1
|
Ghosh S, Jana R, Jana S, Basu R, Chatterjee M, Ranawat N, Das Sarma J. Differential expression of cellular prion protein (PrP C) in mouse hepatitis virus induced neuroinflammation. J Neurovirol 2024; 30:215-228. [PMID: 38922550 DOI: 10.1007/s13365-024-01215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
The cellular prion protein (PrPC) is an extracellular cell membrane protein. Due to its diversified roles, a definite role of PrPC has been difficult to establish. During viral infection, PrPC has been reported to play a pleiotropic role. Here, we have attempted to envision the function of PrPC in the neurotropic m-CoV-MHV-RSA59-induced model of neuroinflammation in C57BL/6 mice. A significant upregulation of PrPC at protein and mRNA levels was evident in infected mouse brains during the acute phase of neuroinflammation. Furthermore, investigation of the effect of MHV-RSA59 infection on PrPC expression in specific neuronal, microglial, and astrocytoma cell lines, revealed a differential expression of prion protein during neuroinflammation. Additionally, siRNA-mediated downregulation of prnp transcripts reduced the expression of viral antigen and viral infectivity in these cell lines. Cumulatively, our results suggest that PrPC expression significantly increases during acute MHV-RSA59 infection and that PrPC also assists in viral infectivity and viral replication.
Collapse
Affiliation(s)
- Satavisha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Rishika Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Soumen Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Optical NeuroImaging Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Rahul Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Madhurima Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Nishtha Ranawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Burke Neurological Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India.
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Mattoli MV, Giancipoli RG, Cocciolillo F, Calcagni ML, Taralli S. The Role of PET Imaging in Patients with Prion Disease: A Literature Review. Mol Imaging Biol 2024; 26:195-212. [PMID: 38302686 DOI: 10.1007/s11307-024-01895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Prion diseases are rare, rapidly progressive, and fatal incurable degenerative brain disorders caused by the misfolding of a normal protein called PrPC into an abnormal protein called PrPSc. Their highly variable clinical presentation mimics various degenerative and non-degenerative brain disorders, making diagnosis a significant challenge for neurologists. Currently, definitive diagnosis relies on post-mortem examination of nervous tissue to detect the pathogenic prion protein. The current diagnostic criteria are limited. While structural magnetic resonance imaging (MRI) remains the gold standard imaging modality for Creutzfeldt-Jakob disease (CJD) diagnosis, positron emission tomography (PET) using 18fluorine-fluorodeoxyglucose (18F-FDG) and other radiotracers have demonstrated promising potential in the diagnostic assessment of prion disease. In this context, a comprehensive and updated review exclusively focused on PET imaging in prion diseases is still lacking. We review the current value of PET imaging with 18F-FDG and non-FDG tracers in the diagnostic management of prion diseases. From the collected data, 18F-FDG PET mainly reveals cortical and subcortical hypometabolic areas in prion disease, although fails to identify typical pattern or laterality abnormalities to differentiate between genetic and sporadic prion diseases. Although the rarity of prion diseases limits the establishment of a definitive hypometabolism pattern, this review reveals some more prevalent 18F-FDG patterns associated with each disease subtype. Interestingly, in both sporadic and genetic prion diseases, the hippocampus does not show significant glucose metabolism alterations, appearing as a useful sign in the differential diagnosis with other neurodegenerative disease. In genetic prion disease forms, PET abnormality precedes clinical manifestation. Discordant diagnostic value for amyloid tracers among different prion disease subtypes was observed, needing further investigation. PET has emerged as a potential valuable tool in the diagnostic armamentarium for CJD. Its ability to visualize functional and metabolic brain changes provides complementary information to structural MRI, aiding in the early detection and confirmation of CJD.
Collapse
Affiliation(s)
- Maria Vittoria Mattoli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Nuclear Medicine Unit, Ospedale Santo Spirito, Pescara, Italy
| | - Romina Grazia Giancipoli
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| | - Fabrizio Cocciolillo
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy.
| | - Maria Lucia Calcagni
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
- Dipartimento Universitario Di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Silvia Taralli
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, UOC Di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168, Rome, Italy
| |
Collapse
|
3
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
4
|
Tranulis MA, Tryland M. The Zoonotic Potential of Chronic Wasting Disease-A Review. Foods 2023; 12:foods12040824. [PMID: 36832899 PMCID: PMC9955994 DOI: 10.3390/foods12040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were identified as the cause of a new prion disease in humans; variant Creutzfeldt-Jakob disease (vCJD). This sparked a food safety crisis and unprecedented protective measures to reduce human exposure to livestock prions. CWD continues to spread in North America, and now affects free-ranging and/or farmed cervids in 30 US states and four Canadian provinces. The recent discovery in Europe of previously unrecognized CWD strains has further heightened concerns about CWD as a food pathogen. The escalating CWD prevalence in enzootic areas and its appearance in a new species (reindeer) and new geographical locations, increase human exposure and the risk of CWD strain adaptation to humans. No cases of human prion disease caused by CWD have been recorded, and most experimental data suggest that the zoonotic risk of CWD is very low. However, the understanding of these diseases is still incomplete (e.g., origin, transmission properties and ecology), suggesting that precautionary measures should be implemented to minimize human exposure.
Collapse
Affiliation(s)
- Michael A. Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 As, Norway
- Correspondence: ; Tel.: +47-67232040
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| |
Collapse
|
5
|
Nuzhnyi EP, Abramycheva NY, Fedotova EY, Illarioshkin SN. Gerstmann–Sträussler–Scheinker syndrome with early-onset spinocerebellar ataxia phenotype. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2022. [DOI: 10.14412/2074-2711-2022-6-63-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Noguchi H, Koyama S, Yagita K, Shijo M, Matsuzono K, Hamasaki H, Kanemaru T, Okamoto T, Kai K, Aishima S, Abe K, Sasagasako N, Honda H. Silence of resident microglia in GPI anchorless prion disease and activation of microglia in Gerstmann-Sträussler-Scheinker disease and sporadic Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 2022; 82:38-48. [PMID: 36331509 DOI: 10.1093/jnen/nlac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GPI anchorless prion diseases (GPIALPs) show numerous coarse prion protein (PrP) deposits in the CNS but neuropil spongiform changes are mild and the incidence of dementia is low. Here, we examined differences in resident microglial phenotypes between GPIALP (D178fs25) and the other prion diseases Gerstmann-Sträussler-Scheinker (GSS) disease and sporadic Creutzfeldt-Jakob disease (sCJD) with respect to homeostasis and activation. Immunohistochemistry was performed on 2 GPIALP (D178fs25), 4 GSS (P102L), and 4 sCJD cases. Homeostatic microglia expressing TMEM119 and P2RY12 were preserved in GPIALP compared to GSS and sCJD. Microglia/macrophage activation in GSS and sCJD was associated with the extent of spongiform change. Immunoelectron microscopy revealed TMEM119 and P2RY12 in PrP plaque cores. Activated microglia/macrophages expressing HLA-DR and CD68 were predominant in GSS and sCJD whereas in GPIALP, homeostatic microglia were retained and activated microglia/macrophages were rarely observed. These data suggest that PrP deposition in GPIALP is less toxic and that microglia may be immune-tolerant to PrP deposition. This may be associated with milder tissue damage and a low incidence of dementia. Whereas microglia/macrophage activation is considered to be a reaction to tissue injury, this study shows that the degree of microglia/macrophage activity might influence the extent of tissue damage.
Collapse
Affiliation(s)
- Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Matsuzono
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaaki Kanemaru
- Department of Morphology Core Unit, Kyushu University Hospital, Fukuoka, Japan
| | | | - Keita Kai
- Department of Pathology, Saga University Hospital, Saga, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Abe
- National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro Muscular Center, National Hospital Organization Omuta National Hospital, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Wang Y, Hartmann K, Thies E, Mohammadi B, Altmeppen H, Sepulveda-Falla D, Glatzel M, Krasemann S. Loss of Homeostatic Microglia Signature in Prion Diseases. Cells 2022; 11:cells11192948. [PMID: 36230910 PMCID: PMC9563810 DOI: 10.3390/cells11192948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are neurodegenerative diseases that affect humans and animals. They are always fatal and, to date, no treatment exists. The hallmark of prion disease pathophysiology is the misfolding of an endogenous protein, the cellular prion protein (PrPC), into its disease-associated isoform PrPSc. Besides the aggregation and deposition of misfolded PrPSc, prion diseases are characterized by spongiform lesions and the activation of astrocytes and microglia. Microglia are the innate immune cells of the brain. Activated microglia and astrocytes represent a common pathological feature in neurodegenerative disorders. The role of activated microglia has already been studied in prion disease mouse models; however, it is still not fully clear how they contribute to disease progression. Moreover, the role of microglia in human prion diseases has not been thoroughly investigated thus far, and specific molecular pathways are still undetermined. Here, we review the current knowledge on the different roles of microglia in prion pathophysiology. We discuss microglia markers that are also dysregulated in other neurodegenerative diseases including microglia homeostasis markers. Data on murine and human brain tissues show that microglia are highly dysregulated in prion diseases. We highlight here that the loss of homeostatic markers may especially stand out.
