1
|
Moharram FA, Ibrahim RR, Mahgoub S, Abdel-Aziz MS, Said AM, Huang HC, Chen LY, Lai KH, Hashad N, Mady MS. Secondary metabolites of Alternaria alternate appraisal of their SARS-CoV-2 inhibitory and anti-inflammatory potentials. PLoS One 2025; 20:e0313616. [PMID: 39854441 PMCID: PMC11760621 DOI: 10.1371/journal.pone.0313616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 01/26/2025] Open
Abstract
This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells. Two novel compounds, altenuline (1), phthalic acid bis (7'/7'' pentyloxy) isohexyl ester (2), along with 1-deoxyrubralactone (3) alternariol-5-O-methyl ether (4) and alternariol (5) were identified. Molecular docking and in vitro studies showed that compounds 2 and 4 were promising to counteract SARS-CoV-2 attachment to human ACE-2. Thus, they are considered promising natural anti-viral agents. SwissADME in silico analysis was conducted to predict the drug-like potential. Immunoblotting analysis confirmed that the tested compounds (1-4) demonstrated downregulation of ACE-2 expression in the endothelial cells from the lungs with variable degrees. Furthermore, the tested compounds (1-4) showed promising anti-inflammatory activities through TNF-α: TNFR2 inhibitory activity and their inhibitory effect on the proinflammatory cytokines (TNF-α and IL-6) in LPS-stimulated monocytes. In conclusion, our study, for the first time, provides beneficial experimental confirmation for the efficiency of the A. alternate secondary metabolites for the treatment of COVID-19 as they hinder SARS-CoV-2 infection and lower inflammatory responses initiated by SARS-CoV-2. A. alternate and its metabolites are considered in developing preventative and therapeutic tactics for COVID-19.
Collapse
Affiliation(s)
- Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Reham R. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Shahenda Mahgoub
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed S. Abdel-Aziz
- Genetic Engineering and Biotechnology Division, Microbial Chemistry Department, National Research Centre, Giza, Egypt
| | - Ahmed M. Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hui-Chi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nashwa Hashad
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed S. Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Timofeeva AM, Nikitin AO, Nevinsky GA. Circulating miRNAs in the Plasma of Post-COVID-19 Patients with Typical Recovery and Those with Long-COVID Symptoms: Regulation of Immune Response-Associated Pathways. Noncoding RNA 2024; 10:48. [PMID: 39311385 PMCID: PMC11417918 DOI: 10.3390/ncrna10050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Following the acute phase of SARS-CoV-2 infection, certain individuals experience persistent symptoms referred to as long COVID. This study analyzed the patients categorized into three distinct groups: (1) individuals presenting rheumatological symptoms associated with long COVID, (2) patients who have successfully recovered from COVID-19, and (3) donors who have never contracted COVID-19. A notable decline in the expression of miR-200c-3p, miR-766-3p, and miR-142-3p was identified among patients exhibiting rheumatological symptoms of long COVID. The highest concentration of miR-142-3p was found in healthy donors. One potential way to reduce miRNA concentrations is through antibody-mediated hydrolysis. Not only can antibodies possessing RNA-hydrolyzing activity recognize the miRNA substrate specifically, but they also catalyze its hydrolysis. The analysis of the catalytic activity of plasma antibodies revealed that antibodies from patients with long COVID demonstrated lower hydrolysis activity against five fluorescently labeled oligonucleotide sequences corresponding to the Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p, and Flu-miR-142-3p miRNAs and increased activity against the Flu-miR-378a-3p miRNA compared to other patient groups. The changes in miRNA concentrations and antibody-mediated hydrolysis of miRNAs are assumed to have a complex regulatory mechanism that is linked to gene pathways associated with the immune system. We demonstrate that all six miRNAs under analysis are associated with a large number of signaling pathways associated with immune response-associated pathways.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem O. Nikitin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Shaker O, El Amir M, Elfatah YA, Elwi HM. Expression patterns of lncRNA MALAT-1 in SARS-COV-2 infection and its potential effect on disease severity via miR-200c-3p and SIRT1. Biochem Biophys Rep 2023; 36:101562. [PMID: 37965063 PMCID: PMC10641570 DOI: 10.1016/j.bbrep.2023.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Downregulating Angiotensin Converting Enzyme2 (ACE2) expression may be a shared mechanism for RNA viruses. Aim Evaluate the expressions of ACE2 effectors: the long non-coding RNA 'MALAT-1', the micro-RNA 'miR-200c-3p' and the histone deacetylase 'SIRT1' in SARS-COV-2 patients and correlate to disease severity. Sera samples from 98 SARS-COV-2 patients and 30 healthy control participants were collected. qRT-PCR was used for MALAT-1 and miR-200c-3p expression. SIRT1 was measured using ELISA. Results In sera of COVID-19 patients, gene expression of miR-200c-3p is increased while MALAT-1 is decreased. SIRT1 protein level is decreased (P value < 0.001). Findings are accentuated with increased disease severity. Serum MALAT-1, miR-200c-3p and SIRT1 could be used as diagnostic markers at cut off values of 0.04 (95.9 % sensitivity), 5.59 (94.9 % sensitivity, 99 % specificity), and 7.4 (98 % sensitivity) respectively. A novel MALAT-1-miR-200c-3p-SIRT1 pathway may be involved in the regulation of SARS-COV-2 severity.
Collapse
Affiliation(s)
- Olfat Shaker
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Monica El Amir
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Yasmine Abd Elfatah
- Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Heba M. Elwi
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| |
Collapse
|
4
|
Xia T, Fu X, Fulham M, Wang Y, Feng D, Kim J. CT-based Radiogenomics Framework for COVID-19 Using ACE2 Imaging Representations. J Digit Imaging 2023; 36:2356-2366. [PMID: 37553526 PMCID: PMC10584804 DOI: 10.1007/s10278-023-00895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 which enters the body via the angiotensin-converting enzyme 2 (ACE2) and altering its gene expression. Altered ACE2 plays a crucial role in the pathogenesis of COVID-19. Gene expression profiling, however, is invasive and costly, and is not routinely performed. In contrast, medical imaging such as computed tomography (CT) captures imaging features that depict abnormalities, and it is widely available. Computerized quantification of image features has enabled 'radiogenomics', a research discipline that identifies image features that are associated with molecular characteristics. Radiogenomics between ACE2 and COVID-19 has yet to be done primarily due to the lack of ACE2 expression data among COVID-19 patients. Similar to COVID-19, patients with lung adenocarcinoma (LUAD) exhibit altered ACE2 expression and, LUAD data are abundant. We present a radiogenomics framework to derive image features (ACE2-RGF) associated with ACE2 expression data from LUAD. The ACE2-RGF was then used as a surrogate biomarker for ACE2 expression. We adopted conventional feature selection techniques including ElasticNet and LASSO. Our results show that: i) the ACE2-RGF encoded a distinct collection of image features when compared to conventional techniques, ii) the ACE2-RGF can classify COVID-19 from normal subjects with a comparable performance to conventional feature selection techniques with an AUC of 0.92, iii) ACE2-RGF can effectively identify patients with critical illness with an AUC of 0.85. These findings provide unique insights for automated COVID-19 analysis and future research.
Collapse
Affiliation(s)
- Tian Xia
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Xiaohang Fu
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Fulham
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA
| | - Dagan Feng
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jinman Kim
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Zhang J, Ma X, Liu F, Zhang D, Ling J, Zhu Z, Chen Y, Yang P, Yang Y, Liu X, Zhang J, Liu J, Yu P. Role of NLRP3 inflammasome in diabetes and COVID-19 role of NLRP3 inflammasome in the pathogenesis and treatment of COVID-19 and diabetes NLRP3 inflammasome in diabetes and COVID-19 intervention. Front Immunol 2023; 14:1203389. [PMID: 37868953 PMCID: PMC10585100 DOI: 10.3389/fimmu.2023.1203389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
2019 Coronavirus Disease (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). A "cytokine storm", i.e., elevated levels of pro-inflammatory cytokines in the bloodstream, has been observed in severe cases of COVID-19. Normally, activation of the nucleotide-binding oligomeric domain-like receptor containing pyrin domain 3 (NLRP3) inflammatory vesicles induces cytokine production as an inflammatory response to viral infection. Recent studies have found an increased severity of necrobiosis infection in diabetic patients, and data from several countries have shown higher morbidity and mortality of necrobiosis in people with chronic metabolic diseases such as diabetes. In addition, COVID-19 may also predispose infected individuals to hyperglycemia. Therefore, in this review, we explore the potential relationship between NLRP3 inflammatory vesicles in diabetes and COVID-19. In contrast, we review the cellular/molecular mechanisms by which SARS-CoV-2 infection activates NLRP3 inflammatory vesicles. Finally, we propose several promising targeted NLRP3 inflammatory vesicle inhibitors with the aim of providing a basis for NLRP3-targeted drugs in diabetes combined with noncoronary pneumonia in the clinical management of patients.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy, Nanchang University, Jiangxi, Nanchang, China
| | - Xuejing Ma
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Fuwei Liu
- Department of Cardiology, The Affiliated Ganzhou Hospital of Nanchang University, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pingping Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanlin Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Fayek M, Ebrahim HY, Abdel-Aziz MS, Taha H, Moharram FA. Bioactive metabolites identified from Aspergillus terreus derived from soil. AMB Express 2023; 13:107. [PMID: 37789186 PMCID: PMC10547674 DOI: 10.1186/s13568-023-01612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Aspergillus terreus has been reported to produce many bioactive metabolites that possess potential activities including anti-inflammatory, cytotoxic, and antimicrobial activities. In the present study, we report the isolation and identification of A. terreus from a collected soil sample. The metabolites existing in the microbial ethyl acetate extract were tentatively identified by HPLC/MS and chemically categorized into alkaloids, terpenoids, polyketides, γ-butyrolactones, quinones, and peptides. In addition, a new triglyceride (1) and a diketopiperazine derivative namely asterrine (4), together with two known butyrolactone (2-3) were purified from the extract. The chemical skeleton of the purified compounds was established by comprehensive analysis of their ESI/MS, 1 and 2D-NMR data. The extract and compounds 3,4 exhibited a strong inhibitory activity for the binding of ACE2 to SARS-CoV-2 spike-protein receptor with IC50 7.4, 9.5, and 8.5 µg/mL, respectively. In addition, the extract, 1 and 2 displayed a potent anti-inflammatory effect with IC50 51.31 and 37.25 pg/mL (Il-6) and 87.97, 68.22 pg/mL (TNF-α), respectively, in comparison to LPS control. In addition, the extract and compound 4 displayed an antimicrobial effect towards S. aureus by MIC 62.5 and 125 μg/mL, while the extract exhibited a potent effect against C. albicans (MIC of 125 μg/mL). Collectively, our data introduce novel bioactivities for the secondary metabolites produced by the terrestrial fungus Aspergillus terreus.
