1
|
Zhao J, Zhang H, Pan C, He Q, Zheng K, Tang Y. Advances in research on the relationship between the LMNA gene and human diseases (Review). Mol Med Rep 2024; 30:236. [PMID: 39422026 DOI: 10.3892/mmr.2024.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The LMNA gene, which is responsible for encoding lamin A/C proteins, is recognized as a primary constituent of the nuclear lamina. This protein serves crucial roles in various cellular physiological activities, including the maintenance of cellular structural stability, regulation of gene expression, mechanosensing and cellular motility. A significant association has been established between the LMNA gene and several major human diseases. Mutations, dysregulated expression of the LMNA gene, and improper processing of its encoded protein can result in a spectrum of pathological conditions. These diseases, collectively termed laminopathies, are directly attributed to LMNA gene dysfunction. The present review examines the recent advancements in research concerning the LMNA gene and its association with human diseases, while exploring its pathological roles. Particular emphasis is placed on the current status of LMNA gene research in the context of tumors. This includes an analysis of the abundance of LMNA alterations in cancer and its interplay with various signaling pathways. The aim of the present review was to provide novel perspectives for studying the development of LMNA‑related diseases and additional theoretical insights for basic and clinical translational research in this field.
Collapse
Affiliation(s)
- Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Huijuan Zhang
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chenglong Pan
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qian He
- School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
Li Z, Zhang B, Chan JJ, Tabatabaeian H, Tong QY, Chew XH, Fan X, Driguez P, Chan C, Cheong F, Wang S, Siew BE, Tan IJW, Lee KY, Lieske B, Cheong WK, Kappei D, Tan KK, Gao X, Tay Y. An isoform-resolution transcriptomic atlas of colorectal cancer from long-read single-cell sequencing. CELL GENOMICS 2024; 4:100641. [PMID: 39216476 PMCID: PMC11480860 DOI: 10.1016/j.xgen.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiaonan Fan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Faith Cheong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ian Jse-Wei Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Kai-Yin Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wai-Kit Cheong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
3
|
Huang Q, Chen J, Lv Q, Long M, Pan G, Zhou Z. Germination of Microsporidian Spores: The Known and Unknown. J Fungi (Basel) 2023; 9:774. [PMID: 37504762 PMCID: PMC10381864 DOI: 10.3390/jof9070774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Microsporidia are a large group of mysterious obligate intracellular eukaryotic parasites. The microsporidian spore can survive in the absence of nutrients for years under harsh conditions and germinate within seconds under the stimulation of environmental changes like pH and ions. During germination, microsporidia experience an increase in intrasporal osmotic pressure, which leads to an influx of water into the spore, followed by swelling of the polaroplasts and posterior vacuole, which eventually fires the polar filament (PF). Infectious sporoplasm was transported through the extruded polar tube (PT) and delivered into the host cell. Despite much that has been learned about the germination of microsporidia, there are still several major questions that remain unanswered, including: (i) There is still a lack of knowledge about the signaling pathways involved in spore germination. (ii) The germination of spores is not well understood in terms of its specific energetics. (iii) Limited understanding of how spores germinate and how the nucleus and membranes are rearranged during germination. (iv) Only a few proteins in the invasion organelles have been identified; many more are likely undiscovered. This review summarizes the major resolved and unresolved issues concerning the process of microsporidian spore germination.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
4
|
Kono Y, Adam SA, Sato Y, Reddy KL, Zheng Y, Medalia O, Goldman RD, Kimura H, Shimi T. Nucleoplasmic lamin C rapidly accumulates at sites of nuclear envelope rupture with BAF and cGAS. J Cell Biol 2022; 221:e202201024. [PMID: 36301259 PMCID: PMC9617480 DOI: 10.1083/jcb.202201024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
In mammalian cell nuclei, the nuclear lamina (NL) underlies the nuclear envelope (NE) to maintain nuclear structure. The nuclear lamins, the major structural components of the NL, are involved in the protection against NE rupture induced by mechanical stress. However, the specific role of the lamins in repair of NE ruptures has not been fully determined. Our analyses using immunofluorescence and live-cell imaging revealed that the nucleoplasmic pool of lamin C rapidly accumulated at sites of NE rupture induced by laser microirradiation in mouse embryonic fibroblasts. The accumulation of lamin C at the rupture sites required both the immunoglobulin-like fold domain that binds to barrier-to-autointegration factor (BAF) and a nuclear localization signal. The accumulation of nuclear BAF and cytoplasmic cyclic GMP-AMP synthase (cGAS) at the rupture sites was in part dependent on lamin A/C. These results suggest that nucleoplasmic lamin C, BAF, and cGAS concertedly accumulate at sites of NE rupture for rapid repair.
Collapse
Affiliation(s)
- Yohei Kono
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Karen L. Reddy
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
5
|
Schirmer EC, Latonen L, Tollis S. Nuclear size rectification: A potential new therapeutic approach to reduce metastasis in cancer. Front Cell Dev Biol 2022; 10:1022723. [PMID: 36299481 PMCID: PMC9589484 DOI: 10.3389/fcell.2022.1022723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 03/07/2024] Open
Abstract
Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.
Collapse
Affiliation(s)
- Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Golloshi R, Playter C, Freeman TF, Das P, Raines TI, Garretson JH, Thurston D, McCord RP. Constricted migration is associated with stable 3D genome structure differences in cancer cells. EMBO Rep 2022; 23:e52149. [PMID: 35969179 PMCID: PMC9535800 DOI: 10.15252/embr.202052149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/14/2023] Open
Abstract
To spread from a localized tumor, metastatic cancer cells must squeeze through constrictions that cause major nuclear deformations. Since chromosome structure affects nucleus stiffness, gene regulation, and DNA repair, here, we investigate the relationship between 3D genome structure and constricted migration in cancer cells. Using melanoma (A375) cells, we identify phenotypic differences in cells that have undergone multiple rounds of constricted migration. These cells display a stably higher migration efficiency, elongated morphology, and differences in the distribution of Lamin A/C and heterochromatin. Hi-C experiments reveal differences in chromosome spatial compartmentalization specific to cells that have passed through constrictions and related alterations in expression of genes associated with migration and metastasis. Certain features of the 3D genome structure changes, such as a loss of B compartment interaction strength, are consistently observed after constricted migration in clonal populations of A375 cells and in MDA-MB-231 breast cancer cells. Our observations suggest that consistent types of chromosome structure changes are induced or selected by passage through constrictions and that these may epigenetically encode stable differences in gene expression and cellular migration phenotype.
Collapse
Affiliation(s)
- Rosela Golloshi
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Christopher Playter
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Trevor F Freeman
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Priyojit Das
- UT‐ORNL Graduate School of Genome Science and TechnologyUniversity of TennesseeKnoxvilleTNUSA
| | - Thomas Isaac Raines
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Joshua H Garretson
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Delaney Thurston
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Rachel Patton McCord
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
7
|
Bell ES, Shah P, Zuela-Sopilniak N, Kim D, Varlet AA, Morival JL, McGregor AL, Isermann P, Davidson PM, Elacqua JJ, Lakins JN, Vahdat L, Weaver VM, Smolka MB, Span PN, Lammerding J. Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene 2022; 41:4211-4230. [PMID: 35896617 PMCID: PMC9925375 DOI: 10.1038/s41388-022-02420-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Aberrations in nuclear size and shape are commonly used to identify cancerous tissue. However, it remains unclear whether the disturbed nuclear structure directly contributes to the cancer pathology or is merely a consequence of other events occurring during tumorigenesis. Here, we show that highly invasive and proliferative breast cancer cells frequently exhibit Akt-driven lower expression of the nuclear envelope proteins lamin A/C, leading to increased nuclear deformability that permits enhanced cell migration through confined environments that mimic interstitial spaces encountered during metastasis. Importantly, increasing lamin A/C expression in highly invasive breast cancer cells reflected gene expression changes characteristic of human breast tumors with higher LMNA expression, and specifically affected pathways related to cell-ECM interactions, cell metabolism, and PI3K/Akt signaling. Further supporting an important role of lamins in breast cancer metastasis, analysis of lamin levels in human breast tumors revealed a significant association between lower lamin A levels, Akt signaling, and decreased disease-free survival. These findings suggest that downregulation of lamin A/C in breast cancer cells may influence both cellular physical properties and biochemical signaling to promote metastatic progression.