Collapse
|
8
|
Goldman JS, Vallabh SM. Genetic counseling for prion disease: Updates and best practices. Genet Med 2022; 24:1993-2003. [PMID: 35819418 DOI: 10.1016/j.gim.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022] Open
Abstract
Prion disease is a rare, fatal, and often rapidly progressive neurodegenerative disease. Ten to fifteen percent of cases are caused by autosomal dominant gain-of-function variants in the prion protein gene, PRNP. Rarity and phenotypic variability complicate diagnosis, often obscuring family history and leaving families unprepared for the genetic implications of an index case. Several recent developments inspire this update in best practices for prion disease genetic counseling. A new prion-detection assay has transformed symptomatic diagnosis. Meanwhile, penetrance, age of onset, and duration of illness have been systematically characterized across PRNP variants in a global cohort. Clinically, the traditional genotype-phenotype correlation has weakened over time, and the term genetic prion disease may now better serve providers than the historical subtypes Creutzfeldt-Jakob disease, fatal familial insomnia, and Gerstmann-Sträussler-Scheinker disease. Finally, in the age of genetically targeted therapies, clinical trials for prion disease are being envisaged, and healthy at-risk individuals may be best positioned to benefit. Such individuals need to be able to access clinical services for genetic counseling and testing. Thus, this update on the genetics of prion disease and best practices for genetic counseling for this disease aims to provide the information needed to expand genetic counseling services.
Collapse
Affiliation(s)
| | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA; Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Prion Alliance, Cambridge, MA.
| |
Collapse
|
9
|
Ahn SJ, Lee HS, Moon J, Chu K. First familial cases of P102L Gerstmann–Sträussler–Scheinker syndrome in South Korea: diffusion-weighted imaging might reflect intrafamilial phenotypic variability. Neurol Sci 2022; 43:3419-3422. [DOI: 10.1007/s10072-022-05927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
|
10
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Eraña H, San Millán B, Díaz-Domínguez CM, Charco JM, Rodríguez R, Viéitez I, Pereda A, Yañez R, Geijo M, Navarro C, Perez de Nanclares G, Teijeira S, Castilla J. Description of the first Spanish case of Gerstmann-Sträussler-Scheinker disease with A117V variant: clinical, histopathological and biochemical characterization. J Neurol 2022; 269:4253-4263. [PMID: 35294616 PMCID: PMC9293843 DOI: 10.1007/s00415-022-11051-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Gerstmann–Sträussler–Scheinker disease (GSS) is a rare neurodegenerative illness that belongs to the group of hereditary or familial Transmissible Spongiform Encephalopathies (TSE). Due to the presence of different pathogenic alterations in the prion protein (PrP) coding gene, it shows an enhanced proneness to misfolding into its pathogenic isoform, leading to prion formation and propagation. This aberrantly folded protein is able to induce its conformation to the native counterparts forming amyloid fibrils and plaques partially resistant to protease degradation and showing neurotoxic properties. PrP with A117V pathogenic variant is the second most common genetic alteration leading to GSS and despite common phenotypic and neuropathological traits can be defined for each specific variant, strikingly heterogeneous manifestations have been reported for inter-familial cases bearing the same pathogenic variant or even within the same family. Given the scarcity of cases and their clinical, neuropathological, and biochemical variability, it is important to characterize thoroughly each reported case to establish potential correlations between clinical, neuropathological and biochemical hallmarks that could help to define disease subtypes. With that purpose in mind, this manuscript aims to provide a detailed report of the first Spanish GSS case associated with A117V variant including clinical, genetic, neuropathological and biochemical data, which could help define in the future potential disease subtypes and thus, explain the high heterogeneity observed in patients suffering from these maladies.
Collapse
Affiliation(s)
- Hasier Eraña
- Prion Research Lab, Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC BioGUNE), Derio, Spain
- Atlas Molecular Pharma S.L., Derio, Spain
| | - Beatriz San Millán
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain
| | - Carlos M Díaz-Domínguez
- Prion Research Lab, Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC BioGUNE), Derio, Spain
| | - Jorge M Charco
- Prion Research Lab, Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC BioGUNE), Derio, Spain
- Atlas Molecular Pharma S.L., Derio, Spain
| | - Rosa Rodríguez
- Servicio de Neurología, Complejo Hospitalario de Ourense, Ourense, Spain
| | - Irene Viéitez
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, Araba University Hospital, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Rosa Yañez
- Servicio de Neurología, Complejo Hospitalario de Ourense, Ourense, Spain
| | - Mariví Geijo
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Carmen Navarro
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Araba University Hospital, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Susana Teijeira
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain.
| | - Joaquín Castilla
- Prion Research Lab, Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC BioGUNE), Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
12
|
Kovač V, Čurin Šerbec V. Prion Protein: The Molecule of Many Forms and Faces. Int J Mol Sci 2022; 23:ijms23031232. [PMID: 35163156 PMCID: PMC8835406 DOI: 10.3390/ijms23031232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein most abundantly found in the outer membrane of neurons. Due to structural characteristics (a flexible tail and structured core), PrPC interacts with a wide range of partners. Although PrPC has been proposed to be involved in many physiological functions, only peripheral nerve myelination homeostasis has been confirmed as a bona fide function thus far. PrPC misfolding causes prion diseases and PrPC has been shown to mediate β-rich oligomer-induced neurotoxicity in Alzheimer’s and Parkinson’s disease as well as neuroprotection in ischemia. Upon proteolytic cleavage, PrPC is transformed into released and attached forms of PrP that can, depending on the contained structural characteristics of PrPC, display protective or toxic properties. In this review, we will outline prion protein and prion protein fragment properties as well as overview their involvement with interacting partners and signal pathways in myelination, neuroprotection and neurodegenerative diseases.
Collapse
|
13
|
Franco G, Lazzeri G, Di Fonzo A. Parkinsonism and ataxia. J Neurol Sci 2021; 433:120020. [PMID: 34711421 DOI: 10.1016/j.jns.2021.120020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Ataxia is not a common feature in Parkinson's disease. Nevertheless, some rare forms of parkinsonism have ataxia as one of the main features in their clinical picture, especially those with juvenile or early-onset. On the other side, in cerebellar degenerative diseases, parkinsonism might accompany the typical symptoms and even become predominant in some cases. Many disorders involving different neurological systems present with a movement phenomenology reflecting the underlying pattern of pathological involvement, such as neurodegeneration with brain iron accumulation, neurodegeneration associated with calcium deposition, and metabolic and mitochondrial disorders. The prototype of sporadic disorders that present with a constellation of symptoms due to the involvement of multiple Central Nervous System regions is multiple system atrophy, whose motor symptoms at onset can be cerebellar ataxia or parkinsonism. Clinical syndromes encompassing both parkinsonian and cerebellar features might represent a diagnostic challenge for neurologists. Recognizing acquired and potentially treatable causes responsible for complex movement disorders is of paramount importance, since an early diagnosis is essential to prevent permanent consequences. The present review aims to provide a pragmatic overview of the most common diseases characterized by the coexistence of cerebellar and parkinsonism features and suggests a possible diagnostic approach for both inherited and sporadic disorders. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Giulia Franco
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giulia Lazzeri
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.
| |
Collapse
|
14
|
Volatile Anesthetic Sevoflurane Precursor 1,1,1,3,3,3-Hexafluoro-2-Propanol (HFIP) Exerts an Anti-Prion Activity in Prion-Infected Culture Cells. Neurochem Res 2021; 46:2056-2065. [PMID: 34043140 PMCID: PMC8254714 DOI: 10.1007/s11064-021-03344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022]
Abstract
Prion disease is a neurodegenerative disorder with progressive neurologic symptoms and accelerated cognitive decline. The causative protein of prion disease is the prion protein (PrP), and structural transition of PrP from the normal helix rich form (PrPC) to the abnormal β-sheet rich form (PrPSc) occurs in prion disease. While so far numerous therapeutic agents for prion diseases have been developed, none of them are still useful. A fluorinated alcohol, hexafluoro isopropanol (HFIP), is a precursor to the inhalational anesthetic sevoflurane and its metabolites. HFIP is also known as a robust α-helix inducer and is widely used as a solvent for highly aggregated peptides. Here we show that the α-helix-inducing activity of HFIP caused the conformational transformation of the fibrous structure of PrP into amorphous aggregates in vitro. HFIP added to the ScN2a cell medium, which continuously expresses PrPSc, reduced PrPSc protease resistance after 24-h incubation. It was also clarified that ScN2a cells are more susceptible to HFIP than any of the cells being compared. Based on these findings, HFIP is expected to develop as a therapeutic agent for prion disease.
