1
|
Radushkevitz-Frishman T, Charni-Natan M, Goldstein I. Dynamic chromatin accessibility during nutritional iron overload reveals a BMP6-independent induction of cell cycle genes. J Nutr Biochem 2023:109407. [PMID: 37336330 DOI: 10.1016/j.jnutbio.2023.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Iron is essential to organism physiology as it participates in numerous biological processes including oxygen transport, respiration and erythropoiesis. Although iron is critical to physiology, excess iron is toxic to cells and tissues due to generation of reactive oxygen species. Therefore, well-kept iron homeostasis is a mainstay of proper cell and organ function. Iron overload disorders, caused by nutritional or genetic factors, contribute to many pathologies such as diabetes, non-alcoholic steatohepatitis and hepatocellular carcinoma. The liver is not only vulnerable to the effects of iron overload, it is also the major organ controlling iron homeostasis. During iron overload, Bone Morphogenic Protein (BMP) levels increase and initiate a hepatic response aimed at lowering iron levels. The transcriptional effects of iron overload are not well-characterized and the underlining enhancer regulation is uncharted. Here, we profiled the liver's transcriptome and chromatin accessibility following nutritional iron overload. We found marked changes in gene expression and enhancer accessibility following iron overload. Surprisingly, 16% of genes induced following iron overload participate in propagating the cell cycle. Induction of cell cycle genes was independent of BMP. Genome-wide enhancer landscape profiling revealed hundreds of enhancers with altered activity following iron overload. Characterization of transcription factor motifs and footprints in iron-regulated enhancers showed a role for the Activator Protein 1 (AP-1) transcription factor in promoting cell cycle-related transcription. In summary, we found that the transcriptional program at play during iron overload is bifurcated in which BMP signaling controls iron homeostasis genes while an AP-1-driven program controls cell cycle genes.
Collapse
Affiliation(s)
- Talia Radushkevitz-Frishman
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel.
| |
Collapse
|
2
|
Dai Y, Zhu C, Xiao W, Huang K, Wang X, Shi C, Lin D, Zhang H, Liu X, Peng B, Gao Y, Liu CH, Ge B, Kaufmann SH, Feng CG, Chen X, Cai Y. Mycobacterium tuberculosis hijacks host TRIM21- and NCOA4-dependent ferritinophagy to enhance intracellular growth. J Clin Invest 2023; 133:159941. [PMID: 37066876 PMCID: PMC10104892 DOI: 10.1172/jci159941] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Ferritin, a key regulator of iron homeostasis in macrophages, has been reported to confer host defenses against Mycobacterium tuberculosis (Mtb) infection. Nuclear receptor coactivator 4 (NCOA4) was recently identified as a cargo receptor in ferritin degradation. Here, we show that Mtb infection enhanced NCOA4-mediated ferritin degradation in macrophages, which in turn increased the bioavailability of iron to intracellular Mtb and therefore promoted bacterial growth. Of clinical relevance, the upregulation of FTH1 in macrophages was associated with tuberculosis (TB) disease progression in humans. Mechanistically, Mtb infection enhanced NCOA4-mediated ferritin degradation through p38/AKT1- and TRIM21-mediated proteasomal degradation of HERC2, an E3 ligase of NCOA4. Finally, we confirmed that NCOA4 deficiency in myeloid cells expedites the clearance of Mtb infection in a murine model. Together, our findings revealed a strategy by which Mtb hijacks host ferritin metabolism for its own intracellular survival. Therefore, this represents a potential target for host-directed therapy against tuberculosis.
Collapse
Affiliation(s)
- Youchao Dai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Kaisong Huang
- Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Xin Wang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chenyan Shi
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Dachuan Lin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Huihua Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqian Liu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- Department of Infectious Disease, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yi Gao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Stefan He Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Carl G Feng
- Immunology and Host Defense Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
3
|
Simmons WR, Wain L, Toker J, Jagadeesh J, Garrett LJ, Pek RH, Hamza I, Bodine DM. Normal Iron Homeostasis Requires the Transporter SLC48A1 for Efficient Heme-Iron Recycling in Mammals. Front Genome Ed 2021; 2:8. [PMID: 34713217 PMCID: PMC8525403 DOI: 10.3389/fgeed.2020.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 11/30/2022] Open
Abstract
In mammals over 65% of the total body iron is located within erythrocytes in the heme moieties of hemoglobin. Iron homeostasis requires iron absorbed from the diet by the gut as well as recycling of iron after the destruction of senescent erythrocytes. Senescent erythrocytes are engulfed by reticuloendothelial system macrophages where hemoglobin is broken down in the lysosomes, releasing heme for iron recovery in the cytoplasm. We recently showed that the SLC48A1 protein is responsible for transporting heme from the lysosome to the cytoplasm. CRISPR generated SLC48A1-deficient mice accumulate heme in their reticuloendothelial system macrophages as hemozoin crystals. Here we describe additional features of SLC48A1-deficient mice. We show that visible hemozoin first appears in the reticuloendothelial system macrophages of SLC48A1-deficient mice at 8 days of age, indicating the onset of erythrocyte recycling. Evaluation of normal and SLC48A1-deficient mice on iron-controlled diets show that SLC48A1-mediated iron recycling is equivalent to at least 10 parts per million of dietary iron. We propose that mutations in human SLC48A1 could contribute to idiopathic iron disorders.
Collapse
Affiliation(s)
- William R Simmons
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| | - Lily Wain
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| | - Joseph Toker
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| | - Jaya Jagadeesh
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| | - Lisa J Garrett
- National Human Genome Research Institute (NHGRI) Embryonic Stem Cell and Transgenic Mouse Core Facility, Bethesda, MD, United States
| | - Rini H Pek
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, United States
| | - David M Bodine
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), Bethesda, MD, United States
| |
Collapse
|
4
|
Hyperferritinemia-A Clinical Overview. J Clin Med 2021; 10:jcm10092008. [PMID: 34067164 PMCID: PMC8125175 DOI: 10.3390/jcm10092008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ferritin is one of the most frequently requested laboratory tests in primary and secondary care, and levels often deviate from reference ranges. Serving as an indirect marker for total body iron stores, low ferritin is highly specific for iron deficiency. Hyperferritinemia is, however, a non-specific finding, which is frequently overlooked in general practice. In routine medical practice, only 10% of cases are related to an iron overload, whilst the rest is seen as a result of acute phase reactions and reactive increases in ferritin due to underlying conditions. Differentiation of the presence or absence of an associated iron overload upon hyperferritinemia is essential, although often proves to be complex. In this review, we have performed a review of a selection of the literature based on the authors’ own experiences and assessments in accordance with international recommendations and guidelines. We address the biology, etiology, and epidemiology of hyperferritinemia. Finally, an algorithm for the diagnostic workup and management of hyperferritinemia is proposed, and general principles regarding the treatment of iron overload are discussed.
Collapse
|
5
|
Means RT. Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters. Nutrients 2020; 12:E447. [PMID: 32053933 PMCID: PMC7071168 DOI: 10.3390/nu12020447] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
A normal pregnancy consumes 500-800 mg of iron from the mother. Premenopausal women have a high incidence of marginal iron stores or iron deficiency (ID), with or without anemia, particularly in the less developed world. Although pregnancy is associated with a "physiologic" anemia largely related to maternal volume expansion; it is paradoxically associated with an increase in erythrocyte production and erythrocyte mass/kg. ID is a limiting factor for this erythrocyte mass expansion and can contribute to adverse pregnancy outcomes. This review summarizes erythrocyte and iron balance observed in pregnancy; its implications and impact on mother and child; and provides an overview of approaches to the recognition of ID in pregnancy and its management, including clinically relevant questions for further investigation.