Collapse
Affiliation(s)
- Emily S. Bell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Current address: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Dongsung Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alice-Anais Varlet
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Julien L.P. Morival
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alexandra L. McGregor
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Philipp Isermann
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Joshua J. Elacqua
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Jonathan N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Linda Vahdat
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA,Helen Diller Cancer Center, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marcus B. Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Paul N. Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA. .,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Jones ML, Dahl KN, Lele TP, Conway DE, Shenoy V, Ghosh S, Szczesny SE. The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. J Biomech Eng 2022; 144:080802. [PMID: 35147160 PMCID: PMC8990742 DOI: 10.1115/1.4053797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 11/08/2022]
Abstract
The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling. Ongoing questions and controversies, along with promising future directions, are also discussed.
Collapse
Affiliation(s)
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213; Forensics Department, Thornton Tomasetti, 120 Broadway 15th Floor, New York City, NY 10271
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Chemical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Translational Medical Sciences, Texas A&M University, 101 Bizzell Street, College Station, TX 77840
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, P.O. Box 843068, Richmond, VA 23284
| | - Vivek Shenoy
- Materials Science and Engineering Bioengineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Center for Engineering Mechanobiology, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104
| | - Soham Ghosh
- Department of Mechanical Engineering, School of Biomedical Engineering, Translational Medicine Institute, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802; Department of Orthopaedics and Rehabilitation, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
9
|
Nanou A, Lorenzo-Moldero I, Gazouleas KD, Cortese B, Moroni L. 3D Culture Modeling of Metastatic Breast Cancer Cells in Additive Manufactured Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28389-28402. [PMID: 35687666 PMCID: PMC9227707 DOI: 10.1021/acsami.2c07492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cancer biology research is increasingly moving toward innovative in vitro 3D culture models, as conventional and current 2D cell cultures fail to resemble in vivo cancer biology. In the current study, porous 3D scaffolds, designed with two different porosities along with 2D tissue culture polystyrene (TCP) plates were used with a model breast cancer human cell line. The 3D engineered system was evaluated for the optimal seeding method (dynamic versus static), adhesion, and proliferation rate of MDA-MB-231 breast cancer cells. The expression profiles of proliferation-, stemness-, and dormancy-associated cancer markers, namely, ki67, lamin A/C, SOX2, Oct3/4, stanniocalcin 1 (STC1), and stanniocalcin 2 (STC2), were evaluated in the 3D cultured cells and compared to the respective profiles of the cells cultured in the conventional 2D TCP. Our data suggested that static seeding was the optimal seeding method with porosity-dependent efficiency. Moreover, cells cultured in 3D scaffolds displayed a more dormant phenotype in comparison to 2D, which was manifested by the lower proliferation rate, reduced ki67 expression, increased lamin A/C expression, and overexpression of STCs. The possible relationship between the cell affinity to different extracellular matrix (ECM) proteins and the RANK expression levels was also addressed after deriving collagen type I (COL-I) and fibronectin (FN) MDA-MB-231 filial cell lines with enhanced capacity to attach to the respective ECM proteins. The new derivatives exhibited a more mesenchymal like phenotype and higher RANK levels in relation to the parental cells, suggesting a relationship between ECM cell affinity and RANK expression. Therefore, the present 3D cell culture model shows that cancer cells on printed scaffolds can work as better representatives in cancer biology and drug screening related studies.
Collapse
Affiliation(s)
- Afroditi Nanou
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 ND Enschede, The Netherlands
- Medical
Cell BioPhysics Department, Faculty of Science and Technology, University of Twente, Dienstweg 1, 7522 ND Enschede, The Netherlands
| | - Ivan Lorenzo-Moldero
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 ND Enschede, The Netherlands
- Complex
Tissue Regeneration Department, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Kyriakos D. Gazouleas
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 ND Enschede, The Netherlands
| | - Barbara Cortese
- National
Research Council-Nanotechnology Institute (CNR Nanotec), 00185 Rome, Italy
- Email for B.C.:
| | - Lorenzo Moroni
- Tissue
Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 ND Enschede, The Netherlands
- Complex
Tissue Regeneration Department, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
- National
Research Council-Nanotechnology Institute (CNR Nanotec), 00185 Rome, Italy
- Email for L.M.:
| |
Collapse
|
10
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
11
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
12
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
13
|
Reduced Lamin A/C Does Not Facilitate Cancer Cell Transendothelial Migration but Compromises Lung Metastasis. Cancers (Basel) 2021; 13:cancers13102383. [PMID: 34069191 PMCID: PMC8157058 DOI: 10.3390/cancers13102383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
The mechanisms by which the nuclear lamina of tumor cells influences tumor growth and migration are highly disputed. Lamin A and its variant lamin C are key lamina proteins that control nucleus stiffness and chromatin conformation. Downregulation of lamin A/C in two prototypic metastatic lines, B16F10 melanoma and E0771 breast carcinoma, facilitated cell squeezing through rigid pores, and reduced heterochromatin content. Surprisingly, both lamin A/C knockdown cells grew poorly in 3D spheroids within soft agar, and lamin A/C deficient cells derived from spheroids transcribed lower levels of the growth regulator Yap1. Unexpectedly, the transendothelial migration of both cancer cells in vitro and in vivo, through lung capillaries, was not elevated by lamin A/C knockdown and their metastasis in lungs was even dramatically reduced. Our results are the first indication that reduced lamin A/C content in distinct types of highly metastatic cancer cells does not elevate their transendothelial migration (TEM) capacity and diapedesis through lung vessels but can compromise lung metastasis at a post extravasation level.
