1
|
Di Blasio S, Clarke M, Hind CK, Asai M, Laurence L, Benvenuti A, Hassan M, Semenya D, Man DKW, Horrocks V, Manzo G, Van Der Lith S, Lam C, Gentile E, Annette C, Bosse J, Li Y, Panaretou B, Langford PR, Robertson BD, Lam JKW, Sutton JM, McArthur M, Mason AJ. Bolaamphiphile Analogues of 12-bis-THA Cl 2 Are Potent Antimicrobial Therapeutics with Distinct Mechanisms of Action against Bacterial, Mycobacterial, and Fungal Pathogens. mSphere 2023; 8:e0050822. [PMID: 36511707 PMCID: PMC9942557 DOI: 10.1128/msphere.00508-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
12-Bis-THA Cl2 [12,12'-(dodecane-1,12-diyl)-bis-(9-amino-1,2,3,4-tetrahydroacridinium) chloride] is a cationic bolalipid adapted from dequalinium chloride (DQC), a bactericidal anti-infective indicated for bacterial vaginosis (BV). Here, we used a structure-activity-relationship study to show that the factors that determine effective killing of bacterial, fungal, and mycobacterial pathogens differ, to generate new analogues with a broader spectrum of activity, and to identify synergistic relationships, most notably with aminoglycosides against Acinetobacter baumannii and Pseudomonas aeruginosa, where the bactericidal killing rate was substantially increased. Like DQC, 12-bis-THA Cl2 and its analogues accumulate within bacteria and fungi. More hydrophobic analogues with larger headgroups show reduced potential for DNA binding but increased and broader spectrum antibacterial activity. In contrast, analogues with less bulky headgroups and stronger DNA binding affinity were more active against Candida spp. Shortening the interconnecting chain, from the most lipophilic twelve-carbon chain to six, improved the selectivity index against Mycobacterium tuberculosis in vitro, but only the longer chain analogue was therapeutic in a Galleria mellonella infection model, with the shorter chain analogue exacerbating the infection. In vivo therapy of Escherichia coli ATCC 25922 and epidemic methicillin-resistant Staphylococcus aureus 15 (EMRSA-15) infections in Galleria mellonella was also achieved with longer-chain analogues, as was therapy for an A. baumannii 17978 burn wound infection with a synergistic combination of bolaamphiphile and gentamicin. The present study shows how this class of bolalipids may be adapted further to enable a wider range of potential applications. IMPORTANCE While we face an acute threat from antibiotic resistant bacteria and a lack of new classes of antibiotic, there are many effective antimicrobials which have limited application due to concerns regarding their toxicity and which could be more useful if such risks are reduced or eliminated. We modified a bolalipid antiseptic used in throat lozenges to see if it could be made more effective against some of the highest-priority bacteria and less toxic. We found that structural modifications that rendered the lipid more toxic against human cells made it less toxic in infection models and we could effectively treat caterpillars infected with either Mycobacterium tuberculosis, methicillin resistant Staphylococcus aureus, or Acinetobacter baumannii. The study provides a rationale for further adaptation toward diversifying the range of indications in which this class of antimicrobial may be used.
Collapse
Affiliation(s)
- Simona Di Blasio
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Charlotte K. Hind
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Salisbury, United Kingdom
| | - Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Louis Laurence
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Angelica Benvenuti
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Mahnoor Hassan
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Dorothy Semenya
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - DeDe Kwun-Wai Man
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Victoria Horrocks
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Sarah Van Der Lith
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Carolyn Lam
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Eugenio Gentile
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Callum Annette
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Janine Bosse
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Barry Panaretou
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Paul R. Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jenny K. W. Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, United Kingdom
| | - J. Mark Sutton
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Salisbury, United Kingdom
| | - Michael McArthur
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - A. James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Nsengimana B, Okpara ES, Hou W, Yan C, Han S. Involvement of oxidative species in cyclosporine-mediated cholestasis. Front Pharmacol 2022; 13:1004844. [DOI: 10.3389/fphar.2022.1004844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Cyclosporine is an established medication for the prevention of transplant rejection. However, adverse consequences such as nephrotoxicity, hepatotoxicity, and cholestasis have been associated with prolonged usage. In cyclosporine-induced obstructive and chronic cholestasis, for example, the overproduction of oxidative stress is significantly increased. Additionally, cyclosporine exerts adverse effects on liver function and redox balance responses in treated rats, as evidenced by its increasing levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and bilirubin while also decreasing the levels of glutathione and NADPH. Cyclosporine binds to cyclophilin to produce its therapeutic effects, and the resulting complex inhibits calcineurin, causing calcium to accumulate in the mitochondria. Accumulating calcium with concomitant mitochondrial abnormalities induces oxidative stress, perturbation in ATP balance, and failure of calcium pumps. Also, cyclosporine-induced phagocyte oxidative stress generation via the interaction of phagocytes with Toll-like receptor-4 has been studied. The adverse effect of cyclosporine may be amplified by the release of mitochondrial DNA, mediated by oxidative stress-induced mitochondrial damage. Given the uncertainty surrounding the mechanism of cyclosporine-induced oxidative stress in cholestasis, we aim to illuminate the involvement of oxidative stress in cyclosporine-mediated cholestasis and also explore possible strategic interventions that may be applied in the future.
Collapse
|
3
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
4
|
Mitra S, Muni M, Shawon NJ, Das R, Emran TB, Sharma R, Chandran D, Islam F, Hossain MJ, Safi SZ, Sweilam SH. Tacrine Derivatives in Neurological Disorders: Focus on Molecular Mechanisms and Neurotherapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7252882. [PMID: 36035218 PMCID: PMC9410840 DOI: 10.1155/2022/7252882] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
Tacrine is a drug used in the treatment of Alzheimer's disease as a cognitive enhancer and inhibitor of the enzyme acetylcholinesterase (AChE). However, its clinical application has been restricted due to its poor therapeutic efficacy and high prevalence of detrimental effects. An attempt was made to understand the molecular mechanisms that underlie tacrine and its analogues influence over neurotherapeutic activity by focusing on modulation of neurogenesis, neuroinflammation, endoplasmic reticulum stress, apoptosis, and regulatory role in gene and protein expression, energy metabolism, Ca2+ homeostasis modulation, and osmotic regulation. Regardless of this, analogues of tacrine are considered as a model inhibitor of cholinesterase in the therapy of Alzheimer's disease. The variety both in structural make-up and biological functions of these substances is the main appeal for researchers' interest in them. A new paradigm for treating neurological diseases is presented in this review, which includes treatment strategies for Alzheimer's disease, as well as other neurological disorders like Parkinson's disease and the synthesis and biological properties of newly identified versatile tacrine analogues and hybrids. We have also shown that these analogues may have therapeutic promise in the treatment of neurological diseases in a variety of experimental systems.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maniza Muni
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat Jahan Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu 642109, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, 42610 Selangor, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
5
|
Jiang T, Kustermann S, Wu X, Zihlmann C, Zhang M, Mao Y, Wu W, Xie J. Mitochondrial dysfunction is underlying fluoroquinolone toxicity: an integrated mitochondrial toxicity assessment. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Discovery of Novel Tacrine Derivatives as Potent Antiproliferative Agents with CDKs Inhibitory Property. Bioorg Chem 2022; 126:105875. [DOI: 10.1016/j.bioorg.2022.105875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/06/2023]
|
7
|
Mitochondrial Mechanisms of Apoptosis and Necroptosis in Liver Diseases. Anal Cell Pathol (Amst) 2021; 2021:8900122. [PMID: 34804779 PMCID: PMC8601834 DOI: 10.1155/2021/8900122] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to playing a pivotal role in cellular energetics and biosynthesis, mitochondrial components are key operators in the regulation of cell death. In addition to apoptosis, necrosis is a highly relevant form of programmed liver cell death. Differential activation of specific forms of programmed cell death may not only affect the outcome of liver disease but may also provide new opportunities for therapeutic intervention. This review describes the role of mitochondria in cell death and the mechanism that leads to chronic liver hepatitis and liver cirrhosis. We focus on mitochondrial-driven apoptosis and current knowledge of necroptosis and discuss therapeutic strategies for targeting mitochondrial-mediated cell death in liver diseases.