Collapse
Affiliation(s)
- Robert T. Means
- Departments of Internal Medicine, Medical Education, and Pathology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; ; Tel.: +1-423-439-6499; Fax: +1-423-439-6470
- Internal Medicine, Building 2/Room 109, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
6
|
Gwenzi W. Occurrence, behaviour, and human exposure pathways and health risks of toxic geogenic contaminants in serpentinitic ultramafic geological environments (SUGEs): A medical geology perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134622. [PMID: 31693951 DOI: 10.1016/j.scitotenv.2019.134622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Serpentinitic ultramafic geological environments (SUGEs) contain toxic geogenic contaminants (TGCs). Yet comprehensive reviews on the medical geology of SUGEs are still lacking. The current paper posits that TGCs occur widely in SUGEs, and pose human health risks. The objectives of the review are to: (1) highlight the nature, occurrence and behaviour of TGCs associated with SUGEs; (2) discuss the human intake pathways and health risks of TGCs; (4) identify the key risk factors predisposing human health to TGCs particularly in Africa; and (5) highlight key knowledge gaps and future research directions. TGCs of human health concern in SUGEs include chrysotile asbestos, toxic metals (Fe, Cr, Ni, Mn, Zn, Co), and rare earth elements. Human intake of TGCs occur via inhalation, and ingestion of contaminated drinking water, wild foods, medicinal plants, animal foods, and geophagic earths. Occupational exposure may occur in the mining, milling, sculpturing, engraving, and carving industries. African populations are particularly at high risk due to: (1) widespread consumption of wild foods, medicinal plants, untreated drinking water, and geophagic earths; (2) weak and poorly enforced environmental, occupational, and public health regulations; and (3) lack of human health surveillance systems. Human health risks of chrysotile include asbestosis, cancers, and mesothelioma. Toxic metals are redox active, thus generate reactive oxygen species causing oxidative stress. Dietary intake of iron and geophagy may increase the iron overload among native Africans who are genetically predisposed to such health risks. Synergistic interactions among TGCs particularly chrysotile and toxic metals may have adverse human health effects. The occurrence of SUGEs, coupled with the several risk factors in Africa, provides a unique and ideal setting for investigating the relationships between TGCs and human health risks. A conceptual framework for human health risk assessment and mitigation, and future research direction are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
7
|
Iron Supplementation Therapy, A Friend and Foe of Mycobacterial Infections? Pharmaceuticals (Basel) 2019; 12:ph12020075. [PMID: 31108902 PMCID: PMC6630247 DOI: 10.3390/ph12020075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that is required for oxygen transfer, redox, and metabolic activities in mammals and bacteria. Mycobacteria, some of the most prevalent infectious agents in the world, require iron as growth factor. Mycobacterial-infected hosts set up a series of defense mechanisms, including systemic iron restriction and cellular iron distribution, whereas mycobacteria have developed sophisticated strategies to acquire iron from their hosts and to protect themselves from iron’s harmful effects. Therefore, it is assumed that host iron and iron-binding proteins, and natural or synthetic chelators would be keys targets to inhibit mycobacterial proliferation and may have a therapeutic potential. Beyond this hypothesis, recent evidence indicates a host protective effect of iron against mycobacterial infections likely through promoting remodeled immune response. In this review, we discuss experimental procedures and clinical observations that highlight the role of the immune response against mycobacteria under various iron availability conditions. In addition, we discuss the clinical relevance of our knowledge regarding host susceptibility to mycobacteria in the context of iron availability and suggest future directions for research on the relationship between host iron and the immune response and the use of iron as a therapeutic agent.
Collapse
|
8
|
Oh CK, Moon Y. Dietary and Sentinel Factors Leading to Hemochromatosis. Nutrients 2019; 11:nu11051047. [PMID: 31083351 PMCID: PMC6566178 DOI: 10.3390/nu11051047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Although hereditary hemochromatosis is associated with the mutation of genes involved in iron transport and metabolism, secondary hemochromatosis is due to external factors, such as intended or unintended iron overload, hemolysis-linked iron exposure or other stress-impaired iron metabolism. The present review addresses diet-linked etiologies of hemochromatosis and their pathogenesis in the network of genes and nutrients. Although the mechanistic association to diet-linked etiologies can be complicated, the stress sentinels are pivotally involved in the pathological processes of secondary hemochromatosis in response to iron excess and other external stresses. Moreover, the mutations in these sentineling pathway-linked genes increase susceptibility to secondary hemochromatosis. Thus, the crosstalk between nutrients and genes would verify the complex procedures in the clinical outcomes of secondary hemochromatosis and chronic complications, such as malignancy. All of this evidence provides crucial insights into comprehensive clinical or nutritional interventions for hemochromatosis.
Collapse
Affiliation(s)
- Chang-Kyu Oh
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea.
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea.
- BioMedical Research Institute, Pusan National University, Yangsan 50612, Korea.
- Program of Food Health Sciences, Busan 46241, Korea.
| |
Collapse
|
9
|
Sottile R, Federico G, Garofalo C, Tallerico R, Faniello MC, Quaresima B, Cristiani CM, Di Sanzo M, Cuda G, Ventura V, Wagner AK, Contrò G, Perrotti N, Gulletta E, Ferrone S, Kärre K, Costanzo FS, Carlomagno F, Carbone E. Iron and Ferritin Modulate MHC Class I Expression and NK Cell Recognition. Front Immunol 2019; 10:224. [PMID: 30873154 PMCID: PMC6404638 DOI: 10.3389/fimmu.2019.00224] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/25/2019] [Indexed: 12/30/2022] Open
Abstract
The ability of pathogens to sequester iron from their host cells and proteins affects their virulence. Moreover, iron is required for various innate host defense mechanisms as well as for acquired immune responses. Therefore, intracellular iron concentration may influence the interplay between pathogens and immune system. Here, we investigated whether changes in iron concentrations and intracellular ferritin heavy chain (FTH) abundance may modulate the expression of Major Histocompatibility Complex molecules (MHC), and susceptibility to Natural Killer (NK) cell cytotoxicity. FTH downregulation, either by shRNA transfection or iron chelation, led to MHC surface reduction in primary cancer cells and macrophages. On the contrary, mouse embryonic fibroblasts (MEFs) from NCOA4 null mice accumulated FTH for ferritinophagy impairment and displayed MHC class I cell surface overexpression. Low iron concentration, but not FTH, interfered with IFN-γ receptor signaling, preventing the increase of MHC-class I molecules on the membrane by obstructing STAT1 phosphorylation and nuclear translocation. Finally, iron depletion and FTH downregulation increased the target susceptibility of both primary cancer cells and macrophages to NK cell recognition. In conclusion, the reduction of iron and FTH may influence the expression of MHC class I molecules leading to NK cells activation.
Collapse
Affiliation(s)
- Rosa Sottile
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Giorgia Federico
- Department of Molecular Medicine and Medical Biotechnologies Federico II University, Naples, Italy
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Barbara Quaresima
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maddalena Di Sanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Gianni Cuda
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valeria Ventura
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Division of Clinical Pathology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Arnika Kathleen Wagner
- Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Gianluca Contrò
- Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Elio Gulletta
- Division of Clinical Pathology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Klas Kärre
- Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Francesco Saverio Costanzo
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy.,CIS for Genomics and Molecular Pathology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Francesca Carlomagno
- Department of Molecular Medicine and Medical Biotechnologies Federico II University, Naples, Italy
| | - Ennio Carbone
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Microbiology, Cell and Tumor Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Theelen MJP, Beukers M, Grinwis GCM, Sloet van Oldruitenborgh‐Oosterbaan MM. Chronic iron overload causing haemochromatosis and hepatopathy in 21 horses and one donkey. Equine Vet J 2018; 51:304-309. [DOI: 10.1111/evj.13029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022]
Affiliation(s)
- M. J. P. Theelen
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | - M. Beukers
- Department of Clinical Sciences of Companion Animals Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | - G. C. M. Grinwis
- Department of Pathobiology Faculty of Veterinary Medicine Utrecht University Utrecht the Netherlands
| | | |
Collapse
|
11
|
Cikomola JC, Flórez MR, Costas-Rodríguez M, Anoshkina Y, Vandepoele K, Katchunga PB, Kishabongo AS, Speeckaert MM, Vanhaecke F, Delanghe JR. Whole blood Fe isotopic signature in a sub-Saharan African population. Metallomics 2017; 9:1142-1149. [DOI: 10.1039/c7mt00170c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Fe isotopic composition of an individual's whole blood has recently been shown to be an interesting clinical indicator of Fe status.
