1
|
Fan SY, Long SY, Liu JJ, Zhang WL, Hu JL. Nicotinamide N-Methyltransferase inhibits HBV replication by suppressing NR5A1 expression invitro. Biochem Biophys Res Commun 2022; 614:70-77. [PMID: 35569378 DOI: 10.1016/j.bbrc.2022.04.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
Chronic hepatitis B virus (HBV) infection can lead to fibrosis, liver cirrhosis, and primary hepatocellular carcinoma. Investigating host factors that regulate HBV replication helps to identify antiviral targets. In the current study, we identified Nicotinamide N-Methyltransferase gene (NNMT) as a novel factor that regulates HBV transcription. NNMT is up-regulated at both the mRNA and protein levels in HepG2.2.15 cells compared to HepG2 cells. Overexpression of NNMT reduces HBV replication in several cell models, while knockdown of NNMT enhances HBV DNA levels. Mechanistically, NNMT suppresses HBV DNA replication by inhibiting HBV RNA transcription. The region required for the inhibitory effect of NNMT was narrowed to nt 1672-1708 in enhancer II by luciferase assays. On the other hand, ChIP assays and EMSA results showed that NNMT does not bind to this region substantially, either directly or indirectly. Next, a collection of hepatic nuclear receptor transcription factors was screened to determine whether they were affected by NNMT overexpression. NR5A1, a positive regulator of HBV replication, decreased significantly after NNMT overexpression. Collectively, the findings of this study shed light on the regulation of HBV transcription.
Collapse
Affiliation(s)
- Shu-Ying Fan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shao-Yuan Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jia-Jun Liu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen-Lu Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China.
| | - Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Planeta Kepp K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chembiochem 2021; 23:e202100554. [PMID: 34889510 DOI: 10.1002/cbic.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Indexed: 01/18/2023]
Abstract
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
Collapse
Affiliation(s)
- Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Dawood RM, El-Meguid MA, Salum GM, El Awady MK. Key Players of Hepatic Fibrosis. J Interferon Cytokine Res 2020; 40:472-489. [PMID: 32845785 DOI: 10.1089/jir.2020.0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Reham M. Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A. El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K. El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019; 10:696-710. [PMID: 31305906 PMCID: PMC6628855 DOI: 10.1093/advances/nmz013] [Citation(s) in RCA: 410] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Zinc is an essential trace element that is crucial for growth, development, and the maintenance of immune function. Its influence reaches all organs and cell types, representing an integral component of approximately 10% of the human proteome, and encompassing hundreds of key enzymes and transcription factors. Zinc deficiency is strikingly common, affecting up to a quarter of the population in developing countries, but also affecting distinct populations in the developed world as a result of lifestyle, age, and disease-mediated factors. Consequently, zinc status is a critical factor that can influence antiviral immunity, particularly as zinc-deficient populations are often most at risk of acquiring viral infections such as HIV or hepatitis C virus. This review summarizes current basic science and clinical evidence examining zinc as a direct antiviral, as well as a stimulant of antiviral immunity. An abundance of evidence has accumulated over the past 50 y to demonstrate the antiviral activity of zinc against a variety of viruses, and via numerous mechanisms. The therapeutic use of zinc for viral infections such as herpes simplex virus and the common cold has stemmed from these findings; however, there remains much to be learned regarding the antiviral mechanisms and clinical benefit of zinc supplementation as a preventative and therapeutic treatment for viral infections.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephanie Obeid
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
5
|
Yang D, Li NL, Wei D, Liu B, Guo F, Elbahesh H, Zhang Y, Zhou Z, Chen GY, Li K. The E3 ligase TRIM56 is a host restriction factor of Zika virus and depends on its RNA-binding activity but not miRNA regulation, for antiviral function. PLoS Negl Trop Dis 2019; 13:e0007537. [PMID: 31251739 PMCID: PMC6623546 DOI: 10.1371/journal.pntd.0007537] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 07/11/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Infection by Zika virus (ZIKV) is linked to microcephaly and other neurological disorders, posing a significant health threat. Innate immunity is the first line of defense against invading pathogens, but relatively little is understood regarding host intrinsic mechanisms that guard against ZIKV. Here, we show that host tripartite motif-containing protein 56 (TRIM56) poses a barrier to ZIKV infection in cells of neural, epithelial and fibroblast origins. Overexpression of TRIM56, but not an E3 ligase-dead mutant or one lacking a short C-terminal portion, inhibited ZIKV RNA replication. Conversely, depletion of TRIM56 increased viral RNA levels. Although the C-terminal region of TRIM56 bears sequence homology to NHL repeat of TRIM-NHL proteins that regulate miRNA activity, knockout of Dicer, which abolishes production of miRNAs, had no demonstrable effect on ZIKV restriction imposed by TRIM56. Rather, we found that TRIM56 is an RNA-binding protein that associates with ZIKV RNA in infected cells. Moreover, a recombinant TRIM56 fragment comprising the C-terminal 392 residues captured ZIKV RNA in cell-free reactions, indicative of direct interaction. Remarkably, deletion of a short C-terminal tail portion abrogated the TRIM56-ZIKV RNA interaction, concomitant with a loss in antiviral activity. Altogether, our study reveals TRIM56 is an RNA binding protein that acts as a ZIKV restriction factor and provides new insights into the antiviral mechanism by which this E3 ligase tackles flavivirus infections.
Collapse
Affiliation(s)
- Darong Yang
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Nan L. Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Dahai Wei
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Baoming Liu
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Fang Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States of America
| | - Husni Elbahesh
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Yunzhi Zhang
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Zhou
- Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Yun Chen
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| |
Collapse
|
6
|
Read SA, Parnell G, Booth D, Douglas MW, George J, Ahlenstiel G. The antiviral role of zinc and metallothioneins in hepatitis C infection. J Viral Hepat 2018; 25:491-501. [PMID: 29239069 DOI: 10.1111/jvh.12845] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are small, cysteine-rich proteins characterized by a high affinity for monovalent and divalent cations, such as copper and zinc. Of the four known MT isoforms, only, members of the MT 1 and 2 subfamilies are widely expressed, acting as metal chaperones whose primary role is to mediate intracellular zinc homoeostasis. Metallothioneins are potently induced by heavy metals and other sources of oxidative stress where they facilitate metal binding and detoxification as well as free radical scavenging. Metallothionein expression is well documented in the context of viral infection; however, it remains uncertain whether MTs possess specific antiviral roles or whether induction is merely a consequence of cellular stress. To better understand the role of MTs following hepatitis C virus (HCV) infection, we examined MT expression and localization in vitro and in vivo and used a siRNA knockdown approach to ascertain their antiviral efficacy. We confirmed HCV-driven MT induction in vitro and demonstrated MT accumulation in the nucleus of HCV-infected hepatocytes by immunofluorescence. Using a pan-MT siRNA to knock down all members of the MT1 and MT2 subfamilies, we demonstrate that they are mildly antiviral against the JFH1 strain of HCV in vitro (~1.4 fold increase in viral RNA, P < .05). Furthermore, the antiviral effect of zinc treatment against HCV in vitro was mediated through MT induction (P < .05). Our data suggest a potential benefit of using zinc as a low-cost adjunct to current HCV antiviral therapies and suggest that zinc may facilitate the antiviral role of MTs against other viruses.
Collapse
Affiliation(s)
- S A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia
| | - G Parnell
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - D Booth
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - M W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - J George
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia
| | - G Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.,Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia
| |
Collapse
|
7
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
8
|
DebRoy S, Hiraga N, Imamura M, Hayes CN, Akamatsu S, Canini L, Perelson AS, Pohl RT, Persiani S, Uprichard SL, Tateno C, Dahari H, Chayama K. Hepatitis C virus dynamics and cellular gene expression in uPA-SCID chimeric mice with humanized livers during intravenous silibinin monotherapy. J Viral Hepat 2016; 23:708-17. [PMID: 27272497 PMCID: PMC4974116 DOI: 10.1111/jvh.12551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle (Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. To elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and human albumin (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median ε = 77%). However, the rate of HCV-infected hepatocyte decline, δ, was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. The results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes.
Collapse
Affiliation(s)
- Swati DebRoy
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Department of Mathematics and Computational Science, University of South Carolina-Beaufort, Bluffton, SC, USA
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C. Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sakura Akamatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Laetitia Canini
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ralf T. Pohl
- German Association of Phytotherapy, Nachtigallenweg 46, Speyer 67346, Germany
| | | | - Susan L. Uprichard
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
10
|
Soota K, Maliakkal B. Ribavirin induced hemolysis: A novel mechanism of action against chronic hepatitis C virus infection. World J Gastroenterol 2014; 20:16184-16190. [PMID: 25473172 PMCID: PMC4239506 DOI: 10.3748/wjg.v20.i43.16184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is not usually cleared by our immune system, leading to the development of chronic hepatitis C infection. Chronic HCV induces the production of various cytokines, predominantly by Kupffer cells (KCs), and creates a pro-inflammatory state in the liver. The chronic dysregulated production of interferon (IFN) and other cytokines by KCs also promotes innate immune tolerance. Ribavirin (RBV) monotherapy has been shown to decrease inflammation in liver of patients with chronic hepatitis C. Sustained virological response (SVR) is significantly higher when IFN is combined with RBV in chronic HCV (cHCV) infection. However, the mechanism of their synergy remains unclear. Previous theories have attempted to explain the anti-HCV effect based on direct action of RBV alone on the virus or on the immune system; however, these theories have serious shortcomings. We propose that hemolysis, which universally occurs with RBV therapy and which is considered a limiting side effect, is precisely the mechanism by which the anti-HCV effect is exerted. Passive hemolysis results in anti-inflammatory/antiviral actions within the liver that disrupt the innate immune tolerance, leading to the synergy of RBV with IFN-α. Ribavirin-induced hemolysis floods the hepatocytes and KCs with heme, which is metabolized and detoxified by heme oxygenase-1 (HMOX1) to carbon monoxide (CO), biliverdin and free iron (which induces ferritin). These metabolites of heme possess anti-inflammatory and antioxidant properties. Thus, HMOX1 plays an extremely important anti-oxidant, anti-inflammatory and cytoprotective role, particularly in KCs and hepatocytes. HMOX1 has been noted to have anti-viral effects in hepatitis C infected cell lines. Additionally, it has been shown to enhance the response to IFN-α by restoring interferon-stimulated genes (ISGs). This mechanism can be clinically corroborated by the following observations that have been found in patients undergoing RBV/IFN combination therapy for cHCV: (1) SVR rates are higher in patients who develop anemia; (2) once anemia (due to hemolysis) occurs, the SVR rate does not depend on the treatment utilized to manage anemia; and (3) ribavirin analogs, such as taribavirin and levovirin, which increase intrahepatic ribavirin levels and which produce lesser hemolysis, are inferior to ribavirin for treating cHCV. This mechanism can also explain the observed RBV synergy with direct antiviral agents. This hypothesis is testable and may lead to newer and safer medications for treating cHCV infection.