Collapse
Affiliation(s)
- Menna Fayek
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Hassan Y Ebrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Mohamed S Abdel-Aziz
- Department of Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Giza, 12622, Egypt
| | - Heba Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
7
|
Silva JTC, Fonseca Neto OCLDA. Acute pancreatitis and COVID-19: an integrative review of the literature. Rev Col Bras Cir 2023; 50:e20233559. [PMID: 37436286 PMCID: PMC10508656 DOI: 10.1590/0100-6991e-20233559-en] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 07/13/2023] Open
Abstract
The first cases of the COVID-19 disease were identified in late 2019 in China, but it didnt take long for it to become pandemic. At first, it was believed that it was restricted to respiratory symptoms only, until extrapulmonary manifestations were reported worldwide. Acute pancreatitis concomitant with the diagnosis of SARS-CoV-2 infection has been observed in some patients, in the absence of the most common etiologies described in the literature. It is postulated that the presence of the ECA-2 viral receptor in the pancreas is responsible for the direct cellular damage and that the hyperinflammatory state of COVID-19 favors the development of pancreatitis through an immune-mediated mechanism. This study aimed to analyze the correlation between acute pancreatitis and COVID-19 disease as a probable causality factor. An integrative literature review was carried out, including studies published between January 2020 and December 2022 that brought data on patients diagnosed with acute pancreatitis according to the revised Atlanta Classification with a confirmed diagnosis of COVID-19 in the same period. A total of thirty studies were reviewed. Demographic, clinical, laboratory and imaging aspects were analyzed and discussed. It is believed that SARS-CoV-2 was responsible for the development of acute pancreatitis in these patients, due to the absence of other precipitating risk factors, as well as the close temporal relationship between both. Attention should be given to gastrointestinal manifestations in patients affected by COVID-19.
Collapse
|
8
|
Pădureanu V, Caragea DC, Florescu MM, Vladu IM, Rădulescu PM, Florescu DN, Rădulescu D, Pădureanu R, Efrem IC. Role of the SARS‑COV2 infection in the evolution of acute pancreatitis (Review). Biomed Rep 2023; 19:49. [PMID: 37383680 PMCID: PMC10293881 DOI: 10.3892/br.2023.1632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
Acute pancreatitis is characterized as an inflammatory illness that is life-threatening and causes necrosis as well as simple edema when pancreatic enzymes are activated intraglandularly. It is not known whether severe acute respiratory syndrome coronavirus 2 causes acute pancreatitis. Patients with acute pancreatitis who test positive for coronavirus disease 2019 (COVID-19) frequently have biliary or alcoholic causes. It is unclear how common acute pancreatitis is in patients with COVID-19. By contrast with patients without COVID-19, however, COVID-19-positive patients with acute pancreatitis have a higher mortality as well as a higher risk of necrosis and admission to an intensive care unit. The most common cause of mortality in COVID-19-positive individuals with concurrent severe pancreatitis is acute respiratory distress syndrome. The present study discussed research on the link between COVID-19 infection and acute pancreatitis.
Collapse
Affiliation(s)
- Vlad Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Daniel Cosmin Caragea
- Department of Nephrology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Mirela Marinela Florescu
- Department of Morphology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Patricia Mihaela Rădulescu
- University of Medicine and Pharmacy of Craiova Doctoral School, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Dumitru Rădulescu
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Rodica Pădureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Ion Cristian Efrem
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| |
Collapse
|
9
|
Koteeswaran S, Suganya R, Surianarayanan C, Neeba EA, Suresh A, Chelliah PR, Buhari SM. A supervised learning approach for the influence of comorbidities in the analysis of COVID-19 mortality in Tamil Nadu. Soft comput 2023:1-15. [PMID: 37362286 PMCID: PMC10238245 DOI: 10.1007/s00500-023-08590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 has created many complications in today's world. It has negatively impacted the lives of many people and emphasized the need for a better health system everywhere. COVID-19 is a life-threatening disease, and a high proportion of people have lost their lives due to this pandemic. This situation enables us to dig deeper into mortality records and find meaningful patterns to save many lives in future. Based on the article from the New Indian Express (published on January 19, 2021), a whopping 82% of people who died of COVID-19 in Tamil Nadu had comorbidities, while 63 percent of people who died of the disease were above the age of 60, as per data from the Health Department. The data, part of a presentation shown to Union Health Minister Harsh Vardhan, show that of the 12,200 deaths till January 7, as many as 10,118 patients had comorbidities, and 7613 were aged above 60. A total of 3924 people (32%) were aged between 41 and 60. Compared to the 1st wave of COVID-19, the 2nd wave had a high mortality rate. Therefore, it is important to find meaningful insights from the mortality records of COVID-19 patients to know the most vulnerable population and to decide on comprehensive treatment strategies.
Collapse
Affiliation(s)
- S. Koteeswaran
- Department of CSE (AI&ML), S.A. Engineering College, Chennai, 600077 Tamil Nadu India
| | - R. Suganya
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu India
| | - Chellammal Surianarayanan
- Centre for Distance and Online Education, Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| | - E. A. Neeba
- Department of Information Technology, Rajagiri School of Engineering and Technology, Kochi, Kerala India
| | - A. Suresh
- Department of Networking and Communications, School of Computing, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603202 Tamil Nadu India
| | | | - Seyed M. Buhari
- School of Business, Universiti Teknologi Brunei, Jalan Tungku Link, Mukim Gadong A, BE1410 Brunei
| |
Collapse
|
10
|
Kunvariya AD, Dave SA, Modi ZJ, Patel PK, Sagar SR. Exploration of multifaceted molecular mechanism of angiotensin-converting enzyme 2 (ACE2) in pathogenesis of various diseases. Heliyon 2023; 9:e15644. [PMID: 37153428 PMCID: PMC10160752 DOI: 10.1016/j.heliyon.2023.e15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a homolog of ACE (a transmembrane bound dipeptidyl peptidase enzyme). ACE2 converts angiotensinogen to the heptapeptide angiotensin-(1-7). ACE2 and its product, angiotensin-(1-7), have counteracting effects against the adverse actions of other members of renin-angiotensin system (RAS). ACE2 and its principal product, angiotensin-(1-7), were considered an under recognized arm of the RAS. The COVID-19 pandemic brought to light this arm of RAS with special focus on ACE2. Membrane bound ACE2 serves as a receptor for SARS-CoV-2 viral entry through spike proteins. Apart from that, ACE2 is also involved in the pathogenesis of various other diseases like cardiovascular disease, cancer, respiratory diseases, neurodegenerative diseases and infertility. The present review focuses on the molecular mechanism of ACE2 in neurodegenerative diseases, cancer, cardiovascular disease, infertility and respiratory diseases, including SARS-CoV-2. This review summarizes unveiled roles of ACE2 in the pathogenesis of various diseases which further provides intriguing possibilities for the use of ACE2 activators and RAS modulating agents for various diseases.
Collapse
Affiliation(s)
- Aditi D. Kunvariya
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Shivani A. Dave
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Zeal J. Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Paresh K. Patel
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Sneha R. Sagar
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
- Corresponding author.
| |
Collapse
|
11
|
Lauretani F, Salvi M, Zucchini I, Testa C, Cattabiani C, Arisi A, Maggio M. Relationship between Vitamin D and Immunity in Older People with COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085432. [PMID: 37107714 PMCID: PMC10138672 DOI: 10.3390/ijerph20085432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/11/2023]
Abstract
Vitamin D is a group of lipophilic hormones with pleiotropic actions. It has been traditionally related to bone metabolism, although several studies in the last decade have suggested its role in sarcopenia, cardiovascular and neurological diseases, insulin-resistance and diabetes, malignancies, and autoimmune diseases and infections. In the pandemic era, by considering the response of the different branches of the immune system to SARS-CoV-2 infection, our aims are both to analyse, among the pleiotropic effects of vitamin D, how its strong multimodal modulatory effect on the immune system is able to affect the pathophysiology of COVID-19 disease and to emphasise a possible relationship between the well-known circannual fluctuations in blood levels of this hormone and the epidemiological trend of this infection, particularly in the elderly population. The biologically active form of vitamin D, or calcitriol, can influence both the innate and the adaptive arm of the immune response. Calcifediol levels have been found to be inversely correlated with upper respiratory tract infections in several studies, and this activity seems to be related to its role in the innate immunity. Cathelicidin is one of the main underlying mechanisms since this peptide increases the phagocytic and germicidal activity acting as chemoattractant for neutrophils and monocytes, and representing the first barrier in the respiratory epithelium to pathogenic invasion. Furthermore, vitamin D exerts a predominantly inhibitory action on the adaptive immune response, and it influences either cell-mediated or humoral immunity through suppression of B cells proliferation, immunoglobulins production or plasma cells differentiation. This role is played by promoting the shift from a type 1 to a type 2 immune response. In particular, the suppression of Th1 response is due to the inhibition of T cells proliferation, pro-inflammatory cytokines production (e.g., INF-γ, TNF-α, IL-2, IL-17) and macrophage activation. Finally, T cells also play a fundamental role in viral infectious diseases. CD4 T cells provide support to B cells antibodies production and coordinate the activity of the other immunological cells; moreover, CD8 T lymphocytes remove infected cells and reduce viral load. For all these reasons, calcifediol could have a protective role in the lung damage produced by COVID-19 by both modulating the sensitivity of tissue to angiotensin II and promoting overexpression of ACE-2. Promising results for the potential effectiveness of vitamin D supplementation in reducing the severity of COVID-19 disease was demonstrated in a pilot clinical trial of 76 hospitalised patients with SARS-CoV-2 infection where oral calcifediol administration reduced the need for ICU treatment. These interesting results need to be confirmed in larger studies with available information on vitamin D serum levels.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703325
| | - Marco Salvi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Irene Zucchini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Crescenzo Testa
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Chiara Cattabiani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Arianna Arisi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
12
|
Najafipour R, Mohammadi D, Momeni A, Moghbelinejad S. Effect of B12 and folate deficiency in hypomethylation of Angiotensin I converting enzyme 2 gene and severity of disease among the acute respiratory distress syndrome patients. J Clin Lab Anal 2023; 37:e24846. [PMID: 36877757 PMCID: PMC10098068 DOI: 10.1002/jcla.24846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Angiotensin I converting enzyme 2 (ACE-2) is the most important receptor and has important role in the entry of corona virus to the host cells. The present study aimed to investigate the different mechanisms involved in the expression regulation of this gene among the COVID-19 patients. METHODS A total of 140 patients with COVID-19 (n = 70 mild COVID-19, n = 70 ARDS) and 120 controls were recruited. The expression of ACE-2 and miRNAs was evaluated by quantitative real-time PCR (QRT-PCR), and methylation of CpG dinucleotides in the ACE2 promoter was quantified using bisulfite pyro-sequencing. Finally, different polymorphisms of the ACE-2 gene were studied by Sanger sequencing. RESULTS Our results showed a significant high expression of the ACE-2 gene in the blood samples of acute respiratory distress syndrome (ARDS) patients (3.8 ± 0.77) in comparison with controls (0.88 ± 0.12; p < 0.03). The methylation rate of the ACE-2 gene in ARDS patients was 14.07 ± 6.1 compared with controls (72.3 ± 5.1; p < 0.0001). Among the four studied miRNAs, only miR200c-3p showed significant downregulation in ARDS patients (0.14 ± 0.1) in comparison with controls (0.32 ± 0.17; p < 0.001). We did not see a substantial difference in the frequency of rs182366225 C>T and rs2097723 T>C polymorphisms between patients and controls (p > 0.05). There was a significant correlation between B12 (R = 0.32, p < 0.001), folate (R = 0.37, p < 0.001) deficiency, and hypo-methylation of the ACE-2 gene. CONCLUSION These results for the first time indicated that among the different mechanisms of ACE-2 expression regulation, its promoter methylation is very crucial and can be affected by factors involved in one-carbon metabolisms such as B9 and B12 vitamins deficiency.