Collapse
Affiliation(s)
- Justin C. Cikomola
- Department of Internal Medicine
- Hôpital provincial général de référence de Bukavu
- Catholic University of Bukavu
- Bukavu
- Democratic Republic of the Congo
| | - María R. Flórez
- Department of Analytical Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | | | - Yulia Anoshkina
- Department of Analytical Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Karl Vandepoele
- Laboratory of Molecular Diagnostics and Hematology
- Ghent University Hospital
- Ghent
- Belgium
| | - Philippe B. Katchunga
- Department of Internal Medicine
- Hôpital provincial général de référence de Bukavu
- Catholic University of Bukavu
- Bukavu
- Democratic Republic of the Congo
| | - Antoine S. Kishabongo
- Department of Laboratory Medicine
- Hôpital provincial général de référence de Bukavu
- Catholic University of Bukavu
- Bukavu
- Democratic Republic of the Congo
| | | | - Frank Vanhaecke
- Department of Analytical Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Joris R. Delanghe
- Department of Clinical Chemistry
- Ghent University Hospital
- De Pintelaan 185 B-9000 Ghent
- Belgium
| |
Collapse
|
12
|
Tognarelli J, Ladep NG, Crossey MME, Okeke E, Duguru M, Banwat E, Taylor-Robinson SD. Reasons why West Africa continues to be a hotbed for hepatocellular carcinoma. Niger Med J 2015; 56:231-5. [PMID: 26759504 PMCID: PMC4697207 DOI: 10.4103/0300-1652.165032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) exhibits a huge disease burden on West Africa, with a large proportion of all HCC cases worldwide occurring in the sub-region. The high HCC prevalence is due to the endemicity of a number of risk factors, most notably hepatitis B, C and HIV. West African HCC also displays a poor prognosis. Generally speaking, this is owing to more aggressive tumours, late patient presentation and inadequate management. Exposure to chronic viral hepatitis, more carcinogenic West African strains of hepatitis B virus and carcinogens such as aflatoxin B1 all encourage tumour growth. Lack of patient confidence in the healthcare system contributes to poor health-seeking behaviors and management of the disease can be lacking, due in part to poor health infrastructure, resources available and lack of access to expensive treatment. There is also much we do not know about West African HCC, especially the effect rising obesity and alcohol use may have on this disease in the future. Suggestions for improvement are discussed, including surveillance of high-risk groups. Although there is much to be done before West African HCC is thought to be a curable disease, many steps have been taken to move in the right direction.
Collapse
Affiliation(s)
- Joshua Tognarelli
- Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Nimzing G. Ladep
- Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
- Digestive Diseases Unit, Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Mary M. E. Crossey
- Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
| | - Edith Okeke
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
| | - Mary Duguru
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
| | - Edmund Banwat
- Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria
| | | |
Collapse
|
13
|
Panch SR, Yau YY, West K, Diggs K, Sweigart T, Leitman SF. Initial serum ferritin predicts number of therapeutic phlebotomies to iron depletion in secondary iron overload. Transfusion 2014; 55:611-22. [PMID: 25209879 DOI: 10.1111/trf.12854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Therapeutic phlebotomy is increasingly used in patients with transfusional siderosis to mitigate organ injury associated with iron overload (IO). Laboratory response variables and therapy duration are not well characterized in such patients. STUDY DESIGN AND METHODS We retrospectively evaluated 99 consecutive patients undergoing therapeutic phlebotomy for either transfusional IO (TIO, n = 88; 76% had undergone hematopoietic transplantation) or nontransfusional indications (hyperferritinemia or erythrocytosis; n = 11). Complete blood cell count, serum ferritin (SF), transferrin saturation, and transaminases were measured serially. Phlebotomy goal was an SF level of less than 300 μg/L. RESULTS Mean SF levels before phlebotomy among TIO and nontransfusional subjects were 3093 and 396 μg/L, respectively. Transfusion burden in the TIO group was 94 ± 108 (mean ± SD) RBC units; approximately half completed therapy with 24 ± 23 phlebotomies (range, 1-103). One-third were lost to follow-up. Overall, 15% had mild adverse effects, including headache, nausea, and dizziness, mainly during first phlebotomy. Prior transfusion burden correlated poorly with initial ferritin and total number of phlebotomies to target in the TIO group. However, number of phlebotomies to target was strongly correlated with initial SF (R(2) = 0.8; p < 0.0001) in both TIO and nontransfusional groups. ALT decreased significantly with serial phlebotomy in all groups (mean initial and final values, 61 and 39 U/L; p = 0.03). CONCLUSIONS Initial SF but not transfusion burden predicted number of phlebotomies to target in patients with TIO. Despite good treatment tolerance, significant losses to follow-up were noted. Providing patients with an estimated phlebotomy number and follow-up duration, and thus a finite endpoint, may improve compliance. Hepatic function improved with iron offloading.
Collapse
Affiliation(s)
- Sandhya R Panch
- Hematology/Transfusion Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
14
|
Rehm J, Kailasapillai S, Larsen E, Rehm MX, Samokhvalov AV, Shield KD, Roerecke M, Lachenmeier DW. A systematic review of the epidemiology of unrecorded alcohol consumption and the chemical composition of unrecorded alcohol. Addiction 2014; 109:880-93. [PMID: 24467748 DOI: 10.1111/add.12498] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/27/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Unrecorded alcohol constitutes about 30% of all alcohol consumed globally. The aims of this systematic review were to determine the epidemiology (occurrence, types, prevalence) of unrecorded alcohol consumption in different countries/regions, analyse the chemical composition of unrecorded alcohol and examine health outcomes caused by the consumption of unrecorded alcohol, based on either epidemiology or toxicology. METHODS A systematic search for, and qualitative analysis of, papers with empirical results on the different categories of unrecorded alcohol, based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Unrecorded alcohol was widespread in all regions of the world. Artisanal fermented beverages and spirits were the most common categories of unrecorded alcohol globally, and were available on all continents. In India, industrially produced spirits (country spirits) were most prevalent. In Russia and countries of the former Soviet Union, surrogate alcohols complemented artisanal spirits. Cross-border shopping was the most prevalent method of obtaining unrecorded alcohol in parts of Europe. Ethanol was the most harmful ingredient of unrecorded alcohol, and health consequences due to other ingredients found in unrecorded alcohol were scarce. However, as unrecorded alcohol is usually the least expensive form of alcohol available in many countries, it may contribute to higher rates of chronic and irregular heavy drinking. CONCLUSIONS Very large amounts of alcohol are produced globally that go unrecorded. The primary harm from this kind of alcohol arises from the fact that it is typically much cheaper than licit alcohol.
Collapse
Affiliation(s)
- Jürgen Rehm
- Social and Epidemiological Research (SER) Department, Centre for Addiction and Mental Health (CAMH), Toronto, Canada; Institute of Medical Sciences, University of Toronto (UofT), Toronto, Canada; Dalla Lana School of Public Health, UofT, Toronto, Canada; Dept. of Psychiatry, Faculty of Medicine, UofT, Toronto, Canada; PAHO/WHO Collaborating Centre for Mental Health & Addiction, Toronto, Canada; Epidemiological Research Unit, Technische Universität Dresden, Klinische Psychologie & Psychotherapie, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Iron-overload diseases are typically insidious, causing progressive and irreversible organ injury before clinical symptoms develop. Some iron-overload diseases as HFE-associated hemochromatosis and beta-thalassemia are quite common, whereas others are very rare. Early diagnosis is important since iron toxicity can be attenuated or prevented. Significant progress of our knowledge on iron metabolism developed in the past years. We learned a lot about HFE gene mutations, function of ferroportin and hepcidin, the hypoferremia hormone produced by the liver. However, many questions are still open. Special forms of localized iron overload are the Hallervorden-Spatz syndrome and pantothenate kinase gene mutation associated neurodegeneration causing progressive extrapyramidal movement disorders. Neonatal hemochromatosis is a severe systemic iron-overload disorder due to gestational alloimmune liver disease caused by transplacental maternal IgG directed against the fetal liver. This review article gives an overview on iron metabolism and iron-overload disease. Pathomechanism, diagnosis and treatment of hereditary hemochromatosis are discussed. Orv. Hetil., 2013, 154, 1156–1164.