Collapse
|
8
|
New In Vitro-In Silico Approach for the Prediction of In Vivo Performance of Drug Combinations. Molecules 2021; 26:molecules26144257. [PMID: 34299532 PMCID: PMC8304213 DOI: 10.3390/molecules26144257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
Pharmacokinetic (PK) studies improve the design of dosing regimens in preclinical and clinical settings. In complex diseases like cancer, single-agent approaches are often insufficient for an effective treatment, and drug combination therapies can be implemented. In this work, in silico PK models were developed based on in vitro assays results, with the goal of predicting the in vivo performance of drug combinations in the context of cancer therapy. Combinations of reference drugs for cancer treatment, gemcitabine and 5-fluorouracil (5-FU), and repurposed drugs itraconazole, verapamil or tacrine, were evaluated in vitro. Then, two-compartment PK models were developed based on the previous in vitro studies and on the PK profile reported in the literature for human patients. Considering the quantification parameter area under the dose-response-time curve (AUCeffect) for the combinations effect, itraconazole was the most effective in combination with either reference anticancer drugs. In addition, cell growth inhibition was itraconazole-dose dependent and an increase in effect was predicted if itraconazole administration was continued (24-h dosing interval). This work demonstrates that in silico methods and AUCeffect are powerful tools to study relationships between tissue drug concentration and the percentage of cell growth inhibition over time.
Collapse
|
9
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
10
|
Konkoľová E, Hudáčová M, Hamuľaková S, Jendželovský R, Vargová J, Ševc J, Fedoročko P, Kožurková M. Tacrine-Coumarin Derivatives as Topoisomerase Inhibitors with Antitumor Effects on A549 Human Lung Carcinoma Cancer Cell Lines. Molecules 2021; 26:molecules26041133. [PMID: 33672694 PMCID: PMC7924348 DOI: 10.3390/molecules26041133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
A549 human lung carcinoma cell lines were treated with a series of new drugs with both tacrine and coumarin pharmacophores (derivatives 1a–2c) in order to test the compounds’ ability to inhibit both cancer cell growth and topoisomerase I and II activity. The ability of human topoisomerase I (hTOPI) and II to relax supercoiled plasmid DNA in the presence of various concentrations of the tacrine-coumarin hybrid molecules was studied with agarose gel electrophoresis. The biological activities of the derivatives were studied using MTT assays, clonogenic assays, cell cycle analysis and quantification of cell number and viability. The content and localization of the derivatives in the cells were analysed using flow cytometry and confocal microscopy. All of the studied compounds were found to have inhibited topoisomerase I activity completely. The effect of the tacrine-coumarin hybrid compounds on cancer cells is likely to be dependent on the length of the chain between the tacrine and coumarin moieties (1c, 1d = tacrine-(CH2)8–9-coumarin). The most active of the tested compounds, derivatives 1c and 1d, both display longer chains.
Collapse
Affiliation(s)
- Eva Konkoľová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Kosice, 041 80 Košice, Slovakia
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo námestí 2, 160 00 Prague 6, Czech Republic
| | - Monika Hudáčová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Kosice, 041 80 Košice, Slovakia
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Rastislav Jendželovský
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Jana Vargová
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Juraj Ševc
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Peter Fedoročko
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Kosice, 041 80 Košice, Slovakia
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Baglini E, Salerno S, Barresi E, Robello M, Da Settimo F, Taliani S, Marini AM. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur J Pharm Sci 2021; 156:105594. [DOI: 10.1016/j.ejps.2020.105594] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
12
|
Guo H, Xie J, Liao T, Tuo X. Exploring the binding mode of donepezil with calf thymus DNA using spectroscopic and molecular docking methods. LUMINESCENCE 2020; 36:35-44. [PMID: 32614132 DOI: 10.1002/bio.3911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Donepezil (DNP) is one of approved drugs to treat Alzheimer's disease (AD). However, the potential effect of DNP on DNA is still unclear. Therefore, the interaction of DNP with calf thymus DNA (DNA) was studied in vitro using spectroscopic and molecular docking methods. Steady-state and transient fluorescence experiments showed that there was a clear binding interaction between DNP and DNA, resulting from DNP fluorescence being quenched using DNA. DNP and DNA have one binding site between them, and the binding constant (Kb ) was 0.78 × 104 L·mol-1 at 298 K. In this binding process, hydrophobic force was the main interaction force, because enthalpy change (ΔH) and entropy change (ΔS) of DNP-DNA were 67.92 kJ·mol-1 and 302.96 J·mol-1 ·K-1 , respectively. DNP bound to DNA in a groove-binding mode, which was verified using a competition displacement study and other typical spectroscopic methods. Fourier transform infrared (FTIR) spectrum results showed that DNP interacted with guanine (G) and cytosine (C) bases of DNA. The molecular docking results further supported the results of spectroscopic experiments, and suggested that both Pi-Sigma force and Pi-Alkyl force were the major hydrophobic force functioning between DNP and DNA.
Collapse
Affiliation(s)
- Hui Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Jiawen Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Tancong Liao
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Nunhart P, Konkoľová E, Janovec L, Jendželovský R, Vargová J, Ševc J, Matejová M, Miltáková B, Fedoročko P, Kozurkova M. Fluorinated 3,6,9-trisubstituted acridine derivatives as DNA interacting agents and topoisomerase inhibitors with A549 antiproliferative activity. Bioorg Chem 2020; 94:103393. [DOI: 10.1016/j.bioorg.2019.103393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
|
14
|
Alteration of mitochondrial DNA homeostasis in drug-induced liver injury. Food Chem Toxicol 2019; 135:110916. [PMID: 31669601 DOI: 10.1016/j.fct.2019.110916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes for 13 proteins involved in the oxidative phosphorylation (OXPHOS) process. In liver, genetic or acquired impairment of mtDNA homeostasis can reduce ATP output but also decrease fatty acid oxidation, thus leading to different hepatic lesions including massive necrosis and microvesicular steatosis. Hence, a severe impairment of mtDNA homeostasis can lead to liver failure and death. An increasing number of investigations report that some drugs can induce mitochondrial dysfunction and drug-induced liver injury (DILI) by altering mtDNA homeostasis. Some drugs such as ciprofloxacin, antiretroviral nucleoside reverse-transcriptase inhibitors and tacrine can inhibit hepatic mtDNA replication, thus inducing mtDNA depletion. Drug-induced reduced mtDNA levels can also be the consequence of reactive oxygen species-mediated oxidative damage to mtDNA, which triggers its degradation by mitochondrial nucleases. Such mechanism is suspected for acetaminophen and troglitazone. Other pharmaceuticals such as linezolid and tetracyclines can impair mtDNA translation, thus selectively reducing the synthesis of the 13 mtDNA-encoded proteins. Lastly, some drugs might alter the mtDNA methylation status but the pathophysiological consequences of such alteration are still unclear. Drug-induced impairment of mtDNA homeostasis is probably under-recognized since preclinical and post-marketing safety studies do not classically investigate mtDNA levels, mitochondrial protein synthesis and mtDNA oxidative damage.
