1
|
Leach DA, Fernandes RC, Bevan CL. Cellular specificity of androgen receptor, coregulators, and pioneer factors in prostate cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R112-R131. [PMID: 37435460 PMCID: PMC10259329 DOI: 10.1530/eo-22-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 07/13/2023]
Abstract
Androgen signalling, through the transcription factor androgen receptor (AR), is vital to all stages of prostate development and most prostate cancer progression. AR signalling controls differentiation, morphogenesis, and function of the prostate. It also drives proliferation and survival in prostate cancer cells as the tumour progresses; given this importance, it is the main therapeutic target for disseminated disease. AR is also essential in the surrounding stroma, for the embryonic development of the prostate and controlling epithelial glandular development. Stromal AR is also important in cancer initiation, regulating paracrine factors that excite cancer cell proliferation, but lower stromal AR expression correlates with shorter time to progression/worse outcomes. The profile of AR target genes is different between benign and cancerous epithelial cells, between castrate-resistant prostate cancer cells and treatment-naïve cancer cells, between metastatic and primary cancer cells, and between epithelial cells and fibroblasts. This is also true of AR DNA-binding profiles. Potentially regulating the cellular specificity of AR binding and action are pioneer factors and coregulators, which control and influence the ability of AR to bind to chromatin and regulate gene expression. The expression of these factors differs between benign and cancerous cells, as well as throughout disease progression. The expression profile is also different between fibroblast and mesenchymal cell types. The functional importance of coregulators and pioneer factors in androgen signalling makes them attractive therapeutic targets, but given the contextual expression of these factors, it is essential to understand their roles in different cancerous and cell-lineage states.
Collapse
Affiliation(s)
- Damien A Leach
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rayzel C Fernandes
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
2
|
Rasheed ZBM, Lee YS, Kim SH, Teoh T, MacIntyre DA, Bennett PR, Sykes L. 15-Deoxy-Delta-12,14-prostaglandin J2 modulates pro-labour and pro-inflammatory responses in human myocytes, vaginal and amnion epithelial cells. Front Endocrinol (Lausanne) 2022; 13:983924. [PMID: 36213265 PMCID: PMC9533017 DOI: 10.3389/fendo.2022.983924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Prematurity is the leading cause of childhood death under the age of five. The aetiology of preterm birth is multifactorial; however, inflammation and infection are the most common causal factors, supporting a potential role for immunomodulation as a therapeutic strategy. 15-Deoxy-Delta-12,14-prostaglandin J2 (15dPGJ2) is an anti-inflammatory prostaglandin and has been shown to delay lipopolysaccharide (LPS) induced preterm labour in mice and improve pup survival. This study explores the immunomodulatory effect of 15dPGJ2 on the transcription factors NF-κB and AP-1, pro-inflammatory cytokines, and contraction associated proteins in human cultured myocytes, vaginal epithelial cell line (VECs) and primary amnion epithelial cells (AECs). METHODS Cells were pre-incubated with 32µM of 15dPGJ2 and stimulated with 1ng/mL of IL-1β as an in vitro model of inflammation. Western immunoblotting was used to detect phosphorylated p-65 and phosphorylated c-Jun as markers of NF-κB and AP-1 activation, respectively. mRNA expression of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α was examined, and protein expression of COX-2 and PGE2 were detected by western immunoblotting and ELISA respectively. Myometrial contractility was examined ex-vivo using a myograph. RESULTS 15dPGJ2 inhibited IL-1β-induced activation of NF-κB and AP-1, and expression of IL-6, IL-8, TNF-α, COX-2 and PGE2 in myocytes, with no effect on myometrial contractility or cell viability. Despite inhibiting IL-1β-induced activation of NF-κB, expression of IL-6, TNF-α, and COX-2, 15dPGJ2 led to activation of AP-1, increased production of PGE2 and increased cell death in VECs and AECs. CONCLUSION We conclude that 15dPGJ2 has differential effects on inflammatory modulation depending on cell type and is therefore unlikely to be a useful therapeutic agent for the prevention of preterm birth.
Collapse
Affiliation(s)
- Zahirrah BM. Rasheed
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yun S. Lee
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Sung H. Kim
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Tg Teoh
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
- The Parasol Foundation Centre for Women’s Health and Cancer Research, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - David A. MacIntyre
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Phillip R. Bennett
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
- The Parasol Foundation Centre for Women’s Health and Cancer Research, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Lynne Sykes,
| |
Collapse
|
3
|
Velez LM, Seldin M, Motta AB. Inflammation and reproductive function in women with polycystic ovary syndrome†. Biol Reprod 2021; 104:1205-1217. [PMID: 33739372 DOI: 10.1093/biolre/ioab050] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most frequent endocrinopathies, affecting 5-10% of women of reproductive age, and is characterized by the presence of ovarian cysts, oligo, or anovulation, and clinical or biochemical hyperandrogenism. Metabolic abnormalities such as hyperinsulinemia, insulin resistance, cardiovascular complications, dyslipidemia, and obesity are frequently present in PCOS women. Several key pathogenic pathways overlap between these metabolic abnormalities, notably chronic inflammation. The observation that this mechanism was shared led to the hypothesis that a chronic inflammatory state could contribute to the pathogenesis of PCOS. Moreover, while physiological inflammation is an essential feature of reproductive events such as ovulation, menstruation, implantation, and labor at term, the establishment of chronic inflammation may be a pivotal feature of the observed reproductive dysfunctions in PCOS women. Taken together, the present work aims to review the available evidence about inflammatory mediators and related mechanisms in women with PCOS, with an emphasis on reproductive function.
Collapse
Affiliation(s)
- Leandro M Velez
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Alicia B Motta
- Center of Pharmacological and Botanical Studies (CEFYBO), National Scientific and Technical Research Council, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Permadi W, Mantilidewi KI, Khairani AF, Lantika UA, Ronosulistyo AR, Bayuaji H. Differences in expression of Peroxisome Proliferator-activated Receptor-γ in early-onset preeclampsia and late-onset preeclampsia. BMC Res Notes 2020; 13:181. [PMID: 32216842 PMCID: PMC7099806 DOI: 10.1186/s13104-020-05029-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE PPARγ is a ligand-binding transcription factor that has been reported to be implicated in lipid metabolism, immune function, and cellular growth and differentiation. It has been suspected to play a role in the pathophysiology of preeclampsia, although the mechanism is yet to be elaborated. This study aims to investigate the expression of PPARγ in early onset preeclampsia (EOPE), late onset preeclampsia (LOPE), and normal pregnancy. We conducted this study using primary trophoblastic cell culture incubated with serum from EOPE, LOPE, and normal pregnancy. The expression of PPARγ in these cells was analyzed using Western Blot. Statistical analysis was performed using one-way ANOVA and Bonferroni's post hoc test. p < 0.05 is considered significant. RESULTS Serum from normal pregnant women and EOPE did not induce any difference in the expression of PPAR-γ (p > 0.05). In contrast, expression of PPAR-γ was increased in those cells induced by serum from LOPE (p < 0.001). Therefore, we conclude that hypothetically PPAR-γ might play role in the pathophysiology of LOPE but not in EOPE. Other possibility is the activity of PPAR-γ in EOPE is inversely correlated with its expression, therefore the high enzymatic activity of PPAR-γ is tightly regulated by attenuating its expression.
Collapse
Affiliation(s)
- W. Permadi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran–Dr. Hasan Sadikin Hospital, Jl. Pasteur No. 38, Bandung, 40161 West Java Indonesia
| | - K. I. Mantilidewi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran–Dr. Hasan Sadikin Hospital, Jl. Pasteur No. 38, Bandung, 40161 West Java Indonesia
| | - A. F. Khairani
- Division of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - U. A. Lantika
- Department of Histology and Medical Biology, Faculty of Medicine, Bandung Islamic University, Jl. Tamansari No.22, Bandung, 40116 West Java Indonesia
| | - A. R. Ronosulistyo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran–Dr. Hasan Sadikin Hospital, Jl. Pasteur No. 38, Bandung, 40161 West Java Indonesia
| | - H. Bayuaji
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran–Dr. Hasan Sadikin Hospital, Jl. Pasteur No. 38, Bandung, 40161 West Java Indonesia
| |
Collapse
|
5
|
Pham J, Arul Nambi Rajan K, Li P, Parast MM. The role of Sirtuin1-PPARγ axis in placental development and function. J Mol Endocrinol 2018; 60:R201-R212. [PMID: 29467141 PMCID: PMC8584848 DOI: 10.1530/jme-17-0315] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Placental development is important for proper in utero growth and development of the fetus, as well as maternal well-being during pregnancy. Abnormal differentiation of placental epithelial cells, called trophoblast, is at the root of multiple pregnancy complications, including miscarriage, the maternal hypertensive disorder preeclampsia and intrauterine growth restriction. The ligand-activated nuclear receptor, PPARγ, and nutrient sensor, Sirtuin-1, both play a role in numerous pathways important to cell survival and differentiation, metabolism and inflammation. However, each has also been identified as a key player in trophoblast differentiation and placental development. This review details these studies, and also describes how various stressors, including hypoxia and inflammation, alter the expression or activity of PPARγ and Sirtuin-1, thereby contributing to placenta-based pregnancy complications.