Collapse
MESH Headings
- Anemia, Hemolytic/blood
- Anemia, Hemolytic/chemically induced
- Anemia, Hemolytic/immunology
- Animals
- Antiviral Agents/adverse effects
- Antiviral Agents/therapeutic use
- Drug Synergism
- Drug Therapy, Combination
- Heme Oxygenase-1/metabolism
- Hemolysis/drug effects
- Hepacivirus/drug effects
- Hepacivirus/immunology
- Hepatitis C, Chronic/blood
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/physiopathology
- Hepatitis C, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Inflammation Mediators/metabolism
- Ribavirin/adverse effects
- Ribavirin/therapeutic use
- Treatment Outcome
Collapse
|
11
|
Hepatitis C Virus Core Protein Suppresses Mitophagy by Interacting with Parkin in the Context of Mitochondrial Depolarization. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3026-39. [DOI: 10.1016/j.ajpath.2014.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 02/08/2023]
|
12
|
Sebastiani G, Gkouvatsos K, Pantopoulos K. Chronic hepatitis C and liver fibrosis. World J Gastroenterol 2014; 20:11033-11053. [PMID: 25170193 PMCID: PMC4145747 DOI: 10.3748/wjg.v20.i32.11033] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/14/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide and predisposes to liver fibrosis and end-stage liver complications. Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, and is considered as a wound healing response to chronic liver injury. Its staging is critical for the management and prognosis of chronic hepatitis C (CHC) patients, whose number is expected to rise over the next decades, posing a major health care challenge. This review provides a brief update on HCV epidemiology, summarizes basic mechanistic concepts of HCV-dependent liver fibrogenesis, and discusses methods for assessment of liver fibrosis that are routinely used in clinical practice. Liver biopsy was until recently considered as the gold standard to diagnose and stage liver fibrosis. However, its invasiveness and drawbacks led to the development of non-invasive methods, which include serum biomarkers, transient elastography and combination algorithms. Clinical studies with CHC patients demonstrated that non-invasive methods are in most cases accurate for diagnosis and for monitoring liver disease complications. Moreover, they have a high prognostic value and are cost-effective. Non-invasive methods for assessment of liver fibrosis are gradually being incorporated into new guidelines and are becoming standard of care, which significantly reduces the need for liver biopsy.
Collapse
|
13
|
Higgs MR, Chouteau P, Lerat H. 'Liver let die': oxidative DNA damage and hepatotropic viruses. J Gen Virol 2014; 95:991-1004. [PMID: 24496828 DOI: 10.1099/vir.0.059485-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic infections by the hepatotropic viruses hepatitis B virus (HBV) and hepatitis C virus (HCV) are major risk factors for the development of hepatocellular carcinoma (HCC). It is estimated that more than 700,000 individuals per year die from HCC, and around 80 % of HCC is attributable to HBV or HCV infection. Despite the clear clinical importance of virus-associated HCC, the underlying molecular mechanisms remain largely elusive. Oxidative stress, in particular DNA lesions associated with oxidative damage, play a major contributory role in carcinogenesis, and are strongly linked to the development of many cancers, including HCC. A large body of evidence demonstrates that both HBV and HCV induce hepatic oxidative stress, with increased oxidative DNA damage being observed both in infected individuals and in murine models of infection. Here, we review the impact of HBV and HCV on the incidence and repair of oxidative DNA damage. We begin by giving a brief overview of oxidative stress and the repair of DNA lesions induced by oxidative stress. We then review in detail the evidence surrounding the mechanisms by which both viruses stimulate oxidative stress, before focusing on how the viral proteins themselves may perturb the cellular response to oxidative DNA damage, impacting upon genome stability and thus hepatocarcinogenesis.
Collapse
Affiliation(s)
- Martin R Higgs
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | - Hervé Lerat
- INSERM U955, Université Paris-Est, Créteil, France
| |
Collapse
|
14
|
Hino K, Hara Y, Nishina S. Mitochondrial reactive oxygen species as a mystery voice in hepatitis C. Hepatol Res 2014; 44:123-32. [PMID: 24112394 DOI: 10.1111/hepr.12247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022]
Abstract
There are several lines of evidence suggesting that oxidative stress is present in hepatitis C to a greater degree than in other inflammatory liver diseases and is closely related to disease progression. The main production site of reactive oxygen species (ROS) is assumed to be mitochondria, which concept is supported by evidence that hepatitis C virus (HCV) core protein is directly associated with them. The detoxification of ROS also is an important function of the cellular redox homeostasis system. These results draw our attention to how HCV-induced mitochondrial ROS production is beyond redox regulation and affects the disease progression and development of hepatocellular carcinoma (HCC) in chronic hepatitis C. On the other hand, HCV-related chronic liver diseases are characterized by metabolic alterations such as insulin resistance, hepatic steatosis and/or iron accumulation in the liver. These metabolic disorders also are relevant to the development of HCC in HCV-related chronic liver diseases. Here, we review the mechanisms by which HCV increases mitochondrial ROS production and offer new insights as to how mitochondrial ROS are linked to metabolic disorders such as insulin resistance, hepatic steatosis and hepatic iron accumulation that are observed in HCV-related chronic liver diseases.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | | | | |
Collapse
|
15
|
McCartney EM, Helbig KJ, Narayana SK, Eyre NS, Aloia AL, Beard MR. Signal transducer and activator of transcription 3 is a proviral host factor for hepatitis C virus. Hepatology 2013; 58:1558-68. [PMID: 23703790 DOI: 10.1002/hep.26496] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED Host factors play an important role in all facets of the hepatitis C virus (HCV) life cycle and one such host factor is signal transducer and activator of transcription 3 (STAT3). The HCV core protein has been shown to directly interact with and activate STAT3, while oxidative stress generated during HCV replication in a replicon-based model also induced STAT3 activation. However, despite these findings the precise role of STAT3 in the HCV life cycle remains unknown. We have established that STAT3 is actively phosphorylated in the presence of replicating HCV. Furthermore, expression of a constitutively active form of STAT3 leads to marked increases in HCV replication, whereas, conversely, chemical inhibition and small interfering RNA (siRNA) knockdown of STAT3 leads to significant decreases in HCV RNA levels. This strongly implicates STAT3 as a proviral host factor. As STAT3 is a transcription factor, up-regulation of a distinct set of STAT3-dependent genes may create an environment that is favorable for HCV replication. However, STAT3 has recently been demonstrated to positively regulate microtubule (MT) dynamics, by way of a direct sequestration of the MT depolymerizing protein Stathmin 1 (STMN1), and we provide evidence that STAT3 may exert its effect on the HCV life cycle by way of positive regulation of MT dynamics. CONCLUSION We have demonstrated that STAT3 plays a role in the life cycle of HCV and have clarified the role of STAT3 as a proviral host factor.
Collapse
Affiliation(s)
- Erin M McCartney
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, and Centre for Cancer Biology, SA Pathology, Adelaide, South Australia
| | | | | | | | | | | |
Collapse
|
16
|
Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 2013; 5:954-80. [PMID: 23518579 PMCID: PMC3705306 DOI: 10.3390/v5030954] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C is characterized by metabolic disorders and a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that lead in the long term to hepatocellular carcinoma. Many lines of evidence suggest that mitochondrial dysfunctions, including modification of metabolic fluxes, generation and elimination of oxidative stress, Ca2+ signaling and apoptosis, play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory, probably due to the use of artificial expression and replication systems. In vivo studies are hampered by the fact that innate and adaptive immune responses will overlay mitochondrial dysfunctions induced directly in the hepatocyte by HCV. Thus, the molecular aspects underlying HCV-induced mitochondrial dysfunctions and their roles in viral replication and the associated pathology need yet to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems.
Collapse
|
17
|
Interplay between Hepatitis C Virus and Redox Cell Signaling. Int J Mol Sci 2013; 14:4705-21. [PMID: 23443167 PMCID: PMC3634496 DOI: 10.3390/ijms14034705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world’s population. Currently licensed treatment of HCV chronic infection with pegylated-interferon-α and ribavirin, is not fully effective against all HCV genotypes and is associated to severe side effects. Thus, development of novel therapeutics and identification of new targets for treatment of HCV infection is necessary. Current opinion is orienting to target antiviral drug discovery to the host cell pathways on which the virus relies, instead of against viral structures. Many intracellular signaling pathways manipulated by HCV for its own replication are finely regulated by the oxido-reductive (redox) state of the host cell. At the same time, HCV induces oxidative stress that has been found to affect both virus replication as well as progression and severity of HCV infection. A dual role, positive or negative, for the host cell oxidized conditions on HCV replication has been reported so far. This review examines current information about the effect of oxidative stress on HCV life cycle and the main redox-regulated intracellular pathways activated during HCV infection and involved in its replication.