Collapse
|
15
|
Janockova J, Korabecny J, Plsikova J, Babkova K, Konkolova E, Kucerova D, Vargova J, Koval J, Jendzelovsky R, Fedorocko P, Kasparkova J, Brabec V, Rosocha J, Soukup O, Hamulakova S, Kuca K, Kozurkova M. In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers. J Enzyme Inhib Med Chem 2019; 34:877-897. [PMID: 30938202 PMCID: PMC6450562 DOI: 10.1080/14756366.2019.1593159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A combination of biochemical, biophysical and biological techniques was used to study calf thymus DNA interaction with newly synthesized 7-MEOTA-tacrine thiourea 12-17 and urea heterodimers 18-22, and to measure interference with type I and II topoisomerases. Their biological profile was also inspected in vitro on the HL-60 cell line using different flow cytometric techniques (cell cycle distribution, detection of mitochondrial membrane potential dissipation, and analysis of metabolic activity/viability). The compounds exhibited a profound inhibitory effect on topoisomerase activity (e.g. compound 22 inhibited type I topoisomerase at 1 µM concentration). The treatment of HL-60 cells with the studied compounds showed inhibition of cell growth especially with hybrids containing thiourea (14-17) and urea moieties (21 and 22). Moreover, treatment of human dermal fibroblasts with the studied compounds did not indicate significant cytotoxicity. The observed results suggest beneficial selectivity of the heterodimers as potential drugs to target cancer cells.
Collapse
Affiliation(s)
- Jana Janockova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jan Korabecny
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Jana Plsikova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,d Associated Tissue Bank, Faculty of Medicine , P.J. Šafárik University , Kosice , Slovak Republic
| | - Katerina Babkova
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Eva Konkolova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Dana Kucerova
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jana Vargova
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jan Koval
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Rastislav Jendzelovsky
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Peter Fedorocko
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jana Kasparkova
- f Department of Biophysics, Faculty of Science , Palacke University , Olomouc , Czech Republic
| | - Viktor Brabec
- f Department of Biophysics, Faculty of Science , Palacke University , Olomouc , Czech Republic
| | - Jan Rosocha
- d Associated Tissue Bank, Faculty of Medicine , P.J. Šafárik University , Kosice , Slovak Republic
| | - Ondrej Soukup
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Slavka Hamulakova
- g Department of Organic Chemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Kamil Kuca
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Maria Kozurkova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
16
|
Bessone F, Dirchwolf M, Rodil MA, Razori MV, Roma MG. Review article: drug-induced liver injury in the context of nonalcoholic fatty liver disease - a physiopathological and clinical integrated view. Aliment Pharmacol Ther 2018; 48:892-913. [PMID: 30194708 DOI: 10.1111/apt.14952] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonalcoholic fatty disease (NAFLD) is the most common liver disease, since it is strongly associated with obesity and metabolic syndrome pandemics. NAFLD may affect drug disposal and has common pathophysiological mechanisms with drug-induced liver injury (DILI); this may predispose to hepatoxicity induced by certain drugs that share these pathophysiological mechanisms. In addition, drugs may trigger fatty liver and inflammation per se by mimicking NAFLD pathophysiological mechanisms. AIMS To provide a comprehensive update on (a) potential mechanisms whereby certain drugs can be more hepatotoxic in NAFLD patients, (b) the steatogenic effects of drugs, and (c) the mechanism involved in drug-induced steatohepatitis (DISH). METHODS A language- and date-unrestricted Medline literature search was conducted to identify pertinent basic and clinical studies on the topic. RESULTS Drugs can induce macrovesicular steatosis by mimicking NAFLD pathogenic factors, including insulin resistance and imbalance between fat gain and loss. Other forms of hepatic fat accumulation exist, such as microvesicular steatosis and phospholipidosis, and are mostly associated with acute mitochondrial dysfunction and defective lipophagy, respectively. Drug-induced mitochondrial dysfunction is also commonly involved in DISH. Patients with pre-existing NAFLD may be at higher risk of DILI induced by certain drugs, and polypharmacy in obese individuals to treat their comorbidities may be a contributing factor. CONCLUSIONS The relationship between DILI and NAFLD may be reciprocal: drugs can cause NAFLD by acting as steatogenic factors, and pre-existing NAFLD could be a predisposing condition for certain drugs to cause DILI. Polypharmacy associated with obesity might potentiate the association between this condition and DILI.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Melisa Dirchwolf
- Unidad de Transplante Hepático, Servicio de Hepatología, Hospital Privado de Rosario, Rosario, Argentina
| | - María Agustina Rodil
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
17
|
Mansouri A, Gattolliat CH, Asselah T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018; 155:629-647. [PMID: 30012333 DOI: 10.1053/j.gastro.2018.06.083] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/23/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria regulate hepatic lipid metabolism and oxidative stress. Ultrastructural mitochondrial lesions, altered mitochondrial dynamics, decreased activity of respiratory chain complexes, and impaired ability to synthesize adenosine triphosphate are observed in liver tissues from patients with alcohol-associated and non-associated liver diseases. Increased lipogenesis with decreased fatty acid β-oxidation leads to the accumulation of triglycerides in hepatocytes, which, combined with increased levels of reactive oxygen species, contributes to insulin resistance in patients with steatohepatitis. Moreover, mitochondrial reactive oxygen species mediate metabolic pathway signaling; alterations in these pathways affect development and progression of chronic liver diseases. Mitochondrial stress and lesions promote cell death, liver fibrogenesis, inflammation, and the innate immune responses to viral infections. We review the involvement of mitochondrial processes in development of chronic liver diseases, such as nonalcoholic fatty, alcohol-associated, and drug-associated liver diseases, as well as hepatitis B and C, and discuss how they might be targeted therapeutically.
Collapse
Affiliation(s)
- Abdellah Mansouri
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France
| | - Charles-Henry Gattolliat
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France
| | - Tarik Asselah
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Clichy, France.
| |
Collapse
|
18
|
Sabolová D, Kristian P, Kožurková M. Multifunctional properties of novel tacrine congeners: cholinesterase inhibition and cytotoxic activity. J Appl Toxicol 2018; 38:1377-1387. [PMID: 29624715 DOI: 10.1002/jat.3622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Abstract
This review describes the synthesis of a wide range of novel tetrahydroacridine derivatives (tiocyanates, selenocyanates, ureas, selenoureas, thioureas, isothioureas, disulfides, diselenides and several tacrine homo- and hetro-hybrids). These tacrine congeners exhibit significant anticholinesterase and cytotoxic properties and may therefore be of considerable potential for the development of new drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Danica Sabolová
- Department of Biochemistry, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova, 11, Košice, Slovak Republic
| | - Pavol Kristian
- Department of Organic Chemistry, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova, 11, Košice, Slovak Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova, 11, Košice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Porceddu M, Buron N, Rustin P, Fromenty B, Borgne-Sanchez A. In Vitro Assessment of Mitochondrial Toxicity to Predict Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Yip LY, Aw CC, Lee SH, Hong YS, Ku HC, Xu WH, Chan JMX, Cheong EJY, Chng KR, Ng AHQ, Nagarajan N, Mahendran R, Lee YK, Browne ER, Chan ECY. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology 2018. [PMID: 28646502 DOI: 10.1002/hep.29327] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher β-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral β-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo. CONCLUSION This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295).