Collapse
Affiliation(s)
- Reza Najafipour
- Genetics Research Center, the University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | - Davood Mohammadi
- Department of Surgery, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Sahar Moghbelinejad
- Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
13
|
Azzopardi JI, Blundell R. Alkaloids and COVID-19. APPLICATION OF NATURAL PRODUCTS IN SARS-COV-2 2023:125-141. [DOI: 10.1016/b978-0-323-95047-3.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Prakash S, Sahu A, Routray SS, Maiti R, Mitra JK, Mukherjee S. Efficacy of therapeutic plasma exchange in severe COVID-19 disease: A meta-analysis. Vox Sang 2023; 118:49-58. [PMID: 36254849 PMCID: PMC9874931 DOI: 10.1111/vox.13367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Therapeutic plasma exchange (TPE) has been used in severe COVID-19 disease to eliminate the cytokine storm. This meta-analysis aims to assess the effectiveness of TPE in reducing mortality in severe COVID-19 disease compared to standard treatment. MATERIALS AND METHODS A comprehensive literature search was performed in PubMed, the Cochrane database and the International Clinical Trial Registry Platform (ICTRP). The random-effect model was used to calculate the risk ratio and standardized mean difference (SMD) as pooled effect size for the difference in mortality and length of the intensive care unit (ICU) stay. The risk of bias and publication bias were assessed in R version 4.1.0. The certainty of the evidence was calculated using the GradePro tool. RESULTS The database identified 382 participants from six studies, including one randomized control trial. Egger's test did not detect any publication bias (p = 0.178). The random model analysis for mortality evaluated a risk ratio of 0.38 (95% CI: 0.28-0.52) with a significant reduction in the TPE group. The certainty of the evidence was moderate, with a risk ratio of 0.34 (95% CI: 0.24-0.49). Length of ICU stays between TPE versus standard care showed an SMD of 0.08 (95% CI: -0.38, 0.55) and was not significant. CONCLUSION The length of ICU stay in the TPE group was not different from standard care. However, this meta-analysis revealed a significant benefit of TPE in reducing mortality in severe COVID-19 disease compared to standard treatment.
Collapse
Affiliation(s)
- Satya Prakash
- Department of Transfusion MedicineAll India Institute of Medical SciencesBhubaneswarIndia
| | - Ansuman Sahu
- Department of Transfusion MedicineAll India Institute of Medical SciencesBhubaneswarIndia
| | - Suman Sudha Routray
- Department of Transfusion MedicineAll India Institute of Medical SciencesBhubaneswarIndia
| | - Rituparna Maiti
- Department of PharmacologyAll India Institute of Medical SciencesBhubaneswarIndia
| | - Jayanta Kumar Mitra
- Department of AnaesthesiologyAll India Institute of Medical SciencesBhubaneswarIndia
| | - Somnath Mukherjee
- Department of Transfusion MedicineAll India Institute of Medical SciencesBhubaneswarIndia
| |
Collapse
|
15
|
Lopes van den Broek S, García-Vázquez R, Andersen IV, Valenzuela-Nieto G, Shalgunov V, Battisti UM, Schwefel D, Modhiran N, Kramer V, Cheuquemilla Y, Jara R, Salinas-Varas C, Amarilla AA, Watterson D, Rojas-Fernandez A, Herth MM. Development and evaluation of an 18F-labeled nanobody to target SARS-CoV-2's spike protein. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:1033697. [PMID: 39354971 PMCID: PMC11440877 DOI: 10.3389/fnume.2022.1033697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/21/2022] [Indexed: 10/03/2024]
Abstract
COVID-19, caused by the SARS-CoV-2 virus, has become a global pandemic that is still present after more than two years. COVID-19 is mainly known as a respiratory disease that can cause long-term consequences referred to as long COVID. Molecular imaging of SARS-CoV-2 in COVID-19 patients would be a powerful tool for studying the pathological mechanisms and viral load in different organs, providing insights into the disease and the origin of long-term consequences and assessing the effectiveness of potential COVID-19 treatments. Current diagnostic methods used in the clinic do not allow direct imaging of SARS-CoV-2. In this work, a nanobody (NB) - a small, engineered protein derived from alpacas - and an Fc-fused NB which selectively target the SARS-CoV-2 Spike protein were developed as imaging agents for positron emission tomography (PET). We used the tetrazine ligation to 18F-label the NB under mild conditions once the NBs were successfully modified with trans-cyclooctenes (TCOs). We confirmed binding to the Spike protein by SDS-PAGE. Dynamic PET scans in rats showed excretion through the liver for both constructs. Future work will evaluate in vivo binding to the Spike protein with our radioligands.
Collapse
Affiliation(s)
- Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guillermo Valenzuela-Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Umberto M. Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Schwefel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | | | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Constanza Salinas-Varas
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Alberto A. Amarilla
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Alejandro Rojas-Fernandez
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
- Berking Biotechnology, Valdivia, Chile
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Brisinda G, Chiarello MM, Tropeano G, Altieri G, Puccioni C, Fransvea P, Bianchi V. SARS-CoV-2 and the pancreas: What do we know about acute pancreatitis in COVID-19 positive patients? World J Gastroenterol 2022; 28:5240-5249. [PMID: 36185634 PMCID: PMC9521525 DOI: 10.3748/wjg.v28.i36.5240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause pancreatic damage, both directly to the pancreas via angiotensin-converting enzyme 2 receptors (the transmembrane proteins required for SARS-CoV-2 entry, which are highly expressed by pancreatic cells) and indirectly through locoregional vasculitis and thrombosis. Despite that, there is no clear evidence that SARS-CoV-2 is an etiological agent of acute pancreatitis. Acute pancreatitis in coronavirus disease 2019 (COVID-19) positive patients often recognizes biliary or alcoholic etiology. The prevalence of acute pancreatitis in COVID-19 positive patients is not exactly known. However, COVID-19 positive patients with acute pancreatitis have a higher mortality and an increased risk of intensive care unit admission and necrosis compared to COVID-19 negative patients. Acute respiratory distress syndrome is the most frequent cause of death in COVID-19 positive patients and concomitant acute pancreatitis. In this article, we reported recent evidence on the correlation between COVID-19 infection and acute pancreatitis.
Collapse
Affiliation(s)
- Giuseppe Brisinda
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
- Department of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | | | - Giuseppe Tropeano
- Emergency Surgery and Trauma Center, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
| | - Gaia Altieri
- Emergency Surgery and Trauma Center, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
| | - Caterina Puccioni
- Emergency Surgery and Trauma Center, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
| | - Pietro Fransvea
- Emergency Surgery and Trauma Center, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
| | - Valentina Bianchi
- Emergency Surgery and Trauma Center, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
| |
Collapse
|
17
|
Rocchi G, Giovanetti M, Benedetti F, Borsetti A, Ceccarelli G, Zella D, Altomare A, Ciccozzi M, Guarino MPL. Gut Microbiota and COVID-19: Potential Implications for Disease Severity. Pathogens 2022; 11:1050. [PMID: 36145482 PMCID: PMC9503814 DOI: 10.3390/pathogens11091050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 pandemic resulted in an unprecedented global crisis. SARS-CoV-2 primarily causes lung infection trough the binding of the virus with the ACE-2 cell receptor located on the surface of the alveolar epithelial cells. Notably, ACE-2 cell receptors are also expressed in the epithelial cells of the intestinal tract (GI). Recent data showed that the microbial communities of the GI might act as local and systematic inflammatory modulators. Gastrointestinal symptoms, including diarrhea, are frequently observed in infected individuals, and recent released data indicate that SARS-CoV-2 may also spread by fecal-oral transmission. Moreover, the gut microbiota's ecosystem can regulate and be regulated by invading pathogens, including viruses, facilitating an effective immune response, which in turn results in less severe diseases. In this regard, increased SARS-CoV-2 mortality and morbidities appear to be frequently observed in elderly immunocompromised patients and in people with essential health problems, such as diabetes, who, indeed, tend to have a less diverse gut microbiota (dysbiosis). Therefore, it is important to understand how the interaction between the gut microbiota and SARS-CoV-2 might shape the intensity of the infection and different clinical outcomes. Here, we provide insights into the current knowledge of dysbiosis during SARS-CoV-2 infection and methods that may be used to re-establish a more correct microbiota composition.
Collapse
Affiliation(s)
- Giulia Rocchi
- Department of Science and Engineering for Human and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Marta Giovanetti
- Laboratorio de Flavivirus, lnstituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Annamaria Altomare
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
- Unit of Digestive Disease, Campus Bio-Medico University, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, 00128 Rome, Italy
| | | |
Collapse
|
18
|
Speth RC, Bader M. Why Angiotensin II is a Poor Choice for Circulatory Support of Ventilated COVID-19 Patients Compared to Vasopressin. MEDICAL RESEARCH ARCHIVES 2022; 10:3079. [PMID: 36438606 PMCID: PMC9696557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early in the COVID-19 pandemic when it was first reported that SARS-CoV-2 used membrane-bound angiotensin-converting enzyme-2 (ACE2) as its receptor for entry into cells, warnings were raised against the use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) because of their potential to increase ACE2 expression. These reports ignored the adverse effects that the renin-angiotensin system (RAS) exerts on the cardiovascular system and kidneys via its primary hormone angiotensin (Ang) II acting upon AT1 receptors that could exacerbate the cytokine storm induced by SARS-CoV-2 1. At one point it was even recommended that COVID-19 patients suffering from cardiovascular collapse be administered Ang II to restore blood pressure rather than norepinephrine or vasopressin 2. An alternative strategy for treating COVID-19 was the administration of soluble ACE2 (sACE2) to act as a decoy receptor for the virus, misdirecting it away from vulnerable cells expressing membrane bound ACE2 3-5. However, a paper published in early 2021 6 described a scenario in which sACE2 and vasopressin played essential roles in SARS-CoV-2 infection of cells vulnerable to the virus. This commentary challenges both the 2 and 6 reports based upon their misconceptions and technical errors that pose a threat to the administration of life-saving therapies for severely affected COVID-19 patients.