Collapse
|
18
|
|
19
|
Phillips RJ, Helbig KJ, Hoek KHVD, Seth D, Beard MR. Osteopontin increases hepatocellular carcinoma cell growth in a CD44 dependant manner. World J Gastroenterol 2012; 18:3389-99. [PMID: 22807608 PMCID: PMC3396191 DOI: 10.3748/wjg.v18.i26.3389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/23/2012] [Accepted: 03/29/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of osteopontin (OPN) and its splice variants in the proliferation of hepatocellular carcinoma (HCC).
METHODS: The expression of OPN variants in HCC cell lines as well as HCC tissue samples and non-tumour tissue was studied using polymerase chain reaction. OPN variant cDNAs were cloned into a mammalian expression vector allowing both transient expression and the production of stable OPN expressing cell lines. OPN expression was studied in these cells using Western blotting, immunofluoresnce and enzyme linked immunosorbent assay. A CD44 blocking antibody and siRNA targeting of CD44 were used to examine the role of this receptor in the OPN stimulated cell growth observed in culture. Huh-7 cells stably expressing either OPN-A, -B or -C were injected subcutaneously into the flanks of nude mice to observe in vivo tumour growth. Expression of OPN mRNA and protein in these tumours was examined using reverse transcription-polymerase chain reaction and immunohistochemistry.
RESULTS: OPN is expressed in HCC in 3 forms, the full length OPN-A and 2 splice variants OPN-B and -C. OPN variant expression was noted in HCC tissue as well as cognate surrounding cirrhotic liver tissue. Expression of these OPN variants in the HCC derived cell line Huh-7 resulted in secretion of OPN into the culture medium. Transfer of OPN conditioned media to naïve Huh-7 and HepG2 cells resulted in significant cell growth suggesting that all OPN variants can modulate cell proliferation in a paracrine manner. Furthermore the OPN mediated increase in cellular proliferation was dependent on CD44 as only CD44 positive cell lines responded to OPN conditioned media while siRNA knockdown of CD44 blocked the proliferative effect. OPN expression also increased the proliferation of Huh-7 cells in a subcutaneous nude mouse tumour model, with Huh-7 cells expressing OPN-A showing the greatest proliferative effect.
CONCLUSION: This study demonstrates that OPN plays a significant role in the proliferation of HCC through interaction with the cell surface receptor CD44. Modulation of this interaction could represent a novel strategy for the control of HCC.
Collapse
|
20
|
Rivas-Estilla AM, Bryan-Marrugo OL, Trujillo-Murillo K, Pérez-Ibave D, Charles-Niño C, Pedroza-Roldan C, Ríos-Ibarra C, Ramírez-Valles E, Ortiz-López R, Islas-Carbajal MC, Nieto N, Rincón-Sánchez AR. Cu/Zn superoxide dismutase (SOD1) induction is implicated in the antioxidative and antiviral activity of acetylsalicylic acid in HCV-expressing cells. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1264-73. [PMID: 22442156 DOI: 10.1152/ajpgi.00237.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We evaluated the participation of oxidative stress in the negative regulation of hepatitis C virus (HCV)-RNA induced by acetylsalicylic acid (ASA). We used the HCV subgenomic replicon cell system that stably expresses HCV-nonstructural proteins (Huh7 HCV replicon cells) and the parental cell line. Cells were exposed to 4 mM ASA at different times (12-72 h), and pyrrolidine dithiocarbamate (PDTC) was used as an antioxidant control. Reactive oxygen species (ROS) production, oxidized protein levels, cytosolic superoxide dismutase (Cu/Zn-SOD), and glutathione peroxidase (GPx) activity were measured to evaluate oxidative stress. In addition, viral RNA and prostaglandin (PGE(2)) levels were determined. We observed that ASA treatment decreased ROS production and oxidized protein levels in a time-dependent fashion in both parental and HCV replicon cells with a greater extent in the latter. Similar results were found with PDTC exposure. Average GPx activity was decreased, whereas a striking increase was observed in average cytosolic SOD activity at 48 and 72 h in both cells exposed to ASA, compared with untreated cells. HCV replicon cells showed higher levels of Cu/Zn-SOD expression (mRNA and protein) with ASA treatment (48 and 72 h), whereas NS5A protein levels showed decreased expression. In addition, we found that inhibition of SOD1 expression reversed the effect of ASA. Interestingly, PDTC downregulated HCV-RNA expression (55%) and PGE(2) (60%) levels, imitating ASA exposure. These results suggest that ASA treatment could reduce cellular oxidative stress markers and modify Cu/Zn-SOD expression, a phenomenon that may contribute to the mechanisms involved in HCV downregulation.
Collapse
Affiliation(s)
- Ana María Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, México.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ivanov AV, Smirnova OA, Ivanova ON, Masalova OV, Kochetkov SN, Isaguliants MG. Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS One 2011; 6:e24957. [PMID: 21931870 PMCID: PMC3172309 DOI: 10.1371/journal.pone.0024957] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/25/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a highly pathogenic human virus associated with liver fibrosis, steatosis, and cancer. In infected cells HCV induces oxidative stress. Here, we show that HCV proteins core, E1, E2, NS4B, and NS5A activate antioxidant defense Nrf2/ARE pathway via several independent mechanisms. This was demonstrated by the analysis of transient co-expression in Huh7 cells of HCV proteins and luciferase reporters. Expression, controlled by the promoters of stress-response genes or their minimal Nrf2-responsive elements, was studied using luminescence assay, RT-qPCR and/or Western-blot analysis. All five proteins induced Nrf2 activation by protein kinase C in response to accumulation of reactive oxygen species (ROS). In addition, expression of core, E1, E2, NS4B, and NS5A proteins resulted in the activation of Nrf2 in a ROS-independent manner. The effect of core and NS5A was mediated through casein kinase 2 and phosphoinositide-3 kinase, whereas those of NS4B, E1, and E2, were not mediated by either PKC, CK2, PI3K, p38, or ERK. Altogether, on the earliest stage of expression HCV proteins induced a strong up-regulation of the antioxidant defense system. These events may underlie the harmful effects of HCV-induced oxidative stress during acute stage of hepatitis C.
Collapse
Affiliation(s)
- Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
22
|
Lee JW, Liao PC, Young KC, Chang CL, Chen SSL, Chang TT, Lai MD, Wang SW. Identification of hnRNPH1, NF45, and C14orf166 as Novel Host Interacting Partners of the Mature Hepatitis C Virus Core Protein. J Proteome Res 2011; 10:4522-34. [PMID: 21823664 DOI: 10.1021/pr200338d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun-Wei Lee
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
| | - Kung-Chia Young
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
| | - Christina L. Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
| | - Steve S. L. Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Ting-Tsung Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
| | - Ming-Derg Lai
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
| | - Shainn-Wei Wang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
- Division of Clinical Research, National Health Research Institutes, Tainan 70401, Taiwan, Republic of China
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan, Republic of China
| |
Collapse
|
23
|
Weber R, Sabin C, Reiss P, de Wit S, Worm SW, Law M, Dabis F, D'Arminio Monforte A, Fontas E, El-Sadr W, Kirk O, Rickenbach M, Phillips A, Ledergerber B, Lundgren J. HBV or HCV coinfections and risk of myocardial infarction in HIV-infected individuals: the D:A:D Cohort Study. Antivir Ther 2011; 15:1077-86. [PMID: 21149914 DOI: 10.3851/imp1681] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Data on a link between HCV or HBV infection and the development of cardiovascular disease among HIV-negative and HIV-positive individuals are conflicting. We sought to investigate the association between HBV or HCV infection and myocardial infarction in HIV-infected individuals. METHODS The prospective observational database of the D:A:D collaboration of 11 cohorts of HIV-infected individuals, including 212 clinics in Europe, the United States and Australia was used. Multivariate Poisson regression was used to assess the effect of HCV or HBV infection on the development of myocardial infarction after adjustment for potential confounders, including cardiovascular risk factors, diabetes mellitus and exposure to antiretroviral therapy. RESULTS Of 33,347 individuals, 517 developed a myocardial infarction over 157,912 person-years, with an event rate of 3.3 events/1,000 person-years (95% confidence interval [CI] 3.0-3.6). Event rates (95% CIs) per 1,000 person-years in those who were HCV-seronegative and HCV-seropositive were 3.3 (3.0-3.7) and 2.7 (2.2-3.3), respectively, and for those who were HBV-seronegative, had inactive infection or had active infection were 3.2 (2.8-3.5), 4.2 (3.1-5.2) and 2.8 (1.8-3.9), respectively. After adjustment, there was no association between HCV seropositivity (rate ratio 0.86 [95% CI 0.62-1.19]), inactive HBV infection (rate ratio 1.07 [95% CI 0.79-1.43]) or active HBV infection (rate ratio 0.78 [95% CI 0.52-1.15]) and the development of myocardial infarction. CONCLUSIONS We found no association between HBV or HCV coinfection and the development of myocardial infarction among HIV-infected individuals.