Collapse
Affiliation(s)
- Jonathan Pham
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| | - Kanaga Arul Nambi Rajan
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| | - Ping Li
- Department of PathologyMedical School of Jinan University, Guangzhou, China
| | - Mana M Parast
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Choriodecidual leukocytes display a unique gene expression signature in spontaneous labor at term. Genes Immun 2018; 20:56-68. [PMID: 29362510 PMCID: PMC6358585 DOI: 10.1038/s41435-017-0010-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Prior to and during the process of human labor, maternal circulating leukocytes infiltrate the maternal-fetal interface (choriodecidua) and become activated resembling choriodecidual leukocytes. Since, there is no evidence comparing maternal circulating and choriodecidual leukocytes, herein, we characterized their transcriptome and explored the biological processes enriched in choriodecidual leukocytes. From women undergoing spontaneous term labor we isolated circulating and choriodecidual leukocytes, performed microarray analysis (n = 5) and qRT-PCR validation (n = 9) and interaction network analysis with up-regulated genes. We found 270 genes up-regulated and only 17 genes down-regulated in choriodecidual leukocytes compared to maternal circulating leukocytes. The most up-regulated genes were CCL18, GPNMB, SEPP1, FN1, RNASE1, SPP1, C1QC, and PLTP. The biological processes enriched in choriodecidual leukocytes were cell migration and regulation of immune response, chemotaxis, and humoral immune responses. Our results show striking differences between the transcriptome of choriodecidual and maternal circulating leukocytes. Choriodecidual leukocytes are enriched in immune mediators implicated in the spontaneous process of labor at term.
Collapse
|
7
|
Abstract
Nuclear lipid signaling is an established, widespread mechanism that operates in multiple cellular processes including proliferative and differentiative responses to a variety of stimuli. In this literature review with key references highlighted, we put forward the hypothesis that differential flow through various intracrine mechanisms can dictate resultant cellular actions such as mitosis, differentiation, or apoptosis.
Collapse
Affiliation(s)
- R S Gilmour
- Liggins Institute and Department of Pharmacology & Clinical Pharmacology, University of Auckland, Faculty of Medical and Health Sciences, New Zealand
| | | |
Collapse
|
8
|
Xu Y, Romero R, Miller D, Kadam L, Mial TN, Plazyo O, Garcia-Flores V, Hassan SS, Xu Z, Tarca AL, Drewlo S, Gomez-Lopez N. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:2476-2491. [PMID: 26889045 PMCID: PMC4779725 DOI: 10.4049/jimmunol.1502055] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023]
Abstract
Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tara N. Mial
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Olesya Plazyo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
9
|
Cawyer C, Afroze SH, Drever N, Allen S, Jones R, Zawieja DC, Kuehl T, Uddin MN. Attenuation of hyperglycemia-induced apoptotic signaling and anti-angiogenic milieu in cultured cytotrophoblast cells. Hypertens Pregnancy 2016; 35:159-69. [PMID: 26930265 DOI: 10.3109/10641955.2015.1122035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Preeclampsia (preE) is a hypertensive disorder that occurs 20% in diabetic pregnancy. We have shown that hyperglycemia impairs cytotrophoblast cell (CTB) function. In this study, we assess apoptotic and anti-angiogenic signaling in excess glucose-induced CTBs. STUDY DESIGN Human extravillous CTBs (Sw. 71) were treated with 100, 150, 200, 300, or 400 mg/dL glucose for 48 h. Some cells were pretreated with a p38 inhibitor (SB203580) or a peroxisome proliferator-activated receptor gamma (PPARγ) ligand (rosiglitazone) or with D-mannitol. Cell lysates were utilized to measure p38 MAPK phosphorylation, PPARγ, Bcl-2-associated-X protein (Bax), anti-apoptotic Bcl-2, caspase-9, and cyclooxygenase-2 (Cox-2) expression by western blot. Levels of the vascular endothelial growth factor (VEGF), placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble endoglin (sEng), and interleukin 6 (IL-6) were measured in culture media using ELISA kits. Statistical comparisons were performed using analysis of variance with Duncan's post hoc test. RESULTS p38 phosphorylation and PPARγ were upregulated (p < 0.05) in CTBs treated with ≥150 mg/dL glucose compared to basal (100 mg/dL). Expressions of Bax/Bcl-2, Cox-2, and caspase-9 were upregulated (p < 0.05) in CTBs treated with ≥150 mg/dL glucose. Secretion of sFlt-1, sEng, and IL-6 was increased while VEGF and PIGF were decreased in CTB-treated ≥150 mg/dl of glucose (*p < 0.01 for each). SB203580 or rosiglitazone pretreatment significantly attenuated hyperglycemia-induced apoptotic and anti-angiogenic signaling. D-Mannitol had no effect. CONCLUSION Hyperglycemia induced apoptotic and anti-angiogenic signaling in CTBs. The observed diminution of hyperglycemia-induced signaling by SB203580 or rosiglitazone pretreatment suggests the involvement of apoptotic and anti-angiogenic signaling in CTB dysfunction.
Collapse
Affiliation(s)
- Chase Cawyer
- a Departments of Obstetrics & Gynecology , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA
| | - Syeda H Afroze
- b Medical Physiology , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA
| | - Nathan Drever
- a Departments of Obstetrics & Gynecology , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA
| | - Steven Allen
- a Departments of Obstetrics & Gynecology , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA
| | - Richard Jones
- a Departments of Obstetrics & Gynecology , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA
| | - David C Zawieja
- b Medical Physiology , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA
| | - Thomas Kuehl
- a Departments of Obstetrics & Gynecology , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA.,c Pediatrics , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA
| | - M Nasir Uddin
- a Departments of Obstetrics & Gynecology , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA.,c Pediatrics , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA.,d Internal Medicine , Texas A&M Health Science Center College of Medicine/Baylor Scott & White Health , Temple , Texas , USA
| |
Collapse
|
10
|
Cawyer CR, Horvat D, Leonard D, Allen SR, Jones RO, Zawieja DC, Kuehl TJ, Uddin MN. Hyperglycemia impairs cytotrophoblast function via stress signaling. Am J Obstet Gynecol 2014; 211:541.e1-8. [PMID: 24793974 DOI: 10.1016/j.ajog.2014.04.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Diabetes mellitus is a risk factor for preeclampsia. Cytotrophoblast (CTB) invasion is facilitated from the conversion of plasminogen to plasmin by urokinase plasminogen activator (uPA), regulated by plasminogen activator inhibitor 1 (PAI-1), and may be inhibited in preeclampsia. This study assessed signaling mechanisms of hyperglycemia-induced CTB dysfunction. STUDY DESIGN Human CTBs were treated with 45, 135, 225, 495, or 945 mg/dL glucose for 48 hours. Some cells were pretreated with a p38 inhibitor (SB203580) or a peroxisome proliferator-activated receptor-gamma (PPAR-γ) ligand (rosiglitazone). Expression of uPA, PAI-1, and PPAR-γ levels and p38 mitogen-activated protein kinase phosphorylation were measured by Western blot in cell lysates. Messenger ribonucleic acid of uPA and PAI-1 was measured by quantitative polymerase chain reaction. Levels of interleukin-6, angiogenic (vascular endothelial growth factor [VEGF], placenta growth factor [PlGF]) and antiangiogenic factors (soluble fms-like tyrosine kinase-1 [sFlt-1], soluble endoglin [sEng]) were measured in the media by enzyme-linked immunosorbent assay kits. Statistical comparisons were performed using analysis of variance with a Duncan's post-hoc test. RESULTS Both uPA and PAI-1 protein and messenger ribonucleic acid were down-regulated (P < .05) in CTBs treated with 135 mg/dL glucose or greater compared with basal (45 mg/dL). The sEng, sFlt-1, and interleukin-6 were up-regulated, whereas the VEGF and PlGF were down-regulated by 135 mg/dL glucose or greater. p38 phosphorylation and PPAR-γ were up-regulated (P < .05) in hyperglycemia-treated CTBs. The SB203580 or rosiglitazone pretreatment showed an attenuation of glucose-induced down-regulation of uPA and PAI-1. CONCLUSION Hyperglycemia disrupts the invasive profile of CTB by decreasing uPA and PAI-1 expression; down-regulating VEGF and PlGF; and up-regulating sEng, sFlt-1, and interleukin-6. Attenuation of CTB dysfunction by SB203580 or rosiglitazone pretreatment suggests the involvement of stress signaling.