Collapse
|
14
|
Jaroenlak P, Cammer M, Davydov A, Sall J, Usmani M, Liang FX, Ekiert DC, Bhabha G. 3-Dimensional organization and dynamics of the microsporidian polar tube invasion machinery. PLoS Pathog 2020; 16:e1008738. [PMID: 32946515 PMCID: PMC7526891 DOI: 10.1371/journal.ppat.1008738] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/30/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023] Open
Abstract
Microsporidia, a divergent group of single-celled eukaryotic parasites, harness a specialized harpoon-like invasion apparatus called the polar tube (PT) to gain entry into host cells. The PT is tightly coiled within the transmissible extracellular spore, and is about 20 times the length of the spore. Once triggered, the PT is rapidly ejected and is thought to penetrate the host cell, acting as a conduit for the transfer of infectious cargo into the host. The organization of this specialized infection apparatus in the spore, how it is deployed, and how the nucleus and other large cargo are transported through the narrow PT are not well understood. Here we use serial block-face scanning electron microscopy to reveal the 3-dimensional architecture of the PT and its relative spatial orientation to other organelles within the spore. Using high-speed optical microscopy, we also capture and quantify the entire PT germination process of three human-infecting microsporidian species in vitro: Anncaliia algerae, Encephalitozoon hellem and E. intestinalis. Our results show that the emerging PT experiences very high accelerating forces to reach velocities exceeding 300 μm⋅s-1, and that firing kinetics differ markedly between species. Live-cell imaging reveals that the nucleus, which is at least 7 times larger than the diameter of the PT, undergoes extreme deformation to fit through the narrow tube, and moves at speeds comparable to PT extension. Our study sheds new light on the 3-dimensional organization, dynamics, and mechanism of PT extrusion, and shows how infectious cargo moves through the tube to initiate infection.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Alina Davydov
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Joseph Sall
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Mahrukh Usmani
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Gira Bhabha
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
15
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
16
|
Blank M. Targeted Regulation of Nuclear Lamins by Ubiquitin and Ubiquitin-Like Modifiers. Cells 2020; 9:cells9061340. [PMID: 32471220 PMCID: PMC7348791 DOI: 10.3390/cells9061340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Nuclear lamins (NLs) are essential components of the animal cell nucleus involved in the regulation of a plethora of molecular and cellular processes. These include the nuclear envelope assembly and stability, mechanotransduction and chromatin organization, transcription, DNA replication, damage repair, and genomic integrity maintenance. Mutations in NLs can lead to the development of a wide range of distinct disease phenotypes, laminopathies, consisting of cardiac, neuromuscular, metabolic and premature aging syndromes. In addition, alterations in the expression of nuclear lamins were associated with different types of neoplastic diseases. Despite the importance and critical roles that NLs play in the diverse cellular activities, we only recently started to uncover the complexity of regulatory mechanisms governing their expression, localization and functions. This integrative review summarizes and discusses the recent findings on the emerging roles of ubiquitin and ubiquitin-like modifiers (ULMs) in the regulation of NLs, highlighting the intriguing molecular associations and cross-talks occurring between NLs and these regulatory molecules under physiological conditions and in the disease states.
Collapse
Affiliation(s)
- Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
17
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
18
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Mechanosensing at the Nuclear Envelope by Nuclear Pore Complex Stretch Activation and Its Effect in Physiology and Pathology. Front Physiol 2019; 10:896. [PMID: 31354529 PMCID: PMC6640030 DOI: 10.3389/fphys.2019.00896] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/27/2019] [Indexed: 02/03/2023] Open
Abstract
Cell fate is correlated to mechanotransduction, in which forces transmitted by the cytoskeleton filaments alter the nuclear shape, affecting transcription factor import/export, cells transcription activity and chromatin distribution. There is in fact evidence that stem cells cultured in 3D environments mimicking the native niche are able to maintain their stemness or modulate their cellular function. However, the molecular and biophysical mechanisms underlying cellular mechanosensing are still largely unclear. The propagation of mechanical stimuli via a direct pathway from cell membrane integrins to SUN proteins residing in the nuclear envelop has been demonstrated, but we suggest that the cells’ fate is mainly affected by the force distribution at the nuclear envelope level, where the SUN protein transmits the stimuli via its mechanical connection to several cell structures such as chromatin, lamina and the nuclear pore complex (NPC). In this review, we analyze the NPC structure and organization, which have not as yet been fully investigated, and its plausible involvement in cell fate. NPC is a multiprotein complex that spans the nuclear envelope, and is involved in several key cellular processes such as bidirectional nucleocytoplasmic exchange, cell cycle regulation, kinetochore organization, and regulation of gene expression. As several connections between the NPC and the nuclear envelope, chromatin and other transmembrane proteins have been identified, it is reasonable to suppose that nuclear deformations can alter the NPC structure. We provide evidence that the transmission of mechanical forces may significantly affects the basket conformation via the Nup153-SUN1 connection, both altering the passage of molecules through it and influencing the state of chromatin packing. Finally, we review the known correlations between a pathological NPC structure and diseases such as cancer, autoimmune disease, aging and laminopathies.
Collapse
Affiliation(s)
- F Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - E Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - M Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - M T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milan, Italy
| |
Collapse
|
19
|
Constitutional abnormality of nuclear membrane proteins in small cell lung carcinoma. Virchows Arch 2019; 475:407-414. [PMID: 31201505 DOI: 10.1007/s00428-019-02597-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Nuclear membrane proteins reportedly play important roles in maintaining nuclear structures and coordinating cell activities. Studying profiles of nuclear membrane proteins may help us evaluate the biological and/or clinical nature of malignant tumors. Using immunohistochemistry with antibodies for emerin, lamin A/C, lamin B, and LAP2, we examined 105 lung cancer tissues from 33 small cell lung carcinomas (SCLCs) and 72 non-SCLCs (34 adenocarcinomas, 30 squamous cell carcinomas, and 8 large cell carcinomas). Emerin had negative or local/weak positivity in 79% of SCLCs and 1% of non-SCLCs, and lamin A/C had similar positivity in 91% of SCLCs and 3% of non-SCLCs. LAP2's expression was similar between SCLCs and non-SCLCs. RT-PCR analyses for these four nuclear membrane proteins over 7 cell lines showed that mRNA of emerin and lamin A/C were distinctly downregulated in the SCLC cell lines, supporting the immunohistochemical results. In conclusion, we suggest that downregulation of the nuclear membrane proteins emerin and lamin A/C is characteristic of SCLC cells, and this constitutional abnormality of the nuclear membrane may be related to the biological and/or clinical nature of SCLC. In addition, knowing the nuclear protein profile in SCLC cells may contribute to our understanding of nuclear fragility known as the crush artifact in pulmonary biopsy specimens.
Collapse
|
20
|
Chen X, Chen Y, Huang HM, Li HD, Bu FT, Pan XY, Yang Y, Li WX, Li XF, Huang C, Meng XM, Li J. SUN2: A potential therapeutic target in cancer. Oncol Lett 2018; 17:1401-1408. [PMID: 30675193 PMCID: PMC6341589 DOI: 10.3892/ol.2018.9764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
The incidence of cancer is increasing at an alarming rate despite recent advances in prevention strategies, diagnostics and therapeutics for various types of cancer. The identification of novel biomarkers to aid in prognosis and treatment for cancer is urgently required. Uncontrolled proliferation and dysregulated apoptosis are characteristics exhibited by cancer cells in the initiation of various types of cancer. Notably, aberrant expression of crucial oncogenes or cancer suppressors is a defining event in cancer occurrence. Research has demonstrated that SAD1/UNC84 domain protein-2 (SUN2) serves a suppressive role in breast cancer, atypical teratoid/rhabdoid tumors and lung cancer progression. Furthermore, SUN2 inhibits cancer cell proliferation, migration and promotes apoptosis. Recent reports have also shown that SUN2 serves prominent roles in resistance to the excessive DNA damage that destabilizes the genome and promotes cancer development, and these functions of SUN2 are critical for evading initiation of cancer. Additionally, increasing evidence has demonstrated that SUN2 is involved in maintaining cell nuclear structure and appears to be a central component for organizing the natural nuclear architecture in cancer cells. The focus of the present review is to provide an overview on the pharmacological functions of SUN2 in cancers. These findings suggest that SUN2 may serve as a promising therapeutic target and novel predictive marker in various types of cancer.