Collapse
|
24
|
McGivern DR, Lemon SM. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 2011; 30:1969-83. [PMID: 21258404 DOI: 10.1038/onc.2010.594] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of hepatocellular carcinoma (HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem worldwide. Current antiviral therapies are not effective in many patients with chronic hepatitis C, and a greater understanding of the factors leading to progression of HCC will be necessary to design novel approaches to prevention of HCV-associated HCC. The lack of a small animal model of chronic HCV infection has hampered understanding of these factors. As HCV is an RNA virus with little potential for integration of its genetic material into the host genome, the mechanisms underlying HCV promotion of cancer are likely to differ from other models of viral carcinogenesis. In patients persistently infected with HCV, chronic inflammation resulting from immune responses against infected hepatocytes is associated with progressive fibrosis and cirrhosis. Cirrhosis is an important risk factor for HCC independent of HCV infection, and a majority of HCV-associated HCC arises in the setting of cirrhosis. However, a significant minority arises in the absence of cirrhosis, indicating that cirrhosis is not a prerequisite for cancer. Other lines of evidence suggest that direct, virus-specific mechanisms may be involved. Transgenic mice expressing HCV proteins develop cancer in the absence of inflammation or immune recognition of the transgene. In vitro studies have revealed multiple interactions of HCV-encoded proteins with cell cycle regulators and tumor suppressor proteins, raising the possibility that HCV can disrupt control of cellular proliferation, or impair the cell's response to DNA damage. A combination of virus-specific, host genetic, environmental and immune-related factors are likely to determine the progression to HCC in patients who are chronically infected with HCV. Here, we summarize current knowledge of the virus-specific mechanisms that may contribute to HCV-associated HCC.
Collapse
Affiliation(s)
- D R McGivern
- Lineberger Comprehensive Cancer Center, Center for Translational Research, Inflammatory Diseases Institute, and the Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | | |
Collapse
|
25
|
Jangra RK, Yi M, Lemon SM. DDX6 (Rck/p54) is required for efficient hepatitis C virus replication but not for internal ribosome entry site-directed translation. J Virol 2010; 84:6810-24. [PMID: 20392846 PMCID: PMC2903299 DOI: 10.1128/jvi.00397-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/01/2010] [Indexed: 12/22/2022] Open
Abstract
DDX6 (Rck/p54) is an evolutionarily conserved member of the SF2 DEAD-box RNA helicase family that contributes to the regulation of translation and storage and the degradation of cellular mRNAs. It interacts with multiple proteins and is a component of the micro-RNA (miRNA)-induced silencing complex (miRISC). Since miRNA-122 (miR-122) is essential for efficient hepatitis C virus (HCV) replication, we investigated the requirement for DDX6 in HCV replication in cultured hepatoma cells. Small interfering RNA (siRNA)-mediated knockdown of DDX6 and rescue with an siRNA-resistant mutant demonstrated that DDX6 expression is indeed required for optimal HCV replication. However, DDX6 knockdown did not impair miR-122 biogenesis or alter HCV responsiveness to miR-122 supplementation. Overexpression of DDX6 fused to EYFP (EYFP-DDX6) enhanced replication, whereas a helicase-deficient mutant with a substitution in the conserved DEAD-box motif II (DQAD) had a dominant-negative effect, reducing HCV yields. Coimmunoprecipitation experiments revealed an intracellular complex containing DDX6, HCV core protein, and both viral and cellular RNAs, the formation of which was dependent upon the C-terminal domain of DDX6 but not DDX6 helicase activity. However, since DDX6 abundance influenced the replication of subgenomic HCV RNAs lacking core sequence, the relevance of this complex is uncertain. Importantly, DDX6 knockdown caused minimal reductions in cellular proliferation, generally stimulated cellular translation ([(35)S]Met incorporation), and did not impair translation directed by the HCV internal ribosome entry site. Thus, DDX6 helicase activity is essential for efficient HCV replication, reflecting essential roles for DDX6 in HCV genome amplification and/or maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Rohit K Jangra
- Center for Hepatitis Research, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0610, USA
| | | | | |
Collapse
|
26
|
McCartney EM, Beard MR. Impact of alcohol on hepatitis C virus replication and interferon signaling. World J Gastroenterol 2010. [PMID: 20238400 DOI: 10.3748/wjg.16.1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is one of the main etiological factors responsible for liver disease worldwide. It has been estimated that there are over 170 million people infected with HCV worldwide. Of these infected individuals, approximately 75% will go on to develop a life long necroinflammatory liver disease, which over decades, can result in serious complications, such as cirrhosis and hepatocellular carcinoma. Currently there is no effective vaccine and whilst antiviral therapies have been improved, they are still only effective in approximately 50% of individuals. HCV infection stands as a major cause of global morbidity and suffering, and places a significant burden on health systems. The second highest cause of liver disease in the western world is alcoholic liver disease. Frequently, HCV infected individuals consume alcohol, and the combined effect of HCV and alcohol consumption is deleterious for both liver disease and response to treatment. This review discusses the impact of alcohol metabolism on HCV replication and the negative impact on interferon (IFN)-alpha treatment, with a particular focus on how alcohol and HCV act synergistically to increase oxidative stress, ultimately leading to exacerbated liver disease and a reduction in the efficacy of IFN-alpha treatment. A better understanding of the complicated mechanisms at play in hepatocytes infected with HCV and metabolizing alcohol will hopefully provide better treatment options for chronic hepatitis C individuals that consume alcohol.
Collapse
Affiliation(s)
- Erin M McCartney
- Centre for Cancer Biology, Hanson Centre, Adelaide, South Australia, 5000, Australia
| | | |
Collapse
|
27
|
Abstract
Hepatitis C virus (HCV) is one of the main etiological factors responsible for liver disease worldwide. It has been estimated that there are over 170 million people infected with HCV worldwide. Of these infected individuals, approximately 75% will go on to develop a life long necroinflammatory liver disease, which over decades, can result in serious complications, such as cirrhosis and hepatocellular carcinoma. Currently there is no effective vaccine and whilst antiviral therapies have been improved, they are still only effective in approximately 50% of individuals. HCV infection stands as a major cause of global morbidity and suffering, and places a significant burden on health systems. The second highest cause of liver disease in the western world is alcoholic liver disease. Frequently, HCV infected individuals consume alcohol, and the combined effect of HCV and alcohol consumption is deleterious for both liver disease and response to treatment. This review discusses the impact of alcohol metabolism on HCV replication and the negative impact on interferon (IFN)-α treatment, with a particular focus on how alcohol and HCV act synergistically to increase oxidative stress, ultimately leading to exacerbated liver disease and a reduction in the efficacy of IFN-α treatment. A better understanding of the complicated mechanisms at play in hepatocytes infected with HCV and metabolizing alcohol will hopefully provide better treatment options for chronic hepatitis C individuals that consume alcohol.
Collapse
|
28
|
Muriel P. Role of free radicals in liver diseases. Hepatol Int 2009; 3:526-36. [PMID: 19941170 DOI: 10.1007/s12072-009-9158-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/23/2009] [Accepted: 11/11/2009] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) are produced by metabolism of normal cells. However, in liver diseases, redox is increased thereby damaging the hepatic tissue; the capability of ethanol to increase both ROS/RNS and peroxidation of lipids, DNA, and proteins was demonstrated in a variety of systems, cells, and species, including humans. ROS/RNS can activate hepatic stellate cells, which are characterized by the enhanced production of extracellular matrix and accelerated proliferation. Cross-talk between parenchymal and nonparenchymal cells is one of the most important events in liver injury and fibrogenesis; ROS play an important role in fibrogenesis throughout increasing platelet-derived growth factor. Most hepatocellular carcinomas occur in cirrhotic livers, and the common mechanism for hepatocarcinogenesis is chronic inflammation associated with severe oxidative stress; other risk factors are dietary aflatoxin B(1) consumption, cigarette smoking, and heavy drinking. Ischemia-reperfusion injury affects directly on hepatocyte viability, particularly during transplantation and hepatic surgery; ischemia activates Kupffer cells which are the main source of ROS during the reperfusion period. The toxic action mechanism of paracetamol is focused on metabolic activation of the drug, depletion of glutathione, and covalent binding of the reactive metabolite N-acetyl-p-benzoquinone imine to cellular proteins as the main cause of hepatic cell death; intracellular steps critical for cell death include mitochondrial dysfunction and, importantly, the formation of ROS and peroxynitrite. Infection with hepatitis C is associated with increased levels of ROS/RNS and decreased antioxidant levels. As a consequence, antioxidants have been proposed as an adjunct therapy for various liver diseases.
Collapse
Affiliation(s)
- Pablo Muriel
- Department of Pharmacology, Cinvestav-I.P.N., Apdo. Postal 14-740, Mexico, 07000 D.F. Mexico
| |
Collapse
|
29
|
Liang Y, Shilagard T, Xiao SY, Snyder N, Lau D, Cicalese L, Weiss H, Vargas G, Lemon SM. Visualizing hepatitis C virus infections in human liver by two-photon microscopy. Gastroenterology 2009; 137:1448-58. [PMID: 19632233 DOI: 10.1053/j.gastro.2009.07.050] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/27/2009] [Accepted: 07/01/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Although hepatitis C virus (HCV) is a common cause of cirrhosis and liver cancer, efforts to understand the pathogenesis of HCV infection have been limited by the low abundance of viral proteins expressed within the liver, which hinders the detection of infected cells in situ. This study evaluated the ability of advanced optical imaging techniques to determine the extent and distribution of HCV-infected cells within the liver. METHODS We combined 2-photon microscopy with virus-specific, fluorescent, semiconductor quantum dot probes to determine the proportion of hepatocytes that were infected with virus in frozen sections of liver tissue obtained from patients with chronic HCV infection. RESULTS Viral core and nonstructural protein 3 antigens were detected readily in liver tissues from patients with chronic infection without confounding tissue autofluorescence. Specificity was confirmed by blocking with specific antibodies and by tissue colocalization of distinct viral antigens. Between 7% and 20% of hepatocytes were infected in patients with plasma viral RNA loads of 10(5) IU/mL or greater. Infected cells were in clusters, which suggested spread of the virus from cell to cell. Double-stranded RNA, a product of viral replication, was abundant within cells at the center of such clusters, but often scarce in cells at the periphery, consistent with more recent infection of cells at the periphery. CONCLUSIONS Two-photon microscopy provides unprecedented sensitivity for the detection of HCV proteins and double-stranded RNA. Studies using this technology indicate that HCV infection is a dynamic process that involves a limited number of hepatocytes. HCV spread between cells is likely to be constrained by host responses.