Collapse
Affiliation(s)
- Chase R Cawyer
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Darijana Horvat
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | | | - Steven R Allen
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Richard O Jones
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - David C Zawieja
- Department of Medical Physiology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Thomas J Kuehl
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Mohammad N Uddin
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX.
| |
Collapse
|
11
|
Peroxisome Proliferator-Activated Receptors of Trophoblast Cells in Miscarriage. Bull Exp Biol Med 2012; 152:768-71. [DOI: 10.1007/s10517-012-1627-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
PPAR Action in Human Placental Development and Pregnancy and Its Complications. PPAR Res 2011; 2008:527048. [PMID: 18288290 PMCID: PMC2234270 DOI: 10.1155/2008/527048] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Accepted: 11/13/2007] [Indexed: 01/09/2023] Open
Abstract
During pregnancy crucial anatomic, physiologic, and metabolic changes challenge the mother and the fetus.
The placenta is a remarkable organ that allows the mother and the fetus to adapt to the new metabolic, immunologic,
and angiogenic environment imposed by gestation. One of the physiologic systems that appears to have evolved to
sustain this metabolic regulation is mediated by peroxisome proliferator-activated receptors (PPARs).
In clinical pregnancy-specific disorders, including preeclampsia, gestational diabetes, and intrauterine growth restriction, aberrant regulation of components of the PPAR system parallels dysregulation of metabolism, inflammation and angiogenesis. This review summarizes current knowledge on the role of PPARs in regulating human trophoblast invasion, early placental development, and also in the physiology of clinical pregnancy and its complications. As increasingly indicated in the literature, pregnancy disorders, such as preeclampsia and gestational diabetes, represent potential targets for treatment with PPAR ligands. With the advent of more specific PPAR agonists that exhibit efficacy in ameliorating metabolic, inflammatory, and angiogenic disturbances, further studies of their application in pregnancy-related diseases are warranted.
Collapse
|
13
|
Hirano E, Sugita N, Kikuchi A, Shimada Y, Sasahara J, Iwanaga R, Tanaka K, Yoshie H. Peroxisome proliferator-activated receptor gamma polymorphism and periodontitis in pregnant Japanese women. J Periodontol 2010; 81:897-906. [PMID: 20450366 DOI: 10.1902/jop.2010.090669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Recent studies suggest an association between maternal periodontitis and preterm birth, although the association remains controversial. It was suggested that mechanisms such as a genetic predisposition for a hyperinflammatory response cause periodontitis and preterm births. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear hormone receptor and ligand-dependent transcription factor. PPARgamma inhibits the transcriptional activity of the genes that produce proinflammatory mediators and repress periodontitis. Recently, a common polymorphism, proline(PRO)-to-alanine(ALA) mutation at codon12 in exonB (Pro12Ala: rs 1801282) PPARgamma, was reported to reduce the ability to transactivate responsive promoters. In this study, we tested whether the PPARgammaPro12Ala polymorphism was associated with maternal periodontitis and/or preterm birth. METHODS Genomic DNA was isolated from the venous blood of pregnant Japanese women (term birth: n = 72; preterm birth: n = 58). The PPARgammaPro12Ala genotype was determined by polymerase chain reaction (PCR)-restriction fragment length polymorphism. Within 5 days after labor, clinical periodontal parameters were evaluated, and periodontopathic bacteria from the subgingival plaque were detected by species-specific PCR. RESULTS The mean clinical attachment level (P = 0.012), mean probing depth (P = 0.031), mean gingival index (P = 0.037), and percentages of sites with bleeding on probing (P = 0.041) in women with the PPARgammaPro12Ala genotype were significantly higher than in women with the PPARgammaPro12Pro genotype. However, there was no association between preterm birth and periodontitis. CONCLUSION We suggest that the PPARgammaPro12Ala polymorphism may represent a genetic susceptibility factor for the clinical measurements of periodontitis in a limited number of pregnant Japanese women, but it probably cannot influence the relationship between periodontitis and preterm birth.
Collapse
Affiliation(s)
- Emi Hirano
- Division of Periodontology, Department of Oral Biological Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Toth B, Bastug M, Mylonas I, Scholz C, Makovitzky J, Kunze S, Thaler C, Friese K, Jeschke U. Peroxisome proliferator-activated receptor-gamma in normal human pregnancy and miscarriage. Acta Histochem 2009; 111:372-8. [PMID: 19342081 DOI: 10.1016/j.acthis.2008.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR) belong to the superfamily of nuclear hormone receptors. Recent investigations emphasize a possible involvement of PPAR in obstetric and gynaecologic disorders like polycystic ovarian syndrome, endometriosis and preeclampsia. The aim of this study was to determine the frequency and distribution of peroxisome proliferator-activated receptor-gamma (PPARgamma) in normal human pregnancy and miscarriage. Placental tissue was obtained from normal human pregnancy and miscarriage during the first trimester of pregnancy. PPARgamma localisation was investigated by immunohistochemical methods. Immediate immunoreactivity of PPARgamma was observed in villous and extravillous trophoblast nuclei in normal first trimester pregnancy. A significantly enhanced labelling of PPARgamma was identified in extravillous trophoblast of miscarriage patients. This enhanced immunopositivity was also found in nuclei of villous trophoblast cells of miscarriage patients but without statistical significance. Because trophoblast invasion is negatively correlated to PPARgamma stimulation and blocking of PPARgamma leads to increased trophoblast invasion, our findings may suggest that enhanced expression of PPARgamma in abortive extravillous trophoblasts may be one factor linked to miscarriage.
Collapse
Affiliation(s)
- Bettina Toth
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University, Campus Grosshadern, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Peroxisome proliferator-activated receptors and retinoid X receptor-alpha in term human gestational tissues: tissue specific and labour-associated changes. Placenta 2008; 30:176-86. [PMID: 19070893 DOI: 10.1016/j.placenta.2008.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/10/2008] [Accepted: 11/14/2008] [Indexed: 01/13/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) and their transcriptional partner retinoid X receptor (RXR) are involved in transcriptionally regulating the events that contribute to the control of parturition in humans. Definitive data, however, are lacking with respect to PPAR and RXR expression and activation during term labour in human gestational tissues. The aim of this study, therefore, was to identify tissue and labour-associated changes of PPAR isoforms (alpha, delta and gamma) and RXRalpha in placenta, amnion and choriodecidua. Gestational tissues from term non-labouring women were used for immunohistochemistry localisation and confirmation studies of PPAR isoforms (alpha, delta and gamma) and RXRalpha. Human gestational tissues were then collected from term women not-in-labour (NIL) (elective Caesarean section), in-labour (IL) (emergency Caesarean section) and post-labour (PL) (normal vaginal delivery). Quantitative RT-PCR (qRT-PCR) and Western blotting were employed to study mRNA and protein expression profiles respectively. Significantly higher mRNA expression was observed in placental tissues taken from women in labour (PPARdelta, PPARgamma and RXRalpha). Elevated PPARdelta and RXRalpha mRNA expression in fetal membranes was also associated with being in labour. In contrast, PPARgamma mRNA in the amnion was decreased with term PL compared to NIL. In placenta, PPARalpha, PPARdelta and PPARgamma protein expression was significantly increased in the IL group compared to the NIL or PL group. There was no significant difference in PPAR or RXRalpha protein expression in both amnion and choriodecidua between the three labour groups. PPAR (alpha and gamma) transcription factor DNA binding activity was found to decline IL compared to NIL and PL in the placenta. PPARdelta DNA binding activity also decreased in the choriodecidua IL compared to PL. In amnion, PPARalpha DNA binding activity was found to be higher IL compared to NIL. In conclusion, term human labour is associated with changes in expression and activity of PPAR isoforms and its transcription partner, RXRalpha. This data is consistent with the hypothesis that PPAR:RXR are involved in regulating of the processes of human term parturition.