Collapse
Affiliation(s)
- Lian Yee Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- Metabolomics, Bioprocessing Technology Institute, Singapore, Singapore
| | | | - Sze Han Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yi Shuen Hong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Han Chen Ku
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Winston Hecheng Xu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jessalyn Mei Xuan Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Kern Rei Chng
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Amanda Hui Qi Ng
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan Kun Lee
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| |
Collapse
|
21
|
Young MJ. Off-Target Effects of Drugs that Disrupt Human Mitochondrial DNA Maintenance. Front Mol Biosci 2017; 4:74. [PMID: 29214156 PMCID: PMC5702650 DOI: 10.3389/fmolb.2017.00074] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus (HIV) the cause of acquired immunodeficiency syndrome. Development of severe mitochondrial toxicity has been well documented in patients infected with HIV and administered NRTIs. In vitro biochemical experiments have demonstrated that the replicative mitochondrial DNA (mtDNA) polymerase gamma, Polg, is a sensitive target for inhibition by metabolically active forms of NRTIs, nucleotide reverse transcriptase inhibitors (NtRTIs). Once incorporated into newly synthesized daughter strands NtRTIs block further DNA polymerization reactions. Human cell culture and animal studies have demonstrated that cell lines and mice exposed to NRTIs display mtDNA depletion. Further complicating NRTI off-target effects on mtDNA maintenance, two additional DNA polymerases, Pol beta and PrimPol, were recently reported to localize to mitochondria as well as the nucleus. Similar to Polg, in vitro work has demonstrated both Pol beta and PrimPol incorporate NtRTIs into nascent DNA. Cell culture and biochemical experiments have also demonstrated that antiviral ribonucleoside drugs developed to treat hepatitis C infection act as off-target substrates for POLRMT, the mitochondrial RNA polymerase and primase. Accompanying the above-mentioned topics, this review examines: (1) mtDNA maintenance in human health and disease, (2) reports of DNA polymerases theta and zeta (Rev3) localizing to mitochondria, and (3) additional drugs with off-target effects on mitochondrial function. Lastly, mtDNA damage may induce cell death; therefore, the possibility of utilizing compounds that disrupt mtDNA maintenance to kill cancer cells is discussed.
Collapse
Affiliation(s)
- Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| |
Collapse
|
22
|
Djafarzadeh S, Vuda M, Jeger V, Takala J, Jakob SM. The Effects of Fentanyl on Hepatic Mitochondrial Function. Anesth Analg 2017; 123:311-25. [PMID: 27089001 DOI: 10.1213/ane.0000000000001280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Remifentanil interferes with hepatic mitochondrial function. The aim of the present study was to evaluate whether hepatic mitochondrial function is affected by fentanyl, a more widely used opioid than remifentanil. METHODS Human hepatoma HepG2 cells were exposed to fentanyl or pretreated with naloxone (an opioid receptor antagonist) or 5-hydroxydecanoate (5-HD, an inhibitor of mitochondrial adenosine triphosphate (ATP)-sensitive potassium [mitoKATP] channels), followed by incubation with fentanyl. Mitochondrial function and metabolism were then analyzed. RESULTS Fentanyl marginally reduced maximal mitochondrial complex-specific respiration rates using exogenous substrates (decrease in medians: 11%-18%; P = 0.003-0.001) but did not affect basal cellular respiration rates (P = 0.834). The effect on stimulated respiration was prevented by preincubation with naloxone or 5-HD. Fentanyl reduced cellular ATP content in a dose-dependent manner (P < 0.001), an effect that was not significantly prevented by 5-HD and not explained by increased total ATPase concentration. However, in vitro ATPase activity of recombinant human permeability glycoprotein (an ATP-dependent drug efflux transporter) was significantly stimulated by fentanyl (P = 0.004). CONCLUSIONS Our data suggest that fentanyl reduces stimulated mitochondrial respiration of cultured human hepatocytes by a mechanism that is blocked by a mitoKATP channel antagonist. Increased energy requirements for fentanyl efflux transport may offer an explanation for the substantial decrease in cellular ATP concentration.
Collapse
Affiliation(s)
- Siamak Djafarzadeh
- From the *Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; and †Department of Clinical Research, Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Lauschke VM, Ingelman-Sundberg M. The Importance of Patient-Specific Factors for Hepatic Drug Response and Toxicity. Int J Mol Sci 2016; 17:E1714. [PMID: 27754327 PMCID: PMC5085745 DOI: 10.3390/ijms17101714] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Responses to drugs and pharmacological treatments differ considerably between individuals. Importantly, only 50%-75% of patients have been shown to react adequately to pharmacological interventions, whereas the others experience either a lack of efficacy or suffer from adverse events. The liver is of central importance in the metabolism of most drugs. Because of this exposed status, hepatotoxicity is amongst the most common adverse drug reactions and hepatic liabilities are the most prevalent reason for the termination of development programs of novel drug candidates. In recent years, more and more factors were unveiled that shape hepatic drug responses and thus underlie the observed inter-individual variability. In this review, we provide a comprehensive overview of different principle mechanisms of drug hepatotoxicity and illustrate how patient-specific factors, such as genetic, physiological and environmental factors, can shape drug responses. Furthermore, we highlight other parameters, such as concomitantly prescribed medications or liver diseases and how they modulate drug toxicity, pharmacokinetics and dynamics. Finally, we discuss recent progress in the field of in vitro toxicity models and evaluate their utility in reflecting patient-specific factors to study inter-individual differences in drug response and toxicity, as this understanding is necessary to pave the way for a patient-adjusted medicine.
Collapse
Affiliation(s)
- Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| |
Collapse
|
24
|
K. V. D, V. V, C. R. Rational design and interaction studies of combilexins towards duplex DNA. MOLECULAR BIOSYSTEMS 2016; 12:860-7. [DOI: 10.1039/c5mb00808e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Combilexins interact more strongly with DNA than any other class of DNA binders.
Collapse
Affiliation(s)
- Dileep K. V.
- School of Chemistry
- Indian Institute of Science Education and Research-Thiruvananthapuram
- Trivandrum-695016
- India
| | - Vijeesh V.
- Department of Biotechnology and Microbiology and Inter-University Centre for Bioscience
- Kannur University
- Palayad P O
- India
| | - Remya C.