Collapse
Affiliation(s)
- Yuqiong Liang
- Center for Hepatitis Research, Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Texas 77555-0610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mateuszuk Ł, Khomich TI, Słomińska E, Gajda M, Wójcik L, Łomnicka M, Gwóźdź P, Chłopicki S. Activation of nicotinamide N-methyltrasferase and increased formation of 1-methylnicotinamide (MNA) in atherosclerosis. Pharmacol Rep 2009; 61:76-85. [PMID: 19307695 DOI: 10.1016/s1734-1140(09)70009-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/26/2009] [Indexed: 12/20/2022]
Abstract
Nicotinamide N-methyltrasferase (NMMT) catalyzes the conversion of nicotinamide (NA) to 1-methylnicotinamide (MNA). Recent studies have reported that exogenous MNA exerts anti-thrombotic and anti-inflammatory activity, suggesting that endogenous NMMT-derived MNA may play a biological role in the cardiovascular system. In the present study, we assayed changes in hepatic NNMT activity and MNA plasma levels along the progression of atherosclerosis in apoE/LDLR(-/-) mice, as compared to age-matched wild-type mice. Atherosclerosis progression in apoE/LDLR(-/-) mice was quantified in aortic root, while hepatic NNMT activity and MNA plasma concentrations were concomitantly measured in 2-, 3-, 4-, and 6-month-old mice. In apoE/LDLR(-/-) mice, atherosclerotic plaques developed in the aortic roots beginning at the age of 3 months and gradually increased in size, macrophage content, and inflammation intensity over time, as detected by Oil-Red O staining, CD68 immunostaining, and in situ zymography (MMP2/MMP9 activity). Hepatic NNMT activity was upregulated approximately two-fold in apoE/LDLR(-/-) mice by the age of 2 months, as compared to wild-type mice (1.03 +/- 0.14 vs. 0.64 +/- 0.23 pmol/min/mg, respectively). MNA plasma concentrations were also elevated approximately two-fold (0.30 +/- 0.13 vs. 0.17 +/- 0.04 micromol/l, respectively). As atherosclerosis progressed, hepatic NMMTactivity and MNA plasma concentrations increased five-fold in 6-month-old apoE/LDLR(-/-) mice at the stage of advanced atherosclerotic plaques (NMMT activity: 2.29 +/- 0.34 pmol/min/mg, MNA concentration: 1.083 +/- 0.33 micromol/l). In summary, the present study demonstrated that the progression of vascular inflammation and atherosclerosis was associated with the upregulation of hepatic NNMT activity and subsequent increase in endogenous MNA plasma levels. Given the anti-thrombotic and anti-inflammatory properties of exogenous MNA, robust activation of an endogenous NA-MNA pathway in atherosclerosis may play an important compensatory role.
Collapse
Affiliation(s)
- Łukasz Mateuszuk
- Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University, Medical College, Kraków, Poland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Campbell RV, Yang Y, Wang T, Rachamallu A, Li Y, Watowich SJ, Weinman SA. Chapter 20 Effects of hepatitis C core protein on mitochondrial electron transport and production of reactive oxygen species. Methods Enzymol 2009; 456:363-80. [PMID: 19348899 DOI: 10.1016/s0076-6879(08)04420-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral infections frequently alter mitochondrial function with suppression or induction of apoptosis and enhanced generation of reactive oxygen species. The mechanisms of these effects are varied, and mitochondria are affected by both direct interactions with viral proteins and by secondary effects of viral-activated signaling cascades. This chapter describes methods used in our laboratory to assess the effects of the hepatitis C virus core protein on mitochondrial ROS production, electron transport, and Ca(2+) uptake. These include measurements of the effects of in vitro incubation of liver mitochondria with purified core protein and assessment of the function of mitochondria in cells and tissues expressing core and other viral proteins. These methods are generally applicable to the study of viral-mitochondrial interactions.
Collapse
Affiliation(s)
- Roosevelt V Campbell
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Alekseeva E, Sominskaya I, Skrastina D, Egorova I, Starodubova E, Kushners E, Mihailova M, Petrakova N, Bruvere R, Kozlovskaya T, Isaguliants M, Pumpens P. Enhancement of the expression of HCV core gene does not enhance core-specific immune response in DNA immunization: advantages of the heterologous DNA prime, protein boost immunization regimen. GENETIC VACCINES AND THERAPY 2009; 7:7. [PMID: 19505299 PMCID: PMC2702340 DOI: 10.1186/1479-0556-7-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/08/2009] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatitis C core protein is an attractive target for HCV vaccine aimed to exterminate HCV infected cells. However, although highly immunogenic in natural infection, core appears to have low immunogenicity in experimental settings. We aimed to design an HCV vaccine prototype based on core, and devise immunization regimens that would lead to potent anti-core immune responses which circumvent the immunogenicity limitations earlier observed. METHODS Plasmids encoding core with no translation initiation signal (pCMVcore); with Kozak sequence (pCMVcoreKozak); and with HCV IRES (pCMVcoreIRES) were designed and expressed in a variety of eukaryotic cells. Polyproteins corresponding to HCV 1b amino acids (aa) 1-98 and 1-173 were expressed in E. coli. C57BL/6 mice were immunized with four 25-microg doses of pCMVcoreKozak, or pCMV (I). BALB/c mice were immunized with 100 microg of either pCMVcore, or pCMVcoreKozak, or pCMVcoreIRES, or empty pCMV (II). Lastly, BALB/c mice were immunized with 20 microg of core aa 1-98 in prime and boost, or with 100 microg of pCMVcoreKozak in prime and 20 microg of core aa 1-98 in boost (III). Antibody response, [3H]-T-incorporation, and cytokine secretion by core/core peptide-stimulated splenocytes were assessed after each immunization. RESULTS Plasmids differed in core-expression capacity: mouse fibroblasts transfected with pCMVcore, pCMVcoreIRES and pCMVcoreKozak expressed 0.22 +/- 0.18, 0.83 +/- 0.5, and 13 +/- 5 ng core per cell, respectively. Single immunization with highly expressing pCMVcoreKozak induced specific IFN-gamma and IL-2, and weak antibody response. Single immunization with plasmids directing low levels of core expression induced similar levels of cytokines, strong T-cell proliferation (pCMVcoreIRES), and antibodies in titer 103(pCMVcore). Boosting with pCMVcoreKozak induced low antibody response, core-specific T-cell proliferation and IFN-gamma secretion that subsided after the 3rd plasmid injection. The latter also led to a decrease in specific IL-2 secretion. The best was the heterologous pCMVcoreKozak prime/protein boost regiment that generated mixed Th1/Th2-cellular response with core-specific antibodies in titer >or= 3 x 10(3). CONCLUSION Thus, administration of highly expressed HCV core gene, as one large dose or repeated injections of smaller doses, may suppress core-specific immune response. Instead, the latter is induced by a heterologous DNA prime/protein boost regiment that circumvents the negative effects of intracellular core expression.
Collapse
Affiliation(s)
- Ekaterina Alekseeva
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, LV-1067, Latvia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Expression of nicotinamide N-methyltransferase in hepatocellular carcinoma is associated with poor prognosis. J Exp Clin Cancer Res 2009; 28:20. [PMID: 19216803 PMCID: PMC2657806 DOI: 10.1186/1756-9966-28-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 02/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common tumor in the adult liver, with high relapse and mortality rates despite diverse treatment modalities. In this study, nicotinamide N-methyltransferase (NNMT), a key enzyme in drug metabolism, was investigated as a potential prognostic factor. METHODS Frozen tumors and non-cancerous surrounding tissues from 120 patients with primary HCC were studied. Expressions of NNMT and internal control genes were measured by real-time reverse-transcription PCR (RT-PCR). The relationship of NNMT mRNA level with clinicopathologic parameters and clinical outcome was evaluated. RESULTS NNMT mRNA level is markedly reduced in HCCs compared to non-cancerous surrounding tissues (P < 0.0001), and NNMT expression in tumors was significantly correlated with tumor stage (P = 0.010). Moreover, stratification of patients based on tumor NNMT mRNA levels revealed that the patients who expressed higher NNMT mRNA levels tended to have a shorter overall survival (OS) time (P = 0.053) and a significantly shorter disease-free survival (DFS) time (P = 0.016). Both NNMT expression (P = 0.0096) and tumor stage (P = 0.0017) were found to be significant prognostic factors for DFS in a multivariate analysis. CONCLUSION The results of this study indicated that NNMT gene expression is associated with tumor stage and DFS time in HCC cases. Because of the broad substrate specificity of NNMT, which could alter the efficacy and adverse effects of chemotherapy, NNMT merits further investigation regarding its role as a prognostic factor with a larger cohort of HCC patients.
Collapse
|
34
|
McCartney EM, Semendric L, Helbig KJ, Hinze S, Jones B, Weinman SA, Beard MR. Alcohol metabolism increases the replication of hepatitis C virus and attenuates the antiviral action of interferon. J Infect Dis 2009; 198:1766-75. [PMID: 18956976 DOI: 10.1086/593216] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interactions between hepatitis C virus (HCV) and alcohol metabolism are not well understood. To determine the effect that alcohol metabolism has on HCV replication and the antiviral action of interferon (IFN), Huh-7 cells that harbor HCV replication and metabolize ethanol via the introduced expression of cytochrome P450 2E1 (Cyp2e1) were treated with ethanol and IFN-alpha. Treatment of these cells with ethanol (0-100 mmol/L) significantly increased HCV replication. This effect was dependent on Cyp2e1 expression and alcohol-metabolized oxidative stress (OS), because the antioxidant N-acetylcysteine blocked this effect. Furthermore, the anti-HCV action of IFN-alpha was attenuated in the presence of ethanol metabolism, most likely via attenuation of Stat1 tyrosine-701 phosphorylation. These in vitro results mimic what is often noted clinically, and further dissection of this model system will aid in our understanding of interactions between HCV and alcohol metabolism.