Collapse
Affiliation(s)
- Robert C. Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328 USA,Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, 20057 USA, or
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str.10, D-13125 Berlin, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Hessische Strasse 3-4, D-10115 Berlin, Germany,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany,University of Lübeck, Institute for Biology, Ratzeburger Allee 160, D-23562 Lübeck, Germany, or
| |
Collapse
|
19
|
Govender N, Khaliq O, Moodley J, Naicker T. Unravelling the Mechanistic Role of ACE2 and TMPRSS2 in Hypertension: A Risk Factor for COVID-19. Curr Hypertens Rev 2022; 18:130-137. [PMID: 36508271 DOI: 10.2174/1573402118666220816090809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND This review explores the mechanistic action of angiotensin-converting enzyme- 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) in the renin-angiotensinaldosterone system (RAAS) that predisposes hypertensive patients to the adverse outcome of severe COVID-19. METHODS AND RESULTS Entry of SARS-CoV-2 into the host cell via ACE2 disrupts the RAAS system, creating an imbalance between ACE and ACE2, with an increased inflammatory response, leading to hypertension (HTN), pulmonary vasoconstriction and acute respiratory distress. SARSCoV- 2 may also predispose infected individuals with existing HTN to a greater risk of severe COVID-19 complications. In the duality of COVID-19 and HTN, the imbalance of ACE and ACE2 results in an elevation of AngII and a decrease in Ang (1-7), a hyperinflammatory response and endothelial dysfunction. Endothelial dysfunction is the main factor predisposing hypertensive patients to severe COVID-19 and vice-versa. CONCLUSION Despite the increase in ACE2 expression in hypertensive SARS-CoV-2 infected patients, ARBs/ACE inhibitors do not influence their severity and clinical outcomes, implicating continued usage. Future large-scale clinical trials are warranted to further elucidate the association between HTN and SARS-CoV-2 infection and the use of ARBs/ACEIs in SARS-CoV-2 hypertensive patients.
Collapse
Affiliation(s)
- Nalini Govender
- Department of Basic Medical Sciences, Faculty of Health Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Olive Khaliq
- The Department of Paediatrics and Child Health, Faculty of Health Sciences, The University of the Free State, Bloemfontein 9300, South Africa
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thajasvarie Naicker
- Optics & Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
20
|
Aziz AA, Aziz MA, Saleem M, Haseeb Ul Rasool M. Acute Pancreatitis Related to COVID-19 Infection: A Systematic Review and Analysis of Data. Cureus 2022; 14:e28380. [PMID: 36168341 PMCID: PMC9506667 DOI: 10.7759/cureus.28380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 01/09/2023] Open
Abstract
There is increasing literature mentioning severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19 infection) causing acute pancreatitis (AP). It is hypothesized that SARS-Cov-2 causes pancreatic injury either by direct cytotoxic effect of the virus on pancreatic cells through the angiotensin-converting enzyme 2 (ACE2) receptors - the main receptors for the virus located on pancreatic cells - or by the cytokine storm that results from COVID-19 infection or a component of both. Many viruses are related to AP including mumps, coxsackievirus, cytomegalovirus (CMV), Epstein-Barr virus (EBV), and as data evolves SARS-CoV-2 virus may be one of them as well. We conducted a systematic literature review to explore the current literature and provide an overview of the evidence of AP in COVID-19 infection. We studied the presence of AP in patients with SARS-CoV-2 infection and calculated the time of diagnosis of SARS-CoV-2 infection with respect to the time of diagnosis of AP. We also studied the age, gender, clinical manifestations, time of onset of symptoms, laboratory values, imaging findings, mortality, length of stay, comorbidities, need for Intensive Care Unit (ICU) care, and excluded any other common causes of AP. We included 40 articles comprising 46 patients. All patients had a positive SARS-CoV-2 polymerase chain reaction (PCR) test and all patients had AP as per Atlanta's criteria. The most common clinical presentation was abdominal pain in 29 (63.0%). Edematous pancreas was the most common Computed Tomography Abdomen Pelvis (CTAP) scan finding in these patients (35 patients). Seventeen (37%) patients required ICU admission and six (13%) patients died. Our study provides an important overview of the available data on AP in COVID-19 patients and concludes that AP is an important complication in COVID-19 infection and should be considered as an important differential in patients with COVID-19 infection who complain of abdominal pain.
Collapse
Affiliation(s)
- Ahmed Ali Aziz
- Internal Medicine, Saint Francis Medical Center, Trenton, USA
| | | | - Maleeha Saleem
- Internal Medicine, Saint Francis Medical Center, Trenton, USA
| | | |
Collapse
|
21
|
Jafari A, Esmaeilzadeh Z, Khezri MR, Ghasemnejad-Berenji H, Pashapour S, Sadeghpour S, Ghasemnejad-Berenji M. An overview of possible pivotal mechanisms of Genistein as a potential phytochemical against SARS-CoV-2 infection: A hypothesis. J Food Biochem 2022; 46:e14345. [PMID: 35866873 PMCID: PMC9350103 DOI: 10.1111/jfbc.14345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID‐19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). It is a global problem that humanity has not yet found a definitive solution for it. In this regard, a global effort has been done to find effective or potential adjuvant therapies in order to fight this infection. Genistein is a small, biologically active phytoestrogen flavonoid that is found in high amounts in soy and plants of the Fabaceae family. This important compound is known due to its anti‐cancer, anti‐inflammatory, and antioxidant effects. Additionally, protective effects of genistein have been reported in different pathological conditions through modulating intracellular pathways such as PI3K, Akt, mTOR, NF‐κB, PPARγ, AMPK, and Nrf2. Scientific evidence suggests that genistein could have a potential role to treat COVID‐19 through its anti‐inflammatory and anti‐oxidant effects. Furthermore, it appears to interfere with intracellular pathways involved in viral entry into the cell. This review provides a basis for further research and development of clinical applications of genistein as a potential alternative therapy to decrease inflammation and oxidative stress in COVID‐19 patients.
Collapse
Affiliation(s)
- Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Sarvin Pashapour
- Department of Pediatrics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
22
|
Rahimi-Levene N, Shapira J, Tzur I, Shiloah E, Peer V, Levin E, Izak M, Shinar E, Ziv-Baran T, Weinberger M, Zimhony O, Chen J, Maor Y. Predictors of mortality in COVID-19 patients treated with convalescent plasma therapy. PLoS One 2022; 17:e0271036. [PMID: 35852992 PMCID: PMC9295964 DOI: 10.1371/journal.pone.0271036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Several options to treat hospitalized severe COVID-19 patients have been suggested. The study aimed to describe survival in patients treated with convalescent COVID plasma (CCP) and to identify in-hospital mortality predictors. This prospective cohort study examined data from 112 severe COVID-19 patients hospitalized in the Corona Departments in an acute care hospital who received two units of CCP (at least one of them high-titer). Demographic and medical data was retrieved from the patients’ electronic health records (EHR). Possible predictors for in-hospital mortality were analyzed in a univariate analysis and those found to be clinically significant were further analyzed in a multivariable analysis. Median age was 67 years (IQR 55–74) and 66 (58.9%) of them were males. Of them, 20 (17.9%) died in hospital. On multivariable analysis diabetes mellitus (p = 0.004, OR 91.54), mechanical ventilation (p = 0.001, OR 59.07) and lower albumin levels at treatment (p = 0.027, OR 0.74) were significantly associated with increased in-hospital mortality. In our study, in-hospital mortality in patients receiving CCP is similar to that reported for the general population, however certain variables mentioned above were associated with increased in-hospital mortality. In the literature, these variables were also associated with a worse outcome in patients with COVID-19 who did not receive CCP. As evidence points toward a benefit from CCP treatment in immunocompromised patients, we believe the above risk factors can further define COVID-19 patients at increased risk for mortality, enabling the selection of candidates for early treatment in an outpatient setting if possible.
Collapse
Affiliation(s)
| | - Jonathan Shapira
- Internal Medicine Department H, Shamir Medical Center, Zerifin, Israel
| | - Irma Tzur
- Internal Medicine Department F, Shamir Medical Center, Zerifin, Israel
| | - Eli Shiloah
- Internal Medicine Department E, Shamir Medical Center, Zerifin, Israel
| | | | - Ella Levin
- Blood Bank, Shamir Medical Center, Zerifin, Israel
| | - Marina Izak
- National Blood Services, Magen David Adom, Ramat Gan, Israel
| | - Eilat Shinar
- National Blood Services, Magen David Adom, Ramat Gan, Israel
| | - Tomer Ziv-Baran
- Department of Epidemiological Studies, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Weinberger
- Department of Infectious Diseases, Shamir Medical Center, Zerifin, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Zimhony
- Infectious Diseases Unit, Kaplan Medical Center, Rehovot, Israel
| | - Jacob Chen
- Hospital Management, Meir Medical Center, Kfar Saba, Israel
- Trauma and Combat Medicine Branch, Israel Defense Forces, Medical Corps, Tel Hashomer, Ramat Gan, Israel
| | - Yasmin Maor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Infectious Diseases, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
23
|
Pouremamali A, Babaei A, Malekshahi SS, Abbasi A, Rafiee N. Understanding the pivotal roles of ACE2 in SARS-CoV-2 infection: from structure/function to therapeutic implication. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:103. [PMID: 37521846 PMCID: PMC9206724 DOI: 10.1186/s43042-022-00314-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/12/2022] [Indexed: 01/08/2023] Open
Abstract
In December 2019, a novel respiratory tract infection, from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in China that rapidly spread around the world. This virus possesses spike (S) glycoproteins on the surface of mature virions, like other members of coronaviridae. The S glycoprotein is a crucial viral protein for binding, fusion, and entry into the target cells. Binding the receptor-binding domain (RBD) of S protein to angiotensin-converting enzyme 2 (ACE 2), a cell-surface receptor, mediates virus entry into cells; thus, understanding the basics of ACE2 and S protein, their interactions, and ACE2 targeting could be a potent priority for inhibition of virus infection. This review presents current knowledge of the SARS-CoV-2 basics and entry mechanism, structure and organ distribution of ACE2, and also its function in SARS-CoV-2 entry and pathogenesis. Furthermore, it highlights ACE2 targeting by recombinant ACE2 (rACE2), ACE2 activators, ACE inhibitor, and angiotensin II (Ang II) receptor blocker to control the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
de Seabra Rodrigues Dias IR, Cao Z, Kwok HF. Adamalysins in COVID-19 - Potential mechanisms behind exacerbating the disease. Biomed Pharmacother 2022; 150:112970. [PMID: 35658218 PMCID: PMC9010236 DOI: 10.1016/j.biopha.2022.112970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is a current pandemic that has resulted in nearly 250 million cases and over 5 million deaths. While vaccines have been developed to prevent infection, and most COVID-19 cases end up being fairly light, there are severe cases of COVID-19 that may end up in death, even with adequate healthcare treatment. New options to combat this disease's effects, therefore, could prove to be invaluable in saving lives. Adamalysins are proteins that have several roles in regulating different functions in the human body but are also known to have functions in inflammation. They are also known to have roles in several different diseases, including COVID-19, where ADAM17, in particular, is now well-known to have a prominent role, but also several diseases which include comorbidities that may worsen cases of COVID-19. Therefore, investigating the functions of adamalysins in disease may give us clues to the molecular workings of COVID-19 as well as potentially new therapeutic targets. Understanding these molecular mechanisms may also allow for an understanding of the mechanisms behind the rare severe side effects that occur in response to current COVID-19 vaccines, which may lead to better monitoring measures for people who may be more at risk of developing these side effects. This review investigates the known roles and functions of adamalysins in disease, including what is currently known of their involvement in COVID-19, and how these functions might be involved.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Zhijian Cao
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China,Co-corresponding author
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Corresponding author at: Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| |
Collapse
|
25
|
COŞKUN O, ÇAPRAZ M, CİHANGİROĞLU M, KAYA AT. Is hyperlipazemia a poor prognostic factor in patients with COVID-19 ? JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1057456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction: COVID-19 disease may pose a considerable health threat to healthy individuals and individuals with comorbidity. The SARS-CoV-2 virus affects the respiratory tract and may cause damage to the pancreas by binding to the ACE-2 receptor in the pancreas. In our study, we investigated the effects of hyperlipasemia on morbidity and mortality in patients diagnosed with COVID-19.