Collapse
|
16
|
Transcriptional regulation of the processes of human labour and delivery. Placenta 2008; 30 Suppl A:S90-5. [PMID: 19010537 DOI: 10.1016/j.placenta.2008.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 02/08/2023]
Abstract
Preterm birth is the most important complication contributing to poor pregnancy and neonatal outcome. A critical issue that must be resolved is how spontaneous onset labour is initiated both at term and preterm. Over the past decade, we and others have provided evidence in support of the hypothesis that labour onset is regulated by specific nuclear regulatory factor (NR) pathways, involving an interplay between transcription factors (TFs) and nuclear hormone receptors, that control the expression of many of the effector pathways requisite for labour and delivery. There is now compelling evidence implicating NRs, including the nuclear factor-kappaB (NF-kappaB) family of nuclear TFs, the nuclear hormone receptor superfamily of peroxisome proliferator activated receptors (PPARs), and the steroid receptors for progesterone (PRA, PRB and PRC), as candidate upstream regulators of labour-associated processes. Based on these studies and recent data obtained in our laboratory, we provide a new model of how the multiple pathways involved in spontaneous onset labour and delivery are coordinated at a nuclear level. We propose that spontaneous onset labour and delivery are consequent upon withdrawal of the repressive effect of nuclear receptors (PPAR and PR) on pro-labour TF pathways (NF-kappaB). The withdrawal of NR-mediated repression is affected by competition between TFs and NRs for a limited pool of nuclear cofactors. We also propose that coordination of these different pathways is achieved by competition for common cofactors that control the activity of NRs in human gestational tissues.
Collapse
|
17
|
Giaginis C, Spanopoulou E, Theocharis S. PPAR-gamma signaling pathway in placental development and function: a potential therapeutic target in the treatment of gestational diseases. Expert Opin Ther Targets 2008; 12:1049-63. [PMID: 18620525 DOI: 10.1517/14728222.12.8.1049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND PPAR-gamma is a target for the treatment of metabolic disorders, as Pioglitazone and Rosiglitazone are already used against type 2 diabetes. Pleiotropic functions, such as antiproliferative and anti-inflammatory effects against several pathological states, including cardiovascular disease and cancer, are currently being explored in clinical studies. OBJECTIVE Evidence indicates that PPAR-gamma is expressed in the placenta, playing a crucial role in placental development and function, while PPAR-gamma ligands appear to modulate fetal membrane signals. Thus, in the last few years, the pivotal role of PPAR-gamma in placental biology has been the focus of extensive research, as diabetes appears to be the most common metabolic dysfunction in pregnancy. METHODS We aim to present data concerning the expression of PPAR-gamma in animal and human placenta, underlining its significance in normal placental development and several gestational diseases. The effects of PPAR-gamma ligands as modulators of placental biology in normal and certain pathological conditions are also discussed. RESULTS/CONCLUSION Current research provides substantial evidence that PPAR-gamma plays a pivotal role in placental biology and may reveal new perspectives in the treatment of gestational diseases.
Collapse
Affiliation(s)
- Costas Giaginis
- University of Athens, Department of Forensic Medicine and Toxicology, Medical School, 75, M. Asias street, Goudi, Athens, GR11527, Greece
| | | | | |
Collapse
|
18
|
Chang HJ, Lee JH, Hwang KJ, Kim MR, Chang KH, Park DW, Min CK. Transforming growth factor (TGF)-beta1-induced human endometrial stromal cell decidualization through extracellular signal-regulated kinase and Smad activation in vitro: peroxisome proliferator-activated receptor gamma acts as a negative regulator of TGF-beta1. Fertil Steril 2007; 90:1357-65. [PMID: 18082740 DOI: 10.1016/j.fertnstert.2007.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the effect of transforming growth factor (TGF)-beta1 on the extracellular signal-regulated kinase (ERK) and Smad pathway and the role of peroxisome proliferator-activated receptor (PPAR)-gamma in cultured human endometrial stromal cells. DESIGN Experimental study. SETTING Infertility center of a tertiary university hospital. MATERIAL(S): Human endometrial tissues obtained by hysterectomy from patients with conditions other than endometrial diseases. INTERVENTION(S) Endometrial stromal cells were cultured under normal laboratory conditions. TGF-beta1, rosiglitazone (PPARgamma agonist), and PD98059 (ERK inhibitor) were added to endometrial stromal cell culture according to experimental purposes. MAIN OUTCOME MEASURE(S) Cell count, PRL expression, Smad and ERK phosphorylation, cyclooxygenase (COX)-2 expression, and prostaglandin E(2) (PGE(2)) release. RESULT(S) TGF-beta1 inhibited cellular proliferation and induced the expressions of COX-2, PGE(2), and PRL of cultured human endometrial stromal cells. These effects may be mediated by Smad and ERK phosphorylation. Treatment with rosiglitazone, a PPARgamma agonist, reversed the TGF-beta1 effect by antagonizing the activation of ERK and Smad that was induced by TGF-beta1. CONCLUSION(S) PPARgamma plays a negative role by directly acting on Smad and ERK phosphorylation in human endometrial cell decidualization that is induced by TGF-beta1 in vitro.
Collapse
Affiliation(s)
- Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Toth B, Hornung D, Scholz C, Djalali S, Friese K, Jeschke U. Peroxisome proliferator-activated receptors: new players in the field of reproduction. Am J Reprod Immunol 2007; 58:289-310. [PMID: 17681045 DOI: 10.1111/j.1600-0897.2007.00514.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR) are members of the nuclear hormone receptor superfamily. Synthetic ligands to one family member, PPARgamma, are currently widely used as treatment for chronic diseases such as diabetes type II and other insulin resistances, e.g. as seen in polycystic ovary syndrome (PCOS). Moreover, novel approaches employing knock-out mice demonstrated that PPARgamma seems to play a key role in placental and fetal development. This review describes recent insights into the role of PPARs in human reproduction with specific reference to infertility, placental maturation and fetal development as well as disturbed pregnancy. Further, we highlight the current knowledge on synthetic ligands to PPARgamma used as a treatment in women with PCOS.
Collapse
Affiliation(s)
- Bettina Toth
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University, Grosshadern, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Suwaki N, Masuyama H, Masumoto A, Takamoto N, Hiramatsu Y. Expression and Potential Role of Peroxisome Proliferator-Activated Receptor γ in the Placenta of Diabetic Pregnancy. Placenta 2007; 28:315-23. [PMID: 16753211 DOI: 10.1016/j.placenta.2006.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 04/07/2006] [Accepted: 04/07/2006] [Indexed: 11/24/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed predominantly in adipose tissue and is known to be involved in adipocyte differentiation and insulin sensitivity. Recent reports indicated that PPARgamma-deficient mice were embryonic lethal due to abnormal placental development, suggesting that PPARgamma plays an important role in normal development of placenta. On the other hand, expression of vascular endothelial growth factor (VEGF), the other important factor in placental development, has been demonstrated to be regulated by PPARgamma in vascular smooth muscle cells. Also, diabetic pregnancy is often associated with defective placental functions. In order to investigate physiological roles of PPARgamma and VEGF in placental development during diabetic pregnancy, we examined the expressions of PPARgamma and VEGF in placentas, which were obtained from normal and streptozotocin-induced diabetic pregnant mouse, and studied in vitro effects of hyperglycemic condition and PPARgamma ligands (rosiglitazone and 15-deoxy-delta(12,14)prostaglandin J(2)) on trophoblasts using human choriocarcinoma cell lines. In diabetic mouse placentas (n=5), expressions of PPARgamma and VEGF proteins significantly increased as compared with these in normal placenta (n=3 or 4). In vitro studies indicated that hyperglycemic condition (42 mM) significantly enhanced the PPARgamma expression and hCG production, and significantly suppressed cell proliferation, however these effects were attenuated by PPARgamma ligands that accompanied with increased VEGF production. These data suggest that the PPARgamma pathway might be involved in the impairment of placental development induced by high glucose conditions, and that VEGF might play some roles in this pathway.