Collapse
Affiliation(s)
- Ferenc Szalay
- Semmelweis Egyetem I. Belgyógyászati Klinika Budapest
| |
Collapse
|
16
|
Mainous AG, Wright RU, Hulihan MM, Twal WO, McLaren CE, Diaz VA, McLaren GD, Argraves WS, Grant AM. Telomere length and elevated iron: the influence of phenotype and HFE genotype. Am J Hematol 2013; 88:492-6. [PMID: 23512844 PMCID: PMC3784668 DOI: 10.1002/ajh.23438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 01/11/2023]
Abstract
Elevated body iron stores are associated with morbidity and mortality due to oxidative stress. Hereditary hemochromatosis, a common condition caused by HFE gene mutations, can lead to excess iron storage and disease but clinical penetrance of HFE gene mutations is low and many people with elevated iron stores lack HFE mutations. We analyzed data from the Hemochromatosis and Iron Overload Screening Study to assess the relationship among HFE genotype (individuals with either homozygous or compound heterozygous status for C282Y and/or H63D HFE mutations were defined as genotype positive, or G+), elevated iron phenotype (individuals exceeding gender-specific transferrin saturation and serum ferritin threshold levels were considered phenotype positive, or P+), and leukocyte telomere length, a marker of biological aging and cumulative oxidative stress. In unadjusted analyses in comparison to individuals who were G-P-, G+P- were not significantly different (OR 0.74; 95% CI 0.26-2.04), while the G+P+ (OR 2.03; 95% CI 1.15-3.56), and G-P+ (OR 2.24; 95% CI 1.5-3.29) had increased risk of short telomeres (<=25th percentile) rather than long telomeres (>=75th percentile). In analyses adjusting for age, gender, and race/ethnicity, the effect of individuals with elevated iron phenotypes having short telomeres persisted with G+P+ individuals (OR 1.94; 95% CI 1.02-3.72), and G-P+ individuals (OR 2.17; 95% CI 1.39-3.39) being significantly different from the G-P- group. In conclusion, elevated iron phenotype, but not HFE genotype, was associated with shortened telomeres. Further studies will be needed to determine whether telomere length provides a marker for morbidities specifically associated with iron overload.
Collapse
Affiliation(s)
- Arch G Mainous
- Department of Family Medicine, Medical University of South Carolina, SC 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
INTRODUCTION The discovery of hemochromatosis genes and the availability of molecular-genetic tests considerably modified the knowledge of the disease relative to physiopathology, penetrance, and expression, and had major impact in the diagnostic settings. AREAS COVERED Hemochromatosis is a heterogenous disorder at both genetic and phenotypic level. The review discusses criteria to define patients' iron phenotype and to use molecular tests to diagnose HFE-related and non-HFE hemochromatosis. The material examined includes articles published in the journals covered by PubMed US National Library of Medicine. The author has been working in the field of iron overload diseases for several years and has contributed 18 of the papers cited in the references. EXPERT OPINION Hemochromatosis genotyping is inseparable from phenotype characterization. A full clinical assessment is needed and DNA test performed when data suggest a clear indication of suspicion of being at risk for HH. HFE testing for p.Cys282Tyr mutation and p.His63Asp variant is the first molecular diagnostic step. Genotyping for rare mutations can be offered to patients with negative first-level HFE testing who have iron overload with no other explanation and should be performed in referral centers for iron overload disorders that can provide genetic advice and in-house genotyping services.
Collapse
Affiliation(s)
- Alberto Piperno
- University of Milano-Bicocca, Centre for the Diagnosis and Treatment of Hemochromatosis and Iron Disorders, S.Gerardo Hospital, Department of Health Sciences, Monza, Italy.
| |
Collapse
|
18
|
Type 3 hereditary hemochromatosis in a patient from sub-Saharan Africa: Is there a link between African iron overload and TFR2 dysfunction? Blood Cells Mol Dis 2013; 50:31-2. [DOI: 10.1016/j.bcmd.2012.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/18/2012] [Accepted: 08/18/2012] [Indexed: 12/29/2022]
|
19
|
Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:161-87. [PMID: 21856378 PMCID: PMC3258305 DOI: 10.1016/j.bbagen.2011.08.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Not long after the Big Bang, iron began to play a central role in the Universe and soon became mired in the tangle of biochemistry that is the prima essentia of life. Since life's addiction to iron transcends the oxygenation of the Earth's atmosphere, living things must be protected from the potentially dangerous mix of iron and oxygen. The human being possesses grams of this potentially toxic transition metal, which is shuttling through his oxygen-rich humor. Since long before the birth of modern medicine, the blood-vibrant red from a massive abundance of hemoglobin iron-has been a focus for health experts. SCOPE OF REVIEW We describe the current understanding of iron metabolism, highlight the many important discoveries that accreted this knowledge, and describe the perils of dysfunctional iron handling. GENERAL SIGNIFICANCE Isaac Newton famously penned, "If I have seen further than others, it is by standing upon the shoulders of giants". We hope that this review will inspire future scientists to develop intellectual pursuits by understanding the research and ideas from many remarkable thinkers of the past. MAJOR CONCLUSIONS The history of iron research is a long, rich story with early beginnings, and is far from being finished. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Alex D. Sheftel
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON K1Y 4W7, Canada
| | - Anne B. Mason
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Ste.-Catherine Rd., Montréal, QC H3T 1E2, and Departments of Physiology and Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
20
|
Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 2011; 54:328-43. [PMID: 21452290 PMCID: PMC3149125 DOI: 10.1002/hep.24330] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bruce R Bacon
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO 63110-0250, USA.
| | - Paul C Adams
- Department of Medicine, University of Western Ontario, London Health Sciences CentreLondon, Ontario, Canada
| | - Kris V Kowdley
- Center for Liver Disease, Virginia Mason Medical CenterSeattle, WA
| | - Lawrie W Powell
- Royal Brisbane Hospital, University of Queensland Centre for Clinical ResearchBrisbane, Australia
| | - Anthony S Tavill
- Department of Gastroenterology, Case Western Reserve University, and Department of Gastroenterology and Hepatology, The Cleveland ClinicCleveland, OH
| | | |
Collapse
|
21
|
Abstract
Iron-loading disorders (haemochromatosis) represent an important class of human diseases. Primary iron loading results from inherited disturbances in the mechanisms regulating intestinal iron absorption, such that excess iron is taken up from the diet. Body iron load can also be increased by repeated blood transfusions (secondary iron loading), usually as part of the treatment for various haematological disorders. In these syndromes, an element of enhanced iron absorption is also often involved. The central regulator of body iron trafficking is the liver-derived peptide hepcidin. Hepcidin limits iron entry into the plasma from macrophages, intestinal enterocytes and other cells by binding to the sole iron-export protein ferroportin, and facilitating its removal from the plasma membrane. Mutations in hepcidin or its upstream regulators (HFE, TFR2, HFE2 and BMP6) lead to reduced or absent hepcidin expression and a concomitant increase in iron absorption. Mutations in ferroportin that prevent hepcidin binding produce a similar result. Increased ineffective erythropoiesis, which often characterises erythrocyte disorders, also leads to reduced hepcidin expression and increased absorption. Recent advances in our understanding of hepcidin and body iron homeostasis provide the potential for a range of new diagnostic and therapeutic tools for haemochromatosis and related conditions.