- Department of Biotechnology and Microbiology and Inter-University Centre for Bioscience
- Kannur University
- Palayad P O
- India
| |
Collapse
|
25
|
Willebrords J, Pereira IVA, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CPMS, Andraus W, Alves VA, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 2015; 59:106-25. [PMID: 26073454 DOI: 10.1016/j.plipres.2015.05.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and '-omics'-based read-outs are still in their infancy, but show great promise. In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Bert Van Den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | | | - Wellington Andraus
- Department of Gastroenterology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Venâncio Avancini Alves
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
26
|
Tacrine derivatives as dual topoisomerase I and II catalytic inhibitors. Bioorg Chem 2015; 59:168-76. [DOI: 10.1016/j.bioorg.2015.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 11/17/2022]
|
27
|
Park SM, Ki SH, Han NR, Cho IJ, Ku SK, Kim SC, Zhao RJ, Kim YW. Tacrine, an Oral Acetylcholinesterase Inhibitor, Induced Hepatic Oxidative Damage, Which Was Blocked by Liquiritigenin through GSK3-beta Inhibition. Biol Pharm Bull 2015; 38:184-92. [DOI: 10.1248/bpb.b14-00430] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sang Mi Park
- Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | | | - Nu Ri Han
- Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Il Je Cho
- Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Sae Kwang Ku
- Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Sang Chan Kim
- Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Rong Jie Zhao
- Department of Pharmacology, Mudanjiang Medical University
- Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| | - Young Woo Kim
- Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University
| |
Collapse
|
28
|
Lou YH, Wang JS, Dong G, Guo PP, Wei DD, Xie SS, Yang MH, Kong LY. The acute hepatotoxicity of tacrine explained by 1H NMR based metabolomic profiling. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00096c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMR based metabolomics approach was applied to study the mechanism of tacrine-induced acute hepatotoxicity and had found significant disturbances.
Collapse
Affiliation(s)
- Yan-Hong Lou
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Jun-Song Wang
- Center for Molecular Metabolism
- Nanjing University of Science and Technology
- Nanjing
- People's Republic of China
| | - Ge Dong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Ping-Ping Guo
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Dan-Dan Wei
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Sai-Sai Xie
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| |
Collapse
|
29
|
Gao C, Ding Y, Zhong L, Jiang L, Geng C, Yao X, Cao J. Tacrine induces apoptosis through lysosome- and mitochondria-dependent pathway in HepG2 cells. Toxicol In Vitro 2014; 28:667-74. [PMID: 24560791 DOI: 10.1016/j.tiv.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/05/2014] [Accepted: 02/09/2014] [Indexed: 11/17/2022]
Abstract
Tacrine (THA) is a competitive inhibitor of cholinesterase. Administration of THA for the treatment of Alzheimer's disease results in a reversible hepatotoxicity in 30-50% of patients, as indicated by elevated alanine aminotransferase levels. However, the intracellular mechanisms have not yet been elucidated. In our previous study, we found that THA induced cytotoxicity and mitochondria dysfunction by ROS generation and 8-OHdG formation in mitochondrial DNA in HepG2 cells. In this study, the mechanism underlying was further investigated. Our results demonstrated that THA induced dose-dependent apoptosis with cytochrome c release and activation of caspase-3. THA-induced apoptosis was inhibited by treating cells with a ROS inhibitor, YCG063. In addition, we observed that THA led to an early lysosomal membrane permeabilization and release of cathepsin B. Pretreatment with CA-074Me, a specific cathepsin B inhibitor resulted in a significant but not complete decrease in tacrine-induced apoptosis. These data suggest that tacrine-induced cell apoptosis involves both mitochondrial damage and lysosomal membrane destabilization, and ROS is the critical factor that integrates tacrine-induced mitochondrial and lysosomal death pathways.
Collapse
Affiliation(s)
- Chunpeng Gao
- Occupational and Environmental Health Department, Dalian Medical University, Dalian 116044, China; Dalian Municipal Central Hospital, Dalian 116033, China(2)
| | - Yue Ding
- Occupational and Environmental Health Department, Dalian Medical University, Dalian 116044, China
| | - Laifu Zhong
- China-Japanese Joint Institute for Medical and Pharmaceutical Science, Dalian Medical University, Dalian 116044, China
| | - Liping Jiang
- China-Japanese Joint Institute for Medical and Pharmaceutical Science, Dalian Medical University, Dalian 116044, China
| | - Chengyan Geng
- China-Japanese Joint Institute for Medical and Pharmaceutical Science, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, Dalian 116044, China
| | - Jun Cao
- Occupational and Environmental Health Department, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
30
|
Martínez-Azorín F, Calleja M, Hernández-Sierra R, Farr CL, Kaguni LS, Garesse R. Muscle-specific overexpression of the catalytic subunit of DNA polymerase γ induces pupal lethality in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:127-137. [PMID: 23729397 PMCID: PMC4703106 DOI: 10.1002/arch.21101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We show the physiological effects and molecular characterization of overexpression of the catalytic core of mitochondrial DNA (mtDNA) polymerase (pol γ-α) in muscle of Drosophila melanogaster. Muscle-specific overexpression of pol γ-α using the UAS/GAL4 (where UAS is upstream activation sequence) system produced more than 90% of lethality at the end of pupal stage at 25°C, and the survivor adult flies showed a significant reduction in life span. The survivor flies displayed a decreased mtDNA level that is accompanied by a corresponding decrease in the levels of the nucleoid-binding protein mitochondrial transcription factor A (mtTFA). Furthermore, an increase in apoptosis is detected in larvae and adults overexpressing pol γ-α. We suggest that the pupal lethality and reduced life span of survivor adult flies are both caused mainly by massive apoptosis of muscle cells induced by mtDNA depletion.
Collapse
Affiliation(s)
- Francisco Martínez-Azorín
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina CIBERER ISCIII, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
31
|
Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B. Drug-Induced Inhibition of Mitochondrial Fatty Acid Oxidation and Steatosis. CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0022-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Gao C, Zhong L, Jiang L, Geng C, Yao X, Cao J. Phellinus linteus mushroom protects against tacrine-induced mitochondrial impairment and oxidative stress in HepG2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:705-709. [PMID: 23523257 DOI: 10.1016/j.phymed.2013.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/20/2012] [Accepted: 02/19/2013] [Indexed: 06/02/2023]
Abstract
Tacrine (THA) was the first drug licensed for the treatment of Alzheimer's disease. Unfortunately, reversible hepatotoxicity is evident in about 30% of patients and limits its clinical use. The intracellular mechanisms have not yet been elucidated. Phellinus linteus (PL) is a mushroom that has long been used as a folk medicine. In our previous study, we found that PL could decrease the reactive oxygen species (ROS) formation in HepG2 cells. Presently, protective effects of PL on tacrine-induced ROS formation and mitochondria dysfunction were evaluated. The results showed that PL significantly reduced tacrine-induced ROS production, disruption of ΔΨm, 8-OHdG formation in mitochondrial DNA, and cytotoxicity in HepG2 cells. These data suggest that PL could attenuate the cytotoxicity and mitochondria dysfunction induced by tacrine in HepG2 cells. The protection is probably mediated by an antioxidant protective mechanism. Consumption of PL may be a plausible way to prevent tacrine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Chunpeng Gao
- Occupational and Environmental Health Department, Dalian Medical University, No. 9, West Segment of South Lvshun Road, Dalian 116044, China
| | | | | | | | | | | |
Collapse
|
33
|
Hunt CM, Forster JK, Papay JI, Stirnadel HA. Evidence-Based Liver Chemistry Monitoring in Drug Development. Pharmaceut Med 2012. [DOI: 10.1007/bf03256763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Melo T, Videira RA, André S, Maciel E, Francisco CS, Oliveira-Campos AM, Rodrigues LM, Domingues MRM, Peixoto F, Manuel Oliveira M. Tacrine and its analogues impair mitochondrial function and bioenergetics: a lipidomic analysis in rat brain. J Neurochem 2012; 120:998-1013. [PMID: 22192081 DOI: 10.1111/j.1471-4159.2011.07636.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tacrine is an acetylcholinesterase (AChE) inhibitor used as a cognitive enhancer in the treatment of Alzheimer's disease (AD). However, its low therapeutic efficiency and a high incidence of side effects have limited its clinical use. In this study, the molecular mechanisms underlying the impact on brain activity of tacrine and two novel tacrine analogues (T1, T2) were approached by focusing on three aspects: (i) their effects on brain cholinesterase activity; (ii) perturbations on electron transport chain enzymes activities of non-synaptic brain mitochondria; and (iii) the role of mitochondrial lipidome changes induced by these compounds on mitochondrial bioenergetics. Brain effects were evaluated 18 h after the administration of a single dose (75.6 μmol/kg) of tacrine or tacrine analogues. The three compounds promoted a significant reduction in brain AChE and butyrylcholinesterase (BuChE) activities. Additionally, tacrine was shown to be more efficient in brain AChE inhibition than T2 tacrine analogue and less active than T1 tacrine analogue, whereas BuChE inhibition followed the order: T1 > T2 > tacrine. The studies using non-synaptic brain mitochondria show that all the compounds studied disturbed brain mitochondrial bioenergetics mainly via the inhibition of complex I activity. Furthermore, the activity of complex IV is also affected by tacrine and T1 treatments while FoF(1) -ATPase is only affected by tacrine. Therefore, the compounds' toxicity as regards brain mitochondria, which follows the order: tacrine >> T1 > T2, does not correlate with their ability to inhibit brain cholinesterase enzymes. Lipidomics approaches show that phosphatidylethanolamine (PE) is the most abundant phospholipids (PL) class in non-synaptic brain mitochondria and cardiolipin (CL) present the greatest diversity of molecular species. Tacrine induced significant perturbations in the mitochondrial PL profile, which were detected by means of changes in the relative abundance of phosphatidylcholine (PC), PE, phosphatidylinositol (PI) and CL and by the presence of oxidized phosphatidylserines. Additionally, in both the T1 and T2 groups, the lipid content and molecular composition of brain mitochondria PL are perturbed to a lesser extent than in the tacrine group. Abnormalities in CL content and the amount of oxidized phosphatidylserines were associated with significant reductions in mitochondrial enzymes activities, mainly complex I. These results indicate that tacrine and its analogues impair mitochondrial function and bioenergetics, thus compromising the activity of brain cells.