Material and Method: In this study, 2350 patients diagnosed with COVID-19 between November 2020 and December 2020 were retrospectively reviewed. Other possible causes of hyperlipasemia were excluded. Hyperlipasemia secondary to COVID-19 was detected in 338 patients. These patients were divided into two groups based on their lipase elevation rates.
Results: Hyperlipasemia was detected in 14.4% of the patients diagnosed with COVID-19, and severe hyperlipasemia (>3x) was detected in 2.3%. The mean age of the patients was 64±13.8 (18-92), of which 59.5% (201) were male. In our study, 24 patients (1%) were diagnosed with acute pancreatitis. When compared according to lipase level, a significant difference was found between the groups regarding the history of HT, CCI score, development of ARF at follow-up, development of ARDS, need for ICU hospitalization, need for intubation, length of stay in ICU, and death rates. A weak correlation was found in the correlation analysis between hyperlipasemia and ARDS development and mortality.
Conclusion: Elevated lipase levels were associated with poor prognosis and mortality in patients with COVID-19 infection.
Collapse
|
26
|
Kiremitler NB, Kemerli MZ, Kayaci N, Karagoz S, Pekdemir S, Sarp G, Sanduvac S, Onses MS, Yilmaz E. Nanostructures for the Prevention, Diagnosis, and Treatment of SARS-CoV-2: A Review. ACS APPLIED NANO MATERIALS 2022; 5:6029-6054. [PMID: 37552745 PMCID: PMC8905929 DOI: 10.1021/acsanm.2c00181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 06/17/2023]
Abstract
Scientists, doctors, engineers, and even entire societies have become aware of the seriousness of the COVID-19 infection and are taking action quickly, using all the tools from protection to treatment against coronavirus SARS-CoV-2. Especially in this sense, scientific approaches and materials using nanotechnology are frequently preferred. In this review, we focus on how nanoscience and nanotechnology approaches can be used for protective equipment, diagnostic and treatment methods, medicine, and vaccine applications to stop the coronavirus SARS-CoV-2 and prevent its spread. SARS-CoV-2, which itself can be considered as a core-shell nanoparticle, can interact with various materials around it and remain bound for variable periods of time while maintaining its bioactivity. These applications are especially critical for the controlled use of disinfection systems. One of the most important processes in the fight against coronavirus is the rapid diagnosis of the virus in humans and the initiation of isolation and treatment processes. The development of nanotechnology-based test and diagnostic kits is another important research thrust. Nanotechnological therapeutics based on antiviral drug design and nanoarchitecture vaccines have been vital. Nanotechnology plays critical roles in the production of protective film surfaces for self-cleaning and antiviral masks, gloves, and laboratory clothes. An overview of literature studies highlighting nanotechnology and nanomaterial-based approaches to combat SARS-CoV-2 is presented.
Collapse
Affiliation(s)
- Nuri Burak Kiremitler
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Munteha Zeynep Kemerli
- Drug Application and Research Center,
Erciyes University, 38039 Kayseri,
Turkey
- Department of Health Services, Halil Bayraktar
Vocational College, Erciyes University, 38039 Kayseri,
Turkey
| | - Nilgun Kayaci
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Sultan Karagoz
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Textile Engineering, Faculty of
Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Sami Pekdemir
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Airframes and Powerplants, Erciyes
University, 38039 Kayseri, Turkey
| | - Gokhan Sarp
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Senem Sanduvac
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Bünyan Vocational College, Kayseri
University, 38280 Kayseri, Turkey
| | - Mustafa Serdar Onses
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Erkan Yilmaz
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
- Technology Research & Application
Center (TAUM), Erciyes University, 38039 Kayseri,
Turkey
- ChemicaMed Chemical Inc., Erciyes
University Technology Development Zone, 38039 Kayseri,
Turkey
| |
Collapse
|
27
|
Woollam M, Angarita-Rivera P, Siegel AP, Kalra V, Kapoor R, Agarwal M. Exhaled VOCs can discriminate subjects with COVID-19 from healthy controls. J Breath Res 2022; 16. [PMID: 35453137 DOI: 10.1088/1752-7163/ac696a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/22/2022] [Indexed: 01/13/2023]
Abstract
COVID-19 detection currently relies on testing by reverse transcription polymerase chain reaction (RT-PCR) or antigen testing. However, SARS-CoV-2 is expected to cause significant metabolic changes in infected subjects due to both metabolic requirements for rapid viral replication and host immune responses. Analysis of volatile organic compounds (VOCs) from human breath can detect these metabolic changes and is therefore an alternative to RT-PCR or antigen assays. To identify VOC biomarkers of COVID-19, exhaled breath samples were collected from two sample groups into Tedlar bags: negative COVID-19 (n= 12) and positive COVID-19 symptomatic (n= 14). Next, VOCs were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Subjects with COVID-19 displayed a larger number of VOCs as well as overall higher total concentration of VOCs (p< 0.05). Univariate analyses of qualified endogenous VOCs showed approximately 18% of the VOCs were significantly differentially expressed between the two classes (p< 0.05), with most VOCs upregulated. Machine learning multivariate classification algorithms distinguished COVID-19 subjects with over 95% accuracy. The COVID-19 positive subjects could be differentiated into two distinct subgroups by machine learning classification, but these did not correspond with significant differences in number of symptoms. Next, samples were collected from subjects who had previously donated breath bags while experiencing COVID-19, and subsequently recovered (COVID Recovered subjects (n= 11)). Univariate and multivariate results showed >90% accuracy at identifying these new samples as Control (COVID-19 negative), thereby validating the classification model and demonstrating VOCs dysregulated by COVID are restored to baseline levels upon recovery.
Collapse
Affiliation(s)
- Mark Woollam
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America.,Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America
| | - Paula Angarita-Rivera
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America.,Department of Mechanical & Energy Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America
| | - Amanda P Siegel
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America.,Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America
| | - Vikas Kalra
- Indiana Health Ball Memorial Hospital, Muncie, IN 47303, United States of America
| | - Rajat Kapoor
- Department of Respiratory Care, Indiana University Health, Indianapolis, IN 47303, United States of America
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America.,Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America.,Department of Mechanical & Energy Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, United States of America
| |
Collapse
|
28
|
Hormati A, Arezoumand A, Dokhanchi H, Pezeshgi Modarres M, Ahmadpour S. Inflammatory Bowel Disease Management during the COVID-19 Pandemic: A Literature Review. Middle East J Dig Dis 2022; 14:155-166. [PMID: 36619145 PMCID: PMC9489314 DOI: 10.34172/mejdd.2022.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND: Coronavirus disease 2019 (COVID-19) caused a global pandemic. Since its start, widespread safety measures have been adopted by nations worldwide. Crohn's disease (CD) and ulcerative colitis are two forms of inflammatory bowel disease (IBD). IBD is a common inflammatory illness with a high worldwide incidence. Its clinical symptoms include stomach discomfort, diarrhea, anorexia, and weight loss. Genetics, microbes, cigarette smoking, appendectomy, lack of personal hygiene, using anti-inflammatory agents, vitamin D deficiency, and stress are the main risk factors for IBD. COVID-19 pandemic raised concerns about the exacerbation of COVID clinical manifestations in patients with IBD and increasing the risk of mortality. During COVID-19 pandemic, intestinal inflammation, and promoting adherence need to be controlled using medications and vaccinations as a primary goal. In this review, we reviewed unique concerns about IBD risk in the population as well as management of the disease, and the effectiveness of vaccination during COVID-19 pandemic.