Collapse
|
22
|
Grönberg A, Zettergren L, Bergh K, Ståhle M, Heilborn J, Angeby K, Small PL, Akuffo H, Britton S. Antioxidants protect keratinocytes against M. ulcerans mycolactone cytotoxicity. PLoS One 2010; 5:e13839. [PMID: 21079804 PMCID: PMC2973957 DOI: 10.1371/journal.pone.0013839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 10/05/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans is the causative agent of necrotizing skin ulcerations in distinctive geographical areas. M. ulcerans produces a macrolide toxin, mycolactone, which has been identified as an important virulence factor in ulcer formation. Mycolactone is cytotoxic to fibroblasts and adipocytes in vitro and has modulating activity on immune cell functions. The effect of mycolactone on keratinocytes has not been reported previously and the mechanism of mycolactone toxicity is presently unknown. Many other macrolide substances have cytotoxic and immunosuppressive activities and mediate some of their effects via production of reactive oxygen species (ROS). We have studied the effect of mycolactone in vitro on human keratinocytes--key cells in wound healing--and tested the hypothesis that the cytotoxic effect of mycolactone is mediated by ROS. METHODOLOGY/PRINCIPAL FINDINGS The effect of mycolactone on primary skin keratinocyte growth and cell numbers was investigated in serum free growth medium in the presence of different antioxidants. A concentration and time dependent reduction in keratinocyte cell numbers was observed after exposure to mycolactone. Several different antioxidants inhibited this effect partly. The ROS inhibiting substance deferoxamine, which acts via chelation of Fe(2+), completely prevented mycolactone mediated cytotoxicity. CONCLUSIONS/SIGNIFICANCE This study demonstrates that mycolactone mediated cytotoxicity can be inhibited by deferoxamine, suggesting a role of iron and ROS in mycolactone induced cytotoxicity of keratinocytes. The data provide a basis for the understanding of Buruli ulcer pathology and the development of improved therapies for this disease.
Collapse
Affiliation(s)
- Alvar Grönberg
- Molecular Dermatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Asare GA, Ntombini B, Kew MC, Kahler-Venter CP, Nortey EN. Possible adverse effect of high δ-alpha-tocopherol intake on hepatic iron overload: Enhanced production of vitamin C and the genotoxin, 8-hydroxy-2′- deoxyguanosine. Toxicol Mech Methods 2010; 20:96-104. [DOI: 10.3109/15376510903572888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta Gen Subj 2009; 1790:682-93. [DOI: 10.1016/j.bbagen.2008.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/27/2008] [Accepted: 08/14/2008] [Indexed: 02/08/2023]
|
25
|
Ferritin and increased vs upper reference interval tibc saturation to identify increased iron stores in African Americans. Clin Chim Acta 2009; 405:71-5. [PMID: 19362082 DOI: 10.1016/j.cca.2009.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increased serum ferritin (SF) in combination with increased total iron binding capacity saturation (TS) in the upper reference internal was evaluated to identify African Americans with increased iron stores. METHODS Among 16,856 primary care-based African Americans screened at Howard University Field Center of the Hereditary Hemochromatosis and Iron Overload Screening (HEIRS) Study, 142 with SF >500 microg/l women or >700 microg/l men and increased TS (>45% women or >50% men; main study) and 146 with similar ferritin increases and upper reference interval TS (30-45% women or 35-50% men; ancillary study) were offered clinical evaluation to confirm increased SF and identify the cause. RESULTS Repeat SF remained increased in 83% of 92 participants with increased TS initially (main study) vs 58% of 64 with upper reference interval TS initially (ancillary study) (P=0.0002). These persistent SF increases were associated with blood transfusions (treatment for sickle cell disease) in 20% of 76 main study and 11% of 37 ancillary study participants (P=0.4). Ninety percent of participants with persistent non-transfusional increased SF in the main study and 85% in the ancillary study had alanine-aminotransferase, aspartate-aminotransferase, C-reactive protein and/or hemoglobin values outside of the reference interval. Increased iron stores were documented by phlebotomy or liver biopsy in 4 of 7 main study and 2 of 2 ancillary study participants with persistent non-transfusional increase in SF. CONCLUSION Increased iron stores occur in African Americans with increased SF in combination with either increased or upper reference interval TS. Limiting clinical evaluation to only those individuals with both increased SF and increased TS will miss individuals with increased iron stores.
Collapse
|
26
|
Synergistic interaction between excess hepatic iron and alcohol ingestion in hepatic mutagenesis. Toxicology 2008; 254:11-8. [PMID: 18852013 DOI: 10.1016/j.tox.2008.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Hereditary hemochromatosis (HH) and dietary iron overload are the main iron-loading diseases. Fibrosis, cirrhosis and hepatocellular carcinoma (HCC) are complications to HH and dietary iron overload possibly influenced by co-factors. Alcohol may be one such factor. The aim therefore was to determine the extent of synergistic interaction between free hepatic iron and alcohol, complicating dietary iron overload in HCC pathogenesis. METHODS Four groups of 20 Wistar albino rats were used: group 1 (C) was fed the chow diet; group 2 (Fe) was supplemented with 0.75% ferrocene iron; group 3 (Fe+Al), 0.75% iron and 7% ethanol; and group 4, 7% ethanol (Al) for 12 months. Iron profile, superoxide/nitrite free radicals, lipid peroxidation (LPO)/8-isoprostane (8-IP), 8-hydroxydeoxyguanosine (8-OHdG), oxidative lipid/DNA damage immunohistochemistry, transaminases (AST/ALT) and Ames mutagenesis tests were performed. RESULTS Significant differences were observed in the Fe+Al group for LPO, 8-IP, AST and ALT (p<0.001, 0.001, 0.001 and 0.001, respectively) compared to other groups. A three-fold synergistic interaction was observed for the same parameters. Furthermore, significant differences of p<0.05 and 0.001 were observed for 8-OHdG and mutagenesis, respectively, with an additive synergy in the Fe+Al group. ALT/8-OHdG and ALT/mutagenesis correlated positively (p<0.04 and 0.008, respectively). The immunohistochemistry revealed iron/alcohol multiplicative synergism with hydroxyl radical involvement. CONCLUSION Mutagenic effects of iron and alcohol are synergistically multiplicative implicating hydroxyl free radicals in hepatocarcingenesis.
Collapse
|
27
|
|
28
|
Lynch S, Stoltzfus R, Rawat R. Critical review of strategies to prevent and control iron deficiency in children. Food Nutr Bull 2008; 28:S610-20. [PMID: 18297898 DOI: 10.1177/15648265070284s413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Iron deficiency is prevalent in infants and young children in developing countries and is associated with adverse developmental outcomes. The routine provision of additional iron by food fortification or the use of iron supplements is generally recommended. The wisdom of this approach in regions where the transmission of Plasmodium falciparum malaria is perennial and intense is now being questioned, because a large trial in Pemba, Tanzania, demonstrated an increased risk of serious morbidity among children under the age of 3 years who were given routine daily iron and folic acid supplements. However, the results of a concurrent substudy suggest that the untoward effects occurred in children who were not iron deficient, and that iron deficiency itself is associated with an increased risk of severe morbidity that can be reduced by iron and folic acid supplementation. There is an urgent need for additional research to confirm these observations, to establish the role, if any, of the concurrent folic acid supplementation, to evaluate the risk of alternative methods for delivering iron that, on theoretical grounds, could be safer, and to establish the programmatic feasibility of targeting iron fortificants or supplements to iron-deficient children. It is evident that a single strategy for ensuring adequate iron nutrition in young children in different parts of the world is no longer likely to be satisfactory. Moreover, integration with other health-related strategies, particularly malaria control programs, will be essential.
Collapse
Affiliation(s)
- Sean Lynch
- Eastern Virginia Medical School, Norfolk, Virginia, USA.
| | | | | |
Collapse
|
29
|
Abstract
Although progress in imaging and genetics allow for a noninvasive diagnosis of most cases of genetic iron overload, liver pathology remains often useful (1) to assess prognosis by grading fibrosis and seeking for associated lesions and (2) to guide the etiological diagnosis, especially when no molecular marker is available. Then, the type of liver siderosis (parenchymal, mesenchymal or mixed) and its distribution throughout the lobule and the liver are useful means for suggesting its etiology: HLA-linked hemochromatosis gene (HFE) hemochromatosis or other rare genetic hemochromatosis, nonhemochromatotic genetic iron overload (ferroportin disease, aceruloplasminemia), or iron overload secondary to excessive iron supply, inflammatory syndrome, noncirrhotic chronic liver diseases including dysmetabolic iron overload syndrome, cirrhosis, and blood disorders.