Collapse
Affiliation(s)
- Xin Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hui-Min Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xue-Yin Pan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wan-Xia Li
- Department of Pharmacy, Anqing Municipal Hospital, Anqing, Anhui 246003, P.R. China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
21
|
González-Cruz RD, Dahl KN, Darling EM. The Emerging Role of Lamin C as an Important LMNA Isoform in Mechanophenotype. Front Cell Dev Biol 2018; 6:151. [PMID: 30450357 PMCID: PMC6224339 DOI: 10.3389/fcell.2018.00151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Lamin A and lamin C isoforms of the gene LMNA are major structural and mechanotransductive components of the nuclear lamina. Previous reports have proposed lamin A as the isoform with the most dominant contributions to cellular mechanophenotype. Recently, expression of lamin C has also been shown to strongly correlate to cellular elastic and viscoelastic properties. Nevertheless, LMNA isoforms exist as part of a network that collectively provides structural integrity to the nucleus and their expression is ultimately regulated in a cell-specific manner. Thus, they have importance in mechanotransduction and structural integrity of the nucleus as well as potential candidates for biomarkers of whole-cell mechanophenotype. Therefore, a fuller discussion of lamin isoforms as mechanophenotypic biomarkers should compare both individual and ratiometric isoform contributions toward whole-cell mechanophenotype across different cell types. In this perspective, we discuss the distinctions between the mechanophenotypic correlations of individual and ratiometric lamins A:B1, C:B1, (A + C):B1, and C:A across cells from different lineages, demonstrating that the collective contribution of ratiometric lamin (A + C):B1 isoforms exhibited the strongest correlation to whole-cell stiffness. Additionally, we highlight the potential roles of lamin isoform ratios as indicators of mechanophenotypic change in differentiation and disease to demonstrate that the contributions of individual and collective lamin isoforms can occur as both static and dynamic biomarkers of mechanophenotype.
Collapse
Affiliation(s)
| | - Kris N Dahl
- Department of Chemical Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI, United States.,Department of Molecular Pharmacology, Physiology and Biotechnology, School of Engineering, Department of Orthopaedics, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Ciążyńska M, Bednarski IA, Wódz K, Kolano P, Narbutt J, Sobjanek M, Woźniacka A, Lesiak A. Proteins involved in cutaneous basal cell carcinoma development. Oncol Lett 2018; 16:4064-4072. [PMID: 30128029 DOI: 10.3892/ol.2018.9126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy type in the Caucasian population, with a continuously increasing incidence rate. The etiology of BCC remains unknown, but it appears to have a multifactorial origin resulting from intrinsic and extrinsic factors, including short-wavelength ultraviolet B radiation. The role of specific proteins in BCC that are known to be responsible for the regulation of cell division and are involved in skin aging, including transforming growth factor (TGF)-β, Smad2, matrix metalloproteinases (MMPs)-1, -3, -8 and -9, cathepsin-K and progerin, remains unknown. The aim of the present study was to assess the mRNA and protein expression profile of samples with diagnosed nodular BCC (nBCC) compared with that of healthy skin samples collected from matched areas. The study group included 22 patients (10 men and 12 women; mean age, 59 years; range, 44-82 years) with pathologically confirmed nBCC, and 22 healthy volunteers (10 men and 12 women; mean age, 59 years; range, 43-78 years) as a control group. The expression of the studied proteins was assessed in all samples by western blotting and reverse transcription-quantitative polymerase chain reaction analysis. Statistically significant increases in the expression of TGF-β, Smad2, cathepsin-K, progerin and MMP-1, -3, -8 and -9 were detected in skin biopsies with diagnosed nBCC compared with the control group, confirming the important role of these proteins in skin carcinogenesis.
Collapse
Affiliation(s)
- Magdalena Ciążyńska
- Department of Proliferative Diseases, Regional Oncology Centre, Łódź 93-513, Poland
| | - Igor A Bednarski
- Department of Dermatology, Paediatric Dermatology and Dermatological Oncology, Medical University of Łódź, Łódź 91-347, Poland
| | - Karolina Wódz
- Department of Experimental Immunology, Medical University of Łódź, Łódź 90-237, Poland
| | - Paweł Kolano
- Department of General and Oncological Surgery, Tomaszow Health Centre, Tomaszow Mazowiecki 97-200, Poland
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Dermatological Oncology, Medical University of Łódź, Łódź 91-347, Poland
| | - Michał Sobjanek
- Department of Dermatology, Venereology and Allergy, Medical University of Gdansk, Gdansk 80-210, Poland
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Łódź, Łódź 90-647, Poland
| | - Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Dermatological Oncology, Medical University of Łódź, Łódź 91-347, Poland
| |
Collapse
|
23
|
Markiewicz E, Idowu OC. Involvement of the nuclear structural proteins in aging-related responses of human skin to the environmental stress. Clin Cosmet Investig Dermatol 2018; 11:297-307. [PMID: 29928140 PMCID: PMC6003287 DOI: 10.2147/ccid.s163792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human skin is a stratified endocrine organ with primary roles in protection against detrimental biochemical and biophysical factors in the environment. Environmental stress causes gradual accumulation of the macromolecular damage and clinical manifestations consistent with chronic inflammatory conditions and premature aging of the skin. Structural proteins of cell nucleus, the nuclear lamins and lamina-associated proteins, play an important role in the regulation of a number of signal transduction pathways associated with stress. The nuclear lamina proteins have been implicated in a number of degenerative disorders with frequent clinical manifestations of the skin conditions related to premature aging. Analysis of the molecular signatures in response of the skin to a range of damaging factors not only points at the likely involvement of the nuclear lamina in transmission of the signals between the environment and cell nucleus but also defines skin's sensitivity to stress, and therefore the capacities to counteract external damage in aging.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab, Science Central, The Core, Newcastle upon Tyne, UK
| | | |
Collapse
|
24
|
Khan ZS, Santos JM, Hussain F. Aggressive prostate cancer cell nuclei have reduced stiffness. BIOMICROFLUIDICS 2018; 12:014102. [PMID: 29333204 PMCID: PMC5750055 DOI: 10.1063/1.5019728] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/15/2017] [Indexed: 05/25/2023]
Abstract
It has been hypothesized that highly metastatic cancer cells have softer nuclei and hence would travel faster through confining environments. Our goal was to prove this untested hypothesis for prostate cells. Our nuclear creep experiments using a microfluidic channel with a narrow constriction show that stiffness of aggressive immortalized prostate cancer nuclei is significantly lower than that of immortalized normal cell nuclei and hence can be a convenient malignancy marker. Nuclear stiffness is found to be the highest for cells expressing high levels of lamin A/C but lowest for cells expressing low lamin A/C levels. Decreased chromatin condensation found in softer nuclei suggests that the former can also be a marker for aggressive cancers.
Collapse
Affiliation(s)
- Zeina S Khan
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Julianna M Santos
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
25
|
Breaking the scale: how disrupting the karyoplasmic ratio gives cancer cells an advantage for metastatic invasion. Biochem Soc Trans 2017; 45:1333-1344. [PMID: 29150524 DOI: 10.1042/bst20170153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/28/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Abstract
Nuclear size normally scales with the size of the cell, but in cancer this 'karyoplasmic ratio' is disrupted. This is particularly so in more metastatic tumors where changes in the karyoplasmic ratio are used in both diagnosis and prognosis for several tumor types. However, the direction of nuclear size changes differs for particular tumor types: for example in breast cancer, larger nuclear size correlates with increased metastasis, while for lung cancer smaller nuclear size correlates with increased metastasis. Thus, there must be tissue-specific drivers of the nuclear size changes, but proteins thus far linked to nuclear size regulation are widely expressed. Notably, for these tumor types, ploidy changes have been excluded as the basis for nuclear size changes, and so, the increased metastasis is more likely to have a basis in the nuclear morphology change itself. We review what is known about nuclear size regulation and postulate how such nuclear size changes can increase metastasis and why the directionality can differ for particular tumor types.