Collapse
|
15
|
Abstract
This review describes a group of diseases known as the transmissible spongiform encephalopathies (TSEs), which affect animals and humans. Examination of affected brain tissue suggests that these diseases are caused by the acquisition and deposition of prion protein (PrP). Creutzfeldt-Jakob disease (CJD) is the most important form of TSE in humans with at least four different varieties of the disease. Variant CJD (vCJD), a new form of the disease found in the UK, has several features that differ from the classical forms including early age of onset, longer duration of disease, psychiatric presentation (for example, depression) and extensive florid plaque development in the brain. About 10 per cent of patients with CJD exhibit visual symptoms at disease presentation and approximately 50 per cent during the course of the disease. The most commonly reported visual symptoms include diplopia, supranuclear palsies, complex visual disturbances, homonymous visual field defects, hallucinations and cortical blindness. Saccadic and smooth pursuit movements appear to be more rarely affected. The agent causing vCJD accumulates in lymphoid tissue such as the spleen and tonsils. The cornea has lymphoid tissue in the form of corneal dendritic cells that are important in the regulation of the immune response in the anterior segment of the eye. The presence of these cells in the cornea has raised the possibility of transmission between patients via optical devices that contact the eye. Although such transmission is theoretically possible it remains highly improbable.
Collapse
|
16
|
Huntington's disease: lessons from prion disorders. J Neurol 2021; 268:3493-3504. [PMID: 33625583 DOI: 10.1007/s00415-021-10418-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Decades of research on the prion protein and its associated diseases have caused a paradigm shift in our understanding of infectious agents. More recent years have been marked by a surge of studies supporting the application of these findings to a broad array of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here, we present evidence to suggest that Huntington's disease, a monogenic disorder of the central nervous system, shares features with prion disorders and that, it too, may be governed by similar mechanisms. We further posit that these similarities could suggest that, like other common neurodegenerative disorders, sporadic forms of Huntington's disease may exist.
Collapse
|
17
|
Nomura T, Iwata I, Naganuma R, Matsushima M, Satoh K, Kitamoto T, Yabe I. A patient with spastic paralysis finally diagnosed as V180I genetic Creutzfeldt-Jakob disease 9 years after onset. Prion 2020; 14:226-231. [PMID: 32938301 PMCID: PMC7518757 DOI: 10.1080/19336896.2020.1823179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/03/2022] Open
Abstract
Genetic Creutzfeldt-Jakob disease (gCJD) with a mutation in codon 180 of the prion protein gene (V180I gCJD) is the most common form of gCJD in Japan, but only a few cases have been reported in Europe and the United States. It is clinically characterized by occurring in the elderly and presenting as slowly progressive dementia, although it generally shows less cerebellar and pyramidal symptoms than sporadic CJD. Here, we report a patient with V180I gCJD who initially presented with slowly progressive spastic paralysis with neither cerebrospinal fluid (CSF) nor magnetic resonance imaging (MRI) abnormalities. His symptoms progressed gradually, and after 9 years, he displayed features more typical of CJD. Diffusion-weighted MRI revealed high-intensity signals in the cortical gyrus, and there was a marked increase of 14-3-3 protein and total tau protein in the CSF, but he was negative for the real-time quaking-induced conversion assay. Although the time course was more consistent with Gerstmann-Sträussler-Scheinker disease than CJD, genetic testing revealed V180I gCJD. This is the first report of a patient with V180I gCJD who initially presented with spastic paralysis, and also the first to reveal that it took 9 years from disease onset for cortical dysfunction to develop and for MRI and CSF abnormalities to be detectable. In conclusion, we should screen for V180I gCJD in elderly patients presenting with slowly progressive spastic paralysis.
Collapse
Affiliation(s)
- Taichi Nomura
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ikuko Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoji Naganuma
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuya Satoh
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences Nagasaki University, Nagasaki, Japan
| | - Tetsuyuki Kitamoto
- Center for Prion Diseases, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
18
|
Slanzi A, Iannoto G, Rossi B, Zenaro E, Constantin G. In vitro Models of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:328. [PMID: 32528949 PMCID: PMC7247860 DOI: 10.3389/fcell.2020.00328] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are progressive degenerative conditions characterized by the functional deterioration and ultimate loss of neurons. These incurable and debilitating diseases affect millions of people worldwide, and therefore represent a major global health challenge with severe implications for individuals and society. Recently, several neuroprotective drugs have failed in human clinical trials despite promising pre-clinical data, suggesting that conventional cell cultures and animal models cannot precisely replicate human pathophysiology. To bridge the gap between animal and human studies, three-dimensional cell culture models have been developed from human or animal cells, allowing the effects of new therapies to be predicted more accurately by closely replicating some aspects of the brain environment, mimicking neuronal and glial cell interactions, and incorporating the effects of blood flow. In this review, we discuss the relative merits of different cerebral models, from traditional cell cultures to the latest high-throughput three-dimensional systems. We discuss their advantages and disadvantages as well as their potential to investigate the complex mechanisms of human neurodegenerative diseases. We focus on in vitro models of the most frequent age-related neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease and prion disease, and on multiple sclerosis, a chronic inflammatory neurodegenerative disease affecting young adults.
Collapse
Affiliation(s)
- Anna Slanzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Iannoto
- Department of Medicine, University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zenaro
- Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Verona, Italy.,Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|
19
|
Roseman GP, Wu B, Wadolkowski MA, Harris DA, Millhauser GL. Intrinsic toxicity of the cellular prion protein is regulated by its conserved central region. FASEB J 2020; 34:8734-8748. [PMID: 32385908 DOI: 10.1096/fj.201902749rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The conserved central region (CR) of PrPC has been hypothesized to serve as a passive linker connecting the protein's toxic N-terminal and globular C-terminal domains. Yet, deletion of the CR causes neonatal fatality in mice, implying the CR possesses a protective function. The CR encompasses the regulatory α-cleavage locus, and additionally facilitates a regulatory metal ion-promoted interaction between the PrPC N- and C-terminal domains. To elucidate the role of the CR and determine why CR deletion generates toxicity, we designed PrPC constructs wherein either the cis-interaction or α-cleavage are selectively prevented. These constructs were interrogated using nuclear magnetic resonance, electrophysiology, and cell viability assays. Our results demonstrate the CR is not a passive linker and the native sequence is crucial for its protective role over the toxic N-terminus, irrespective of α-cleavage or the cis-interaction. Additionally, we find that the CR facilitates homodimerization of PrPC , attenuating the toxicity of the N-terminus.
Collapse
Affiliation(s)
- Graham P Roseman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark A Wadolkowski
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
20
|
Bandyopadhyay A, Bose I, Chattopadhyay K. Osmolytes ameliorate the effects of stress in the absence of the heat shock protein Hsp104 in Saccharomyces cerevisiae. PLoS One 2019; 14:e0222723. [PMID: 31536559 PMCID: PMC6752772 DOI: 10.1371/journal.pone.0222723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Aggregation of the prion protein has strong implications in the human prion disease. Sup35p is a yeast prion, and has been used as a model protein to study the disease mechanism. We have studied the pattern of Sup35p aggregation inside live yeast cells under stress, by using confocal microscopy, fluorescence activated cell sorting and western blotting. Heat shock proteins are a family of proteins that are produced by yeast cells in response to exposure to stressful conditions. Many of the proteins behave as chaperones to combat stress-induced protein misfolding and aggregation. In spite of this, yeast also produce small molecules called osmolytes during stress. In our work, we tried to find the reason as to why yeast produce osmolytes and showed that the osmolytes are paramount to ameliorate the long-term effects of lethal stress in Saccharomyces cerevisiae, either in the presence or absence of Hsp104p.
Collapse
Affiliation(s)
- Arnab Bandyopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Indrani Bose
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
- * E-mail: (KC); (IB)
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (KC); (IB)
| |
Collapse
|
21
|
Gandhi J, Antonelli AC, Afridi A, Vatsia S, Joshi G, Romanov V, Murray IVJ, Khan SA. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev Neurosci 2019; 30:339-358. [PMID: 30742586 DOI: 10.1515/revneuro-2016-0035] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
Protein folding is a complex, multisystem process characterized by heavy molecular and cellular footprints. Chaperone machinery enables proper protein folding and stable conformation. Other pathways concomitant with the protein folding process include transcription, translation, post-translational modifications, degradation through the ubiquitin-proteasome system, and autophagy. As such, the folding process can go awry in several different ways. The pathogenic basis behind most neurodegenerative diseases is that the disruption of protein homeostasis (i.e. proteostasis) at any level will eventually lead to protein misfolding. Misfolded proteins often aggregate and accumulate to trigger neurotoxicity through cellular stress pathways and consequently cause neurodegenerative diseases. The manifestation of a disease is usually dependent on the specific brain region that the neurotoxicity affects. Neurodegenerative diseases are age-associated, and their incidence is expected to rise as humans continue to live longer and pursue a greater life expectancy. We presently review the sequelae of protein misfolding and aggregation, as well as the role of these phenomena in several neurodegenerative diseases including Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, transmissible spongiform encephalopathies, and spinocerebellar ataxia. Strategies for treatment and therapy are also conferred with respect to impairing, inhibiting, or reversing protein misfolding.