Collapse
Affiliation(s)
- N Suwaki
- Department of Obstetrics and Gynecology, Okayama University Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama 700-8558, Japan
| | | | | | | | | |
Collapse
|
21
|
Fournier T, Tsatsaris V, Handschuh K, Evain-Brion D. PPARs and the Placenta. Placenta 2007; 28:65-76. [PMID: 16834993 DOI: 10.1016/j.placenta.2006.04.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 04/28/2006] [Accepted: 04/30/2006] [Indexed: 12/23/2022]
Abstract
The discovery of the peroxisome proliferator-activated receptors (PPARs) in 1990s provided new insights in understanding the mechanisms involved in the control of energy homeostasis and in cell differentiation, proliferation, apoptosis and the inflammatory process. The PPARs became thus an exciting therapeutic target for diabetes, metabolic syndrome, atherosclerosis, and cancer. Unexpectedly, genetic studies performed in mice established that PPARgamma are essential for placental development. After a brief description of structural and functional features of PPARs, we will summarize in this review the most recent results concerning expression and the role of PPARs in placenta and of PPARgamma in human trophoblastic cells in particular.
Collapse
Affiliation(s)
- T Fournier
- INSERM, U767, 4 avenue de l'Observatoire, 75006 Paris, France; Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | |
Collapse
|
22
|
Schaiff WT, Barak Y, Sadovsky Y. The pleiotropic function of PPAR gamma in the placenta. Mol Cell Endocrinol 2006; 249:10-5. [PMID: 16574314 DOI: 10.1016/j.mce.2006.02.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/20/2006] [Indexed: 11/25/2022]
Abstract
At different stages of placental development the cytotrophoblasts differentiate into specialized cells that are vital for specific placental tasks. These types include the invasive trophoblasts, which are responsible for invasion of the placenta into the uterine wall, and syncytiotrophoblasts, which form a barrier between the maternal and fetal circulations, govern trans-placental transport of gas, nutrient and waste, and produce placental hormones. Recent research illuminated the role of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR gamma) in the areas of adipocyte and macrophage biology, insulin action, bioenergetics and inflammation. It was somewhat surprising that PPAR gamma was also found to play a pivotal role in placental biology. In this review we summarize recent data, which show that PPAR gamma is expressed in the placenta, particularly in trophoblasts, and is essential for placental development, trophoblast invasion, differentiation of cytotrophoblasts into syncytium, and regulation of fat accumulation in trophoblasts. PPAR gamma may also play a role in modulating fetal membrane signals toward parturition. The data presented here underscore the need for a focused investigation of the unique aspects of PPAR gamma function in trophoblasts, which may have direct implications for the use of PPAR gamma ligands during pregnancy.
Collapse
Affiliation(s)
- W Timothy Schaiff
- Department of Obstetrics and Gynecology, and Cell Biology and Physiology, Washington University School of Medicine, Department of OBGYN - Campus Box 8064, 4566 Scott Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
23
|
Schild RL, Sonnenberg-Hirche CM, Schaiff WT, Bildirici I, Nelson DM, Sadovsky Y. The kinase p38 regulates peroxisome proliferator activated receptor-gamma in human trophoblasts. Placenta 2006; 27:191-9. [PMID: 16338464 DOI: 10.1016/j.placenta.2005.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 01/11/2005] [Accepted: 01/25/2005] [Indexed: 11/16/2022]
Abstract
Deficiency of either the mitogen-activated protein kinase p38 or the nuclear receptor PPARgamma results in disrupted vasculogenesis and abnormal development of the murine placenta. In addition, PPARgamma regulates differentiation of human trophoblasts. Here we tested the hypothesis that p38 plays an important role in the regulation of PPARgamma in primary human trophoblasts. We initially confirmed that cultured trophoblasts derived from normal term human placentas express p38 as well as its functional phosphorylated form. Whereas PPARgamma did not alter p38 expression, p38 inhibitors diminished the transcriptional activity of PPARgamma in primary trophoblasts. In addition, inhibition of p38 resulted in marked attenuation of PPARgamma-stimulated hCG production by cultured trophoblast. Our data support an effect of p38 on PPARgamma protein stability because p38 inhibition led to reduced expression of PPARgamma protein without a significant effect on PPARgamma mRNA, and this reduction was blocked by the protease inhibitor MG-132. Together, these data indicate that p38 regulates PPARgamma expression and activity in term human trophoblasts. Cross talk between p38 and PPARgamma signaling may play a role in modulating differentiation and function of the human placenta.
Collapse
Affiliation(s)
- R L Schild
- Department of Obstetrics and Gynecology, and Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8064, 4566 Scott Avenue, St. Louis, MO 63110-1094, USA
| | | | | | | | | | | |
Collapse
|
24
|
Duttaroy AK. Fatty acid-activated nuclear transcription factors and their roles in human placenta. EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200500272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Ackerman WE, Zhang XL, Rovin BH, Kniss DA. Modulation of cytokine-induced cyclooxygenase 2 expression by PPARG ligands through NFkappaB signal disruption in human WISH and amnion cells. Biol Reprod 2005; 73:527-35. [PMID: 15843495 PMCID: PMC1360652 DOI: 10.1095/biolreprod.104.039032] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cyclooxygenase (COX) activity increases in the human amnion in the settings of term and idiopathic preterm labor, contributing to the generation of uterotonic prostaglandins (PGs) known to participate in mammalian parturition. Augmented COX activity is highly correlated with increased COX2 (also known as prostaglandin-endoperoxide synthase 2, PTGS2) gene expression. We and others have demonstrated an essential role for nuclear factor kappaB (NFkappaB) in cytokine-driven COX2 expression. Peroxisome proliferator-activated receptor gamma (PPARG), a member of the nuclear hormone receptor superfamily, has been shown to antagonize NFkappaB activation and inflammatory gene expression, including COX2. We hypothesized that PPARG activation might suppress COX2 expression during pregnancy. Using primary amnion and WISH cells, we evaluated the effects of pharmacological (thiazolidinediones) and putative endogenous (15-deoxy-Delta(12,14)-prostaglandin J2, 15d-PGJ2) PPARG ligands on cytokine-induced NFkappaB activation, COX2 expression, and PGE2 production. We observed that COX2 expression and PGE2 production induced by tumor necrosis factor alpha (TNF) were significantly abrogated by 15d-PGJ2. The thiazolidinediones rosiglitazone (ROSI) and troglitazone (TRO) had relatively little effect on cytokine-induced COX2 expression except at high concentrations, at which these agents tended to increase COX2 abundance relative to cells treated with TNF alone. Interestingly, treatment with ROSI, but not TRO, led to augmentation of TNF-stimulated PGE2 production. Mechanistically, we observed that 15d-PGJ2 markedly diminished cytokine-induced activity of the NFkappaB transcription factor, whereas thiazolidinediones had no discernable effect on this system. Our data suggest that pharmacological and endogenous PPARG ligands use both receptor-dependent and -independent mechanisms to influence COX2 expression.
Collapse
Affiliation(s)
- William E. Ackerman
- Department of Obstetrics and Gynecology, Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine
| | - Xiaolan L. Zhang
- Dorothy M. Davis Heart and Lung Research Institute and Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Brad H. Rovin
- Dorothy M. Davis Heart and Lung Research Institute and Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Douglas A. Kniss
- Department of Obstetrics and Gynecology, Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine
- Center for Biomedical Engineering, and
- Correspondence: Douglas A. Kniss, Laboratory of Perinatal Research, Department of Obstetrics and Gynecology, The Ohio State University, 5th Floor Means Hall, 1654 Upham Drive, Columbus, OH 43210. FAX: 614 293 5728; e-mail:
| |
Collapse
|
26
|
Berry EBE, Keelan JA, Helliwell RJA, Gilmour RS, Mitchell MD. Nanomolar and micromolar effects of 15-deoxy-delta 12,14-prostaglandin J2 on amnion-derived WISH epithelial cells: differential roles of peroxisome proliferator-activated receptors gamma and delta and nuclear factor kappa B. Mol Pharmacol 2005; 68:169-78. [PMID: 15821150 DOI: 10.1124/mol.104.009449] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
15-Deoxy delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), an activator of peroxisome proliferator-activated receptor (PPAR)-gamma and -delta, is a prostanoid metabolite with anti-inflammatory actions. In intrauterine tissues, proinflammatory cytokines and prostaglandins have been identified as playing key roles in the maintenance of pregnancy and the onset of labor. We investigated and compared the early (<3 h) effects of 15d-PGJ(2) with rosiglitazone (PPAR-gamma ligand) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516) (PPAR-delta ligand) on interleukin (IL)-1beta-induced prostaglandin and cytokine production by amnion-derived WISH cells. We show that 15d-PGJ(2) exerts differential effects depending on concentration. At low concentrations (<0.1 microM), 15d-PGJ(2) inhibited IL-1beta-stimulated prostaglandin E(2) (PGE(2)) but not cytokine (IL-6/IL-8) production or cyclooxygenase-2 (COX-2) expression. This effect was attenuated by a PPAR-gamma inhibitor [2-chloro-5-nitro-N-phenyl-benzamide (GW9662)], by transfection with a dominant-negative PPAR construct, and was reproduced by the PPAR-gamma ligand rosiglitazone. At higher concentrations (1-10 microM), 15d-PGJ(2) inhibited IL-1beta-stimulated PGE(2) and cytokine production and COX-2 expression, and this effect was not blocked by GW9662. Rosiglitazone at high concentrations (1-10 microM) stimulated PGE(2) production in the absence or presence of the dominant-negative PPAR. The PPAR-delta ligand GW501516 also inhibited IL-1beta-stimulated PGE(2) production but only at high concentrations (1 microM). IL-1beta-induced nuclear factor-kappaB (NF-kappaB) DNA binding activity was significantly inhibited by 15d-PGJ(2) (10 microM) and GW501516 (1 microM) but increased with 10 microM rosiglitazone. We conclude that 1) at low concentrations, 15d-PGJ(2) acts through a PPAR-gamma signaling pathway; b) at higher concentrations, its actions are mediated most likely through other pathways such as activation of PPAR-delta and/or inhibition of NF-kappaB; and 3) rosiglitazone exerts PPAR-independent effects at high concentrations (>1 microM).