Collapse
|
26
|
Kaspi E, Frankel D, Guinde J, Perrin S, Laroumagne S, Robaglia-Schlupp A, Ostacolo K, Harhouri K, Tazi-Mezalek R, Micallef J, Dutau H, Tomasini P, De Sandre-Giovannoli A, Lévy N, Cau P, Astoul P, Roll P. Low lamin A expression in lung adenocarcinoma cells from pleural effusions is a pejorative factor associated with high number of metastatic sites and poor Performance status. PLoS One 2017; 12:e0183136. [PMID: 28806747 PMCID: PMC5555706 DOI: 10.1371/journal.pone.0183136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
The type V intermediate filament lamins are the principal components of the nuclear matrix, including the nuclear lamina. Lamins are divided into A-type and B-type, which are encoded by three genes, LMNA, LMNB1, and LMNB2. The alternative splicing of LMNA produces two major A-type lamins, lamin A and lamin C. Previous studies have suggested that lamins are involved in cancer development and progression. A-type lamins have been proposed as biomarkers for cancer diagnosis, prognosis, and/or follow-up. The aim of the present study was to investigate lamins in cancer cells from metastatic pleural effusions using immunofluorescence, western blotting, and flow cytometry. In a sub-group of lung adenocarcinomas, we found reduced expression of lamin A but not of lamin C. The reduction in lamin A expression was correlated with the loss of epithelial membrane antigen (EMA)/MUC-1, an epithelial marker that is involved in the epithelial to mesenchymal transition (EMT). Finally, the lamin A expression was inversely correlated with the number of metastatic sites and the WHO Performance status, and association of pleural, bone and lung metastatic localizations was more frequent when lamin A expression was reduced. In conclusion, low lamin A but not lamin C expression in pleural metastatic cells could represent a major actor in the development of metastasis, associated with EMT and could account for a pejorative factor correlated with a poor Performance status.
Collapse
Affiliation(s)
- Elise Kaspi
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Diane Frankel
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Julien Guinde
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | | | - Sophie Laroumagne
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Andrée Robaglia-Schlupp
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | | | | | - Rachid Tazi-Mezalek
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Joelle Micallef
- APHM, Hôpital la Timone, Service de Pharmacologie Clinique & Centre d’Investigation Clinique—CPCET, Marseille, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Hervé Dutau
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Marseille Early Phases Cancer Trials Center CLIP, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | - Pierre Cau
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Philippe Astoul
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
- Aix Marseille Univ, Marseille, France
| | - Patrice Roll
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
- * E-mail:
| |
Collapse
|
27
|
Sakthivel KM, Sehgal P. A Novel Role of Lamins from Genetic Disease to Cancer Biomarkers. Oncol Rev 2016; 10:309. [PMID: 27994771 PMCID: PMC5136755 DOI: 10.4081/oncol.2016.309] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Lamins are the key components of the nuclear lamina and by virtue of their interactions with chromatin and binding partners act as regulators of cell proliferation and differentiation. Of late, the diverse roles of lamins in cellular processes have made them the topic of intense debate for their role in cancer progression. The observations about aberrant localization or misexpression of the nuclear lamins in cancerous tissues have often led to the speculative role of lamins as a cancer risk biomarker. Here we discuss the involvement of lamins in several cancer subtypes and their potential role in predicting the tumor progression.
Collapse
Affiliation(s)
| | - Poonam Sehgal
- Chemical and Biomolecular Engineering, University of Illinois , Urbana-Champaign, IL, USA
| |
Collapse
|
28
|
Meaburn KJ. Spatial Genome Organization and Its Emerging Role as a Potential Diagnosis Tool. Front Genet 2016; 7:134. [PMID: 27507988 PMCID: PMC4961005 DOI: 10.3389/fgene.2016.00134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells the genome is highly spatially organized. Functional relevance of higher order genome organization is implied by the fact that specific genes, and even whole chromosomes, alter spatial position in concert with functional changes within the nucleus, for example with modifications to chromatin or transcription. The exact molecular pathways that regulate spatial genome organization and the full implication to the cell of such an organization remain to be determined. However, there is a growing realization that the spatial organization of the genome can be used as a marker of disease. While global genome organization patterns remain largely conserved in disease, some genes and chromosomes occupy distinct nuclear positions in diseased cells compared to their normal counterparts, with the patterns of reorganization differing between diseases. Importantly, mapping the spatial positioning patterns of specific genomic loci can distinguish cancerous tissue from benign with high accuracy. Genome positioning is an attractive novel biomarker since additional quantitative biomarkers are urgently required in many cancer types. Current diagnostic techniques are often subjective and generally lack the ability to identify aggressive cancer from indolent, which can lead to over- or under-treatment of patients. Proof-of-principle for the use of genome positioning as a diagnostic tool has been provided based on small scale retrospective studies. Future large-scale studies are required to assess the feasibility of bringing spatial genome organization-based diagnostics to the clinical setting and to determine if the positioning patterns of specific loci can be useful biomarkers for cancer prognosis. Since spatial reorganization of the genome has been identified in multiple human diseases, it is likely that spatial genome positioning patterns as a diagnostic biomarker may be applied to many diseases.
Collapse
Affiliation(s)
- Karen J. Meaburn
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
29
|
Irianto J, Pfeifer CR, Ivanovska IL, Swift J, Discher DE. Nuclear lamins in cancer. Cell Mol Bioeng 2016; 9:258-267. [PMID: 27570565 PMCID: PMC4999255 DOI: 10.1007/s12195-016-0437-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/12/2016] [Indexed: 01/25/2023] Open
Abstract
Dysmorphic nuclei are commonly seen in cancers and provide strong motivation for studying the main structural proteins of nuclei, the lamins, in cancer. Past studies have also demonstrated the significance of microenvironment mechanics to cancer progression, which is extremely interesting because the lamina was recently shown to be mechanosensitive. Here, we review current knowledge relating cancer progression to lamina biophysics. Lamin levels can constrain cancer cell migration in 3D and thereby impede tumor growth, and lamins can also protect a cancer cell's genome. In addition, lamins can influence transcriptional regulators (RAR, SRF, YAP/TAZ) and chromosome conformation in lamina associated domains. Further investigation of the roles for lamins in cancer and even DNA damage may lead to new therapies or at least to a clearer understanding of lamins as bio-markers in cancer progression.