Collapse
Affiliation(s)
- Tânia Melo
- Department of Chemistry, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pessayre D, Fromenty B, Berson A, Robin MA, Lettéron P, Moreau R, Mansouri A. Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 2011; 44:34-87. [PMID: 21892896 DOI: 10.3109/03602532.2011.604086] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s). In other instances, the parent drug itself triggers mitochondrial membrane disruption or inhibits mitochondrial function through different mechanisms. Drugs can sequester coenzyme A or can inhibit mitochondrial β-oxidation enzymes, the transfer of electrons along the respiratory chain, or adenosine triphosphate (ATP) synthase. Drugs can also destroy mitochondrial DNA, inhibit its replication, decrease mitochondrial transcripts, or hamper mitochondrial protein synthesis. Quite often, a single drug has many different effects on mitochondrial function. A severe impairment of oxidative phosphorylation decreases hepatic ATP, leading to cell dysfunction or necrosis; it can also secondarily inhibit ß-oxidation, thus causing steatosis, and can also inhibit pyruvate catabolism, leading to lactic acidosis. A severe impairment of β-oxidation can cause a fatty liver; further, decreased gluconeogenesis and increased utilization of glucose to compensate for the inability to oxidize fatty acids, together with the mitochondrial toxicity of accumulated free fatty acids and lipid peroxidation products, may impair energy production, possibly leading to coma and death. Susceptibility to parent drug-mediated mitochondrial dysfunction can be increased by factors impairing the removal of the toxic parent compound or by the presence of other medical condition(s) impairing mitochondrial function. New drug molecules should be screened for possible mitochondrial effects.
Collapse
Affiliation(s)
- Dominique Pessayre
- INSERM, U, Centre de Recherche Bichat Beaujon CRB, Faculté de Médecine Xavier-Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Mansouri A, Tarhuni A, Larosche I, Reyl-Desmars F, Demeilliers C, Degoul F, Nahon P, Sutton A, Moreau R, Fromenty B, Pessayre D. MnSOD overexpression prevents liver mitochondrial DNA depletion after an alcohol binge but worsens this effect after prolonged alcohol consumption in mice. Dig Dis 2011; 28:756-75. [PMID: 21525761 DOI: 10.1159/000324284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Both acute and chronic alcohol consumption increase reactive oxygen species (ROS) formation and lipid peroxidation, whose products damage hepatic mitochondrial DNA (mtDNA). To test whether manganese superoxide dismutase (MnSOD) overexpression modulates acute and chronic alcohol-induced mtDNA lesions, transgenic MnSOD-overexpressing (TgMnSOD(+++)) mice and wild-type (WT) mice were treated by alcohol, either chronically (7 weeks in drinking water) or acutely (single intragastric dose of 5 g/kg). Acute alcohol administration increased mitochondrial ROS formation, decreased mitochondrial glutathione, depleted and damaged mtDNA, durably increased inducible nitric oxide synthase (NOS) expression, plasma nitrites/nitrates and the nitration of tyrosine residues in complex V proteins and decreased complex V activity in WT mice. These effects were prevented in TgMnSOD(+++) mice. In acutely alcoholized WT mice, mtDNA depletion was prevented by tempol, a superoxide scavenger, L-NAME and 1400W, two NOS inhibitors, or uric acid, a peroxynitrite scavenger. In contrast, chronic alcohol consumption decreased cytosolic glutathione and increased hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls only in ethanol-treated TgMnSOD(+++) mice but not in WT mice. In chronic ethanol-fed TgMnSOD(+++) mice, but not WT mice, mtDNA was damaged and depleted, and the iron chelator, deferoxamine (DFO), prevented this effect. In conclusion, MnSOD overexpression prevents mtDNA depletion after an acute alcohol binge but aggravates this effect after prolonged alcohol consumption, which selectively triggers iron accumulation in TgMnSOD(+++) mice but not in WT mice. In the model of acute alcohol binge, the protective effects of MnSOD, tempol, NOS inhibitors and uric acid suggested a role of the superoxide anion reacting with NO to form mtDNA-damaging peroxynitrite. In the model of prolonged ethanol consumption, the protective effects of DFO suggested the role of iron reacting with hydrogen peroxide to form mtDNA-damaging hydroxyl radical.
Collapse
Affiliation(s)
- Abdellah Mansouri
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon (CRB3), Université Paris 7 Denis Diderot, site Bichat, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hunt CM. Mitochondrial and immunoallergic injury increase risk of positive drug rechallenge after drug-induced liver injury: a systematic review. Hepatology 2010; 52:2216-22. [PMID: 21105110 DOI: 10.1002/hep.24022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Hunt CM, Papay JI, Rich DS, Abissi CJ, Russo MW. The evaluation of drug rechallenge: the casopitant Phase III program. Regul Toxicol Pharmacol 2010; 58:539-43. [PMID: 20932869 DOI: 10.1016/j.yrtph.2010.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
Abstract
Drug rechallenge (or reinitiation), following an event of drug-induced liver injury, is associated with 13% mortality in prospective series. Rechallenge generally results in much more rapid injury than the initial liver event. The neurokinin-1 antagonist casopitant or its placebo was administered cyclically with ondansetron and dexamethasone in two randomized chemotherapy-induced nausea and vomiting clinical trials in nearly 3000 subjects. Grade 3 ALT elevations were observed in up to 2% of subjects receiving casopitant or placebo treatment. Similar rates of positive rechallenge were observed in the casopitant 8/29 (28%) and placebo groups 2/8 (25%), with no Grade 4 ALT elevations, hypersensitivity or liver-related serious adverse events. Publishing available rechallenge data (positive and negative) will advance our clinical understanding. Rechallenge should only be considered when the potential drug benefit exceeds the risk.