Collapse
Affiliation(s)
- Jason Gandhi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA.,Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies
| | - Anthony C Antonelli
- Department of Pathology, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA
| | - Adil Afridi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA
| | - Sohrab Vatsia
- Department of Cardiothoracic Surgery, Lenox Hill Hospital, 130 East 77th Street, New York, NY 10075, USA
| | - Gunjan Joshi
- Department of Internal Medicine, Stony Brook Southampton Hospital, 240 Meeting House Lane, Southampton, NY 11968, USA
| | - Victor Romanov
- Department of Urology, Health Sciences Center T9-040, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794-8093, USA
| | - Ian V J Murray
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| | - Sardar Ali Khan
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, 101 Nicolls Road, Health Sciences Center, Stony Brook, NY 11794-8434, USA.,Department of Urology, Health Sciences Center T9-040, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794-8093, USA
| |
Collapse
|
22
|
Nascent β Structure in the Elongated Hydrophobic Region of a Gerstmann-Sträussler-Scheinker PrP Allele. J Mol Biol 2019; 431:2599-2611. [PMID: 31034890 DOI: 10.1016/j.jmb.2019.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/23/2022]
Abstract
Prion diseases are neurodegenerative disorders caused by the misfolding of the cellular prion protein (PrPC). Gerstmann-Sträussler-Scheinker syndrome is an inherited prion disease with one early-onset allele (HRdup) containing an eight-amino-acid insertion; this LGGLGGYV insert is positioned after valine 129 (human PrPC sequence) in a hydrophobic tract in the natively disordered region. Here we have characterized the structure and explored the molecular motions and dynamics of HRdup PrP and a control allele. High-resolution NMR data suggest that the core of HRdup has a canonical PrPC structure, yet a nascent β-structure is observed in the flexible elongated hydrophobic region of HRdup. In addition, using mouse PrPC sequence, we observed that a methionine/valine polymorphism at codon 128 (equivalent of methionine/valine 129 in human sequence) and oligomerization caused by high protein concentration affects conformational exchange dynamics at residue G130. We hypothesize that with the β-structure at the N-terminus, the hydrophobic region of HRdup can adopt a fully extended configuration and fold back to form an extended β-sheet with the existing β-sheet. We propose that these structures are early chemical events in disease pathogenesis.
Collapse
|
23
|
Zhao MM, Feng LS, Hou S, Shen PP, Cui L, Feng JC. Gerstmann-Sträussler-Scheinker disease: A case report. World J Clin Cases 2019; 7:389-395. [PMID: 30746381 PMCID: PMC6369391 DOI: 10.12998/wjcc.v7.i3.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gerstmann-Sträussler-Scheinker (GSS) disease is an inherited prion disease that is clinically characterized by the early onset of progressive cerebellar ataxia. The incidence of GSS is extremely low and it is particularly rare in China. Therefore, clinicians may easily confuse this disease with other diseases that also cause ataxia, resulting in its under-diagnosis or misdiagnosis.
CASE SUMMARY Here, we report the first case of genetically diagnosed GSS disease in Northeast China. The patient exhibited typical ataxia and dysarthria 2.5 years after symptom onset. However, magnetic resonance imaging of the brain and spinal cord revealed a normal anatomy. Screening results for the spinocerebellar ataxia gene were also negative. We thus proposed to expand the scope of genetic screening to include over 200 mutations that can cause ataxia. A final diagnosis of GSS was presented and the patient was followed for more than 3.5 years, during which we noted imaging abnormalities. The patient gradually exhibited decorticate posturing and convulsions. We recommended administration of oral sodium valproate, which resolved the convulsions.
CONCLUSION Patients with inherited ataxia should be considered for a diagnosis of GSS via genetic testing at an early disease stage.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Liang-Shu Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Ping-Ping Shen
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jia-Chun Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
24
|
Analysis of 22 Years of Surveillance for Prion Diseases in Slovenia, 1996 to 2017. Zdr Varst 2018; 57:227-233. [PMID: 30294364 PMCID: PMC6172523 DOI: 10.2478/sjph-2018-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction The objective was to present the results of surveillance of prion diseases in Slovenia that was established in 1996 and then to assess the interdisciplinary approach according to the algorithm of case management and reporting data to the National Register at the National Institute of Public Health. Methods A descriptive study of Creutzfeldt-Jakob disease (CJD) recorded in the period from 1996 to 2017 was carried out. Results A total of 123 cases of prion disease were notified between 1996 and 2017. Out of these, 68 were recorded and confirmed by autopsy as sporadic CJD with an average incidence rate of 1,5 cases per million population per year. In one case a gene analysis showed mutation E200K in prion protein gene, PRNP. Two cases of the Gerstman-Sträussler Scheinker syndrome and one clinical case of fatal insomnia with new PRNP mutation, N181S, were notified. Diagnostic value of protein 14-3-3 analysis in the liquor reached 82% sensitivity and 71% specificity. 25 cases of notified clinically possible/probable CJD were disproved after autopsy. In eleven notified possible CJD cases the autopsy had not been performed. Variant CJD has not yet been proven in Slovenia. Conclusion Incidence rates were comparable with other European countries. Completeness of reporting and proper management of CJD cases according to the algorithm of reporting, management and case confirmation would need some improvement. A well-functioning surveillance system, including timely notifications, would enable an appropriate epidemiological investigation and an effective response to public health risks, thus the awareness of prion diseases should not decline.
Collapse
|
25
|
Abstract
Genetic prion diseases (gPrDs) caused by mutations in the prion protein gene (PRNP) have been classified as genetic Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, or fatal familial insomnia. Mutations in PRNP can be missense, nonsense, and/or octapeptide repeat insertions or, possibly, deletions. These mutations can produce diverse clinical features. They may also show varying ancillary testing results and neuropathological findings. Although the majority of gPrDs have a rapid progression with a short survival time of a few months, many also present as ataxic or parkinsonian disorders, which have a slower decline over a few to several years. A few very rare mutations manifest as neuropsychiatric disorders, with systemic symptoms that include gastrointestinal disorders and neuropathy; these forms can progress over years to decades. In this review, we classify gPrDs as rapid, slow, or mixed types based on their typical rate of progression and duration, and we review the broad spectrum of phenotypes manifested by these diseases.
Collapse
Affiliation(s)
- Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Leonel T Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, 05403-900, Brazil
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Sven A Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
26
|
Wang J, Xiao K, Zhou W, Gao C, Chen C, Shi Q, Dong XP. A Chinese patient of P102L Gerstmann-Sträussler-Scheinker disease contains three other disease-associated mutations in SYNE1. Prion 2018; 12:150-155. [PMID: 29509064 DOI: 10.1080/19336896.2018.1447733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gerstmann-Sträussler-Scheinker disease (GSS) with the P102L mutation in PRNP gene is characterized with progressive cerebellar dysfunction clinically and PrPSc plaques neurologically. Due to the cerebellar ataxia in the early stage, GSS P102L is often misdiagnosed as other neurodegenerative disorders. We presented here a 49-year-old female patient with proven P102L PRNP mutation, and three heterologous mutations in hereditary ataxias associated gene SYNE1, including p.V3643L, p.M3376V and p.T2860A. The patient appeared progressive unsteady gait in early stage and developed the Creutzfeldt-Jacob disease (CJD) - associated clinical manifestations, including progressive dementia, myoclonus, pyramidal and extrapyramidal signs. She is still alive but with akinetic mutism 21 months after onset. Observation of intense signal changes in cortical regions (cortical ribboning) in diffusion weighted imaging (DWI) MRI scanning and positive protein 14-3-3 in cerebrospinal fluid (CSF) proposed the diagnosis of sporadic CJD. The final diagnosis of P102L GSS was made after PRNP sequencing.
Collapse
Affiliation(s)
- Jing Wang
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University) , National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Chang-Bai Rd 155, Beijing , China
| | - Kang Xiao
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University) , National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Chang-Bai Rd 155, Beijing , China
| | - Wei Zhou
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University) , National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Chang-Bai Rd 155, Beijing , China
| | - Chen Gao
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University) , National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Chang-Bai Rd 155, Beijing , China
| | - Cao Chen
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University) , National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Chang-Bai Rd 155, Beijing , China
| | - Qi Shi
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University) , National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Chang-Bai Rd 155, Beijing , China
| | - Xiao-Ping Dong
- a State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University) , National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Chang-Bai Rd 155, Beijing , China.,b Center of Global Public Health , Chinese Center for Disease Control and Prevention , Chang-Bai Rd 155, Beijing , China
| |
Collapse
|
27
|
Matamoros-Angles A, Gayosso LM, Richaud-Patin Y, di Domenico A, Vergara C, Hervera A, Sousa A, Fernández-Borges N, Consiglio A, Gavín R, López de Maturana R, Ferrer I, López de Munain A, Raya Á, Castilla J, Sánchez-Pernaute R, Del Río JA. iPS Cell Cultures from a Gerstmann-Sträussler-Scheinker Patient with the Y218N PRNP Mutation Recapitulate tau Pathology. Mol Neurobiol 2018; 55:3033-3048. [PMID: 28466265 PMCID: PMC5842509 DOI: 10.1007/s12035-017-0506-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 01/20/2023]
Abstract
Gerstmann-Sträussler-Scheinker (GSS) syndrome is a fatal autosomal dominant neurodegenerative prionopathy clinically characterized by ataxia, spastic paraparesis, extrapyramidal signs and dementia. In some GSS familiar cases carrying point mutations in the PRNP gene, patients also showed comorbid tauopathy leading to mixed pathologies. In this study we developed an induced pluripotent stem (iPS) cell model derived from fibroblasts of a GSS patient harboring the Y218N PRNP mutation, as well as an age-matched healthy control. This particular PRNP mutation is unique with very few described cases. One of the cases presented neurofibrillary degeneration with relevant Tau hyperphosphorylation. Y218N iPS-derived cultures showed relevant astrogliosis, increased phospho-Tau, altered microtubule-associated transport and cell death. However, they failed to generate proteinase K-resistant prion. In this study we set out to test, for the first time, whether iPS cell-derived neurons could be used to investigate the appearance of disease-related phenotypes (i.e, tauopathy) identified in the GSS patient.