Collapse
Affiliation(s)
- Jerome Irianto
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte R. Pfeifer
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irena L. Ivanovska
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joe Swift
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E. Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
31
|
Tian X, Wang H, Guan L, Zhang Q, Zhou H, Li C, Huang B, Wu J, Tian Y. Light up Live Cell Nuclear Envelope in Real-Time Using a Two-Photon Absorption and AIE Chromophore. J Fluoresc 2015; 26:59-65. [DOI: 10.1007/s10895-015-1703-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/20/2015] [Indexed: 01/27/2023]
|
32
|
Capo-chichi CD, Aguida B, Chabi NW, Cai QK, Offrin G, Agossou VK, Sanni A, Xu XX. Lamin A/C deficiency is an independent risk factor for cervical cancer. Cell Oncol (Dordr) 2015; 39:59-68. [PMID: 26537870 DOI: 10.1007/s13402-015-0252-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In the past, cervical cancer has been linked to Human Papilloma Virus (HPV) infection. Previously, we found that pre-neoplastic breast and ovarian lesions may be associated with lamin A/C deficiency, resulting in abnormal nuclear morphologies and chromosomal instability. Ultimately, these phenomena are thought to lead to cancer. Here, we assessed lamin A/C deficiency as an indicator for the risk to develop cervical cancer. METHODS The expression of lamin A/C was assessed by Western blotting in cervical uterine smears (CUS) of 76 adult women from Benin concomitant with nuclear morphology assessment and HPV genotyping using microscopy and PCR-based assays, respectively. In vitro analyses were performed to uncover the mechanism underlying lamin A/C expression alterations observed in vivo. The presence of cervical intra-epithelial neoplasia (CIN) was assessed by colposcopy. RESULTS Normal lamin A/C expression (group A) was observed in 39% of the CUS, weak lamin A/C expression (group B) was observed in 28% of the CUS and no lamin A/C expression (group C) was observed in 33% of the CUS tested. Infection with oncogenic HPV was found to be significantly higher in group C (36%) than in groups A (17%) and B (14%). Two years after our first assessment, CIN was observed in 20% of the women in group C. The in vitro application of either a histone deacetylase inhibitor (trichostatin) or a protein kinase inhibitor (staurosporine) was found to restore lamin A/C expression in cervical cancer-derived cells. CONCLUSION Lamin A/C deficiency may serve as an independent risk factor for CIN development and as an indicator for preventive therapy in cervical cancer.
Collapse
Affiliation(s)
- Callinice D Capo-chichi
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin. .,National University Hospital (CNHU), Cotonou, BENIN. .,Unit of Biochemistry and Molecular Biology (UBBM), Section of Molecular Biomarkers in Cancer and Nutrition (BMCN), Faculty of Sciences and Technology (FAST), Institute of Biomedical Sciences and Applications (ISBA), University Abomey-Calavi (UAC), 04BP488, Cotonou, Benin.
| | - Blanche Aguida
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Nicodème W Chabi
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Qi K Cai
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | | | | | - Ambaliou Sanni
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Xiang-Xi Xu
- Sylvester Cancer Center/Miller Medical School of Medicine, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
33
|
Jevtić P, Edens LJ, Li X, Nguyen T, Chen P, Levy DL. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells. J Biol Chem 2015; 290:27557-71. [PMID: 26429910 DOI: 10.1074/jbc.m115.673798] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/17/2022] Open
Abstract
A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change.
Collapse
Affiliation(s)
- Predrag Jevtić
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Lisa J Edens
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Xiaoyang Li
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Thang Nguyen
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Pan Chen
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Daniel L Levy
- From the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
34
|
Expression of nuclear membrane proteins in normal, hyperplastic, and neoplastic thyroid epithelial cells. Virchows Arch 2015; 467:427-36. [DOI: 10.1007/s00428-015-1816-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/30/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
|
35
|
Matsumoto A, Hieda M, Yokoyama Y, Nishioka Y, Yoshidome K, Tsujimoto M, Matsuura N. Global loss of a nuclear lamina component, lamin A/C, and LINC complex components SUN1, SUN2, and nesprin-2 in breast cancer. Cancer Med 2015; 4:1547-57. [PMID: 26175118 PMCID: PMC4618625 DOI: 10.1002/cam4.495] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022] Open
Abstract
Cancer cells exhibit a variety of features indicative of atypical nuclei. However, the molecular mechanisms underlying these phenomena remain to be elucidated. The linker of nucleoskeleton and cytoskeleton (LINC) complex, a nuclear envelope protein complex consisting mainly of the SUN and nesprin proteins, connects nuclear lamina and cytoskeletal filaments and helps to regulate the size and shape of the nucleus. Using immunohistology, we found that a nuclear lamina component, lamin A/C and all of the investigated LINC complex components, SUN1, SUN2, and nesprin-2, were downregulated in human breast cancer tissues. In the majority of cases, we observed lower expression levels of these analytes in samples' cancerous regions as compared to their cancer-associated noncancerous regions (in cancerous regions, percentage of tissue samples exhibiting low protein expression: lamin A/C, 85% [n = 73]; SUN1, 88% [n = 43]; SUN2, 74% [n = 43]; and nesprin-2, 79% [n = 53]). Statistical analysis showed that the frequencies of recurrence and HER2 expression were negatively correlated with lamin A/C expression (P < 0.05), and intrinsic subtype and ki-67 level were associated with nesprin-2 expression (P < 0.05). In addition, combinatorial analysis using the above four parameters showed that all patients exhibited reduced expression of at least one of four components despite the tumor's pathological classification. Furthermore, several cultured breast cancer cell lines expressed less SUN1, SUN2, nesprin-2 mRNA, and lamin A/C compared to noncancerous mammary gland cells. Together, these results suggest that the strongly reduced expression of LINC complex and nuclear lamina components may play fundamental pathological functions in breast cancer progression.
Collapse
Affiliation(s)
- Ayaka Matsumoto
- Graduate School of Medicine and Health Science, Osaka University, Suita, Japan
| | - Miki Hieda
- Graduate School of Medicine and Health Science, Osaka University, Suita, Japan
| | - Yuhki Yokoyama
- Graduate School of Medicine and Health Science, Osaka University, Suita, Japan
| | - Yu Nishioka
- Graduate School of Medicine and Health Science, Osaka University, Suita, Japan.,Present Institution, Carna Bioscience, Inc., Kobe, Japan
| | | | | | - Nariaki Matsuura
- Graduate School of Medicine and Health Science, Osaka University, Suita, Japan
| |
Collapse
|
36
|
Kalidas RM, Raja SE, Mydeen SAKNM, Samuel SCJR, Durairaj SCJ, Nino GD, Palanichelvam K, Vaithi A, Sudhakar S. Conserved lamin A protein expression in differentiated cells in the earthworm Eudrilus eugeniae. Cell Biol Int 2015; 39:1036-43. [PMID: 25858151 DOI: 10.1002/cbin.10479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 03/29/2015] [Indexed: 12/26/2022]
Abstract
Lamin A is an intermediate filament protein found in most of the differentiated vertebrate cells but absent in stem cells. It shapes the skeletal frame structure beneath the inner nuclear membrane of the cell nucleus. As there are few studies of the expression of lamin A in invertebrates, in the present work, we have analyzed the sequence, immunochemical conservation and expression pattern of lamin A protein in the earthworm Eudrilus eugeniae, a model organism for tissue regeneration. The expression of lamin A has been confirmed in E. eugeniae by immunoblot. Its localization in the nuclear membrane has been observed by immunohistochemistry using two different rabbit anti-sera raised against human lamin A peptides, which are located at the C-terminus of the lamin A protein. These two antibodies detected 70 kDa lamin A protein in mice and a single 65 kDa protein in the earthworm. The Oct-4 positive undifferentiated blastemal tissues of regenerating earthworm do not express lamin A, while the Oct-4 negative differentiated cells express lamin A. This pattern was also confirmed in the earthworm prostate gland. The present study is the first evidence for the immunochemical identification of lamin A and Oct-4 in the earthworm. Along with the partial sequence obtained from the earthworm genome, the present results suggest that lamin A protein and its expression pattern is conserved from the earthworm to humans.