Collapse
Affiliation(s)
- Ahmad Hormati
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran,Assistant Professor of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Gastrointestinal and Liver Diseases Research Center, Colorectal Research Center, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Arezoumand
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hadi Dokhanchi
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mehdi Pezeshgi Modarres
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Sajjad Ahmadpour
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran,Corresponding Author: Sajjad Ahmadpour, PhD Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran. Tel:+ 98 2538105062 Fax:+ 98 2538105062
| |
Collapse
|
29
|
De R, Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Front Cell Infect Microbiol 2022; 12:736397. [PMID: 35433495 PMCID: PMC9009446 DOI: 10.3389/fcimb.2022.736397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease COVID-19 is caused by the highly contagious single-stranded RNA virus, SARS-coronavirus 2 (SARS-CoV-2), which has a high rate of evolution like other RNA viruses. The first genome sequences of SARS-CoV-2 were available in early 2020. Subsequent whole-genome sequencing revealed that the virus had accumulated several mutations in genes associated with viral replication and pathogenesis. These variants showed enhanced transmissibility and infectivity. Soon after the first outbreak due to the wild-type strain in December 2019, a genetic variant D614G emerged in late January to early February 2020 and became the dominant genotype worldwide. Thereafter, several variants emerged, which were found to harbor mutations in essential viral genes encoding proteins that could act as drug and vaccine targets. Numerous vaccines have been successfully developed to assuage the burden of COVID-19. These have different rates of efficacy, including, although rarely, a number of vaccinated individuals exhibiting side effects like thrombosis. However, the recent emergence of the Britain strain with 70% more transmissibility and South African variants with higher resistance to vaccines at a time when several countries have approved these for mass immunization has raised tremendous concern regarding the long-lasting impact of currently available prophylaxis. Apart from studies addressing the pathophysiology, pathogenesis, and therapeutic targets of SARS-CoV-2, analysis of the gut, oral, nasopharyngeal, and lung microbiome dysbiosis has also been undertaken to find a link between the microbiome and the pathogenesis of COVID-19. Therefore, in the current scenario of skepticism regarding vaccine efficacy and challenges over the direct effects of currently available drugs looming large, investigation of alternative therapeutic avenues based on the microbiome can be a rewarding finding. This review presents the currently available understanding of microbiome dysbiosis and its association with cause and consequence of COVID-19. Taking cues from other inflammatory diseases, we propose a hypothesis of how the microbiome may be influencing homeostasis, pro-inflammatory condition, and the onset of inflammation. This accentuates the importance of a healthy microbiome as a protective element to prevent the onset of COVID-19. Finally, the review attempts to identify areas where the application of microbiome research can help in reducing the burden of the disease.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| |
Collapse
|
30
|
Babajani A, Moeinabadi-Bidgoli K, Niknejad F, Rismanchi H, Shafiee S, Shariatzadeh S, Jamshidi E, Farjoo MH, Niknejad H. Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation. Stem Cell Res Ther 2022; 13:126. [PMID: 35337387 PMCID: PMC8949831 DOI: 10.1186/s13287-022-02794-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin–angiotensin–aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Molanouri Shamsi M, Vahed A, Hekmatikar AA, Suzuki K. Combined Effects of Exercise Training and Nutritional Supplementation in Cancer Patients in the Context of the COVID-19: A Perspective Study. Front Nutr 2022; 9:847215. [PMID: 35356739 PMCID: PMC8959344 DOI: 10.3389/fnut.2022.847215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The 2019 coronavirus (COVID-19) epidemic, has caused unprecedented global social and economic impacts and many deaths. Many risk factors have been identified in the progression of COVID-19 to severe and critical stages, and it is shown that the coronavirus appears more severely in people with cancer. Pro-inflammatory status and weakened immune system due to cancer-related treatments can be determinants in the immune system’s response to the coronavirus in these patients. Higher physical activity levels are associated with lower hospitalization rates and mortality in COVID-19. Also, regular exercise training can improve immune system responses, modulate inflammatory responses, and improve psychological parameters in cancer patients. The interactive effects of nutritional supplements on immune responses and anti-inflammatory status have been shown in some studies. The purpose of this perspective article was to investigate the interaction between dietary supplementation and regular physical exercise in controlling risk factors associated with coronavirus in cancer patients. In addition to appropriate dietary habits, some nutritional supplements, especially vitamin D, have been shown to improve the immune system’s response against COVID-19 and cancer. Using lifestyle strategies such as regular physical activity and intake of functional compounds as supplements can be effective in treatment outcomes, quality of life, and overall survival in cancer patients. We proposed that combining dietary supplements and exercise training in cancer patients can boost immune responses against COVID-19 and probably improve vaccine responses. Angiotensin (ANG)-(1-7) Mas receptor axis can probably activate following exercise training and vitamin D combination. And can prevent pulmonary injury, hematological alterations, and hyperinflammatory state in COVID-19.
Collapse
Affiliation(s)
- Mahdieh Molanouri Shamsi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Mahdieh Molanouri Shamsi,
| | - Alieh Vahed
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
- Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - AmirHossin Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
- Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Katsuhiko Suzuki
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Katsuhiko Suzuki,
| |
Collapse
|
32
|
Fazio S, Affuso F, Bellavite P. A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Management of Mild-to-Moderate Symptomatic COVID-19. Med Sci Monit 2022; 28:e936292. [PMID: 35256581 PMCID: PMC8917781 DOI: 10.12659/msm.936292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 01/11/2023] Open
Abstract
In the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has driven investigational studies and controlled clinical trials on antiviral treatments and vaccines that have undergone regulatory approval. Now that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants may become endemic over time, there remains a need to identify drugs that treat the symptoms of COVID-19 and prevent progression toward severe cases, hospitalization, and death. Understanding the molecular mechanisms of SARS-CoV-2 infection is extremely important for the development of effective therapies against COVID-19. This review outlines the key pathways involved in the host response to SARS-CoV-2 infection and discusses the potential role of antioxidant and anti-inflammatory pharmacological approaches for the management of early mild-to-moderate COVID-19, using the examples of combined indomethacin, low-dose aspirin, omeprazole, hesperidin, quercetin, and vitamin C. The pharmacological targets of these substances are described here for their possible synergism in counteracting SARS-CoV-2 replication and progression of the infection from the upper respiratory airways to the blood, avoiding vascular complications and cytokine and bradykinin storms.
Collapse
Affiliation(s)
- Serafino Fazio
- Department of Internal Medicine (retired professor), Medical School University Federico II, Naples, Italy
| | | | - Paolo Bellavite
- Physiopathology Chair, Homeopathic Medical School of Verona, Verona, Italy
| |
Collapse
|
33
|
Bergantini L, Mainardi A, d’Alessandro M, Cameli P, Bennett D, Bargagli E, Sestini P. Common Molecular Pathways Between Post-COVID19 Syndrome and Lung Fibrosis: A Scoping Review. Front Pharmacol 2022; 13:748931. [PMID: 35308222 PMCID: PMC8931519 DOI: 10.3389/fphar.2022.748931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
The pathogenetic mechanism of post-Covid-19 pulmonary fibrosis is currently a topic of intense research interest, but still largely unexplored. The aim of this work was to carry out a systematic exploratory search of the literature (Scoping review) to identify and systematize the main pathogenetic mechanisms that are believed to be involved in this phenomenon, in order to highlight the same molecular aspect of the lung. These aims could be essential in the future for therapeutic management. We identified all primary studies involving in post COVID19 syndrome with pulmonary fibrosis as a primary endpoint by performing data searches in various systematic review databases. Two reviewers independently reviewed all abstracts (398) and full text data. The quality of study has been assess through SANRA protocol. A total of 32 studies involving were included, included the possible involvement of inflammatory cytokines, concerned the renin-angiotensin system, the potential role of galectin-3, epithelial injuries in fibrosis, alveolar type 2 involvement, Neutrophil extracellular traps (NETs) and the others implied other specific aspects (relationship with clinical and mechanical factors, epithelial transition mesenchymal, TGF-β signaling pathway, midkine, caspase and macrophages, genetics). In most cases, these were narrative reviews or letters to the editor, except for 10 articles, which presented original data, albeit sometimes in experimental models. From the development of these researches, progress in the knowledge of the phenomenon and hopefully in its prevention and therapy may originate.
Collapse
Affiliation(s)
- Laura Bergantini
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Respiratory Diseases and Transplant Unit, Siena University, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Jain M, Vadboncoeur J, Garg SJ, Biswas J. Bacille Calmette-Guérin: An ophthalmic perspective. Surv Ophthalmol 2022; 67:307-320. [PMID: 34343536 PMCID: PMC8325561 DOI: 10.1016/j.survophthal.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/20/2023]
Abstract
Vaccines such as bacille Calmette-Guérin (BCG) are known for their heterologous effects mediated through a number of mechanisms, including trained immunity constituted by monocyte-macrophage based innate immunity. Other events such as direct hematogenous spread and induction of autoimmunity are also described. There has been a resurgent interest in harnessing some of the benefits of trained immunity in the management of COVID-19, even as several specific vaccines have been approved. We summarize the current knowledge of ocular effects of BCG. Potential effect of granulomatous inflammation on angiotensin converting enzyme activity and accentuation of cytokine storm that may result in undesirable ocular and systemic effects are also discussed.
Collapse
Affiliation(s)
- Manish Jain
- Himalayan Institute of Medical Sciences, Jolly Grant, Dehradun, UK, India
| | - Julie Vadboncoeur
- Department of Ophthalmology, Université de Montréal, Montréal, Uveitis Service, University Ophthalmology Center, Maisonneuve-Rosemont Hospital, Montréal, Canada
| | - Sunir J Garg
- Thomas Jefferson University, Philadelphia, PA USA
| | - Jyotirmay Biswas
- Director of Uveitis & Ocular Pathology Department, Sankara Nethralaya, Chennai, TN, India
| |
Collapse
|
35
|
Kushkestani M, Parvani M, Moghadassi M, Kazemzadeh Y, Moradi K. Impact of Hypertension and Physical Fitness on SARS-COV-2 and Related Consequences. (Possible Mechanisms with Focusing on ACE2). CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:148-154. [PMID: 35872687 PMCID: PMC9272964 DOI: 10.22088/cjim.13.0.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 02/20/2021] [Indexed: 01/08/2023]
Abstract
Hypertension disease as an absolute risk factor of Covid-19 disease has been well-proven in recent evidence. The factors such as the use of antihypertensive drugs, protein expression, and compensatory axes resulted in hypertension disease playing very important roles in the occurrence of this problem. In this review study, we first attempted to investigate the higher chance reason for Covid-19 disease in people with high blood pressure; then we examined the related mechanisms, and finally, we reported the differences and similarities between people with high blood pressure and athletes. All in all, we concluded that people who exercise regularly, the same as hypertensive patients (Compensatory mechanism) are more susceptible to COVID-19 infection due to the high concentration of ACE2 (Physiological mechanism) caused by exercise adaptation, but for the low level of ANG2 (Systematic and gene expression) these individuals (Active subjects) indicate fewer complications and severity symptoms of COVID-19 such as dyspnea, hospitalization and, heart disease compared with hypertensive patients.
Collapse
Affiliation(s)
- Mehdi Kushkestani
- Faculty of Physical Education and Sport Sciences, Allameh Tabataba'i University, Tehran, Iran,Correspondence: Mehdi Kushkestani, Faculty of Physical Education and Sport Sciences, Allameh Tabataba'i University, Tehran, Iran. E-mail: , Tel: 0098 2177863362 , Fax: 0098 2177863362
| | - Mohsen Parvani
- Faculty of Physical Education and Sport Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Mahsa Moghadassi
- Department of Exercise Physiology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Yaser Kazemzadeh
- Department of Exercise Physiology, Islamshahr branch, Islamic Azad University, Islamshahr, Iran
| | - Kiandokht Moradi
- Faculty of Physical Education and Sport Sciences, Allameh Tabataba'i University, Tehran, Iran
| |
Collapse
|
36
|
Peirouvi T, Aliaghaei A, Eslami Farsani B, Ziaeipour S, Ebrahimi V, Forozesh M, Ghadipasha M, Mahmoudiasl GR, Aryan A, Moghimi N, Abdi S, Raoofi A, Kargar Godaneh M, Abdollahifar MA. COVID-19 disrupts the blood-testis barrier through the induction of inflammatory cytokines and disruption of junctional proteins. Inflamm Res 2021; 70:1165-1175. [PMID: 34436630 PMCID: PMC8387554 DOI: 10.1007/s00011-021-01497-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Junctional proteins are the most important component of the blood-testis barrier and maintaining the integrity of this barrier is essential for spermatogenesis and male fertility. The present study elucidated the effect of SARS-CoV-2 infection on the blood-testis barrier (BTB) in patients who died from severe acute respiratory syndrome coronavirus 2 (COVID-19) complications. METHODS In this study, lung and testis tissue was collected from autopsies of COVID-19 positive (n = 10) and negative men (n = 10) and was taken for stereology, immunocytochemistry, and RNA extraction. RESULTS Evaluation of the lung tissue showed that the SARS-CoV-2 infection caused extensive damage to the lung tissue and also increases inflammation in testicular tissue and destruction of the testicular blood barrier. Autopsied testicular specimens of COVID-19 showed that COVID-19 infection significantly changes the spatial arrangement of testicular cells and notably decreased the number of Sertoli cells. Moreover, the immunohistochemistry results showed a significant reduction in the protein expression of occluding, claudin-11, and connexin-43 in the COVID-19 group. In addition, we also observed a remarkable enhancement in protein expression of CD68 in the testes of the COVID-19 group in comparison with the control group. Furthermore, the result showed that the expression of TNF-α, IL1β, and IL6 was significantly increased in COVID-19 cases as well as the expression of occludin, claudin-11, and connexin-43 was decreased in COVID-19 cases. CONCLUSIONS Overall, the present study demonstrated that SARS-CoV-2 could induce the up-regulation of the pro-inflammatory cytokine and down-regulation of junctional proteins of the BTB, which can disrupt BTB and ultimately impair spermatogenesis.