Collapse
Affiliation(s)
- Andreu Matamoros-Angles
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Lucía Mayela Gayosso
- Stem cells and neural repair laboratory, Fundación Inbiomed, San Sebastian, Gipuzkoa, Spain
- Proteomics unit (Prion lab), CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Yvonne Richaud-Patin
- Centre de Medicina Regenerativa de Barcelona, c/ Dr. Aiguader 88, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain
| | - Angelique di Domenico
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Dept. Patologia i Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Vergara
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Laboratory of Histology, Neuroanatomy and Neuropathology (CP 620), ULB Neuroscience Institute. Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Amaya Sousa
- Stem cells and neural repair laboratory, Fundación Inbiomed, San Sebastian, Gipuzkoa, Spain
| | - Natalia Fernández-Borges
- Proteomics unit (Prion lab), CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
- CISA-INIA, Center for Animal Health Research, Madrid, Spain
| | - Antonella Consiglio
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Dept. Patologia i Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rosalina Gavín
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | | | - Isidro Ferrer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Dept. Patologia i Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain
| | - Adolfo López de Munain
- Instituto Biodonostia-Hospital Universitario Donostia, San Sebastian, Gipuzkoa, Spain
- Neurosciences Department, University of the Basque Country UPV-EHU, Bilbao, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Sebastian, Gipuzkoa, Spain
| | - Ángel Raya
- Centre de Medicina Regenerativa de Barcelona, c/ Dr. Aiguader 88, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Joaquín Castilla
- Proteomics unit (Prion lab), CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| | - Rosario Sánchez-Pernaute
- Stem cells and neural repair laboratory, Fundación Inbiomed, San Sebastian, Gipuzkoa, Spain.
- Andalusian Initiative for Advanced Therapies, Junta de Andalusia, Seville, Spain.
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Zerr I, Schmitz M, Karch A, Villar-Piqué A, Kanata E, Golanska E, Díaz-Lucena D, Karsanidou A, Hermann P, Knipper T, Goebel S, Varges D, Sklaviadis T, Sikorska B, Liberski PP, Santana I, Ferrer I, Zetterberg H, Blennow K, Calero O, Calero M, Ladogana A, Sánchez-Valle R, Baldeiras I, Llorens F. Cerebrospinal fluid neurofilament light levels in neurodegenerative dementia: Evaluation of diagnostic accuracy in the differential diagnosis of prion diseases. Alzheimers Dement 2018; 14:751-763. [PMID: 29391125 DOI: 10.1016/j.jalz.2017.12.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurofilament light (NFL) levels in the cerebrospinal fluid are increased in several neurodegenerative dementias. However, their diagnostic accuracy in the differential diagnostic context is unknown. METHODS Cerebrospinal fluid NFL levels were quantified in nonprimarily neurodegenerative neurological and psychiatric diseases (n = 122), mild cognitive impairment (n = 48), Alzheimer's disease (n = 108), dementia with Lewy bodies/Parkinson's disease dementia (n = 53), vascular dementia (n = 46), frontotemporal dementia (n = 41), sporadic Creutzfeldt-Jakob disease (sCJD, n = 132), and genetic prion diseases (n = 182). RESULTS The highest NFL levels were detected in sCJD, followed by vascular dementia, frontotemporal dementia, dementia with Lewy bodies/Parkinson's disease dementia, Alzheimer's disease, and mild cognitive impairment. In sCJD, NFL levels correlated with cerebrospinal fluid tau and disease duration. NFL levels were able to differentiate sCJD from nonprimarily neurodegenerative neurological and psychiatric diseases (area under the curve = 0.99, 95% confidence interval: 0.99-1) and from the other diagnostic groups showing cognitive impairment/dementia of a non-CJD etiology (area under the curve = 0.90, 95% confidence interval: 0.87-0.92). Compared to nonprimarily neurodegenerative neurological and psychiatric diseases, NFL was also elevated in genetic prion diseases associated with the E200K, V210I, P102L, and D178N prion protein gene mutations. DISCUSSION Increased NFL levels are a common feature in neurodegenerative dementias.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - André Karch
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anna Villar-Piqué
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Daniela Díaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain
| | - Aikaterini Karsanidou
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Peter Hermann
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Tobias Knipper
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Stefan Goebel
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Daniela Varges
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Isabel Santana
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, CNC- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain; Senior Consultant, Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Olga Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain; Alzheimer Disease Research Unit, CIEN Foundation; Queen Sofia Foundation Alzheimer Center; Chronic Disease Programme Carlos III Institute of Health, Madrid, Spain
| | - Miguel Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain; Alzheimer Disease Research Unit, CIEN Foundation; Queen Sofia Foundation Alzheimer Center; Chronic Disease Programme Carlos III Institute of Health, Madrid, Spain
| | - Anna Ladogana
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Inês Baldeiras
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, CNC- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Franc Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
29
|
Mercer RCC, Daude N, Dorosh L, Fu ZL, Mays CE, Gapeshina H, Wohlgemuth SL, Acevedo-Morantes CY, Yang J, Cashman NR, Coulthart MB, Pearson DM, Joseph JT, Wille H, Safar JG, Jansen GH, Stepanova M, Sykes BD, Westaway D. A novel Gerstmann-Sträussler-Scheinker disease mutation defines a precursor for amyloidogenic 8 kDa PrP fragments and reveals N-terminal structural changes shared by other GSS alleles. PLoS Pathog 2018; 14:e1006826. [PMID: 29338055 PMCID: PMC5786331 DOI: 10.1371/journal.ppat.1006826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/26/2018] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
To explore pathogenesis in a young Gerstmann-Sträussler-Scheinker Disease (GSS) patient, the corresponding mutation, an eight-residue duplication in the hydrophobic region (HR), was inserted into the wild type mouse PrP gene. Transgenic (Tg) mouse lines expressing this mutation (Tg.HRdup) developed spontaneous neurologic syndromes and brain extracts hastened disease in low-expressor Tg.HRdup mice, suggesting de novo formation of prions. While Tg.HRdup mice exhibited spongiform change, PrP aggregates and the anticipated GSS hallmark of a proteinase K (PK)-resistant 8 kDa fragment deriving from the center of PrP, the LGGLGGYV insertion also imparted alterations in PrP's unstructured N-terminus, resulting in a 16 kDa species following thermolysin exposure. This species comprises a plausible precursor to the 8 kDa PK-resistant fragment and its detection in adolescent Tg.HRdup mice suggests that an early start to accumulation could account for early disease of the index case. A 16 kDa thermolysin-resistant signature was also found in GSS patients with P102L, A117V, H187R and F198S alleles and has coordinates similar to GSS stop codon mutations. Our data suggest a novel shared pathway of GSS pathogenesis that is fundamentally distinct from that producing structural alterations in the C-terminus of PrP, as observed in other prion diseases such as Creutzfeldt-Jakob Disease and scrapie. Prion diseases can be sporadic, infectious or genetic. The central event of all prion diseases is the structural conversion of the cellular prion protein (PrPC) to its disease associated conformer, PrPSc. Gerstmann-Sträussler-Scheinker Disease (GSS) is a genetic prion disease presenting as a multi-systemic neurological syndrome. A novel mutation, an eight amino acid insertion, was discovered in a young GSS patient. We created transgenic mice expressing this mutation and found that they recapitulate key features of the disease; namely PrP deposition in the brain and a low molecular weight proteinase K (PK) resistant internal PrP fragment. While structural investigations did not reveal a gross alteration in the conformation of this mutant PrP, the insertion lying at the boundary of the globular domain causes alterations in the unstructured amino terminal portion of the protein such that it becomes resistant to digestion by the enzyme thermolysin. We demonstrate by kinetic analysis and sequential digestion that this novel thermolysin resistant species is a precursor to the pathognomonic PK resistant fragment. Analysis of samples from other GSS patients revealed this same signature, suggesting a common molecular pathway.