Collapse
Affiliation(s)
- Yves Deugnier
- Liver Unit and CIC INSERM 0203, Pontchaillou University Hospital, Rennes 35033, France.
| | | |
Collapse
|
30
|
Abstract
Dietary iron overload occurs commonly in parts of sub-Saharan Africa. It results from the consumption of large volumes of traditional beer that is home-brewed in iron pots or drums and consequently has a high iron content. The liver becomes iron overloaded and may develop portal fibrosis or, less often, cirrhosis. A genetic predisposition to the condition has been suggested, but no putative gene has yet been identified. Although originally believed not to cause hepatocellular carcinoma, recent case-control studies have shown African Blacks with dietary iron overload to be at increased risk for the tumour and a causal association has been confirmed in an animal model. The mechanisms of iron-induced malignant transformation are yet to be fully characterised, but the close association between cirrhosis and hepatocellular carcinoma in patients with hereditary haemochromatosis and the lesser association in those with dietary iron overload, suggests that chronic necroinflammatory hepatic disease contributes to the malignant transformation. Increased hepatic iron may, however, also be directly carcinogenic. Probable mechanisms include the generation of reactive oxygen intermediates and the resultant chronic oxidative stress that damages hepatocytes and proteins, causes lipid peroxidation, and induces strand breaks, DNA unwinding, and mutations in tumour-suppressor genes and critical DNA repair genes.
Collapse
Affiliation(s)
- Michael C Kew
- MRC/CANSA/University Molecular Hepatology Research Unit, Department of Medicine, Baragwanath Hospital, University of the Witwatersrand, Johannesburg, South Africa.
| | | |
Collapse
|
31
|
Petrak J, Myslivcova D, Man P, Cmejla R, Cmejlova J, Vyoral D, Elleder M, Vulpe CD. Proteomic analysis of hepatic iron overload in mice suggests dysregulation of urea cycle, impairment of fatty acid oxidation, and changes in the methylation cycle. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1490-8. [PMID: 17307722 DOI: 10.1152/ajpgi.00455.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver iron overload can be found in hereditary hemochromatosis, chronic liver diseases such as alcoholic liver disease, and chronic viral hepatitis or secondary to repeated blood transfusions. The excess iron promotes liver damage, including fibrosis, cirrhosis, and hepatocellular carcinoma. Despite significant research effort, we remain largely ignorant of the cellular consequences of liver iron overload and the cellular processes that result in the observed pathological changes. In addition, the variability in outcome and the compensatory response that likely modulates the effect of increased iron levels are not understood. To provide insight into these critical questions, we undertook a study to determine the consequences of iron overload on protein levels in liver using a proteomic approach. Using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), we studied hepatic iron overload induced by carbonyl iron-rich diet in mice and identified 30 liver proteins whose quantity changes in condition of excess liver iron. Among the identified proteins were enzymes involved in several important metabolic pathways, namely the urea cycle, fatty acid oxidation, and the methylation cycle. This pattern of changes likely reflects compensatory and pathological changes associated with liver iron overload and provides a window into these processes.
Collapse
Affiliation(s)
- Jiri Petrak
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Traoré HN, Meyer D. Necrosis of host cells and survival of pathogens following iron overload in an in vitro model of co-infection with human immunodeficiency virus (HIV) and Mycobacterium tuberculosis. Int J Antimicrob Agents 2007; 29:465-70. [PMID: 17241773 DOI: 10.1016/j.ijantimicag.2006.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/17/2006] [Accepted: 11/17/2006] [Indexed: 11/16/2022]
Abstract
Mycobacterium tuberculosis, human immunodeficiency virus (HIV) and iron overload (dietary/hereditary) are very common in sub-Saharan Africa. The requirement for iron as a crucial factor for cellular processes is well established, as are the disadvantages of excess iron in the system. Mycobacterium tuberculosis and HIV are believed to have a reciprocal effect on each another. An in vitro model was evaluated where chronically HIV-infected cells were secondarily exposed to M. tuberculosis in the presence of iron overload. Co-infection alone caused cell type-specific reductions in host cell viability, more than doubled the number of viral particles and stimulated bacterial viability. Excess iron (in addition to co-infection) further decreased cell viability, with a marked increase in necrosis (rather than apoptosis) of cells, and was also found to enhance both HIV (26%; P<0.01) and M. tuberculosis (47%; P<0.01) replication. Chelation of excess iron with deferoxamine abrogated the enhanced replication of the pathogens, with a marginal restoration in host cell viability. These findings demonstrate that (i) increased levels of iron in HIV-infected patients secondarily co-infected with M. tuberculosis elevate viral replication, which could lead to rapid disease progression, and (ii) iron chelation may serve as a means to slow/decelerate these processes.
Collapse
Affiliation(s)
- Hafsatou Ndama Traoré
- Biochemistry Department, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524 Auckland Park, 2006 Johannesburg, South Africa
| | | |
Collapse
|
33
|
Gramenzi A, Caputo F, Biselli M, Kuria F, Loggi E, Andreone P, Bernardi M. Review article: alcoholic liver disease--pathophysiological aspects and risk factors. Aliment Pharmacol Ther 2006; 24:1151-61. [PMID: 17014574 DOI: 10.1111/j.1365-2036.2006.03110.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcoholic liver disease has a known aetiology but a complex and incompletely known pathogenesis. It is an extremely common disease with significant morbidity and mortality, but the reason why only a relatively small proportion of heavy drinkers progress to advanced disease remains elusive. AIM To recognize the factors responsible for the development and progression of alcoholic liver disease, in the light of current knowledge on this matter. METHODS We performed a structured literature review identifying studies focusing on the complex pathogenetic pathway and risk factors of alcoholic liver disease. Results In addition to the cumulative amount of alcohol intake and alcohol consumption patterns, factors such as gender and ethnicity, genetic background, nutritional factors, energy metabolism abnormalities, oxidative stress, immunological mechanisms and hepatic co-morbid conditions play a key role in the genesis and progression of alcoholic liver injury. CONCLUSIONS Understanding the pathogenesis and risk factors of alcoholic liver disease should provide insight into the development of therapeutic strategies.
Collapse
Affiliation(s)
- A Gramenzi
- Dipartimento di Medicina Interna, Cardioangiologia ed Epatologia, Università di Bologna, Policlinico S. Orsola, Via Massarenti 9, 40138 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
In recent years, the number of proteins implicated in iron homeostasis has increased dramatically, and genetic causes have apparently been identified for the major disorders associated with tissue iron overload. These dramatic steps forward have transformed the way we look at iron-related disorders, particularly hemochromatosis. This review presents a concept of this disease that is based on this new knowledge and stems from the idea that, beyond their genetic diversities, all known hemochromatoses originate from the same metabolic error, the genetic disruption of human tendency for circulatory iron constancy. Hepcidin, the iron hormone, seems to hold a central pathogenic place in hemochromatosis, similar to insulin in diabetes: Genetically determined lack of hepcidin synthesis or activity may cause the disease.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Department of Internal Medicine, Center for Hemochromatosis, University of Modena and Reggio Emilia, Policlinico, 41100 Modena, Italy.
| |
Collapse
|
35
|
Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH. Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med (Berl) 2006; 84:349-64. [PMID: 16604332 PMCID: PMC7095819 DOI: 10.1007/s00109-005-0029-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 10/21/2005] [Indexed: 02/07/2023]
Abstract
Excessive body iron or iron overload occurs under conditions such as primary (hereditary) hemochromatosis and secondary iron overload (hemosiderosis), which are reaching epidemic levels worldwide. Primary hemochromatosis is the most common genetic disorder with an allele frequency greater than 10% in individuals of European ancestry, while hemosiderosis is less common but associated with a much higher morbidity and mortality. Iron overload leads to iron deposition in many tissues especially the liver, brain, heart and endocrine tissues. Elevated cardiac iron leads to diastolic dysfunction, arrhythmias and dilated cardiomyopathy, and is the primary determinant of survival in patients with secondary iron overload as well as a leading cause of morbidity and mortality in primary hemochromatosis patients. In addition, iron-induced cardiac injury plays a role in acute iron toxicosis (iron poisoning), myocardial ischemia–reperfusion injury, Friedreich ataxia and neurodegenerative diseases. Patients with iron overload also routinely suffer from a range of endocrinopathies, including diabetes mellitus and anterior pituitary dysfunction. Despite clear connections between elevated iron and clinical disease, iron transport remains poorly understood. While low-capacity divalent metal and transferrin-bound transporters are critical under normal physiological conditions, L-type Ca2+ channels (LTCC) are high-capacity pathways of ferrous iron (Fe2+) uptake into cardiomyocytes especially under iron overload conditions. Fe2+ uptake through L-type Ca2+ channels may also be crucial in other excitable cells such as pancreatic beta cells, anterior pituitary cells and neurons. Consequently, LTCC blockers represent a potential new therapy to reduce the toxic effects of excess iron.