Collapse
Affiliation(s)
- Ramamoorthy M Kalidas
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India
| | - Subramanian Elaiya Raja
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India
| | | | | | | | | | | | - Arumugaswami Vaithi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sivasubramaniam Sudhakar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu, India
| |
Collapse
|
37
|
Loss of lamin A but not lamin C expression in epithelial ovarian cancer cells is associated with metastasis and poor prognosis. Pathol Res Pract 2015; 211:175-82. [DOI: 10.1016/j.prp.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/21/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023]
|
38
|
Cabral A, van Haaften C, Boon ME. Proliferation Patterns Reflect Architectural Dedifferentiation: A Study of Nodular Basal Cell Carcinoma. J Dermatol 2014; 31:305-13. [PMID: 15187326 DOI: 10.1111/j.1346-8138.2004.tb00677.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 12/02/2003] [Indexed: 12/01/2022]
Abstract
The distribution of proliferating cells in basal cell carcinoma (BCC) may be related to lesion type and architecture. Single proliferation indexes may not be representative. We aimed to establish the distribution of cell proliferation in BCC as related to architecture. We studied an unselected, consecutive series of 45 resection specimens of nodular BCC from patients in the age range of 25-95 years using MIB-1 staining and systematically reviewed the cases. These lesions included nodular (n=32) and non-nodular (n=9) BCC. Within the nodular BCC, two patterns were recognised, not related to age or gender. In small nodular patterns with well developed peripheral palisading and central parallel streaming of small, elongated nuclei, proliferation is limited to the basal palisading cells in a clustered distribution. In large nodular patterns, proliferation is absent at the basal membrane (BM) and distributed in single random cells throughout the lesion. Both patterns preclude accurate quantitation. Many lesions contained both patterns in a side-by-side, unmixed manner. These pattern differences suggest a loss of differentiation in nodular BCC. Perhaps a single mutation results in the loss of BM associated cell architecture and proliferation control related to tumor-stroma interactions. As a result, the lesion reverts to a low frequency, non-regulated proliferation, diffusely distributed throughout the lesion. The two patterns may exist side-by-side in a single lesion, further supporting the concept of polyclonality. This hypothesis explains perilesional clefting and previously reported variations in intra-lesional laminin synthesis. Based on our findings, representation of tumor cell proliferation activity by a single value is not justified. Nodular BCC exists in one of two dedifferentiation-mutation-determined patterns of cell proliferation; many lesions clearly demonstrate bi-clonality.
Collapse
Affiliation(s)
- Ailton Cabral
- Hospital Aurajo Jorge of Goias Association against Cancer, Goiania, Goias, Brazil
| | | | | |
Collapse
|
39
|
Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 2014; 344:527-32. [PMID: 24786082 PMCID: PMC4246063 DOI: 10.1126/science.1252651] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Down-regulation and mutations of the nuclear-architecture proteins lamin A and C cause misshapen nuclei and altered chromatin organization associated with cancer and laminopathies, including the premature-aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here, we identified the small molecule "Remodelin" that improved nuclear architecture, chromatin organization, and fitness of both human lamin A/C-depleted cells and HGPS-derived patient cells and decreased markers of DNA damage in these cells. Using a combination of chemical, cellular, and genetic approaches, we identified the acetyl-transferase protein NAT10 as the target of Remodelin that mediated nuclear shape rescue in laminopathic cells via microtubule reorganization. These findings provide insights into how NAT10 affects nuclear architecture and suggest alternative strategies for treating laminopathies and aging.
Collapse
Affiliation(s)
- Delphine Larrieu
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, United Kingdom
| | - Sébastien Britton
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, United Kingdom
| | - Mukerrem Demir
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, United Kingdom
| | - Raphaël Rodriguez
- Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Stephen P. Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
40
|
Wu Y, Jin Y, Pan W, Ye C, Sun X, Sun Y, Hu B, Zhou J. Comparative proteomics analysis of host cells infected with Brucella abortus A19. Electrophoresis 2014; 35:1130-43. [PMID: 24519676 DOI: 10.1002/elps.201300378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
Abstract
We carried out a proteomic analysis of THP-1-derived macrophages with and without Brucella abortus A19 (B. abortus A19) infection in order to study the cellular responses to B. abortus A19. The proteins were analyzed at different time points after infection with 2DE followed by MALDI-TOF/TOF identification. Comparative analysis of multiple 2DE gels revealed that the majority of changes in protein abundance appeared between 48 and 96 h after infection. MS identified 44 altered proteins, including 20 proteins increased in abundance and 24 proteins decreased in abundance, which were found to be involved in cytoskeleton, signal transduction, energy metabolism, host macromolecular biosynthesis, and stress response. Moreover, 22 genes corresponding to the altered proteins were quantified by real-time RT-PCR to examine the transcriptional profiles between infected and uninfected THP-1-derived macrophages. Finally, we mapped the altered pathways and networks using ingenuity pathway analysis, which suggested that the altered protein species were heavily favored germ cell-Sertoli cell junction signaling as the primary pathway. Furthermore, mechanisms of viral exit from host cell and macrophage stimulating protein-recepteur d'origine nantais signaling appeared to be major pathways modulated in infected cells. This study effectively provides useful dynamic protein-related information concerning B. abortus infection in macrophages.
Collapse
Affiliation(s)
- Yongping Wu
- College of Animal Sciences and Technology, Zhejiang A&F University, Hangzhou, P.R. China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In eukaryotes, the function of the cell's nucleus has primarily been considered to be the repository for the organism's genome. However, this rather simplistic view is undergoing a major shift, as it is increasingly apparent that the nucleus has functions extending beyond being a mere genome container. Recent findings have revealed that the structural composition of the nucleus changes during development and that many of these components exhibit cell- and tissue-specific differences. Increasing evidence is pointing to the nucleus being integral to the function of the interphase cytoskeleton, with changes to nuclear structural proteins having ramifications affecting cytoskeletal organization and the cell's interactions with the extracellular environment. Many of these functions originate at the nuclear periphery, comprising the nuclear envelope (NE) and underlying lamina. Together, they may act as a "hub" in integrating cellular functions including chromatin organization, transcriptional regulation, mechanosignaling, cytoskeletal organization, and signaling pathways. Interest in such an integral role has been largely stimulated by the discovery that many diseases and anomalies are caused by defects in proteins of the NE/lamina, the nuclear envelopathies, many of which, though rare, are providing insights into their more common variants that are some of the major issues of the twenty-first century public health. Here, we review the contributions that mouse mutants have made to our current understanding of the NE/lamina, their respective roles in disease and the use of mice in developing potential therapies for treating the diseases.
Collapse
|
42
|
Broers JLV, Ramaekers FCS. The role of the nuclear lamina in cancer and apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:27-48. [PMID: 24563342 DOI: 10.1007/978-1-4899-8032-8_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Not long after the discovery of lamin proteins, it became clear that not all lamin subtypes are ubiquitously expressed in cells and tissues. Especially, A-type lamins showed an inverse correlation with proliferation and were thus initially called statins. Here we compare the findings of both A- and B-type lamin expression in various normal tissues and their neoplastic counterparts. Based on immunocytochemistry it becomes clear that lamin expression patterns are much more complicated than initially assumed: while normally proliferative cells are devoid of A-type lamin expression, many neoplastic tissues do show prominent A-type lamin expression. Conversely, cells that do not proliferate can be devoid of lamin expression. Yet, within the different types of tissues and tumors, lamins can be used to distinguish between tumor subtypes. The link between the appearance of A-type lamins in differentiation and the appearance of A-type lamins in a tumor likely relates the proliferative capacity of the tumor to its differentiation state.While lamins are targets for degradation in the apoptotic process, and accordingly are often used as markers for apoptosis, intriguing studies on an active role of lamins in the initiation or the prevention of apoptosis have been published recently and give rise to a renewed interest in the role of lamins in cancer.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, 616, 6200 MD, Maastricht, The Netherlands,
| | | |
Collapse
|
43
|
Abstract
Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus, and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion.