Collapse
Affiliation(s)
- Tahmineh Peirouvi
- Department of Histology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjuo Blvd, Erabi Ave, Velenjak, Tehran, Iran
| | | | - Sanaz Ziaeipour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjuo Blvd, Erabi Ave, Velenjak, Tehran, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Forozesh
- Forensic Medicine Legal Medicine Research Center, Iranian Legal Medicine Organization, Tehran, Iran
| | - Masoud Ghadipasha
- Forensic Medicine Legal Medicine Research Center, Iranian Legal Medicine Organization, Tehran, Iran
| | | | - Arefeh Aryan
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Moghimi
- Department of Histology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjuo Blvd, Erabi Ave, Velenjak, Tehran, Iran
| | - Shabnam Abdi
- Department of Anatomical Sciences and Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Raoofi
- Department of Anatomical Sciences, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammadhossein Kargar Godaneh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjuo Blvd, Erabi Ave, Velenjak, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjuo Blvd, Erabi Ave, Velenjak, Tehran, Iran.
| |
Collapse
|
37
|
Involvement of the ACE2/Ang-(1-7)/MasR Axis in Pulmonary Fibrosis: Implications for COVID-19. Int J Mol Sci 2021; 22:ijms222312955. [PMID: 34884756 PMCID: PMC8657555 DOI: 10.3390/ijms222312955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1–7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1–7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.
Collapse
|
38
|
Fidecicchi T, Fruzzetti F, Lete Lasa LI, Calaf J. COVID-19, gender and estroprogestins, what do we know? EUR J CONTRACEP REPR 2021; 27:67-74. [PMID: 34842025 DOI: 10.1080/13625187.2021.2000959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The new coronavirus disease-19 (COVID-19) pandemic has rapidly spread all around the world, eliciting many questions and doubts about the pathogenesis of the disease and treatment. Mortality has been related to a prothrombotic state. Risk factors for the infection and for severe forms of COVID-19 have still to be defined. According to data collected, women appear to be less prone to severe forms of the disease and their mortality was lower than for men. The role of female hormones in the modulation of inflammation may be the reason behind this gender gap.Considering the prothrombotic state activated by the virus, hormone therapies have been placed under investigation as possible increasing risk factors for severe forms. Moreover, new vaccines and their rare thrombotic side effects have increased the concern about this issue.The goal of this review is to go over the mechanisms that lead up to thrombosis during COVID-19, trying to explain the possible reasons why women seem to be naturally protected. The expert opinions about whether to continue/discontinue hormonal therapies are reviewed. Moreover, available data about the so-called 'vaccine induced immune thrombotic thrombocytopaenia' caused by vaccines against COVID-19 are discussed.
Collapse
Affiliation(s)
- Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Pisa University Hospital of S. Chiara, Azienda Ospedaliera Universitaria, Pisa, Italy
| | - Franca Fruzzetti
- Department of Obstetrics and Gynecology, Pisa University Hospital of S. Chiara, Azienda Ospedaliera Universitaria, Pisa, Italy
| | - Luis Ignacio Lete Lasa
- Department of Obstetrics and Gynaecology, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Joaquim Calaf
- Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Savarraj J, Park ES, Colpo GD, Hinds SN, Morales D, Ahnstedt H, Paz AS, Assing A, Liu F, Juneja S, Kim E, Cho SM, Gusdon AM, Dash P, McCullough LD, Choi HA. Brain injury, endothelial injury and inflammatory markers are elevated and express sex-specific alterations after COVID-19. J Neuroinflammation 2021; 18:277. [PMID: 34838058 PMCID: PMC8627162 DOI: 10.1186/s12974-021-02323-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/14/2021] [Indexed: 01/15/2023] Open
Abstract
Objective Although COVID-19 is a respiratory disease, all organs can be affected including the brain. To date, specific investigations of brain injury markers (BIM) and endothelial injury markers (EIM) have been limited. Additionally, a male bias in disease severity and mortality after COVID-19 is evident globally. Sex differences in the immune response to COVID-19 may mediate this disparity. We investigated BIM, EIM and inflammatory cytokine/chemokine (CC) levels after COVID-19 and in across sexes. Methods Plasma samples from 57 subjects at < 48 h of COVID-19 hospitalization, and 20 matched controls were interrogated for the levels of six BIMs—including GFAP, S100B, Syndecan-1, UCHLI, MAP2 and NSE, two EIMs—including sICAM1 and sVCAM1. Additionally, several cytokines/chemokines were analyzed by multiplex. Statistical and bioinformatics methods were used to measure differences in the marker profiles across (a) COVID-19 vs. controls and (b) men vs. women. Results Three BIMs: MAP2, NSE and S100B, two EIMs: sICAM1 and sVCAM1 and seven CCs: GRO IL10, sCD40L, IP10, IL1Ra, MCP1 and TNFα were significantly (p < 0.05) elevated in the COVID-19 cohort compared to controls. Bioinformatics analysis reveal a stronger positive association between BIM/CC/EIMs in the COVID-19 cohort. Analysis across sex revealed that several BIMs and CCs including NSE, IL10, IL15 and IL8 were significantly (p < 0.05) higher in men compared to women. Men also expressed a more robust BIM/ EIM/CC association profile compared to women. Conclusion The acute elevation of BIMs, CCs, and EIMs and the robust associations among them at COVID-19 hospitalization are suggestive of brain and endothelial injury. Higher BIM and inflammatory markers in men additionally suggest that men are more susceptible to the risk compared to women. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02323-8.
Collapse
Affiliation(s)
- Jude Savarraj
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| | - Eun S Park
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Gabriela D Colpo
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sarah N Hinds
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Diego Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Atzhiry S Paz
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Andres Assing
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shivanki Juneja
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Eunhee Kim
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sung-Min Cho
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Aaron M Gusdon
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Pramod Dash
- Department of Neurobiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - H Alex Choi
- Departent of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Brady M, McQuaid C, Solorzano A, Johnson A, Combs A, Venkatraman C, Rahman A, Leyva H, Kwok WCE, Wood RW, Deane R. Spike protein multiorgan tropism suppressed by antibodies targeting SARS-CoV-2. Commun Biol 2021; 4:1318. [PMID: 34811493 PMCID: PMC8609008 DOI: 10.1038/s42003-021-02856-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
While there is SARS-CoV-2 multiorgan tropism in severely infected COVID-19 patients, it's unclear if this occurs in healthy young individuals. In addition, for antibodies that target the spike protein (SP), it's unclear if these reduce SARS-CoV-2/SP multiorgan tropism equally. We used fluorescently labeled SP-NIRF to study viral behavior, using an in vivo dynamic imaging system and ex in vivo tissue analysis, in young mice. We found a SP body-wide biodistribution followed by a slow regional elimination, except for the liver, which showed an accumulation. SP uptake was highest for the lungs, and this was followed by kidney, heart and liver, but, unlike the choroid plexus, it was not detected in the brain parenchyma or CSF. Thus, the brain vascular barriers were effective in restricting the entry of SP into brain parenchyma in young healthy mice. While both anti-ACE2 and anti-SP antibodies suppressed SP biodistribution and organ uptake, anti-SP antibody was more effective. By extension, our data support the efficacy of these antibodies on SARS-CoV-2 multiorgan tropism, which could determine COVID-19 organ-specific outcomes.
Collapse
Affiliation(s)
- Molly Brady
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Conor McQuaid
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Alexander Solorzano
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Angelique Johnson
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Abigail Combs
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Chethana Venkatraman
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Akib Rahman
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Hannah Leyva
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Wing-Chi Edmund Kwok
- Department of Imaging Sciences, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ronald W Wood
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Departments of Obstetrics and Gynecology, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Urology, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Rashid Deane
- Department of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
41
|
Papola F, Biancofiore V, Angeletti C, Grimaldi A, Carucci AC, Cofini V, Necozione S, Rosciano A, Marinangeli F, Cervelli C. Anti-AT1R autoantibodies and prediction of the severity of Covid-19. Hum Immunol 2021; 83:130-133. [PMID: 34772541 PMCID: PMC8577881 DOI: 10.1016/j.humimm.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
The stimulation of AT1R (Angiotensin II Receptor Type 1) by Angiotensin II has, in addition to the effects on the renin-angiotensin system, also pro-inflammatory effects through stimulation of ADAM17 and subsequent production of INF-gamma and Interleukin-6. This pro-inflammatory action stimulate the cytokine storm that characterizes the most severe forms of SARS-CoV-2 infection. We studied the effect of AT1Rab on the AT1R on 74 subjects with SARS-CoV-2 infection with respiratory symptoms requiring hospitalization. We divided the patients into 2 groups: 34 with moderate and 40 with severe symptoms that required ICU admission. Hospitalized subjects showed a 50% reduction in the frequency of AT1Rab compared to healthy reference population. Of the ICU patients, 33/40 (82.5%) were AT1Rab negative and 16/33 of them (48.5%) died. All 7 patients positive for AT1Rab survived. These preliminary data seem to indicate a protective role played by AT1R autoantibodies on inflammatory activation in SARS-CoV-2 infection pathology.