Collapse
Affiliation(s)
- Gavin Y. Oudit
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Departments of Medicine and Physiology, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Division of Cardiology and the Division of Cellular and Molecular Biology, University Health Network, University of Toronto, Ontario, Canada M5S 3E2
- Heart and Stroke/Richard Lewar Centre of Excellence, 150 College Street, Rm 68, Fitzgerald Building, Toronto, Ontario Canada M5S 3E2
| | - Maria G. Trivieri
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Departments of Medicine and Physiology, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
| | - Neelam Khaper
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
| | - Peter P. Liu
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Departments of Medicine and Physiology, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
| | - Peter H. Backx
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Departments of Medicine and Physiology, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Division of Cardiology and the Division of Cellular and Molecular Biology, University Health Network, University of Toronto, Ontario, Canada M5S 3E2
- Heart and Stroke/Richard Lewar Centre of Excellence, 150 College Street, Rm 68, Fitzgerald Building, Toronto, Ontario Canada M5S 3E2
| |
Collapse
|
36
|
Asare GA, Paterson AC, Kew MC, Khan S, Mossanda KS. Iron-free neoplastic nodules and hepatocellular carcinoma without cirrhosis in Wistar rats fed a diet high in iron. J Pathol 2006; 208:82-90. [PMID: 16278820 DOI: 10.1002/path.1875] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although excess hepatic iron in hereditary haemochromatosis and dietary iron overload in the African causes hepatocellular carcinoma, it usually does so in the presence of cirrhosis. A direct hepatocarcinogenic effect of iron has not been proved. Moreover, an animal model of hepatocellular carcinoma induced by iron overload has not been available. The aim of this study was to develop such a model and to use it to ascertain whether excess hepatic iron is directly hepatocarcinogenic. Sixty Wistar albino rats were fed a chow diet and 60 the same diet supplemented initially with 2% carbonyl iron for 12 months, followed by 0.5% ferrocene for 20 months. Five rats from each group were sacrificed every 4 months for 24 months for histological and biochemical monitoring. By 16 months, hepatocytes in all the rats receiving the iron-supplemented diet showed grade 4 iron overload, comparable in degree with that seen in patients with advanced hereditary haemochromatosis and dietary iron overload. Altered hepatic foci and pre-neoplastic nodules were first seen at 16 months. These increased in size and number with time, were iron-free, stained positively with placental glutathione sulphydryl transferase, and showed the same histological features as the iron-free foci described in patients with hepatocellular carcinoma complicating hereditary haemochromatosis. At 32 months the eight surviving rats in the iron overloaded group were sacrificed. The livers of five of these rats contained pre-neoplastic nodules and one showed, in addition, an iron-free, well-differentiated hepatocellular carcinoma. The tumour stained positively for placental glutathione sulphydryl transferase. Neither cirrhosis nor portal fibrosis was present in this or any iron-loaded animal. We conclude that hepatocellular carcinoma may complicate dietary hepatic iron overload in Wistar albino rats in the absence of fibrosis or cirrhosis, confirming an aetiological association between dietary iron overload and the tumour and suggesting that iron may be directly hepatocarcinogenic.
Collapse
Affiliation(s)
- George A Asare
- MRC/University Molecular Hepatology Research Unit, Department of Medicine, University of the Witwatersrand and Johannesburg Academic and Baragwanath Hospitals, South Africa
| | | | | | | | | |
Collapse
|
37
|
Abstract
Hereditary hemochromatosis (HH) encompasses several inherited disorders of iron homeostasis characterized by increased gastrointestinal iron absorption and tissue iron deposition. The most common form of this disorder is HFE-related HH, nearly always caused by homozygosity for the C282Y mutation. A substantial proportion of C282Y homozygotes do not develop clinically significant iron overload, suggesting roles for environmental factors and modifier genes in determining the phenotype. Recent studies have demonstrated that the pathogenesis of nearly all forms of HH involves inappropriately decreased expression of the iron-regulatory hormone hepcidin. Hepcidin serves to decrease the export of iron from reticuloendothelial cells and absorptive enterocytes. Thus, HH patients demonstrate increased iron release from these cell types, elevated circulating iron, and iron deposition in vulnerable tissues. The mechanism by which HFE influences hepcidin expression is an area of current investigation and may offer insights into the phenotypic variability observed in persons with mutations in HFE.
Collapse
Affiliation(s)
- Robert E Fleming
- Department of Pediatrics, Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | | | | | |
Collapse
|
38
|
Theurl I, Ludwiczek S, Eller P, Seifert M, Artner E, Brunner P, Weiss G. Pathways for the regulation of body iron homeostasis in response to experimental iron overload. J Hepatol 2005; 43:711-9. [PMID: 16083989 DOI: 10.1016/j.jhep.2005.03.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/09/2005] [Accepted: 03/17/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Secondary iron overload is a frequent clinical condition found in association with multiple blood transfusions. METHODS To gain insight into adaptive changes in the expression of iron genes in duodenum, liver and spleen upon experimental iron overload we studied C57BL/6 mice receiving repetitive daily injections of iron-dextran for up to 5 days. RESULTS Iron initially accumulated in spleen macrophages but with subsequent increase in macrophage ferroportin and ferritin expression its content in the spleen decreased while a progressive storage of iron occurred within hepatocytes which was paralleled by a significant increase in hepcidin and hemojuvelin expression. Under these conditions, iron was still absorbed from the duodenal lumen as divalent metal transporter-1 expressions were high, however, most of the absorbed iron was incorporated into duodenal ferritin, while ferroportin expression drastically decreased and iron transfer to the circulation was reduced. CONCLUSIONS Experimental iron overload results in iron accumulation in macrophages and later in hepatocytes. In parallel, the transfer of iron from the gut to the circulation is diminished which may be referred to interference of hepcidin with ferroportin mediated iron export, thus preventing body iron accumulation.
Collapse
Affiliation(s)
- Igor Theurl
- Department of General Internal Medicine, Clinical Immunology and Infectious Diseases, Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
39
|
Theurl I, Fritsche G, Ludwiczek S, Garimorth K, Bellmann-Weiler R, Weiss G. The Macrophage: A Cellular Factory at the Interphase Between Iron and Immunity for the Control of Infections. Biometals 2005; 18:359-67. [PMID: 16158228 DOI: 10.1007/s10534-005-3710-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Igor Theurl
- Department of General Internal Medicine, Clinical Immunology and Infectious Diseases Medical University, A-6020, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Elucidation of the molecular pathways of iron transport through cells and its control is leading to an understanding of genetic iron loading conditions. The general phenotype of haemochromatosis is iron accumulation in liver parenchymal cells, a raised serum transferrin saturation and ferritin concentration. Four types have been identified: type 1 is the common form and is an autosomal recessive disorder of low penetrance strongly associated with mutations in the HFE gene on chromosome 6(p21.3); type 2 (juvenile haemochromatosis) is autosomal recessive, of high penetrance with causative mutations identified in the HFE2 gene on chromosome 1 (q21) and the HAMP gene on chromosome 19 (q13); type 3 is also autosomal recessive with mutations in the TfR2 gene on chromosome 3 (7q22); type 4 is an autosomal dominant condition with heterozygous mutations in the ferroportin 1 gene. In type 4, iron accumulates in both parenchymal and reticuloendothelial cells and the transferrin saturation may be normal. There are also inherited neurodegenerative conditions associated with iron accumulation. The current research challenges include understanding the central role of the HAMP gene (hepcidin) in controlling iron absorption and the reasons for the variable penetrance in HFE type 1.