Collapse
Affiliation(s)
- Robert C. C. Mercer
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Lyudmyla Dorosh
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ze-Lin Fu
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Charles E. Mays
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Hristina Gapeshina
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene L. Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Neil R. Cashman
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael B. Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Dawn M. Pearson
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey T. Joseph
- Hotchkiss Brain Institute and Calgary Laboratory Services, University of Calgary, Calgary, Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiri G. Safar
- Departments of Pathology and Neurology, School of Medicine Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gerard H. Jansen
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
- Division of Anatomical Pathology, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Stepanova
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Brian D. Sykes
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
30
|
Takada LT, Kim MO, Metcalf S, Gala II, Geschwind MD. Prion disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:441-464. [DOI: 10.1016/b978-0-444-64076-5.00029-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
What Is Our Current Understanding of PrP Sc-Associated Neurotoxicity and Its Molecular Underpinnings? Pathogens 2017; 6:pathogens6040063. [PMID: 29194372 PMCID: PMC5750587 DOI: 10.3390/pathogens6040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
The prion diseases are a collection of fatal, transmissible neurodegenerative diseases that cause rapid onset dementia and ultimately death. Uniquely, the infectious agent is a misfolded form of the endogenous cellular prion protein, termed PrPSc. Despite the identity of the molecular agent remaining the same, PrPSc can cause a range of diseases with hereditary, spontaneous or iatrogenic aetiologies. However, the link between PrPSc and toxicity is complex, with subclinical cases of prion disease discovered, and prion neurodegeneration without obvious PrPSc deposition. The toxic mechanisms by which PrPSc causes the extensive neuropathology are still poorly understood, although recent advances are beginning to unravel the molecular underpinnings, including oxidative stress, disruption of proteostasis and induction of the unfolded protein response. This review will discuss the diseases caused by PrPSc toxicity, the nature of the toxicity of PrPSc, and our current understanding of the downstream toxic signaling events triggered by the presence of PrPSc.
Collapse
|
32
|
Keuss SE, Ironside JW, O’Riordan J. Gerstmann-Sträussler-Scheinker disease with atypical presentation. BMJ Case Rep 2017; 2017:bcr-2017-220907. [PMID: 29092967 PMCID: PMC5695393 DOI: 10.1136/bcr-2017-220907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 11/04/2022] Open
Abstract
We describe a 37-year-old woman who presented with progressive deafness, visual loss and ataxia. She latterly developed neuropsychiatric problems, including cognitive impairment, paranoid delusions and episodes of altered consciousness. She was found to be heterozygous for the Q212P mutation in the prion protein gene. She died over a decade after initial presentation and a diagnosis of prion disease was confirmed at postmortem.
Collapse
Affiliation(s)
- Sarah E Keuss
- Department of Neurology, Ninewells Hospital, Dundee, Tayside, UK
| | - James W Ironside
- Department of Clinical Brain Sciences, National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Edinburgh, UK
| | | |
Collapse
|
33
|
Marino S, Morabito R, De Salvo S, Bonanno L, Bramanti A, Pollicino P, Giorgianni R, Bramanti P. Quantitative, functional MRI and neurophysiological markers in a case of Gerstmann-Sträussler-Scheinker syndrome. FUNCTIONAL NEUROLOGY 2017; 32:153-158. [PMID: 29042004 DOI: 10.11138/fneur/2017.32.3.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gerstmann-Sträussler-Scheinker syndrome (GSS) is an inherited autosomal dominant prion disease, caused by a codon 102 proline to leucine substitution (P102L) in the prion protein gene (PRNP). We describe the case of a 40-year-old male, affected by a slowly progressive gait disturbance, leg weakness and cognitive impairment. Genomic DNA revealed a point mutation of PRNP at codon 102, resulting in P102L, and the diagnosis of GSS was confirmed. Somatosensory evoked potentials showed alterations of principal parameters, particularly in the right upper and lower limbs. Laser-evoked potentials were indicative of nociceptive system impairment, especially in the right upper and lower limbs. Conventional magnetic resonance imaging (MRI) revealed marked atrophy of the vermis and cerebellar hemispheres and mild atrophy of the middle cerebellar peduncles and brainstem, as confirmed by a brain volume automatic analysis. Resting-state functional MRI showed increased functional connectivity in the bilateral visual cortex, and decreased functional connectivity in the bilateral frontal pole and supramarginal and precentral gyrus. Albeit limited to a single case, this is the first study to assess structural and functional connectivity in GSS using a multimodal approach.
Collapse
|
34
|
Genetic human prion disease modelled in PrP transgenic Drosophila. Biochem J 2017; 474:3253-3267. [PMID: 28814578 PMCID: PMC5606059 DOI: 10.1042/bcj20170462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022]
Abstract
Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt–Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrPSc, an abnormal isomer of the normal host protein PrPC, in the brain of affected individuals. PrPSc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila. We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila. Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host.
Collapse
|
35
|
Smid J, Studart A, Landemberger MC, Machado CF, Nóbrega PR, Canedo NHS, Schultz RR, Naslavsky MS, Rosemberg S, Kok F, Chimelli L, Martins VR, Nitrini R. High phenotypic variability in Gerstmann-Sträussler-Scheinker disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 75:331-338. [PMID: 28658400 DOI: 10.1590/0004-282x20170049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Gerstmann-Sträussler-Scheinker is a genetic prion disease and the most common mutation is p.Pro102Leu. We report clinical, molecular and neuropathological data of seven individuals, belonging to two unrelated Brazilian kindreds, carrying the p.Pro102Leu. Marked differences among patients were observed regarding age at onset, disease duration and clinical presentation. In the first kindred, two patients had rapidly progressive dementia and three exhibited predominantly ataxic phenotypes with variable ages of onset and disease duration. In this family, age at disease onset in the mother and daughter differed by 39 years. In the second kindred, different phenotypes were also reported and earlier ages of onset were associated with 129 heterozygosis. No differences were associated with apoE genotype. In these kindreds, the codon 129 polymorphism could not explain the clinical variability and 129 heterozygosis was associated with earlier disease onset. Neuropathological examination in two patients confirmed the presence of typical plaques and PrPsc immunopositivity.
Collapse
Affiliation(s)
- Jerusa Smid
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
| | - Adalberto Studart
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
| | | | | | - Paulo Ribeiro Nóbrega
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Neurologia, Fortaleza CE Brasil
| | | | - Rodrigo Rizek Schultz
- Universidade Federal de São Paulo, Seção de Neurologia Comportamental, São Paulo SP, Brasil
| | - Michel Satya Naslavsky
- Universidade de São Paulo, Instituto de Biociências, Centro de Estudos do Genoma Humano, São Paulo SP, Brasil
| | - Sérgio Rosemberg
- Universidade de São Paulo, Departamento de Patologia, Divisão de Neuropatologia, São Paulo SP, Brasil
| | - Fernando Kok
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
| | - Leila Chimelli
- Universidade Federal do Rio de Janeiro, Departamento de Patologia, Rio de Janeiro RJ, Brasil
| | | | - Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
| |
Collapse
|
36
|
Senesi M, Lewis V, Kim JH, Adlard PA, Finkelstein DI, Collins SJ. In vivo prion models and the disconnection between transmissibility and neurotoxicity. Ageing Res Rev 2017; 36:156-164. [PMID: 28450269 DOI: 10.1016/j.arr.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 02/01/2023]
Abstract
The primary causative event in the development of prion diseases is the misfolding of the normal prion protein (PrPC) into an ensemble of altered conformers (herein collectively denoted as PrPSc) that accumulate in the brain. Prominent amongst currently unresolved key aspects underpinning prion disease pathogenesis is whether transmission and toxicity are sub-served by different molecular species of PrPSc, which may directly impact on the development of effective targeted treatments. The use of murine models of prion disease has been of fundamental importance for probing the relationship between hypothesised "neurotoxic" and "transmissible" PrPSc and the associated kinetic profiles of their production during disease evolution, but unfortunately consensus has not been achieved. Recent in vivo studies have led to formulation of the "two-phase" hypothesis, which postulates that there is first an exponential increase in transmitting PrPSc species followed by an abrupt transition to propagation of neurotoxic PrPSc species. Such observations however, appear inconsistent with previous in vivo murine studies employing detailed time-course behavioural testing, wherein evidence of neurotoxicity could be detected early in disease progression. This review analyses the contributions of in vivo murine models attempting to provide insights into the relationship between transmitting and neurotoxic PrPSc species and explores possible refinements to the "two-phase hypothesis", that better accommodate the available historical and recent evidence.