Collapse
Affiliation(s)
- Erin M McCartney
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Differential expression of the CXCR3 ligands in chronic hepatitis C virus (HCV) infection and their modulation by HCV in vitro. J Virol 2008; 83:836-46. [PMID: 18987152 DOI: 10.1128/jvi.01388-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To investigate chemokine expression networks in chronic hepatitis C virus (HCV) infection, we used microarray analysis to determine chemokine expression in human infection and in chimpanzees experimentally infected with HCV. The CXCR3 chemokine family was highly expressed in both human and chimpanzee infection. CXCL10 was the only CXCR3 chemokine elevated in the serum, suggesting that it may neutralize any CXCR3 chemokine gradient established between the periphery and liver by CXCL11 and CXCL9. Thus, CXCR3 chemokines may not be responsible for recruitment of T lymphocytes but may play a role in positioning these cells within the liver. The importance of the CXCR3 chemokines, in particular CXCL11, was highlighted by replicating HCV (JFH-1) to selectively upregulate its expression in response to gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). This selective upregulation was confirmed at the transcriptional level by using the CXCL11 promoter driving the luciferase reporter gene. This synergistic increase in expression was not a result of HCV protein expression but the nonspecific innate response to double-stranded RNA (dsRNA), as both in vitro-transcribed HCV RNA and the dsRNA analogue poly(I:C) increased CXCL11 expression and promoter activity. Furthermore, we show that CXCL11 is an IRF3 (interferon regulatory factor 3) response gene whose expression is selectively enhanced by IFN-gamma and TNF-alpha. In conclusion, the CXCR3 chemokines are the most significantly expressed chemokines in chronic hepatitis C and most likely play a role in positioning T cells in the liver. Furthermore, HCV can selectively increase CXCL11 expression in response to IFN-gamma and TNF-alpha stimulation that may play a role in the pathogenesis of HCV-related liver disease.
Collapse
|
36
|
Zhu Z, Wilson AT, Mathis MM, Wen F, Brown KE, Luxon BA, Schmidt WN. Heme oxygenase-1 suppresses hepatitis C virus replication and increases resistance of hepatocytes to oxidant injury. Hepatology 2008; 48:1430-9. [PMID: 18972446 PMCID: PMC2587102 DOI: 10.1002/hep.22491] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Oxidative injury to hepatocytes occurs as a result of hepatitis C virus (HCV) infection and replication. Modulation of host cell antioxidant enzymes such as heme oxygenase-1 (HO-1) may be useful therapeutically to minimize cellular injury, reduce viral replication, and attenuate liver disease. In this report, we evaluated the effects of HO-1 overexpression on HCV replication and hepatocellular injury. Full-length (FL) (Con1) or nonstructural (NS) replicons (I 389 NS3-3') were transfected with complete human HO-1 sequences or empty vector for control. Cell lines overexpressing HO-1 (twofold to sixfold above basal values) or empty vector were isolated, and their HCV RNA synthesis, pro-oxidant levels, and resistance to oxidative injury were assessed. HO-1 overexpression decreased HCV RNA replication in both FL and NS replicons without affecting cellular growth or DNA synthesis. The attenuation of HCV replication was significantly reversed in both replicon systems with HO-1 small interfering RNA (siRNA) knockdown. Both FL and NS replicons that overexpress HO-1 showed reduced prooxidant levels at baseline and increased resistance to oxidant-induced cytotoxicity. HO-1 induction with hemin also markedly decreased HCV replication in both parental FL and NS replicon cell lines. Conversely, knockdown of HO-1 messenger RNA (mRNA) by siRNA in parental FL or NS replicons did not significantly affect HCV replication, suggesting that less than basal levels of HO-1 had minimal effect on HCV replication. CONCLUSION Overexpression or induction of HO-1 results in decreased HCV replication as well as protection from oxidative damage. These findings suggest a potential role for HO-1 in antiviral therapy and therapeutic protection against hepatocellular injury in HCV infection.
Collapse
Affiliation(s)
- Zhaowen Zhu
- Department of Internal Medicine and Research Service, Veterans Administration Medical Center, Iowa City, IA 52246,Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Anne T. Wilson
- Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - M. Meleah Mathis
- Department of Internal Medicine and Research Service, Veterans Administration Medical Center, Iowa City, IA 52246
| | - Feng Wen
- Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Kyle E. Brown
- Department of Internal Medicine and Research Service, Veterans Administration Medical Center, Iowa City, IA 52246,Free Radical and Radiation Biology Program of the Department of Radiation Oncology, Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242,Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Bruce A. Luxon
- Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Warren N. Schmidt
- Department of Internal Medicine and Research Service, Veterans Administration Medical Center, Iowa City, IA 52246,Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
37
|
NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J Virol 2008; 82:7624-39. [PMID: 18508894 DOI: 10.1128/jvi.00724-08] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A mutation within subdomain 1 of the hepatitis C virus (HCV) NS3 helicase (NS3-Q221L) (M. Yi, Y. Ma, J. Yates, and S. M. Lemon, J. Virol. 81:629-638, 2007) rescues a defect in production of infectious virus by an intergenotypic chimeric RNA (HJ3). Although NS3-Gln-221 is highly conserved across HCV genotypes, the Leu-221 substitution had no effect on RNA replication or NS3-associated enzymatic activities. However, while transfection of unmodified HJ3 RNA failed to produce either extracellular or intracellular infectious virus, transfection of HJ3 RNA containing the Q221L substitution (HJ3/QL) resulted in rapid accumulation of intracellular infectious particles with release into extracellular fluids. In the absence of the Q221L mutation, both NS5A and NS3 were recruited to core protein on the surface of lipid droplets, but there was no assembly of core into high-density, rapidly sedimenting particles. Further analysis demonstrated that a Q221N mutation minimally rescued virus production and led to a second-site I399V mutation in subdomain 2 of the helicase. Similarly, I399V alone allowed only low-level virus production and led to selection of an I286V mutation in subdomain 1 of the helicase which fully restored virus production, confirming the involvement of both major helicase subdomains in the assembly process. Thus, multiple mutations in the helicase rescue a defect in an early-intermediate step in virus assembly that follows the recruitment of NS5A to lipid droplets and precedes the formation of dense intracellular viral particles. These data reveal a previously unsuspected role for the NS3 helicase in early virion morphogenesis and provide a new perspective on HCV assembly.
Collapse
|
38
|
König R, Cai P, Guo X, Ansari GAS. Transcriptomic analysis reveals early signs of liver toxicity in female MRL +/+ mice exposed to the acylating chemicals dichloroacetyl chloride and dichloroacetic anhydride. Chem Res Toxicol 2008; 21:572-82. [PMID: 18293905 DOI: 10.1021/tx7002728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dichloroacetyl chloride (DCAC) is a reactive metabolite of trichloroethene (TCE). TCE and its metabolites have been implicated in the induction of organ-specific and systemic autoimmunity, in the acceleration of autoimmune responses, and in the development of liver toxicity and hepatocellular carcinoma. In humans, effects of environmental toxicants are often multifactorial and detected only after long-term exposure. Therefore, we developed a mouse model to determine mechanisms by which DCAC and related acylating agents affect the liver. Autoimmune-prone female MRL +/+ mice were injected intraperitoneally with 0.2 mmol/kg of DCAC or dichloroacetic anhydride (DCAA) in corn oil twice weekly for six weeks. No overt liver pathology was detectable. Using microarray gene expression analysis, we detected changes in the liver transcriptome consistent with inflammatory processes. Both acylating toxicants up-regulated the expression of acute phase response and inflammatory genes. Furthermore, metallothionein genes were strongly up-regulated, indicating effects of the toxicants on zinc ion homeostasis and stress responses. In addition, DCAC and DCAA induced the up-regulation of several genes indicative of tumorigenesis. Our data provide novel insight into early mechanisms for the induction of liver disease by acylating agents. The data also demonstrate the power of microarray analysis in detecting early changes in liver function following exposure to environmental toxicants.
Collapse
Affiliation(s)
- Rolf König
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|
39
|
Tang W, Lázaro CA, Campbell JS, Parks WT, Katze MG, Fausto N. Responses of nontransformed human hepatocytes to conditional expression of full-length hepatitis C virus open reading frame. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1831-46. [PMID: 17991716 DOI: 10.2353/ajpath.2007.070413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis that can lead to cirrhosis and hepatocellular carcinoma. To study the effects of HCV protein expression on host cells, we established conditional expression of the full-length open reading frame (ORF) of an infectious cDNA clone of HCV (genotype 1a, H77 strain) in the nontransformed human hepatocyte line cell HH4 using the ecdysone receptor regulatory system. Treatment with the ecdysone analog ponasterone-A induced tightly regulated and dose-dependent full-length HCV ORF expression and properly processed HCV proteins. HCV Core, NS3, and NS5A colocalized in perinuclear regions and associated with the early endosomal protein EEA1. HCV ORF expression caused marked growth inhibition, increased intracellular reactive oxygen species, up-regulation of glutamate-l-cysteine ligase activity, increased glutathione level, and activation of nuclear factor kappaB. Although it was not directly cytotoxic, HCV ORF expression sensitized HH4 cells to Fas at certain concentrations but not to tumor necrosis factor-related apoptosis-inducing ligand. HCV ORF expression in HH4 cells up-regulated genes involved in innate immune response/inflammation and oxidative stress responses and down-regulated cell growth-related genes. Expression of HCV ORF in host cells may contribute to HCV pathogenesis by producing oxidative stress and increasing the expression of genes related to the innate immune response and inflammation.