Collapse
Affiliation(s)
- Celine Denais
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA,
| | | |
Collapse
|
44
|
Hutchison CJ. Do lamins influence disease progression in cancer? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:593-604. [PMID: 24563367 DOI: 10.1007/978-1-4899-8032-8_27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For nearly 60 years, diagnosis of cancer has been based on pathological tests that look for enlargement and distortion of nuclear shape. Because of their involvement in supporting nuclear architecture, it has been postulated that the basis for nuclear shape changes during cancer progression is altered expression of nuclear lamins and in particular lamins A and C. However, studies on lamin expression patterns in a range of different cancers have generated equivocal and apparently contradictory results. This might have been anticipated since cancers are diverse and complex diseases. Moreover, whilst altered epigenetic control over gene expression is a feature of many cancers, this level of control cannot be considered in isolation. Here I have reviewed those studies relating to altered expression of lamins in cancers and argue that consideration of changes in the expression of individual lamins cannot be considered in isolation but only in the context of an understanding of their functions in transformed cells.
Collapse
Affiliation(s)
- Christopher J Hutchison
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK,
| |
Collapse
|
45
|
Wazir U, Ahmed MH, Bridger JM, Harvey A, Jiang WG, Sharma AK, Mokbel K. The clinicopathological significance of lamin A/C, lamin B1 and lamin B receptor mRNA expression in human breast cancer. Cell Mol Biol Lett 2013; 18:595-611. [PMID: 24293108 PMCID: PMC6275779 DOI: 10.2478/s11658-013-0109-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 11/25/2013] [Indexed: 12/26/2022] Open
Abstract
Lamin A/C (LMNA), lamin B1 (LMNB1) and lamin B receptor (LBR) have key roles in nuclear structural integrity and chromosomal stability. In this study, we have studied the relationships between the mRNA expressions of A-type lamins, LMNB1 and LBR and the clinicopathological parameters in human breast cancer. Samples of breast cancer tissues (n = 115) and associated non-cancerous tissue (ANCT; n = 30) were assessed using reverse transcription and quantitative PCR. Transcript levels were correlated with clinicopathological data. Higher levels of A-type lamins and LMNB1 mRNA expression were seen in ANCT. Higher lamin A/C expression was associated with the early clinical stage (TNM1 vs. TNM3 - 13 vs. 0.21; p = 0.0515), with better clinical outcomes (disease-free survival vs. mortality - 11 vs. 1; p = 0.0326), and with better overall (p = 0.004) and disease-free survival (p = 0.062). The expression of LMNB1 declined with worsening clinical outcome (disease-free vs. mortalities - 0.0011 vs. 0.000; p = 0.0177). LBR mRNA expression was directly associated with tumor grade (grade 1 vs. grade 3 - 0.00 vs. 0.00; p = 0.0479) and Nottingham Prognostic Index (NPI1 vs. NPI3 - 0.00 vs. 0.00; p = 0.0551). To the best of our knowledge, this is the first study to suggest such a role for A-type lamins, lamin B1 and LBR in human breast cancer, identifying an important area for further research.
Collapse
Affiliation(s)
- Umar Wazir
- The London Breast Institute, Princess Grace Hospital, London, UK
- Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
| | - Mai Hassan Ahmed
- Centre for Cell & Chromosome Biology, Uxbridge, London, UK
- Brunel Institute for Cancer Genetics and Pharmacogenomics, School of Health Sciences and Social Care, Brunel University, Uxbridge, London, UK
| | | | - Amanda Harvey
- Brunel Institute for Cancer Genetics and Pharmacogenomics, School of Health Sciences and Social Care, Brunel University, Uxbridge, London, UK
| | - Wen G. Jiang
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Anup K. Sharma
- The London Breast Institute, Princess Grace Hospital, London, UK
| | - Kefah Mokbel
- London Breast Institute, the Princess Grace Hospital, 45 Nottingham Place, London, W1U 5NY UK
- The London Breast Institute, Princess Grace Hospital, London, UK
- Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
| |
Collapse
|
46
|
Abstract
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.
Collapse
Affiliation(s)
- Jan Lammerding
- Brigham and Women's Hospital/Harvard Medical School, Cambridge, Massachusetts, USA.
| |
Collapse
|
47
|
Vargas JD, Hatch EM, Anderson DJ, Hetzer MW. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 2012; 3:88-100. [PMID: 22567193 DOI: 10.4161/nucl.18954] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neoplastic cells are often characterized by specific morphological abnormalities of the nuclear envelope (NE), which have been used for cancer diagnosis for more than a century. The NE is a double phospholipid bilayer that encapsulates the nuclear genome, regulates all nuclear trafficking of RNAs and proteins and prevents the passive diffusion of macromolecules between the nucleoplasm and the cytoplasm. Whether there is a consequence to the proper functioning of the cell and loss of structural integrity of the nucleus remains unclear. Using live cell imaging, we characterize a phenomenon wherein nuclei of several proliferating human cancer cell lines become temporarily ruptured during interphase. Strikingly, NE rupturing was associated with the mislocalization of nucleoplasmic and cytoplasmic proteins and, in the most extreme cases, the entrapment of cytoplasmic organelles in the nuclear interior. In addition, we observed the formation of micronuclei-like structures during interphase and the movement of chromatin out of the nuclear space. The frequency of these NE rupturing events was higher in cells in which the nuclear lamina, a network of intermediate filaments providing mechanical support to the NE, was not properly formed. Our data uncover the existence of a NE instability that has the potential to change the genomic landscape of cancer cells.
Collapse
Affiliation(s)
- Jesse D Vargas
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell's microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can not only affect nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer.
Collapse
Affiliation(s)
- Monika Zwerger
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
49
|
Abstract
Because of the association between aberrant nuclear structure and tumour grade, nuclear morphology is an indispensible criterion in the current pathological assessment of cancer. Components of the nuclear envelope environment have central roles in many aspects of cell function that affect tumour development and progression. As the roles of the nuclear envelope components, including nuclear pore complexes and nuclear lamina, are being deciphered in molecular detail there are opportunities to harness this knowledge for cancer therapeutics and biomarker development. In this Review, we summarize the progress that has been made in our understanding of the nuclear envelope and the implications of changes in this environment for cancer biology.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
50
|
de Las Heras JI, Batrakou DG, Schirmer EC. Cancer biology and the nuclear envelope: a convoluted relationship. Semin Cancer Biol 2012; 23:125-37. [PMID: 22311402 DOI: 10.1016/j.semcancer.2012.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 12/23/2022]
Abstract
Although its properties have long been used for both typing and prognosis of various tumors, the nuclear envelope (NE) itself and its potential roles in tumorigenesis are only beginning to be understood. Historically viewed as merely a protective barrier, the nuclear envelope is now linked to a wide range of functions. Nuclear membrane proteins connect the nucleus to the cytoskeleton on one side and to chromatin on the other. Several newly identified nuclear envelope functions associated with these connections intersect with cancer pathways. For example, the nuclear envelope could affect genome stability by tethering chromatin. Some nuclear envelope proteins affect cell cycle regulation by directly binding to the master regulator pRb, others by interacting with TGF-ß and Smad signaling cascades, and others by affecting the mitotic spindle. Finally, the NE directly affects cytoskeletal organization and can also influence cell migration in metastasis. In this review we discuss the link between the nuclear envelope and cellular defects that are common in cancer cells, and we show that NE proteins are often aberrantly expressed in tumors. The NE represents a potential reservoir of diagnostic and prognostic markers in cancer.
Collapse
Affiliation(s)
- Jose I de Las Heras
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|