Collapse
Affiliation(s)
- Mark Worwood
- Department of Haematology, University of Wales College of Medicine, Cardiff CF14 4XN, Wales, UK.
| |
Collapse
|
41
|
Aguilar-Martinez P, Schved JF, Brissot P. The evaluation of hyperferritinemia: an updated strategy based on advances in detecting genetic abnormalities. Am J Gastroenterol 2005; 100:1185-94. [PMID: 15842597 DOI: 10.1111/j.1572-0241.2005.40998.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The number of new genes implicated in iron metabolism has dramatically increased during the last few years. Alterations of these genes may cause hyperferritinemia associated or not with iron overload. Correct assignment of the specific disorder of iron metabolism requires the identification of the causative gene mutation. Here, we propose a rational strategy that allows targeting the gene(s) to be screened for a diagnostic purpose. This strategy relies on the age of onset of the disease, the type of clinical symptoms, the biochemical profile (elevated or normal serum transferrin saturation (TfSat)), the presence or not of visceral iron excess, and the mode of inheritance (autosomal recessive or dominant). Then, two main entities can be differentiated: genetic (adult or juvenile) hemochromatosis characterized by elevated TfSat, and hereditary hyperferritinemias where TfSat is normal (or only slightly modified). Adult genetic hemochromatosis (GH) is related mainly to mutations of the HFE gene, and exceptionally to mutations of the TFR2 gene. Juvenile GH is a rare condition related principally to mutations of the HJV gene coding for hemojuvelin, and rarely to mutations of the HAMP gene coding for hepcidin. Hereditary hyperferritinemias are linked to mutations of three genes: the L-ferritin gene responsible for the hereditary hyperferritinemia cataract syndrome (without iron overload), the ferroportin gene leading to a dominant form of iron overload, and the ceruloplasmin (CP) gene corresponding to an iron overload syndrome with neurological symptoms. The proposed strategic approach may change with the identification of other genes involved in iron metabolism.
Collapse
|
42
|
Balasubramanian S, Kowdley KV. Effect of alcohol on viral hepatitis and other forms of liver dysfunction. Clin Liver Dis 2005; 9:83-101. [PMID: 15763231 DOI: 10.1016/j.cld.2004.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol is a known hepatotoxic agent, which may exacerbate liver injury caused by other agents. The wide prevalence of alcohol use and abuse in society makes it an important cofactor in many other liver diseases. Examples of liver diseases that are significantly influenced by ingestion of alcohol include chronic viral hepatitis, disorders of iron overload, and obesity-related liver disease.
Collapse
MESH Headings
- Comorbidity
- Disease Progression
- Female
- Hepatitis B, Chronic/diagnosis
- Hepatitis B, Chronic/epidemiology
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/epidemiology
- Hepatitis, Alcoholic/diagnosis
- Hepatitis, Alcoholic/epidemiology
- Hepatitis, Viral, Human/diagnosis
- Hepatitis, Viral, Human/epidemiology
- Humans
- Incidence
- Liver Cirrhosis, Alcoholic/diagnosis
- Liver Cirrhosis, Alcoholic/epidemiology
- Liver Function Tests
- Male
- Risk Assessment
- Severity of Illness Index
- United States/epidemiology
Collapse
Affiliation(s)
- Sripriya Balasubramanian
- Division of Gastroenterology and Hepatology, University of California at Davis, 4150 V Street #3500, Sacramento, California 95817, USA
| | | |
Collapse
|
43
|
Abstract
The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. It is also a pivotal component of the innate immune response through its role in the generation of toxic oxygen and nitrogen intermediates. During evolution, the shared requirement of micro- and macroorganisms for this important nutrient has shaped the pathogen-host relationship. Here, we discuss how pathogens compete with the host for iron, and also how the host uses iron to counteract this threat.
Collapse
Affiliation(s)
- Ulrich E Schaible
- Max-Planck-Institute for Infection Biology, Department of Immunology, Schumannstrasse 21-22, D-10117, Berlin, Germany
| | | |
Collapse
|
44
|
Fleming RE, Britton RS, Waheed A, Sly WS, Bacon BR. Pathogenesis of hereditary hemochromatosis. Clin Liver Dis 2004; 8:755-73, vii. [PMID: 15464654 DOI: 10.1016/j.cld.2004.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hereditary hemochromatosis comprises several inherited disorders of iron homeostasis characterized by increased gastrointestinal iron absorpstion and resultant tissue iron deposition. The identification of HFE and other genes involved in iron metabolism has greatly expanded our understanding of hereditary hemochromatosis. Two major hypotheses have been proposed to explain the pathogenesis of HFE-related hereditary hemochromatosis: the hepcidin hypothesis and the duodenal crypt cell programming hypothesis.
Collapse
Affiliation(s)
- Robert E Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Childrens Hospital, 1465 S. Grand Blvd, St. Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Gordeuk VR, Caleffi A, Corradini E, Ferrara F, Jones RA, Castro O, Onyekwere O, Kittles R, Pignatti E, Montosi G, Garuti C, Gangaidzo IT, Gomo ZAR, Moyo VM, Rouault TA, MacPhail P, Pietrangelo A. Iron overload in Africans and African-Americans and a common mutation in the SCL40A1 (ferroportin 1) gene☆. Blood Cells Mol Dis 2003; 31:299-304. [PMID: 14636642 DOI: 10.1016/s1079-9796(03)00164-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The product of the SLC40A1 gene, ferroportin 1, is a main iron export protein. Pathogenic mutations in ferroportin 1 lead to an autosomal dominant hereditary iron overload syndrome characterized by high serum ferritin concentration, normal transferrin saturation, iron accumulation predominantly in macrophages, and marginal anemia. Iron overload occurs in both the African and the African-American populations, but a possible genetic basis has not been established. We analyzed the ferroportin 1 gene in 19 unrelated patients from southern Africa (N = 15) and the United States (N = 4) presenting with primary iron overload. We found a new c. 744 C-->T (Q248H) mutation in the SLC40A1 gene in 4 of these patients (3 Africans and 1 African-American). Among 22 first degree family members, 10 of whom were Q248H heterozygotes, the mutation was associated with a trend to higher serum ferritin to amino aspartate transferase ratios (means of 14.8 versus 4.3 microg/U; P = 0.1) and lower hemoglobin concentrations (means of 11.8 versus 13.2 g/dL; P = 0.1). The ratio corrects serum ferritin concentration for alcohol-induced hepatocellular damage. We also found heterozygosity for the Q248H mutation in 7 of 51 (14%) southern African community control participants selected because they had a serum ferritin concentration below 400 microg/L and in 5 of 100 (5%) anonymous African-Americans, but we did not find the change in 300 Caucasians with normal iron status and 25 Caucasians with non-HFE iron overload. The hemoglobin concentration was significantly lower in the African community controls with the Q248H mutation than in those without it. We conclude that the Q248H mutation is a common polymorphism in the ferroportin 1 gene in African populations that may be associated with mild anemia and a tendency to iron loading.
Collapse
Affiliation(s)
- Victor R Gordeuk
- Howard University College of Medicine, Washington, DC 20059, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Ioannou GN, Kowdley KV. Iron, HFE mutations, and hepatocellular carcinoma: is hepatic iron a carcinogen? Clin Gastroenterol Hepatol 2003. [PMID: 15017663 DOI: 10.1016/s1542-3565(03)00126-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Rouault TA. Hepatic iron overload in alcoholic liver disease: why does it occur and what is its role in pathogenesis? Alcohol 2003; 30:103-6. [PMID: 12957293 DOI: 10.1016/s0741-8329(03)00102-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Iron overload is frequently observed in alcoholic liver disease. However, it is not known why hepatic iron accumulation occurs or how it contributes to disease progression. In this review, information about the role of iron in the pathophysiology of liver disease is reviewed and discussed.
Collapse
Affiliation(s)
- Tracey A Rouault
- Section on Human Iron Metabolism, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18, Room 101, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|