Collapse
|
39
|
Abstract
Mitochondrial dysfunction is a major mechanism of liver injury. A parent drug or its reactive metabolite can trigger outer mitochondrial membrane permeabilization or rupture due to mitochondrial permeability transition. The latter can severely deplete ATP and cause liver cell necrosis, or it can instead lead to apoptosis by releasing cytochrome c, which activates caspases in the cytosol. Necrosis and apoptosis can trigger cytolytic hepatitis resulting in lethal fulminant hepatitis in some patients. Other drugs severely inhibit mitochondrial function and trigger extensive microvesicular steatosis, hypoglycaemia, coma, and death. Milder and more prolonged forms of drug-induced mitochondrial dysfunction can also cause macrovacuolar steatosis. Although this is a benign liver lesion in the short-term, it can progress to steatohepatitis and then to cirrhosis. Patient susceptibility to drug-induced mitochondrial dysfunction and liver injury can sometimes be explained by genetic or acquired variations in drug metabolism and/or elimination that increase the concentration of the toxic species (parent drug or metabolite). Susceptibility may also be increased by the presence of another condition, which also impairs mitochondrial function, such as an inborn mitochondrial cytopathy, beta-oxidation defect, certain viral infections, pregnancy, or the obesity-associated metabolic syndrome. Liver injury due to mitochondrial dysfunction can have important consequences for pharmaceutical companies. It has led to the interruption of clinical trials, the recall of several drugs after marketing, or the introduction of severe black box warnings by drug agencies. Pharmaceutical companies should systematically investigate mitochondrial effects during lead selection or preclinical safety studies.
Collapse
|
40
|
Baqri RM, Turner BA, Rheuben MB, Hammond BD, Kaguni LS, Miller KE. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo. PLoS One 2009; 4:e7874. [PMID: 19924234 PMCID: PMC2773408 DOI: 10.1371/journal.pone.0007874] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/16/2009] [Indexed: 01/16/2023] Open
Abstract
Mutations in mitochondrial DNA polymerase (pol γ) cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol γ leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol γ deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol γ−α mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.
Collapse
Affiliation(s)
- Rehan M. Baqri
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Brittany A. Turner
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mary B. Rheuben
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| | - Bradley D. Hammond
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Laurie S. Kaguni
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Kyle E. Miller
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ou HC, Cunningham LL, Francis SP, Brandon CS, Simon JA, Raible DW, Rubel EW. Identification of FDA-approved drugs and bioactives that protect hair cells in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle. J Assoc Res Otolaryngol 2009; 10:191-203. [PMID: 19241104 DOI: 10.1007/s10162-009-0158-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 01/20/2009] [Indexed: 11/24/2022] Open
Abstract
The hair cells of the larval zebrafish lateral line provide a useful preparation in which to study hair cell death and to screen for genes and small molecules that modulate hair cell toxicity. We recently reported preliminary results from screening a small-molecule library for compounds that inhibit aminoglycoside-induced hair cell death. To potentially reduce the time required for development of drugs and drug combinations that can be clinically useful, we screened a library of 1,040 FDA-approved drugs and bioactive compounds (NINDS Custom Collection II). Seven compounds that protect against neomycin-induced hair cell death were identified. Four of the seven drugs inhibited aminoglycoside uptake, based on Texas-Red-conjugated gentamicin uptake. The activities of two of the remaining three drugs were evaluated using an in vitro adult mouse utricle preparation. One drug, 9-amino-1,2,3,4-tetrahydroacridine (tacrine) demonstrated conserved protective effects in the mouse utricle. These results demonstrate that the zebrafish lateral line can be used to screen successfully for drugs within a library of FDA-approved drugs and bioactives that inhibit hair cell death in the mammalian inner ear and identify tacrine as a promising protective drug for future studies.
Collapse
Affiliation(s)
- Henry C Ou
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Since the first mitochondrial dysfunction was described in the 1960s, the medicine has advanced in its understanding the role mitochondria play in health and disease. Damage to mitochondria is now understood to play a role in the pathogenesis of a wide range of seemingly unrelated disorders such as schizophrenia, bipolar disease, dementia, Alzheimer's disease, epilepsy, migraine headaches, strokes, neuropathic pain, Parkinson's disease, ataxia, transient ischemic attack, cardiomyopathy, coronary artery disease, chronic fatigue syndrome, fibromyalgia, retinitis pigmentosa, diabetes, hepatitis C, and primary biliary cirrhosis. Medications have now emerged as a major cause of mitochondrial damage, which may explain many adverse effects. All classes of psychotropic drugs have been documented to damage mitochondria, as have stain medications, analgesics such as acetaminophen, and many others. While targeted nutrient therapies using antioxidants or their precursors (e. g., N-acetylcysteine) hold promise for improving mitochondrial function, there are large gaps in our knowledge. The most rational approach is to understand the mechanisms underlying mitochondrial damage for specific medications and attempt to counteract their deleterious effects with nutritional therapies. This article reviews our basic understanding of how mitochondria function and how medications damage mitochondria to create their occasionally fatal adverse effects.
Collapse
Affiliation(s)
- John Neustadt
- Montana Integrative Medicine, Bozeman, MT 59718, USA.
| | | |
Collapse
|
43
|
Ku KL, Tsai CT, Chang WM, Shen ML, Wu CT, Liao HF. Hepatoprotective effect of Cirsium arisanense Kitamura in tacrine-treated hepatoma Hep 3B cells and C57BL mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2008; 36:355-68. [PMID: 18457366 DOI: 10.1142/s0192415x08005825] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cirsium arisanense Kitamura (Compositae) has been used for hundreds of years in Taiwan as a folk medicine for hepatoprotection. However, no scientific research has demonstrated this effect. In the present study, we extracted the phenol-containing aqueous components of C. arisanense roots (CaR) and leaves/stem (CaL), and then assessed their hepatoprotective activities in both human hepatocellular carcinoma Hep 3B cells and C57BL/6 mice strain. High performance liquid chromatography (HPLC) analysis revealed that the components of CaR and CaL differed from those of the positive control silymarin. CaR exhibited a higher phenolic content and antioxidant capacity than CaL. Hep 3B cells treated with silymarin (0-200 microg/ml) demonstrated a concentration-dependent decrease in viability; however, both CaR and CaL did not exhibit any apparent cytotoxicity. Silymarin at 100 microg/ml, as well as CaR and CaL, not only protect Hep 3B cells from tacrine-induced hepatotoxicity but also decrease the expression of hepatitis B surface antigen (HBsAg). Moreover, an animal experiment demonstrated that CaR, CaL, and silymarin have hepatoprotective effects in C57BL/6 mice injected with tacrine, and they significantly decrease the levels of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST). These effects of CaR and silymarin, but not of CaL, may occur via an increase in the hepatic glutathione level and the elimination of the nitric oxide production. In conclusion, the phenol-containing aqueous components from C. arisanense have potential in hepatoprotection.