Collapse
Affiliation(s)
- Matteo Senesi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia
| | - Victoria Lewis
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia
| | - Jee H Kim
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - Paul A Adlard
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - David I Finkelstein
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia
| | - Steven J Collins
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville 3010, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
37
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
38
|
Takada LT, Kim MO, Cleveland RW, Wong K, Forner SA, Gala II, Fong JC, Geschwind MD. Genetic prion disease: Experience of a rapidly progressive dementia center in the United States and a review of the literature. Am J Med Genet B Neuropsychiatr Genet 2017; 174:36-69. [PMID: 27943639 PMCID: PMC7207989 DOI: 10.1002/ajmg.b.32505] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Although prion diseases are generally thought to present as rapidly progressive dementias with survival of only a few months, the phenotypic spectrum for genetic prion diseases (gPrDs) is much broader. The majority have a rapid decline with short survival, but many patients with gPrDs present as slowly progressive ataxic or parkinsonian disorders with progression over a few to several years. A few very rare mutations even present as neuropsychiatric disorders, sometimes with systemic symptoms such as gastrointestinal disorders and neuropathy, progressing over years to decades. gPrDs are caused by mutations in the prion protein gene (PRNP), and have been historically classified based on their clinicopathological features as genetic Jakob-Creutzfeldt disease (gJCD), Gerstmann-Sträussler-Scheinker (GSS), or Fatal Familial Insomnia (FFI). Mutations in PRNP can be missense, nonsense, and octapeptide repeat insertions or a deletion, and present with diverse clinical features, sensitivities of ancillary testing, and neuropathological findings. We present the UCSF gPrD cohort, including 129 symptomatic patients referred to and/or seen at UCSF between 2001 and 2016, and compare the clinical features of the gPrDs from 22 mutations identified in our cohort with data from the literature, as well as perform a literature review on most other mutations not represented in our cohort. E200K is the most common mutation worldwide, is associated with gJCD, and was the most common in the UCSF cohort. Among the GSS-associated mutations, P102L is the most commonly reported and was also the most common at UCSF. We also had several octapeptide repeat insertions (OPRI), a rare nonsense mutation (Q160X), and three novel mutations (K194E, E200G, and A224V) in our UCSF cohort. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Ross W. Cleveland
- Department of Pediatrics, The University of Vermont Children’s Hospital, University of Vermont, Burlington, VT 05401
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Sven A. Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Ignacio Illán Gala
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jamie C. Fong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Michael D. Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| |
Collapse
|
39
|
Lee SM, Chung M, Hyeon JW, Jeong SW, Ju YR, Kim H, Lee J, Kim S, An SSA, Cho SB, Lee YS, Kim SY. Genomic Characteristics of Genetic Creutzfeldt-Jakob Disease Patients with V180I Mutation and Associations with Other Neurodegenerative Disorders. PLoS One 2016; 11:e0157540. [PMID: 27341347 PMCID: PMC4920420 DOI: 10.1371/journal.pone.0157540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/01/2016] [Indexed: 01/29/2023] Open
Abstract
Inherited prion diseases (IPDs), including genetic Creutzfeldt-Jakob disease (gCJD), account for 10–15% of cases of prion diseases and are associated with several pathogenic mutations, including P102L, V180I, and E200K, in the prion protein gene (PRNP). The valine to isoleucine substitution at codon 180 (V180I) of PRNP is the most common pathogenic mutation causing gCJD in East Asian patients. In this study, we conducted follow-up analyses to identify candidate factors and their associations with disease onset. Whole-genome sequencing (WGS) data of five gCJD patients with V180I mutation and 145 healthy individuals were used to identify genomic differences. A total of 18,648,850 candidate variants were observed in only the patient group, 29 of them were validated as variants. Four of these validated variants were nonsense mutations, six were observed in genes directly or indirectly related to neurodegenerative disorders (NDs), such as LPA, LRRK2, and FGF20. More than half of validated variants were categorized in Gene Ontology (GO) terms of binding and/or catalytic activity. Moreover, we found differential genome variants in gCJD patients with V180I mutation, including one uniquely surviving 10 years after diagnosis of the disease. Elucidation of the relationships between gCJD and Alzheimer’s disease or Parkinson’s disease at the genomic level will facilitate further advances in our understanding of the specific mechanisms mediating the pathogenesis of NDs and gold standard therapies for NDs.
Collapse
Affiliation(s)
- Sol Moe Lee
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Seoul National University, Seoul, South Korea
| | - Myungguen Chung
- Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
- Division of Molecular and Life science, Hanyang University, Seoul, South Korea
| | - Jae Wook Hyeon
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Seok Won Jeong
- Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Young Ran Ju
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Seoul National University, Seoul, South Korea
| | - Jeongmin Lee
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Gyeonggi-do, South Korea
| | - Seong Soo A. An
- Gachon BioNano Research Institute, Gachon University, Gyeonggi-do, South Korea
| | - Sung Beom Cho
- Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Yeong Seon Lee
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Su Yeon Kim
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju-si, Chungcheongbuk-do, South Korea
- * E-mail:
| |
Collapse
|
40
|
Ando R, Nagai M, Iwaki H, Yabe H, Nishikawa N, Nomoto M. [A case of Gerstmann-Sträussler-Scheinker disease presented with numbness in the lower extremities]. Rinsho Shinkeigaku 2015; 56:7-11. [PMID: 26616483 DOI: 10.5692/clinicalneurol.cn-000747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a patient of 68-year-old woman who developed numbness of feet in 2008. Ataxic gait disturbance, truncal ataxia, muscle weakness of lower limbs have gradually appeared and she couldn't walk without assistance in 2013. Her cognitive function declined subacutely in 2014. When she was admitted to our hospital, it was difficult to fully evaluate her neurological symptoms and cognitive function. The tendon reflex were absent and Babinski reflex showed positive in both sides of the lower limbs. Diffusion weighted image of MRI showed high intensity in cerebrocortical area, and variation P102L prion protein gene mutation was detected. We diagnosed her with Gerstmann-Sträussler-Scheinker (GSS) disease. Cerebellar symptom such as ataxic gait occurs as the initial manifestation in 90% of patients with GSS disease. Her initial symptom was numbness of lower limbs and cerebellar symptom gradually appeared during the course of disease. In addition, her cognitive function declined six years after the onset. This case presented atypical clinical course as described above. Consequently, it led to diagnostic delay in GSS disease.
Collapse
Affiliation(s)
- Rina Ando
- Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine
| | | | | | | | | | | |
Collapse
|
41
|
Magnetic resonance imaging in viral and prion diseases of the central nervous system. Top Magn Reson Imaging 2015; 23:293-302. [PMID: 25296274 DOI: 10.1097/rmr.0000000000000033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The early detection and specific diagnosis of viral infections of the central nervous system are important because many of these diseases are potentially treatable. However, clinical symptoms and physical examination are often nonspecific, and rapid diagnostic tests are available for some, but not all, viruses. Neuroimaging, in conjunction with clinical history and laboratory tests, plays an important role in narrowing the differential diagnoses. In this article, we review the clinical features, imaging characteristics, diagnosis, and treatment of the more common viral infections and prions that involve the central nervous system.
Collapse
|
42
|
Harischandra DS, Kondru N, Martin DP, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Role of proteolytic activation of protein kinase Cδ in the pathogenesis of prion disease. Prion 2015; 8:143-53. [PMID: 24576946 DOI: 10.4161/pri.28369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prion diseases are infectious and inevitably fatal neurodegenerative diseases characterized by prion replication, widespread protein aggregation and spongiform degeneration of major brain regions controlling motor function. Oxidative stress has been implicated in prion-related neuronal degeneration, but the molecular mechanisms underlying prion-induced oxidative damage are not well understood. In this study, we evaluated the role of oxidative stress-sensitive, pro-apoptotic protein kinase Cδ (PKCδ) in prion-induced neuronal cell death using cerebellar organotypic slice cultures (COSC) and mouse models of prion diseases. We found a significant upregulation of PKCδ in RML scrapie-infected COSC, as evidenced by increased levels of both PKCδ protein and its mRNA. We also found an enhanced regulatory phosphorylation of PKCδ at its two regulatory sites, Thr505 in the activation loop and Tyr311 at the caspase-3 cleavage site. The prion infection also induced proteolytic activation of PKCδ in our COSC model. Immunohistochemical analysis of scrapie-infected COSC revealed loss of PKCδ positive Purkinje cells and enhanced astrocyte proliferation. Further examination of PKCδ signaling in the RML scrapie adopted in vivo mouse model showed increased proteolytic cleavage and Tyr 311 phosphorylation of the kinase. Notably, we observed a delayed onset of scrapie-induced motor symptoms in PKCδ knockout (PKCδ(-/-)) mice as compared with wild-type (PKCδ(+/+)) mice, further substantiating the role of PKCδ in prion disease. Collectively, these data suggest that PKCδ signaling likely plays a role in the neurodegenerative processes associated with prion diseases.
Collapse
|
43
|
Ning L, Wang Q, Zheng Y, Liu H, Yao X. Effects of the A117V mutation on the folding and aggregation of palindromic sequences (PrP113–120) in prion: insights from replica exchange molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2015; 11:647-55. [DOI: 10.1039/c4mb00546e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The A117V mutation enhances the aggregation propensity of the palindromic sequences in prion protein.