Collapse
Affiliation(s)
- Weiliang Tang
- Department of Pathology, University of Washington School of Medicine, K078 Health Sciences Building, Box 357705, Seattle, WA 98195-7705, USA
| | | | | | | | | | | |
Collapse
|
40
|
Seronello S, Sheikh MY, Choi J. Redox regulation of hepatitis C in nonalcoholic and alcoholic liver. Free Radic Biol Med 2007; 43:869-82. [PMID: 17697932 DOI: 10.1016/j.freeradbiomed.2007.05.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/26/2007] [Accepted: 05/30/2007] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is an RNA virus of the Flaviviridae family that is estimated to have infected 170 million people worldwide. HCV can cause serious liver disease in humans, such as cirrhosis, steatosis, and hepatocellular carcinoma. HCV induces a state of oxidative/nitrosative stress in patients through multiple mechanisms, and this redox perturbation has been recognized as a key player in HCV-induced pathogenesis. Studies have shown that alcohol synergizes with HCV in the pathogenesis of liver disease, and part of these effects may be mediated by reactive species that are generated during hepatic metabolism of alcohol. Furthermore, reactive species and alcohol may influence HCV replication and the outcome of interferon therapy. Alcohol consumption has also been associated with increased sequence heterogeneity of the HCV RNA sequences, suggesting multiple modes of interaction between alcohol and HCV. This review summarizes the current understanding of oxidative and nitrosative stress during HCV infection and possible combined effects of HCV, alcohol, and reactive species in the pathogenesis of liver disease.
Collapse
Affiliation(s)
- Scott Seronello
- School of Natural Sciences, University of California at Merced, Merced, CA 95344, USA
| | | | | |
Collapse
|
41
|
Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, Lin R, Peters CJ, Tseng CTK, Baker SC, Li K. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 2007; 282:32208-21. [PMID: 17761676 PMCID: PMC2756044 DOI: 10.1074/jbc.m704870200] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a novel coronavirus that causes a highly contagious respiratory disease, SARS, with significant mortality. Although factors contributing to the highly pathogenic nature of SARS-CoV remain poorly understood, it has been reported that SARS-CoV infection does not induce type I interferons (IFNs) in cell culture. However, it is uncertain whether SARS-CoV evades host detection or has evolved mechanisms to counteract innate host defenses. We show here that infection of SARS-CoV triggers a weak IFN response in cultured human lung/bronchial epithelial cells without inducing the phosphorylation of IFN-regulatory factor 3 (IRF-3), a latent cellular transcription factor that is pivotal for type I IFN synthesis. Furthermore, SARS-CoV infection blocked the induction of IFN antiviral activity and the up-regulation of protein expression of a subset of IFN-stimulated genes triggered by double-stranded RNA or an unrelated paramyxovirus. In searching for a SARS-CoV protein capable of counteracting innate immunity, we identified the papain-like protease (PLpro) domain as a potent IFN antagonist. The inhibition of the IFN response does not require the protease activity of PLpro. Rather, PLpro interacts with IRF-3 and inhibits the phosphorylation and nuclear translocation of IRF-3, thereby disrupting the activation of type I IFN responses through either Toll-like receptor 3 or retinoic acid-inducible gene I/melanoma differentiation-associated gene 5 pathways. Our data suggest that regulation of IRF-3-dependent innate antiviral defenses by PLpro may contribute to the establishment of SARS-CoV infection.
Collapse
Affiliation(s)
- Santhana G Devaraj
- Department of Microbiology and Immunology, Center of Biodefense and Emerging Infectious Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wen F, Brown KE, Britigan BE, Schmidt WN. Hepatitis C core protein inhibits induction of heme oxygenase-1 and sensitizes hepatocytes to cytotoxicity. Cell Biol Toxicol 2007; 24:175-88. [PMID: 17721824 DOI: 10.1007/s10565-007-9027-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 06/07/2007] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) core protein is a transcriptional modifier whose expression is associated with increased levels of prooxidants in hepatocytes in vivo and in vitro. We previously reported that HCV-infected liver biopsies and core protein-expressing hepatocytes show diminished levels of heme oxygenase-1 (HO-1), which is an important oxidative defense enzyme. The objective of these studies was to test the hypothesis that the expression of core protein sensitizes hepatocytes to toxic injury and inhibits the induction of HO-1 in response to stress. The effects of core protein were tested in two different human hepatocyte cell lines, HepG2 and Huh7, which show increased prooxidative activity and cytotoxicity after treatment with heme, heavy metals, and peroxides compared to control cells. HO-1 is upregulated in response to these treatments in control cells, while the induction is attenuated in core protein-expressing cells. The effects of core protein on HO-1 expression are not accounted for by differences in HO-1 mRNA turnover or by the known effects of core protein on cellular proliferation. Collectively, these data suggest that HCV core protein may contribute to hepatocellular injury by increasing both steady-state levels of prooxidants and the susceptibility of hepatocytes to damage by impairing their response to other sources of oxidative stress.
Collapse
Affiliation(s)
- Feng Wen
- Department of Internal Medicine, Roy G and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
43
|
Müller S, Geffers R, Günther S. Analysis of gene expression in Lassa virus-infected HuH-7 cells. J Gen Virol 2007; 88:1568-1575. [PMID: 17412988 DOI: 10.1099/vir.0.82529-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of Lassa fever is poorly understood. As the liver is a major target organ of Lassa virus, gene expression in Lassa virus-infected HuH-7 cells, a differentiated human hepatoma cell line, was studied. Cellular mRNA levels were measured at the late phase of acute infection, when virtually all cells expressed large amounts of nucleoprotein, and virus RNA concentration had reached>10(8) copies (ml supernatant)-1. Two types of transcription array were used: cDNA-based macroarrays with a set of 3500 genes (Atlas Human 1.2 arrays; Clontech) and oligonucleotide-based microarrays covering 18,400 transcripts (Human Genome U133A array; Affymetrix). Data analysis was based on statistical frameworks controlling the false-discovery rate. Atlas array data were considered relevant if they could be verified by U133A array or real-time RT-PCR. According to these criteria, there was no evidence for true changes in gene expression. Considering the precision of the U133A array and the number of replicates tested, potential expression changes due to Lassa virus infection are probably smaller than twofold. To substantiate the array data, beta interferon (IFN-beta) gene expression was studied longitudinally in Lassa virus-infected HuH-7 and FRhK-4 cells by using real-time RT-PCR. IFN-beta mRNA levels increased only twofold upon Lassa virus infection, although there was no evidence that the virus inhibited poly(I:C)-induced IFN-beta gene expression. In conclusion, Lassa virus interferes only minimally with gene expression in HuH-7 cells and poorly induces IFN-beta gene transcription.
Collapse
Affiliation(s)
- Stefanie Müller
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Robert Geffers
- Mucosal Immunity Group, German Research Centre for Biotechnology, 38124 Braunschweig, Germany
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
44
|
Chen Z, Rijnbrand R, Jangra RK, Devaraj SG, Qu L, Ma Y, Lemon SM, Li K. Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 2007; 366:277-92. [PMID: 17531282 PMCID: PMC2000802 DOI: 10.1016/j.virol.2007.04.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/21/2007] [Accepted: 04/20/2007] [Indexed: 12/21/2022]
Abstract
The pathogenesis of bovine viral diarrhea virus (BVDV) infections is complex and only partly understood. It remains controversial whether interferon is produced in cells infected with cytopathic(cp) BVDVs which do not persist in vivo. We show here that a cpBVDV (NADL strain) does not induce interferon responses in cell culture and blocks induction of interferon-stimulated genes by a super-infecting paramyxovirus. cpBVDV infection causes a marked loss of interferon regulatory factor 3 (IRF-3), a cellular transcription factor that controls interferon synthesis. This is attributed to expression of Npro, but not its protease activity. Npro interacts with IRF-3, prior to its activation by virus-induced phosphorylation, resulting in polyubiquitination and subsequent proteasomal degradation of IRF-3. Thermal inactivation of the E1 ubiquitin-activating enzyme prevents Npro-induced IRF-3 loss. These data suggest that inhibition of interferon production is a shared feature of both ncp and cpBVDVs and provide new insights regarding IRF-3 regulation in pestivirus pathogenesis.
Collapse
Affiliation(s)
- Zihong Chen
- Department of Microbiology and Immunology and the Center for Hepatitis Research, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Saadoun D, Bieche I, Authier FJ, Laurendeau I, Jambou F, Piette JC, Vidaud M, Maisonobe T, Cacoub P. Role of matrix metalloproteinases, proinflammatory cytokines, and oxidative stress-derived molecules in hepatitis C virus-associated mixed cryoglobulinemia vasculitis neuropathy. ACTA ACUST UNITED AC 2007; 56:1315-24. [PMID: 17393409 DOI: 10.1002/art.22456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Mixed cryoglobulinemia (MC) is a systemic vasculitis, usually associated with hepatitis C virus (HCV) infection. The molecular mechanisms responsible for HCV-associated MC (HCV-MC) vasculitis are largely unknown. This study was undertaken to assess the expression profile of selected genes involved in inflammatory vascular damage in patients with HCV-MC vasculitis, patients with polyarteritis nodosa (PAN), and patients with noninflammatory idiopathic neuropathy. METHODS The quantitative expression levels of 42 selected genes involved in inflammatory vascular damage were assessed in nerve lesions of patients with HCV-MC vasculitis, PAN (rheumatic disease controls), and noninflammatory idiopathic neuropathy (noninflammatory neuropathy controls), using real-time reverse transcriptase-polymerase chain reaction. Genes were considered to be differentially expressed when there was a >2-fold difference in mean expression levels between groups and the P value was less than 0.05. RESULTS Expression levels of 8 genes were significantly increased in HCV-MC patients versus control patients with noninflammatory idiopathic neuropathy, with the highest increase for metallothionein 1 H (MT1H), a hypoxic and oxidative stress protein. Compared with PAN patients, HCV-MC patients had higher expression levels of genes encoding oxidative stress-derived molecules (MT1H, endothelial cell nitric oxide synthase 3, Hsp70, and Hsp90) and tissue plasminogen activator and lower expression levels of matrix metalloproteinase 7 (MMP-7). HCV-MC neuropathies were classified according to their morphologic pattern and the presence or absence of necrotizing arteritis. MMP-1, MMP-7, MMP-9, and interleukin-1beta were up-regulated in patients with necrotizing arteritis. CONCLUSION This comprehensive molecular study of HCV-MC vasculitis provides strong evidence that MMPs, proinflammatory cytokines, and oxidative stress-derived molecules have a role in the pathogenesis of HCV-MC vasculitis neuropathy.