Collapse
Affiliation(s)
- Elicia B E Berry
- Liggins Institute, University of Auckland, Faculty of Medical & Health Sciences, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
27
|
Miles JR, Farin CE, Rodriguez KF, Alexander JE, Farin PW. Angiogenesis and Morphometry of Bovine Placentas in Late Gestation from Embryos Produced In Vivo or In Vitro1. Biol Reprod 2004; 71:1919-26. [PMID: 15286036 DOI: 10.1095/biolreprod.104.031427] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of this study was to determine the effects of in vitro embryo production on angiogenesis and morphometry of the bovine placenta during late gestation. Blastocysts produced in vivo were recovered from superovulated Holstein cows. Blastocysts produced in vitro were obtained after culture of in vitro-matured and -fertilized Holstein oocytes. Single blastocysts from each production system were transferred into heifers. Fetuses and placentas were recovered on Day 222 of gestation (in vivo, n=12; in vitro, n=12). Cotyledonary and caruncular tissues were obtained for quantification of vascular endothelial growth factor (VEGF) and peroxisome proliferator-activated receptor-gamma (PPARgamma) mRNA and protein. Tissue sections of placentomes were prepared for morphometric analysis. Fetuses and placentas were heavier from embryos produced in vitro than from embryos produced in vivo. More placentas from embryos produced in vitro had an excessive volume of placental fluid. There was no effect of treatment on the expression of mRNA for VEGF and PPARgamma in either cotyledonary or caruncular tissues. The expression of VEGF protein in cotyledons and caruncles as well as the expression of PPARgamma protein in cotyledons were not different between the in vitro and in vivo groups. However, caruncles from the in vitro group had increased expression of PPARgamma protein. The total surface area of endometrium was greater for the in vitro group compared with controls. In contrast, the percentage placentome surface area was decreased in the in vitro group. Fetal villi and binucleate cell volume densities were decreased in placentomes from embryos produced in vitro. The proportional tissue volume of blood vessels in the maternal caruncles was increased in the in vitro group. Furthermore, the ratios of blood vessel volume density-to-placentome surface area were increased in the in vitro group. In conclusion, these findings are consistent with the concept that compensatory mechanisms exist in the vascular beds of placentas from bovine embryos produced in vitro.
Collapse
Affiliation(s)
- Jeremy R Miles
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27606-1499, USA
| | | | | | | | | |
Collapse
|
28
|
Lappas M, Permezel M, Ho PW, Moseley JM, Wlodek ME, Rice GE. Effect of nuclear factor-kappa B inhibitors and peroxisome proliferator-activated receptor-gamma ligands on PTHrP release from human fetal membranes. Placenta 2004; 25:699-704. [PMID: 15450387 DOI: 10.1016/j.placenta.2004.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2004] [Indexed: 11/16/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) has been implicated in many processes during normal and pathological pregnancies. In the human fetal membranes, PTHrP exhibits cytokine-like actions. We have recently shown that inhibitors of the nuclear factor-kappa B (NF-kappaB) and activators of the peroxisome proliferator-activated receptor (PPAR)-gamma signalling pathways down-regulate cytokine release from human gestational tissues. Therefore, the aim of this study was to determine whether NF-kappaB and PPAR-gamma also regulate PTHrP release from human fetal membranes. Human amnion and choriodecidua explants were incubated in the absence (control) or presence of two known NF-kappaB inhibitors (1, 5 and 10 mM sulphasalazine (SASP) or 5, 10 and 15 mM N-acetyl-cysteine (NAC)), and two PPAR-gamma ligands (15 and 30 microM 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) or 15 and 30 microM troglitazone), under basal conditions. After 18 h incubation, the tissues were collected and NF-kappaB p65 DNA binding activity in nuclear extracts was assessed by ELISA, and the incubation medium was collected and the release of PTHrP was quantified by RIA. Treatment of amnion and choriodecidual tissues with SASP concentrations greater than 5 mM, 15 mM NAC, 30 microM 15d-PGJ(2) and 30 microM troglitazone significantly reduced the release of PTHrP (p < 0.05). This study demonstrates that PTHrP release from human fetal membranes is regulated by inhibitors of NF-kappaB, and ligands of PPAR-gamma.
Collapse
Affiliation(s)
- M Lappas
- Department of Obstetrics and Gynaecology, The University of Melbourne and Mercy Perinatal Research Center, Mercy Hospital for Women, 126 Clarendon Street, East Melbourne, Victoria, Australia 3002.
| | | | | | | | | | | |
Collapse
|
29
|
Dunn-Albanese LR, Ackerman WE, Xie Y, Iams JD, Kniss DA. Reciprocal expression of peroxisome proliferator-activated receptor-gamma and cyclooxygenase-2 in human term parturition. Am J Obstet Gynecol 2004; 190:809-16. [PMID: 15042019 DOI: 10.1016/j.ajog.2003.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The objective of this study was to test the hypothesis that peroxisome proliferator activated receptor-gamma (PPAR-gamma) is expressed in intrauterine tissues before active term human parturition, and that its repression is associated with up-regulation of cyclooxygenase-2 (COX-2). STUDY DESIGN Specimens were collected from women with term singleton pregnancies after spontaneous labor or cesarean section before labor, prepared for immunoblot and immunohistochemical analysis, and probed for PPAR-gamma or COX-2. RESULTS PPAR-gamma expression was prominent in fetal membranes and placenta before active labor. After labor, PPAR-gamma expression was significantly reduced in fetal membranes, but not in placenta. The ratio of COX-2:PPAR-gamma was significantly elevated in fetal membranes with labor. PPAR-gamma immunostaining was prominent in syncytiotrophoblast, extravillous cytotrophoblasts, and cells of the amnion and chorion. COX-2 immunostaining was abundant in the amnion and rare in the placenta. CONCLUSION PPAR-gamma is highly expressed in term intrauterine tissues. In fetal membranes, PPAR-gamma levels are reduced once active labor commences, coincidental with a relative increase in COX-2 expression.
Collapse
Affiliation(s)
- Lisa R Dunn-Albanese
- Department of Obstetrics and Gynecology, Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine, The Ohio State University, College of Medicine and Public Health, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
30
|
Lindstrom T, Bennett P. Transcriptional regulation of genes for enzymes of the prostaglandin biosynthetic pathway. Prostaglandins Leukot Essent Fatty Acids 2004; 70:115-35. [PMID: 14683688 DOI: 10.1016/j.plefa.2003.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous studies over the years have demonstrated changes in prostaglandin (PG) levels in intrauterine tissues in association with labour, and PG administration has long been used to induce delivery. While it is now widely accepted that PGs play a major role in human parturition, the complex regulation of their levels is still being elucidated, with the focus on the transcriptional control of the enzymes responsible for the various steps in PG biosynthesis and catabolism.
