well as the risk of gallstone disease in vivo. METHODS We evaluated biliary lipid secretion and bile acid homeostasis in mice deficient for apo A-I compared with wild-type animals when fed with low- or high-cholesterol diets. In addition, we assessed the importance of murine apoA-I expression for gallstone formation after feeding a lithogenic diet. RESULTS Bile acid pool size and faecal excretion were within the normal range in chow- and cholesterol-fed apo A-I knockout (KO) mice. Basal biliary cholesterol secretion was comparable and increased similarly in both murine strains after cholesterol feeding. Lithogenic diet-fed apo A-I KO mice exhibited an impaired hypercholesterolaemic response owing to a lower increase in cholesterol levels transported in large lipoproteins. However, the lack of apo A-I expression did not affect biliary cholesterol precipitation or gallstone formation in lithogenic diet-fed mice. CONCLUSIONS These findings indicate that biliary lipid secretion, bile acid metabolism and gallstone formation are independent of apo A-I expression and plasma HDL cholesterol levels in mice.
Collapse
Affiliation(s)
- Ludwig Amigo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the main pathophysiological determinant of cholesterol gallstone formation. This review summarizes current knowledge on the origins of cholesterol secreted into the bile as well as the relevant processes and transporters involved. Next to the established ATP-binding cassette (ABC) transporters mediating the biliary secretion of bile acids (ABCB11), phospholipids (ABCB4) and cholesterol (ABCG5/G8), special attention is given to emerging proteins that modulate or mediate biliary cholesterol secretion. In this regard, the potential impact of the phosphatidylserine flippase ATPase class I type 8B member 1, the Niemann Pick C1-like protein 1 that mediates cholesterol absorption and the high density lipoprotein cholesterol uptake receptor, scavenger receptor class B type I, is discussed.
Collapse
|
19
|
Abstract
Cholesterol available for bile secretion is controlled by a wide variety of proteins that mediate lipoprotein cholesterol uptake and cholesterol transport and metabolism in the liver. From a disease perspective, abnormalities in the transhepatic traffic of cholesterol from plasma into the bile may influence the risk of cholesterol gallstone formation. This review summarizes some recent progress in understanding the hepatic determinants of biliary cholesterol secretion and its potential pathogenic implications in cholesterol gallstone disease. This information together with new discoveries in this field may lead to improved risk evaluation, novel surrogate markers and earlier diagnosis, better preventive approaches and more effective pharmacological therapies for this prevalent human disease.
Collapse
Affiliation(s)
- Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | |
Collapse
|
20
|
Iqbal J, Hussain MM. Evidence for multiple complementary pathways for efficient cholesterol absorption in mice. J Lipid Res 2005; 46:1491-501. [PMID: 15834127 DOI: 10.1194/jlr.m500023-jlr200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein B (apoB)-dependent and apoB-independent pathways for cholesterol transport have been described in cultured cells. Here, we show that the apoB-independent pathway involves apoA-I-containing high density lipoproteins (HDLs). Cholesterol secretion by the HDLs, but not by the apoB pathway, was significantly reduced in primary enterocytes isolated from chow- and cholesterol-fed apoA-I(-/-) mice. These enterocytes were capable of cholesterol efflux when apoA-I was provided extracellularly. In apoA-I(-/-) mice, the absorption of a bolus of cholesterol was similar in control and apoA-I(-/-) mice fed chow or high-cholesterol diet. However, short-term studies revealed that cholesterol absorption was occurring over longer lengths of the intestine, and cholesterol but not triglyceride transport to the plasma and liver in chow- and cholesterol-fed apoA-I(-/-) mice was significantly reduced. These studies indicate that in apoA-I deficiency, there is a delay in cholesterol absorption, but cholesterol is eventually absorbed because of the compensatory apoB pathway. Nonetheless, long-term studies involving multiple feedings showed significant reduction in cholesterol absorption after 4 days. We propose that multiple compensatory mechanisms ensure efficient cholesterol absorption in mice.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Anatomy and Cell Biology, and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | |
Collapse
|
21
|
Zanlungo S, Rigotti A, Nervi F. Hepatic cholesterol transport from plasma into bile: implications for gallstone disease. Curr Opin Lipidol 2004; 15:279-86. [PMID: 15166783 DOI: 10.1097/00041433-200406000-00007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The transhepatic traffic of cholesterol from plasma lipoproteins into the bile is critical for overall cholesterol homeostasis and its alterations may lead to cholesterol gallstone formation. This review summarizes recent progress in understanding the key hepatic cholesterol metabolism-related proteins and pathways that influence biliary secretion of cholesterol. RECENT FINDINGS In cholesterol-fed apolipoprotein E knockout mice, the availability of dietary cholesterol for biliary disposal is decreased and diet-induced gallstone formation is impaired. Scavenger receptor class B type I is relevant for cholesterol transport from plasma HDL into the bile in chow-fed mice, however its expression is not critical for biliary cholesterol secretion and gallstone formation in lithogenic diet-fed mice. Intrahepatic cholesterol transport proteins (e.g. sterol carrier protein-2, Niemann Pick type C-1 protein) also determine liver cholesterol available for biliary secretion in mice. Genetic manipulation of canalicular ATP-binding cassette transporter G5 and G8 expression in mice has established their essential role for biliary cholesterol secretion. SUMMARY Recent studies have underscored that different proteins involved in hepatic cholesterol transport regulate the availability of cholesterol for biliary secretion. These advances may provide new avenues for prevention and treatment of various disease conditions linked to abnormal cholesterol metabolism.