Collapse
Affiliation(s)
- David Saadoun
- Université Pierre et Marie Curie-Paris VI, CNRS UMR 7087, and Hôpital Pitié-Salpétrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dou J, Liu P, Wang J, Zhang X. Effect of hepatitis C virus core shadow protein expressed in human hepatoma cell line on human gene expression profiles. J Gastroenterol Hepatol 2006; 21:1794-800. [PMID: 17074016 DOI: 10.1111/j.1440-1746.2006.04380.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS The hepatitis C virus (HCV) C region has been reported to have overlapping genes or regions, and may encode a core shadow protein that has a role in HCV self-replication, pathogenesis and carcinogenesis. The aim of this study was to identify the effect of HCV core shadow protein expressed in a human hepatoma (Huh-7) cell line on human gene expression profiles. METHODS Recombinants for expression of HCV genotype 1b core shadow protein and genotype 1b core protein were constructed, and an Huh-7 cell line was established that could express the shadow protein and the core protein constitutively. Affymetrix human gene chip, HG-U133 A and B microarray analysis and semiquantitative RT-PCR were employed to identify the expression profiles of two kinds of core proteins in the Huh-7 cell line. RESULTS The microarray analysis showed that the core shadow protein caused expression of more genes to be up/down-regulation than the core protein, including signal transduction, protease activity, molecular transport and, particularly, immune responses genes. Surprisingly, the core shadow protein could increase/decrease expression of apoptosis and anti-apoptosis genes simultaneously. The expression profiles of three up-regulated genes were confirmed by semiquantitative RT-PCR, with results similar to the microarray analysis. CONCLUSIONS Hepatitis C virus core shadow protein may play an important role in inhibiting or stimulating host cells apoptosis processing and carcinogenesis, which is useful for the understanding of HCV core shadow protein biological functions in vivo and in vitro.
Collapse
Affiliation(s)
- Jun Dou
- Department of Pathogenic Biology and Immunology, Affiliated Zhongda Hospital, South-East University School of Basic Medical Science, Nanjing, China.
| | | | | | | |
Collapse
|
47
|
Chen Z, Benureau Y, Rijnbrand R, Yi J, Wang T, Warter L, Lanford RE, Weinman SA, Lemon SM, Martin A, Li K. GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS. J Virol 2006; 81:964-76. [PMID: 17093192 PMCID: PMC1797450 DOI: 10.1128/jvi.02076-06] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanisms of hepatitis C virus (HCV) pathogenesis and persistence has been hampered by the lack of small, convenient animal models. GB virus B (GBV-B) is phylogenetically the closest related virus to HCV. It causes generally acute and occasionally chronic hepatitis in small primates and is used as a surrogate model for HCV. It is not known, however, whether GBV-B has evolved strategies to circumvent host innate defenses similar to those of HCV, a property that may contribute to HCV persistence in vivo. We show here in cultured tamarin hepatocytes that GBV-B NS3/4A protease, but not a related catalytically inactive mutant, effectively blocks innate intracellular antiviral responses signaled through the RNA helicase, retinoic acid-inducible gene I (RIG-I), an essential sensor molecule that initiates host defenses against many RNA viruses, including HCV. GBV-B NS3/4A protease specifically cleaves mitochondrial antiviral signaling protein (MAVS; also known as IPS-1/Cardif/VISA) and dislodges it from mitochondria, thereby disrupting its function as a RIG-I adaptor and blocking downstream activation of both interferon regulatory factor 3 and nuclear factor kappa B. MAVS cleavage and abrogation of virus-induced interferon responses were also observed in Huh7 cells supporting autonomous replication of subgenomic GBV-B RNAs. Our data indicate that, as in the case of HCV, GBV-B has evolved to utilize its major protease to disrupt RIG-I signaling and impede innate antiviral defenses. These data provide further support for the use of GBV-B infection in small primates as an accurate surrogate model for deciphering virus-host interactions in hepacivirus pathogenesis.
Collapse
Affiliation(s)
- Zihong Chen
- Department of Microbiology & Immunology, Center for Hepatitis Research, Institute for Human Infections & Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Choi J, Forman HJ, Ou JH, Lai MMC, Seronello S, Nandipati A. Redox modulation of the hepatitis C virus replication complex is calcium dependent. Free Radic Biol Med 2006; 41:1488-98. [PMID: 17023276 DOI: 10.1016/j.freeradbiomed.2006.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/24/2006] [Accepted: 08/09/2006] [Indexed: 02/06/2023]
Abstract
Reactive species and perturbation of the redox balance have been implicated in the pathogenesis of many viral diseases, including hepatitis C. Previously, we made a surprising discovery that concentrations of H(2)O(2) that are nontoxic to host cells disrupted the hepatitis C virus (HCV) replication complex (RC) in Huh7 human hepatoma cells in a manner that suggested signaling. Here, we show that H(2)O(2) and interferon-gamma have comparable effects on the HCV subgenomic and genomic RNA replication in Huh7 cells. H(2)O(2) induced a gradual rise in the intracellular calcium concentration ([Ca(2+)](i)). Both rapid and sustained suppression of HCV RNA replication by H(2)O(2) depended on this calcium elevation. The peroxide-induced [Ca(2+)](i) elevation was independent of extracellular calcium and derived, at least in part, from the endoplasmic reticulum. Likewise, the suppression of the HCV RC by H(2)O(2) was independent of extracellular calcium but required an intracellular calcium source. Other agents that elevated [Ca(2+)](i) could also suppress the HCV RC, suggesting that calcium elevation might be sufficient to suppress HCV RNA replication. In conclusion, oxidants may modulate the HCV RC through calcium. Effects on the infectivity and the morphogenesis of HCV remain to be determined. These findings suggest possible regulatory roles for redox and calcium signaling during viral infections.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, CA 95344, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Fukasawa M, Tanaka Y, Sato S, Ono Y, Nitahara-Kasahara Y, Suzuki T, Miyamura T, Hanada K, Nishijima M. Enhancement of de novo fatty acid biosynthesis in hepatic cell line Huh7 expressing hepatitis C virus core protein. Biol Pharm Bull 2006; 29:1958-61. [PMID: 16946517 DOI: 10.1248/bpb.29.1958] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) core protein plays important roles in the pathogeneses of liver steatosis as well as hepatocellular carcinomas due to HCV infection. In this study, we examined de novo fatty acid biosynthesis in hepatic cell line Huh7 cells expressing HCV core protein. The rate of metabolic labeling of cellular fatty acids with [(3)H]acetate in core-expressing (Uc39-6) cells was ca. 1.5-fold higher than that in non-expressing (Uc321) cells. The enzyme activities responsible for fatty acid biosynthesis were assayed in vitro. Cytosolic acetyl-CoA carboxylase activity in Uc39-6 cells was ca. 1.6-fold higher than that in Uc321 cells. On the other hand, cytosolic fatty acid synthase activity in Uc39-6 cells was only slightly higher than that in Uc321 cells. Immunoblot analysis of acetyl-CoA carboxylase 1 (ACC1), which is a rate-limiting enzyme for fatty acid biosynthesis, revealed a higher expression level of the protein in Uc39-6 cells than in Uc321 cells. The ACC1 mRNA content in Uc39-6 cells was 1.4-fold higher than that in Uc321 cells. These results strongly suggest that enhancement of fatty acid biosynthesis in core-expressing cells is caused by increased expression of fatty acid biosynthetic enzymes, especially ACC1. Up-regulation of de novo fatty acid biosynthesis by HCV core protein may affect cellular lipid metabolism, resulting in neutral lipid accumulation in HCV-infected cells.
Collapse
Affiliation(s)
- Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nguyen H, Sankaran S, Dandekar S. Hepatitis C virus core protein induces expression of genes regulating immune evasion and anti-apoptosis in hepatocytes. Virology 2006; 354:58-68. [PMID: 16876223 DOI: 10.1016/j.virol.2006.04.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/17/2006] [Accepted: 04/24/2006] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) Core protein is implicated in the development of hepatocellular carcinoma (HCC). We utilized a HepG2 human hepatocyte cell line with inducible expression of HCV Core protein (HCV-1b) to investigate the early effects of Core protein on hepatocyte gene expression and to identify molecular processes modulated by the Core protein. A significant change was observed in the expression of 407 genes, which included genes regulating apoptosis, immune response, and cell cycle. Some of these genes were previously known to be tumor markers. The decreased expression of chemo-attractants such as TNFSF10, CCL20, and osteopontin was observed, which suggested that HCV Core expression could lead to suppression of inflammatory response as well as trafficking of macrophages and neutrophils to the site of HCV infection. An increased expression of anti-apoptosis factors including PAK2, API5, BH1, Tax1BP1, DAXX, and TNFAIP3/A20 was observed. Some of these genes were also linked to the regulation of NFKB activation and that the alteration of their expression levels, by HCV Core, might lead to the suppression NFKB activation of inflammatory responses. Our data suggested that Core expression may contribute to the viral persistence by protecting infected hepatocytes from cell death by the suppressing apoptosis and inflammatory reaction to HCV viral infection.
Collapse
Affiliation(s)
- Hau Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, Topper Hall, Room 3146, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|