Collapse
Affiliation(s)
- Tamsin Lindstrom
- Faculty of Medicine, Institute of Reproductive and Developmental Biology, Parturition Research Group, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
31
|
Helliwell RJA, Berry EBE, O'Carroll SJ, Mitchell MD. Nuclear prostaglandin receptors: role in pregnancy and parturition? Prostaglandins Leukot Essent Fatty Acids 2004; 70:149-65. [PMID: 14683690 DOI: 10.1016/j.plefa.2003.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The key regulatory role of prostanoids [prostaglandins (PGs) and thromboxanes (TXs)] in the maintenance of pregnancy and initiation of parturition has been established. However, our understanding of how these events are fine-tuned by the recruitment of specific signaling pathways remains unclear. Whereas, initial thoughts were that PGs were lipophilic and would easily cross cell membranes without specific receptors or transport processes, it has since been realized that PG signaling occurs via specific cell surface G-protein coupled receptors (GPCRs) coupled to classical adenylate cyclase or inositol phosphate signaling pathways. Furthermore, specific PG transporters have been identified and cloned adding a further level of complexity to the regulation of paracrine action of these potent bioactive molecules. It is now apparent that PGs also activate nuclear receptors, opening the possibility of novel intracrine signaling mechanisms. The existence of intracrine signaling pathways is further supported by accumulating evidence linking the perinuclear localization of PG synthesizing enzymes with intracellular PG synthesis. This review will focus on the evidence for a role of nuclear actions of PGs in the regulation of pregnancy and parturition.
Collapse
Affiliation(s)
- Rachel J A Helliwell
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
32
|
Abstract
Mammalian cells contain several structurally different phospholipase (PLA2) enzymes that exhibit distinct localisation, function and mechanisms of regulation. PLA2 isozymes have been postulated to play significant roles in the parturition process. Both secretory and cytosolic PLA2 isozymes have been identified in human gestational tissues, and there is differential expression of these PLA2 isozymes in human fetal membranes and placenta obtained at preterm and term. The aims of this commentary are: (1) to review recent data concerning the expression, role and regulation of PLA2 isozymes in human gestational tissues; and (2) to present novel data demonstrating the regulation of PLA2 isozymes in human gestational tissues by nuclear factor-kappa B (NF-kappaB) and peroxisome proliferator-activated receptor (PPAR)-g.
Collapse
Affiliation(s)
- M Lappas
- Mercy Perinatal Research Center, Mercy Hospital for Women, 126 Clarendon Street, East Melbourne 3002, Australia.
| | | |
Collapse
|
33
|
Berry EBE, Eykholt R, Helliwell RJA, Gilmour RS, Mitchell MD, Marvin KW. Peroxisome proliferator-activated receptor isoform expression changes in human gestational tissues with labor at term. Mol Pharmacol 2004; 64:1586-90. [PMID: 14645690 DOI: 10.1124/mol.64.6.1586] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that are involved in lipid metabolism, differentiation, proliferation, cell death, and inflammation. Three subtypes have been identified: PPAR-alpha, -delta, and -gamma. We have previously shown presence of PPAR-gamma mRNA in the amnion, choriodecidua, and placenta, and its level of expression was unchanged with labor. To evaluate whether PPAR-alpha and -delta subtypes are present in intrauterine tissues, placentae were obtained from women at term after spontaneous vaginal delivery (TSL; n = 15) and elective caesarean section before labor (TNL; n = 15). Northern blot analyses were used to evaluate the mRNA for PPARs. Activities of PPARs were assessed using JEG3 choriocarcinoma cells transfected with a PPAR-response element reporter construct (pTK-PPREx3-luc) and treated with PPAR ligands. The PPAR-gamma-specific ligand rosiglitazone induced PPAR response element (PPRE)-mediated activity in a concentration-dependent manner, whereas the PPAR-gamma-specific irreversible inhibitor GW9662 fully inhibited this induction. However, GW9662 only partially inhibited 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2)-induced luciferase activity, suggesting that 15d-PGJ2 may also activate either of the other isoforms. PPAR-alpha and -delta are expressed in the amnion, choriodecidua, and placental villous tissues. In the amnion, although for PPAR-alpha no significant difference in expression was observed with labor, PPAR-delta expression increased significantly (p < 0.001). In the choriodecidua, expression of PPAR-alpha declined with labor (p < 0.01), whereas, as in the amnion, PPAR-delta expression increased (p < 0.05). In the placenta, both PPAR-alpha and -delta expression increased with labor (p < 0.005). The changes observed with labor suggest that regulation of PPAR expression and function may have roles to the mechanisms that maintain pregnancy or initiate labor.
Collapse
Affiliation(s)
- Elicia B E Berry
- The Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
34
|
Keelan JA, Blumenstein M, Helliwell RJA, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition--a review. Placenta 2003; 24 Suppl A:S33-46. [PMID: 12842412 DOI: 10.1053/plac.2002.0948] [Citation(s) in RCA: 432] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The elaboration of cytokines, chemokines and immunomodulatory proteins in the placenta and gestational membranes has been extensively investigated in the context of both normal and abnormal pregnancy and delivery. Patterns of expression of cytokines in the foetal membranes and decidua suggest that inflammatory activation occurs modestly with term labour, but much more robustly in preterm delivery, particularly in the presence of intrauterine infection. Enhanced chemokine expression, particularly evident in deliveries with an infected amniotic cavity, is presumably responsible for recruiting infiltrating leukocytes into the membranes thereby amplifying the inflammatory process and hastening membrane rupture and delivery. Anti-inflammatory cytokines suppress inflammatory reactions in the placenta, but under some circumstances may act in a pro-inflammatory fashion in the membranes. Intracellular signalling by cytokines is modulated by proteins such as SOCS (Silencer Of Cytokine Signalling)-1, -2 and -3. Changes in the abundance of these proteins occur with term labour, implicating them as modulators of cytokine actions around the time of parturition. Prostaglandins, released by the membranes in response to stretch and the actions of pro-inflammatory cytokines, act not only upon the myometrium and cervix, but may also exert paracrine/autocrine effects on cell viability and matrix protein integrity. The localization and regulation of prostanoid isomerases, responsible for converting PGH(2) (derived from prostaglandin H synthase-1 and -2) to bioactive prostanoids, are being studied in these tissues, particularly in the context of cytokine interactions. Although the gestational tissues are known to be sources of PGD(2), PGJ(2) and its derivatives, the regulation of production of these prostaglandins has yet to be studied in any detail and their actions, which may include apoptosis and suppression of inflammation, remain poorly defined. A more complete understanding of these aspects of cytokine-prostaglandin interactions in pregnancy and parturition will, no doubt, unfold as current studies come to fruition.
Collapse
Affiliation(s)
- J A Keelan
- Liggins Institute, University of Auckland, 2-6 Park Ave, Grafton, New Zealand.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Placental fatty acid transfer is critical to meet the foetal requirements necessary for the biosynthesis of biological membranes, myelin, and various signaling molecules. The primary objective of this research was to elucidate the placental expression patterns of genes that may potentially regulate placental fatty acid transfer and homeostasis. In this study, we have elucidated the temporal and spatial patterns of expression of peroxisome proliferator-activated receptor (PPAR) and 9-cis retinoic acid receptor (RXR) isoforms in the junctional and labyrinth zones of the developing rat chorioallantoic placenta and in human term placenta. PPAR (alpha, beta, and gamma) and RXR (alpha, beta, and gamma) isoforms are nuclear hormone receptors that are known to regulate gene transcription and protein expression levels of fatty acid transport and metabolism mediating proteins through the formation of a DNA binding heterodimer complex. In the present study, the expression patterns of PPAR and RXR isoforms were determined in developing rat placenta and human term placenta using RT-PCR and immunohistochemical analyses. PPARalpha, beta, gamma, RXRalpha, beta and gamma were expressed in both junctional (invasive/endocrine function) and labyrinth (transport barrier) zones of the rat placenta, from day 13 to day 21 of gestation. In the human term placenta, PPARalpha, beta, gamma, RXRalpha and gamma were observed, while RXRbeta was not detected. Immunocytochemistry staining results determined the presence of PPARalpha, beta, gamma, RXRalpha and gamma to be specific to the syncytial trophoblast layer of the human chorionic villi. The presence of PPAR and RXR isoforms in both the rat and human placentas suggest that PPAR and RXR isoforms are potential regulators of placental lipid transfer and homeostasis. Our work provides a framework for the further investigation of PPAR and RXR isoform specific regulation of placental fatty acid uptake, transport and metabolism.