Collapse
Affiliation(s)
- Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Marcoleta 367, Santiago, Chile
| | | | | |
Collapse
|
22
|
Quan G, Xie C, Dietschy JM, Turley SD. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 146:87-98. [PMID: 14643015 DOI: 10.1016/j.devbrainres.2003.09.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
These studies characterized the ontogenesis and regulation of cholesterol turnover in the central nervous system (CNS) of mice. During the first 3 weeks after birth, the CNS grew rapidly and equaled 5% of body weight. The cholesterol pool in this tissue expanded at a rate of 0.26 mg/day and the CNS synthesized sterol at a rate of 0.28 mg/day. In mature mice between 13 and 26 weeks of age, there was a marked decrease in these parameters including a reduction in the relative size of the CNS to 1.7% of body weight, a decrease in the rate of sterol accretion to 0.012 mg/day, and a reduction in the rate of cholesterol synthesis to 0.035 mg/day. Deletion of the NPC1 and CYP46A1 proteins markedly altered cholesterol metabolism in the CNS. However, changes in the plasma cholesterol concentration or loss of function of ATP-binding cassette AI transporter (ABCA1), scavenger receptor class B, type I (SR-BI), low-density lipoprotein receptor (LDLR), APOE or APOAI had no effect on sterol turnover in the brain. Thus, during early development, cholesterol comes entirely from local synthesis. In the adult, however, synthesis exceeds the need for structural cholesterol so that there is a constant excretion of sterol from the CNS into the plasma at a rate of about 0.023 mg/day.
Collapse
Affiliation(s)
- Gang Quan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8887, USA
| | | | | | | |
Collapse
|
23
|
Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003; 278:33920-7. [PMID: 12819193 DOI: 10.1074/jbc.m306370200] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ileal apical sodium bile acid cotransporter participates in the enterohepatic circulation of bile acids. In patients with primary bile acid malabsorption, mutations in the ileal bile acid transporter gene (Slc10a2) lead to congenital diarrhea, steatorrhea, and reduced plasma cholesterol levels. To elucidate the quantitative role of Slc10a2 in intestinal bile acid absorption, the Slc10a2 gene was disrupted by homologous recombination in mice. Animals heterozygous (Slc10a2+/-) and homozygous (Slc10a2-/-) for this mutation were physically indistinguishable from wild type mice. In the Slc10a2-/- mice, fecal bile acid excretion was elevated 10- to 20-fold and was not further increased by feeding a bile acid binding resin. Despite increased bile acid synthesis, the bile acid pool size was decreased by 80% and selectively enriched in cholic acid in the Slc10a2-/- mice. On a low fat diet, the Slc10a2-/- mice did not have steatorrhea. Fecal neutral sterol excretion was increased only 3-fold, and intestinal cholesterol absorption was reduced only 20%, indicating that the smaller cholic acid-enriched bile acid pool was sufficient to facilitate intestinal lipid absorption. Liver cholesteryl ester content was reduced by 50% in Slc10a2-/- mice, and unexpectedly plasma high density lipoprotein cholesterol levels were slightly elevated. These data indicate that Slc10a2 is essential for efficient intestinal absorption of bile acids and that alternative absorptive mechanisms are unable to compensate for loss of Slc10a2 function.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kosters A, Jirsa M, Groen AK. Genetic background of cholesterol gallstone disease. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:1-19. [PMID: 12527402 DOI: 10.1016/s0925-4439(02)00173-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholesterol gallstone formation is a multifactorial process involving a multitude of metabolic pathways. The primary pathogenic factor is hypersecretion of free cholesterol into bile. For people living in the Western Hemisphere, this is almost a normal condition, certainly in the elderly, which explains the very high incidence of gallstone disease. It is probably because the multifactorial background genes responsible for the high incidence have not yet been identified, despite the fact that genetic factors clearly play a role. Analysis of the many pathways involved in biliary cholesterol secretion reveals many potential candidates and considering the progress in unraveling the regulatory mechanisms of the responsible genes, identification of the primary gallstone genes will be successful in the near future.