Collapse
Affiliation(s)
- Kuo-Lung Ku
- Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Setzer B, Lebrecht D, Walker UA. Pyrimidine nucleoside depletion sensitizes to the mitochondrial hepatotoxicity of the reverse transcriptase inhibitor stavudine. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:681-90. [PMID: 18276780 DOI: 10.2353/ajpath.2008.070613] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stavudine is a hepatotoxic antiretroviral nucleoside analogue that also inhibits the replication of mitochondrial DNA (mtDNA). To elucidate the mechanism and consequences of mtDNA depletion, we treated HepG2 cells with stavudine and either redoxal, an inhibitor of de novo pyrimidine synthesis, or uridine, from which pyrimidine pools are salvaged. Compared with treatment with stavudine alone, co-treatment with redoxal accelerated mtDNA depletion, impaired cell division, and activated caspase 3. These adverse effects were completely abrogated by uridine. Intracellular ATP levels were unaffected. Transcriptosome profiling demonstrated that redoxal and stavudine acted synergistically to induce CDKN2A and p21, indicating cell cycle arrest in G1, as well as genes involved in intrinsic and extrinsic apoptosis. Moreover, redoxal and stavudine showed synergistic interaction in the up-regulation of transcripts encoded by mtDNA and the induction of nuclear transcripts participating in energy metabolism, mitochondrial biogenesis, oxidative stress, and DNA repair. Genes involved in nucleotide metabolism were also synergistically up-regulated by both agents; this effect was completely antagonized by uridine. Thus, pyrimidine depletion sensitizes cells to stavudine-mediated mtDNA depletion and enhances secondary cell toxicity. Our results indicate that drugs that diminish pyrimidine pools should be avoided in stavudine-treated human immunodeficiency virus patients. Uridine supplementation reverses this toxicity and, because of its good tolerability, has potential clinical value for the treatment of side effects associated with pyrimidine depletion.
Collapse
Affiliation(s)
- Bernhard Setzer
- Department of Rheumatology and Clinical Immunology,Medizinische Universitätsklinik, Hugstetterstr. 55, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
45
|
|
46
|
Martínez-Azorín F, Calleja M, Hernández-Sierra R, Farr CL, Kaguni LS, Garesse R. Over-expression of the catalytic core of mitochondrial DNA (mtDNA) polymerase in the nervous system of Drosophila melanogaster reduces median life span by inducing mtDNA depletion. J Neurochem 2007; 105:165-76. [PMID: 17999718 DOI: 10.1111/j.1471-4159.2007.05122.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA polymerase gamma (pol gamma) is the sole DNA polymerase devoted to mitochondrial DNA (mtDNA) replication. We have characterized the molecular and physiological effects of over-expression of the catalytic subunit of pol gamma, pol gamma-alpha, in the nervous system of Drosophila melanogaster using the upstream activation sequence (UAS)/yeast transcriptional activator by binding to UAS (GAL4) system. Tissue-specific over-expression of pol gamma-alpha was confirmed by immunoblot analysis, whereas the very low levels of endogenous protein are undetectable in UAS or GAL4 control lines. The transgenic flies over-expressing pol gamma-alpha in the nervous system showed a moderate increase in pupal lethality, and a significant decrease in the median life span of adult flies. Moreover, these flies displayed a decrease in the rate of synthesis of mtDNA, which is accompanied by a significant mtDNA depletion, and a corresponding decrease in the levels of mitochondrial transcription factor A (mtTFA). Biochemical analysis showed an oxidative phosphorylation (OXPHOS) defect in transgenic flies, which were more susceptible to oxidative stress. Although we did not detect apoptosis in the nervous system of adult transgenic flies, brains of larvae over-expressing pol gamma-alpha showed evidence of increased cell death that correlates with the observed phenotypes. Our data establish an animal model that mimics some of the features of human mtDNA depletion syndromes.
Collapse
Affiliation(s)
- Francisco Martínez-Azorín
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina CIBERER ISCIII, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Molecular and genetic association of interleukin-6 in tacrine-induced hepatotoxicity. Pharmacogenet Genomics 2007; 17:961-72. [DOI: 10.1097/fpc.0b013e3282f00919] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Ezoulin MJM, Dong CZ, Liu Z, Li J, Chen HZ, Heymans F, Lelièvre L, Ombetta JE, Massicot F. Study of PMS777, a new type of acetylcholinesterase inhibitor, in human HepG2 cells. Comparison with tacrine and galanthamine on oxidative stress and mitochondrial impairment. Toxicol In Vitro 2006; 20:824-31. [PMID: 16472967 DOI: 10.1016/j.tiv.2006.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 12/06/2005] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
Acetylcholinesterase inhibitors are commonly used as cognitive enhancers for dementia in aged people. Among them, tacrine (THA) but not galanthamine, was shown to exhibit hepatotoxicity which reduces its clinical use. PMS777, both a PAF antagonist and a new potent acetylcholinesterase inhibitor was recently demonstrated to reverse scopolamine-induced amnesia in mice without toxicity. In the present study, the effects of THA, galanthamine and PMS777 were compared in HepG2 cells on the oxidative parameters involved in the reported hepatotoxicity of THA. THA (> or = 10 microM) induced an oxidative stress as shown by elevated ROS and MDA production and by a decrease in GSH level. Moreover, mitochondrial membrane potential and redox status were decreased. At low concentrations (< or =10 microM), there was no significant disturbance. None of the oxidative stress markers was affected by PMS777 up to the maximum concentration tested and it is suggested that PMS777 is not cytotoxic for HepG2 cells. Galanthamine was also without cytotoxicity. Our results suggest that the toxic effect of THA above 10 microM may be caused by drug-induced mitochondrial energization impairment and destabilisation of membrane phospholipids associated with an oxidative stress. In contrast by preventing these dysfunctions, PMS777 could be safer than THA.
Collapse
Affiliation(s)
- M J M Ezoulin
- Unité de Pharmacochimie Moléculaire et Systèmes Membranaires (EA2381), Université Paris 7-Denis Diderot, Case 7066, 2, Place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Apoptosis or programmed cell death occurs in the liver as in other organs. In the normal state it is not a frequent mode of hepatic cell destruction. Morphological and biochemical characteristics of liver cell apoptosis do not differ from what is observed in other cells. The Fas receptor pathway, a frequent hepatic apoptotic pathway among various others, involves intra-cellular signals amplified by mitochondria. Although hepatic apoptosis may occur by following several others pathways, Fas, which is abundantly expressed in the plasma membrane of hepatocytes, is very often involved in hepatocyte demise during B or C viral hepatitis irrespective of their clinical form, alcoholic hepatitis, cholestasis due to accumulation of hepatic biliary salts, or certain types of drug-induced hepatitis. Fas is also probably responsible for the death of biliary cells in primary biliary cirrhosis. In contrast one of the causes of resistance to apoptosis of hepatic cancerous cells could be related to an alteration of the Fas receptor. This is why much experimental work is presently performed to achieve inhibition of the Fas receptor either at the mRNA level or at the level of Fas-inductible proteolytic enzymes called caspases. One perspective is a specific treatment of apoptosis as an adjuvant treatment of liver diseases.
Collapse
Affiliation(s)
- Gérard Feldmann
- INSERM U 773, Faculté de Médecine Xavier Bichat, Université Paris 7- Denis Diderot, Paris.
| |
Collapse
|
50
|
Affiliation(s)
- Neil Kaplowitz
- USC Keck School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|