Collapse
Affiliation(s)
- Q Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8022, USA
| | | | | |
Collapse
|
36
|
Mehta DV, Kim YS, Dixon D, Jetten AM. Characterization of the expression of the retinoid-related, testis-associated receptor (RTR) in trophoblasts. Placenta 2002; 23:281-7. [PMID: 11969338 DOI: 10.1053/plac.2001.0779] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have provided evidence indicating that the nuclear orphan receptor RTR plays an important role during embryonic development and in spermatogenesis. In this study, we examine the expression of RTR in murine placenta and several human placental choriocarcinoma cell lines. Northern blot analysis showed high expression of RTR mRNA in placental tissue. In contrast to murine testis, which contains 7.4 and 2.3 kb transcripts, placental tissue expressed only the larger transcript. Examination of RTR expression in murine placental tissue by immunohistochemistry demonstrated the presence of RTR protein in the nuclei of giant trophoblasts and spongiotrophoblasts. RTR mRNA was also expressed in rat choriocarcinoma Rcho-1 cells and in the human placental choriocarcinoma cell lines BeWo, JAR, and JEG-3. In trophoblasts, RTR was co-expressed with the estrogen-related receptors ERR alpha and ERR beta. Giant trophoblast differentiation in Rcho-1 cells, characterized by induction of placental lactogen I (PL-I), was accompanied by a steady decrease in the expression of RTR mRNA and down-regulation of ERR beta expression while levels of ERR alpha mRNA did not change significantly. RTR was able to inhibit ERR alpha-mediated transactivation through the consensus RTR-response element (RTRE) likely by competing with ERR alpha for binding to the RTRE. These results suggest the possibility of cross-talk between RTR and ERR alpha receptor signalling pathways in trophoblasts.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Line
- Choriocarcinoma/genetics
- Choriocarcinoma/metabolism
- DNA-Binding Proteins
- Female
- Gene Expression
- Humans
- Immunohistochemistry
- Male
- Mice
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor Cross-Talk
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Testis/metabolism
- Trophoblasts/cytology
- Trophoblasts/metabolism
- Uterine Neoplasms/genetics
- Uterine Neoplasms/metabolism
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- D V Mehta
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
37
|
Schild RL, Schaiff WT, Carlson MG, Cronbach EJ, Nelson DM, Sadovsky Y. The activity of PPAR gamma in primary human trophoblasts is enhanced by oxidized lipids. J Clin Endocrinol Metab 2002; 87:1105-10. [PMID: 11889173 DOI: 10.1210/jcem.87.3.8284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ligand-dependent nuclear receptor PPAR gamma plays an important role in murine and human trophoblast differentiation. Oxidized lipids, which are implicated in the pathophysiology of placental dysfunction, have recently been identified as ligands for PPAR gamma. We therefore hypothesized that oxidized lipids activate PPAR gamma in human trophoblasts and influence placental function. To test our hypothesis, we examined the effect of 9S-hydroxy-10E,12Z-octadecadienoic acid (9-HODE), 13S-hydroxy-9Z,11E-octadecadienoic acid (13-HODE), and 15S-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid (15-HETE) on PPAR gamma activity in cultured term human trophoblasts. Our results demonstrate that these lipids stimulate PPAR gamma activity and that the AF-2 fragment, which harbors the ligand-binding domain of PPAR gamma, mediates this effect. Furthermore, we assessed the consequences of PPAR gamma activation by the oxidized lipids, and we found that these lipids stimulate human CG production, a measure of trophoblast differentiation. In contrast, the expression of syncytin, a marker for syncytium formation as well as the expression of the cell cycle modulators cyclin E and p27 are unchanged by the oxidized lipids. We concluded that 9-HODE, 13-HODE, and 15-HETE activate PPAR gamma in primary human trophoblasts. These PPAR gamma ligands may play a role in placental differentiation, yet they are unlikely to contribute to trophoblast dysfunction.
Collapse
Affiliation(s)
- Ralf L Schild
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
38
|
Keelan J, Helliwell R, Nijmeijer B, Berry E, Sato T, Marvin K, Mitchell M, Gilmour R. 15-deoxy-delta12,14-prostaglandin J2-induced apoptosis in amnion-like WISH cells. Prostaglandins Other Lipid Mediat 2001; 66:265-82. [PMID: 11785780 DOI: 10.1016/s0090-6980(01)00164-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Apoptosis at the site of rupture has been proposed to play a role in premature rupture of the fetal membranes, a condition associated with increased risk of neonatal sepsis and preterm birth. We investigated the ability of peroxisome proliferator-activated receptor (PPAR)-gamma ligands 15-deoxy-delta12,14PGJ2 (15d-PGJ2), delta12PGJ2, ciglitizone and rosiglitazone to induce apoptosis in the amnion-like WISH cell line. 15d-PGJ2 (10 microM) induced morphological characteristics of apoptosis within 2 h, with biochemical indices (caspase activation and substrate cleavage) following shortly after; maximum cell death (approximately 60%) was observed by 16 h, with an EC50) of approximately 7 microM 15d-PGJ2. Delta12-PGJ2 also induced apoptosis but was less potent and acted at a much slower rate. While ciglitizone also induced apoptosis, rosiglitazone had no effect on cell viability. The mechanism of induction of apoptosis by 15d-PGJ2 and delta12PGJ2, which may be independent of PPAR-gamma activation, requires further elucidation.
Collapse
Affiliation(s)
- J Keelan
- Liggins Institute and Divisions of Pharmacology, University of Auckland Faculty of Medical and Health Sciences, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tarrade A, Schoonjans K, Guibourdenche J, Bidart JM, Vidaud M, Auwerx J, Rochette-Egly C, Evain-Brion D. PPAR gamma/RXR alpha heterodimers are involved in human CG beta synthesis and human trophoblast differentiation. Endocrinology 2001; 142:4504-14. [PMID: 11564716 DOI: 10.1210/endo.142.10.8448] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies performed with null mice suggested a role of either RXR alpha or PPAR gamma in murine placental development. We report here that both PPAR gamma and RXR alpha are strongly expressed in human villous cytotrophoblasts and syncytiotrophoblasts. Moreover, specific ligands for RXRs or PPAR gamma (but not for PPAR alpha or PPAR delta) increase both human CG beta transcript levels and the secretion of human CG and its free beta-subunit. When combined, these ligands have an additive effect on human CG secretion. Pan-RXR and PPAR gamma ligands also have an additive effect on the synthesis of other syncytiotrophoblast hormones such as human placental lactogen, human placental GH, and leptin. Therefore, in human placenta, PPAR gamma/RXR alpha heterodimers are functional units during cytotrophoblast differentiation into the syncytiotrophoblast in vitro. Elements located in the regulatory region of the human CG beta gene (beta 5) were found to bind RXR alpha and PPAR gamma from human cytotrophoblast nuclear extracts, suggesting that PPAR gamma/RXR alpha heterodimers directly regulate human CG beta transcription. Altogether, these data show that PPAR gamma/RXR alpha heterodimers play an important role in human placental development.
Collapse
Affiliation(s)
- A Tarrade
- Unité Institut National de la Santé et de la Recherche Médicale 427, Faculté des Sciences Pharmaceutiques et Biologiques de Paris, Université René Descartes, Paris V, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ferry G, Bruneau V, Beauverger P, Goussard M, Rodriguez M, Lamamy V, Dromaint S, Canet E, Galizzi JP, Boutin JA. Binding of prostaglandins to human PPARgamma: tool assessment and new natural ligands. Eur J Pharmacol 2001; 417:77-89. [PMID: 11301062 DOI: 10.1016/s0014-2999(01)00907-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The peroxisome proliferator-activated receptors (PPAR) form a family of nuclear receptors with a wide variety of biological roles from adipogenesis to carcinogenesis. More ligands (agonist and antagonist) are needed to explore the multiple functions of PPAR, particularly PPARgamma. In order to complete such ligand screening, a binding test should be assessed versus the classical transactivation reporter gene assay. In the present work, the full-length human PPARgamma protein as well as its ligand binding domain portion were expressed in Escherichia coli. Bacterial membrane preparations expressing those constructs were characterized using a classical binding competition assay [3H]rosiglitazone as the radioligand. When the receptor preparations were soluble, binding had to be measured with a new alternative method. The systems were assessed using a series of reference PPAR (alpha, beta and gamma) ligands. The full-length human PPARgamma fused to glutathione-S-transferase, expressed in E. coli and tested as a bacterial membrane-bound protein led to the most accurate results when compared to the literature. Furthermore, in an attempt to complete the panel of natural PPARgamma ligands, 29 commercially available prostaglandins were screened in the binding assay. Prostaglandins H(1) and H(2) were found to be modest ligands, however as potent as 15Delta(12-14 )prostaglandin J(2). These results were confirmed in the classical transactivation assay. The fact that these three prostaglandins were equally potent, suggests new pathways of PPARgamma-linked gene activation.
Collapse
Affiliation(s)
- G Ferry
- Division de Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 125 Chemin de Ronde, 78 290, Croissy-sur-Seine, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|