Collapse
Affiliation(s)
- Lulu Ning
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| | - Qianqian Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Yang Zheng
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
| | - Huanxiang Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- School of Pharmacy
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- State Key Laboratory of Quality Research in Chinese Medicine
| |
Collapse
|
44
|
Biological network inferences for a protection mechanism against familial Creutzfeldt-Jakob disease with E200K pathogenic mutation. BMC Med Genomics 2014; 7:52. [PMID: 25149502 PMCID: PMC4151374 DOI: 10.1186/1755-8794-7-52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
Background Human prion diseases are caused by abnormal accumulation of misfolded prion protein in the brain tissue. Inherited prion diseases, including familial Creutzfeldt-Jakob disease (fCJD), are associated with mutations of the prion protein gene (PRNP). The glutamate (E)-to-lysine (K) substitution at codon 200 (E200K) in PRNP is the most common pathogenic mutation causing fCJD, but the E200K pathogenic mutation alone is regarded insufficient to cause prion diseases; thus, additional unidentified factors are proposed to explain the penetrance of E200K-dependent fCJD. Here, exome differences and biological network analysis between fCJD patients with E200K and healthy individuals, including a non-CJD individual with E200K, were analysed to gain new insights into possible mechanisms for CJD in individuals carrying E200K. Methods Exome sequencing of the three CJD patients with E200K and 11 of the family of one patient (case1) were performed using the Illumina HiSeq 2000. The exome sequences of 24 Healthy Koreans were used as control. The bioinformatic analysis of the exome sequences was performed using the CLC Genomics Workbench v5.5. Sanger sequencing for variants validation was processed using a BigDye Terminator Cycle Sequencing Kit and an ABI 3730xl automated sequencer. Biological networks were created using Cytoscape (v2.8.3 and v3.0.2) and Pathway Studio 9.0 software. Results Nineteen sites were only observed in healthy individuals. Four proteins (NRXN2, KLKB1, KARS, and LAMA3) that harbour rarely observed single-nucleotide variants showed biological interactions that are associated with prion diseases and/or prion protein in our biological network analysis. Conclusion Through this study, we confirmed that individuals can have a CJD-free life, even if they carry a pathogenic E200K mutation. Our research provides a possible mechanism that involves a candidate protective factor; this could be exploited to prevent fCJD onset in individuals carrying E200K.
Collapse
|
45
|
The case for involvement of spiroplasma in the pathogenesis of transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 2014; 73:104-14. [PMID: 24423635 DOI: 10.1097/nen.0000000000000033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Spiroplasma biofilm formation explains the role of these wall-less bacteria in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Spiroplasma embedded in the biofilm polysaccharide matrix are markedly resistant to physical and chemical treatment, simulating the biologic properties of the TSE agent. Microcolonies of spiroplasma embedded in biofilm bound to clay are the likely mechanism of lateral transmission of scrapie in sheep and chronic wasting disease in deer via soil ingestion. Spiroplasma in biofilm bound to the stainless steel of surgical instruments may also cause iatrogenic transmission of Creutzfeldt-Jakob disease. Sessile spiroplasma in biofilm attach to the surface by curli-like fibrils, a functional amyloid that is important for spiroplasma entering cells. Curli fibers have been shown to interact with host proteins and initiate formation of a potentially toxic amyloid that multiplies by self-assembly. In TSE, this mechanism may explain how spiroplasma trigger the formation of prion amyloid. This possibility is supported by experiments that show spiroplasma produce α-synuclein in mammalian tissue cultures. The data linking spiroplasma to neurodegenerative diseases provide a rationale for developing diagnostic tests for TSE based on the presence of spiroplasma-specific proteins or nucleic acid. Research efforts should focus on this bacterium for development of therapeutic regimens for Creutzfeldt-Jakob disease.
Collapse
|
46
|
Froböse T, Förstl H, Förschler A. Fatal familial insomnia (FFI) complicated by posterior reversible encephalopathy syndrome (PRES). Clin Neuroradiol 2013; 24:289-91. [PMID: 24141307 DOI: 10.1007/s00062-013-0243-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/15/2013] [Indexed: 11/26/2022]
Affiliation(s)
- T Froböse
- Abteilung für Psychiatrie und Psychotherapie der TU München, Ismaningerstr. 22, 81675, München, Germany,
| | | | | |
Collapse
|
47
|
Ortega-Cubero S, Luquín M, Domínguez I, Arbizu J, Pagola I, Carmona-Abellán M, Riverol M. Structural and functional neuroimaging in human prion diseases. NEUROLOGÍA (ENGLISH EDITION) 2013. [DOI: 10.1016/j.nrleng.2011.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
48
|
Tian C, Liu D, Chen C, Xu Y, Gong HS, Chen C, Shi Q, Zhang BY, Han J, Dong XP. Global transcriptional profiling of the postmortem brain of a patient with G114V genetic Creutzfeldt-Jakob disease. Int J Mol Med 2013; 31:676-88. [PMID: 23314178 DOI: 10.3892/ijmm.2013.1239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/18/2012] [Indexed: 11/06/2022] Open
Abstract
Familial or genetic Creutzfeldt-Jakob disease (fCJD or gCJD) is an inherent human prion disease caused by mutation of the prion protein gene (PRNP). In the present study, global expression patterns of the parietal cortex from a patient with G114V gCJD were analyzed using the Affymetrix Human Genome U133+ 2.0 chip with a commercial normal human parietal cortex RNA pool as a normal control. In total, 8,774 genes showed differential expression; among them 2,769 genes were upregulated and 6,005 genes were downregulated. The reliability of the results was confirmed using real-time RT-PCR assays. The most differentially expressed genes (DEGs) were involved in transcription regulation, ion transport, transcription, cell adhesion, and signal transduction. The genes associated with gliosis were upregulated and the genes marked for neurons were downregulated, while the transcription of the PRNP gene remained unaltered. A total of 169 different pathways exhibited significant changes in the brain of G114V gCJD. The most significantly regulated pathways included Alzheimer's and Parkinson's disease, oxidative phosphorylation, regulation of actin cytoskeleton, MAPK signaling and proteasome, which have previously been linked to prion diseases. In addition, we found some pathways that have rarely been explored in regards to prion diseases that were also significantly altered in G114V gCJD, such as axon guidance, gap junction and purine metabolism. The majority of the genes in the 10 most altered pathways were downregulated. The data of the present study provide useful insights into the pathogenesis of G114V gCJD and potential biomarkers for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Achury C, Camacho V, Fernández A, Gómez-Ansón B, Jaller R, Carrió I. Findings in the Gerstmann–Sträussler–Scheinker syndrome in an 18F-FDG PET-CT study. Rev Esp Med Nucl Imagen Mol 2012. [DOI: 10.1016/j.remnie.2012.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Popova SN, Tarvainen I, Capellari S, Parchi P, Hannikainen P, Pirinen E, Haapasalo H, Alafuzoff I. Divergent clinical and neuropathological phenotype in a Gerstmann-Sträussler-Scheinker P102L family. Acta Neurol Scand 2012; 126:315-23. [PMID: 22211828 DOI: 10.1111/j.1600-0404.2011.01628.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2011] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Gerstmann-Sträussler-Scheinker syndrome belongs to the genetic prion diseases being associated with mutations in the prion protein gene (PRNP). The most common is the point mutation at codon 102, leading to the substitution of proline to leucine (P102L). Previous reports have indicated a phenotypic heterogeneity among individuals with this mutation. Here, we describe the clinical and pathological phenotype in members of the first Finnish kindred with the P102L mutation in the PNRP gene. MATERIALS AND METHODS Genetic and clinical information was available in five members of a family, while a systematic histologic and immunohistochemical assessment of the post-mortem brain was carried out in three. RESULTS Clinical presentation, disease duration and the clinical phenotype (ataxia vs dementia) varied between patients. There was a significant correlation between clinical symptoms and the neuroanatomical distribution of prion protein-immunoreactive aggregates, i.e. subtentorial predominance in ataxia vs cortical predominance in dementia. A significant concomitant Alzheimer is disease-related pathology was observed in the brain of one patient with dementia as onset symptom. CONCLUSIONS This is the first Scandinavian family carrying the P102L mutation in the PRNP gene. Gerstmann-Sträussler-Scheinker syndrome should be considered in the differential diagnosis when handling with patients with ataxia and/or dementia of unclear aetiology.
Collapse
Affiliation(s)
- S. N. Popova
- Department of Genetics and Pathology; Rudbeck's Laboratory; Uppsala University; Uppsala; Sweden
| | | | - S. Capellari
- Dipartimento di Scienze Neurologiche; Università di Bologna; Bologna; Italy
| | - P. Parchi
- Dipartimento di Scienze Neurologiche; Università di Bologna; Bologna; Italy
| | - P. Hannikainen
- Department of Forenzic Medicine; University of Eastern Finland; Kuopio; Finland
| | - E. Pirinen
- Kuopio University Hospital; Kuopio; Finland
| | - H. Haapasalo
- Department of Pathology; Centre for Laboratory Medicine; Tampere University Hospital; Tampere; Finland
| | | |
Collapse
|