Collapse
Affiliation(s)
- Astrid Kosters
- Department of Experimental Hepatology, AMC Liver Center S1-172, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
25
|
Newberry EP, Davidson NO. Biliary lipid secretion, membrane pumps, and the metabolic response to fasting: distinct PPAR-ts of a common regulatory pathway. Gastroenterology 2003; 124:254-7. [PMID: 12512050 DOI: 10.1053/gast.2003.50029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
26
|
Angelin B, Parini P, Eriksson M. Reverse cholesterol transport in man: promotion of fecal steroid excretion by infusion of reconstituted HDL. ATHEROSCLEROSIS SUPP 2002; 3:23-30. [PMID: 12573360 DOI: 10.1016/s1567-5688(02)00047-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Reverse cholesterol transport is a complex process, which transfers cholesterol from peripheral cells to the liver for subsequent elimination as bile acids and neutral steroids. Although apo A-I in high density lipoproteins (HDL) is believed to have a crucial role in this process, clinical conditions with very low HDL cholesterol levels appear to maintain normal cholesterol excretion. On the other hand, infusion of 'artificial HDL' in the form of recombinant proapo A-I (4 g) liposome complexes results in increased fecal steroid excretion, corresponding to a removal of approximately 0.5 g cholesterol daily for up to 9 days. This occurs without evidence of increased cholesterol synthesis, and could not be reproduced by infusion of liposomes only. These data indicate that stimulation of reverse cholesterol transport may be induced by infusion of 'artificial HDL' in humans, and that a more detailed knowledge of this process may be useful in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bo Angelin
- Department of Medicine, Center for Metabolism and Endocrinology, M63, Karolinska Institute at Huddinge University Hospital, S-141 86, Stockholm, Sweden.
| | | | | |
Collapse
|
27
|
Affiliation(s)
- John M Dietschy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
28
|
Groen AK, Bloks VW, Bandsma RH, Ottenhoff R, Chimini G, Kuipers F. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. J Clin Invest 2001. [DOI: 10.1172/jci200112473] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Groen AK, Bloks VW, Bandsma RH, Ottenhoff R, Chimini G, Kuipers F. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. J Clin Invest 2001; 108:843-50. [PMID: 11560953 PMCID: PMC200929 DOI: 10.1172/jci12473] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2001] [Accepted: 07/30/2001] [Indexed: 12/14/2022] Open
Abstract
The ABC transporter ABCA1 regulates HDL levels and is considered to control the first step of reverse cholesterol transport from the periphery to the liver. To test this concept, we studied the effect of ABCA1 deficiency on hepatic metabolism and hepatobiliary flux of cholesterol in mice. Hepatic lipid contents and biliary secretion rates were determined in Abca1(-/-), Abca1(+/-), and Abca1(+/+) mice with a DBA background that were fed either standard chow or a high-fat, high-cholesterol diet. Hepatic cholesterol and phospholipid contents in Abca1(-/-) mice were indistinguishable from those in Abca1(+/-) and Abca1(+/+) mice on both diets. In spite of the absence of HDL, biliary secretion rates of cholesterol, bile salts, and phospholipid were unimpaired in Abca1(-/-) mice. Neither the hepatic expression levels of genes controlling key steps in cholesterol metabolism nor the contribution of de novo synthesis to biliary cholesterol and bile salts were affected by Abca genotype. Finally, fecal excretion of neutral and acidic sterols was similar in all groups. We conclude that plasma HDL levels and ABCA1 activity do not control net cholesterol transport from the periphery via the liver into the bile, indicating that the importance of HDL in reverse cholesterol transport requires re-evaluation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Animals
- Biliary Tract/metabolism
- Biological Transport, Active
- CD36 Antigens/genetics
- Carrier Proteins
- Cholesterol/metabolism
- Humans
- Hydroxymethylglutaryl CoA Reductases/genetics
- Lipoproteins, HDL/deficiency
- Lipoproteins, HDL/metabolism
- Liver/metabolism
- Membrane Proteins
- Mice
- Mice, Inbred DBA
- Mice, Knockout
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Receptors, Immunologic
- Receptors, LDL/genetics
- Receptors, Lipoprotein/genetics
- Receptors, Scavenger
- Scavenger Receptors, Class B
Collapse
Affiliation(s)
- A K Groen
- Department of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|