Collapse
Affiliation(s)
- Franco Papola
- Regional Centre of Immunohaematology and Tissue Typing, S.Salvatore Hospital, L'Aquila, Italy.
| | - Veronica Biancofiore
- Anesthesiology, Intensive Care and Pain Medicine, Emergency Department, S.Salvatore Hospital L'Aquila, Italy
| | - Chiara Angeletti
- Anesthesiology, Intensive Care and Pain Medicine, Emergency Department Civil Hospital G. Mazzini of Teramo, Teramo, Italy
| | | | | | - Vincenza Cofini
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy
| | - Stefano Necozione
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy
| | - Alessia Rosciano
- Regional Centre of Immunohaematology and Tissue Typing, S.Salvatore Hospital, L'Aquila, Italy
| | - Franco Marinangeli
- Anesthesiology, Intensive Care and Pain Medicine, Emergency Department Civil Hospital G. Mazzini of Teramo, Teramo, Italy
| | - Carla Cervelli
- Regional Centre of Immunohaematology and Tissue Typing, S.Salvatore Hospital, L'Aquila, Italy
| |
Collapse
|
42
|
Chammas J, Delaney D, Chabaytah N, Abdulkarim S, Schwertani A. COVID-19 and the cardiovascular system: insights into effects and treatments. Can J Physiol Pharmacol 2021; 99:1119-1127. [PMID: 34546123 DOI: 10.1139/cjpp-2021-0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), an acute and highly transmissible infectious disease, has reached a pandemic level since 11 March 2020 and continues to challenge the healthcare system worldwide. The pathogenesis of COVID-19 is a complex process involving mechanisms that suppress the host antiviral and innate immune response, while triggering marked activation of coagulation and hyperinflammation leading to cytokine storm in severe COVID-19. This review summarizes current evidence related to COVID-19-associated cardiovascular severe illness and mortality, which encompasses life-threatening clinical manifestations, including myocardial injury, fulminant myocarditis, cardiac arrhythmia, and ischemic stroke. The onset of hypercoagulable state is consistent with increased venous thromboembolism including deep vein thrombosis and pulmonary embolism. Thromboembolic manifestations include arterial thrombotic events such as stroke, myocardial infarction, and limb ischemia. Several treatment strategies have been investigated to mitigate COVID-19-associated cardiovascular clinical manifestations. The prevalence of thrombo-inflammatory syndrome and subsequent cardiovascular dysfunction prompted the implementation of antithrombotic therapy and strategies targeting major pro-inflammatory cytokines involved in COVID-19 cytokine storm. The development of new guidelines for effective treatment strategies requires concerted efforts to refine our understanding of the mechanisms underlying cardiovascular disease and large-scale clinical trials to reduce the burden of COVID-19 hospitalization and mortality.
Collapse
Affiliation(s)
- Joey Chammas
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Dylan Delaney
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Naim Chabaytah
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sarah Abdulkarim
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Adel Schwertani
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Bahraini M, Dorgalaleh A. The Impact of SARS-CoV-2 Infection on Blood Coagulation and Fibrinolytic Pathways: A Review of Prothrombotic Changes Caused by COVID-19. Semin Thromb Hemost 2021; 48:19-30. [PMID: 34695858 DOI: 10.1055/s-0041-1736166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cardinal pathology of coronavirus disease 2019 (COVID-19) is a primary infection of pulmonary tract cells by severe acute respiratory syndrome coronavirus 2, provoking a local inflammatory response, often accompanied by cytokine storm and acute respiratory distress syndrome, especially in patients with severe disease. Systemic propagation of the disease may associate with thrombotic events, including deep vein thrombosis, pulmonary embolism, and thrombotic microangiopathy, which are important causes of morbidity and mortality in patients with COVID-19. This narrative review describes current knowledge of the pathophysiological mechanisms of COVID-19-associated coagulopathy, with focus on prothrombotic changes in hemostatic mediators, including plasma levels of clotting factors, natural anticoagulants, components of fibrinolytic system, and platelets. It will also highlight the central role of endothelial cells in COVID-19-associated coagulopathy. This narrative review discusses also potential therapeutic strategies for managing thrombotic complications. Awareness by medical experts of contributors to the pathogenesis of thrombotic events in COVID-19 is imperative to develop therapeutics not limited to regular anticoagulants. Instituting cooperation among medical personnel and researchers may lessen this novel virus' impact now, and in the event of recurrence.
Collapse
Affiliation(s)
- Mehran Bahraini
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Dorgalaleh
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Human Cell Receptors and Downstream Cascades: A Review of Molecular Aspects and Potential Therapeutic Targets in COVID-19. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.113298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: There have been two coronavirus-related pandemics during the past 18 years, including severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV in 2002 and 2012, respectively. In 2019, Seven years after the emergence of MERS, a new coronavirus (i.e., SARS-CoV-2) was detected in several patients. SARS-CoV-2 spread widely, and its high prevalence enabled the virus to start a new pandemic in 2020. It is believed that the higher infectivity of the virus in comparison to that of SARS-CoV is related to its molecular interaction affinity of transmembrane spike glycoprotein and human angiotensin-converting enzyme 2 (ACE-2) cell receptors. Moreover, the primary reason for the high case fatality rate (CFR) is the cytokine storm and acute respiratory distress syndrome (ARDS) because of the immune system response to the invaders. Hence, a solid understanding of the components involved in the mechanism of viral entry and immune system response is crucial for finding approaches to disrupt the virus-cell interplay and neutralizing its impacts on the host immune system. In this review, we investigated the molecular aspect and potential therapeutic targets associated with cell receptors and downstream signaling cascades. Evidence Acquisition: A systematic search was implemented on several online databases, including Google Scholar, PubMed, and Scopus during 2019-2021 using the following keywords: "SARS-CoV-2", "COVID-19", "ACE-2", "Therapeutic Targets", "Acute Respiratory Distress Syndrome", and "Cytokine Storm". Results: Various internal or external agents are responsible for the virus infectivity and stimulating acute immune system response. Since currently there is no cure for the treatment of COVID-19, several repurposed drugs can be employed to disrupt the process of viral entry and mitigate the symptoms raised by the cytokine storm. Inhibition of several agents, including signal transduction mediators and TMPRSS2 may be momentous. Conclusions: Despite the increase in the CFR, no drugs were developed with significant efficacy. Understanding the virus entry mechanism and the immune system’s role could help us surmount the problems in developing a promising drug or employing the repurposed ones.
Collapse
|
45
|
Phillips N, Park IW, Robinson JR, Jones HP. The Perfect Storm: COVID-19 Health Disparities in US Blacks. J Racial Ethn Health Disparities 2021; 8:1153-1160. [PMID: 32965660 PMCID: PMC7510013 DOI: 10.1007/s40615-020-00871-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) accounts for over 180,000 deaths in the USA. Although COVID-19 affects all racial ethnicities, non-Hispanic Blacks have the highest mortality rates. Evidence continues to emerge, linking the disproportion of contagion and mortality from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a result of adverse social determinants of health. Yet, genetic predisposition may also play a credible role in disease transmission. SARS-CoV-2 enters cells by interaction between SARS-CoV-2 spike protein and the receptor molecule angiotensin converting enzyme 2 (ACE2) expressed on the surface of the target cells, such that polymorphisms and the expression level of ACE2 influence infectivity and consequent pathogenesis of SARS-CoV-2. Genetic polymorphisms in other multiple genes, such as acetylcholinesterase (AChE) and interleukin-6, are also closely associated with underlying diseases, such as hypertension and type 2 diabetes mellitus, which substantially raise SARS-CoV-2 mortality. However, it is unknown how these genetic polymorphisms contribute to the disparate mortality rates, with or without underlying diseases. Of particular interest is the potential that genetic polymorphisms in these genes may be influencing the disparity of COVID-19 mortality rates in Black communities. Here, we review the evidence that biological predisposition for high-risk comorbid conditions may be relevant to our ability to fully understand and therefore address health disparities of COVID-19 deaths in Blacks.
Collapse
Affiliation(s)
- Nicole Phillips
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Harris College of Nursing & Health Sciences, Texas Christian University, TCU Box 298620, Fort Worth, TX, 76129, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Harris College of Nursing & Health Sciences, Texas Christian University, TCU Box 298620, Fort Worth, TX, 76129, USA
| | - Janie R Robinson
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
- Harris College of Nursing & Health Sciences, Texas Christian University, TCU Box 298620, Fort Worth, TX, 76129, USA.
| |
Collapse
|
46
|
Gozman L, Perry K, Nikogosov D, Klabukov I, Shevlyakov A, Baranova A. A Role of Variance in Interferon Genes to Disease Severity in COVID-19 Patients. Front Genet 2021; 12:709388. [PMID: 34603376 PMCID: PMC8484761 DOI: 10.3389/fgene.2021.709388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The rapid rise and global consequences of the novel coronavirus disease 19 (COVID-19) have again brought the focus of the scientific community on the possible host factors involved in patient response and outcome to exposure to the virus. The disease severity remains highly unpredictable, and individuals with none of the aforementioned risk factors may still develop severe COVID-19. It was shown that genotype-related factors like an ABO Blood Group affect COVID-19 severity, and the risk of infection with SARS-CoV-2 was higher for patients with blood type A and lower for patients with blood type O. Currently it is not clear which specific genes are associated with COVID-19 severity. The comparative analysis of COVID-19 and other viral infections allows us to predict that the variants within the interferon pathway genes may serve as markers of the magnitude of immune response to specific pathogens. In particular, various members of Class III interferons (lambda) are reviewed in detail.
Collapse
Affiliation(s)
- Leonid Gozman
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Kellie Perry
- School of System Biology, George Mason University, Fairfax, VA, United States
| | | | - Ilya Klabukov
- Department of Regenerative Technologies and biofabrication, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | - Ancha Baranova
- School of System Biology, George Mason University, Fairfax, VA, United States
- Atlas Biomed Group Limited, London, United Kingdom
- Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
47
|
Mahgoub S, Kotb El-Sayed MI, El-Shehry MF, Mohamed Awad S, Mansour YE, Fatahala SS. Synthesis of novel calcium channel blockers with ACE2 inhibition and dual antihypertensive/anti-inflammatory effects: A possible therapeutic tool for COVID-19. Bioorg Chem 2021; 116:105272. [PMID: 34474305 PMCID: PMC8403975 DOI: 10.1016/j.bioorg.2021.105272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 02/08/2023]
Abstract
Hypertension has been recognized as one of the most frequent comorbidities and risk factors for the seriousness and adverse consequences in COVID-19 patients. 3,4-dihydropyrimidin-2(1H) ones have attracted researchers to be synthesized via Beginilli reaction and evaluate their antihypertensive activities as bioisosteres of nifedipine a well-known calcium channel blocker. In this study, we report synthesis of some bioisosteres of pyrimidines as novel CCBs with potential ACE2 inhibitory effect as antihypertensive agents with protective effect against COVID-19 infection by suppression of ACE2 binding to SARS-CoV-2 Spike RBD. All compounds were evaluated for their antihypertensive and calcium channel blocking activities using nifedipine as a reference standard. Furthermore, they were screened for their ACE2 inhibition potential in addition to their anti‐inflammatory effects on LPS-stimulated THP‐1 cells. Most of the tested compounds exhibited significant antihypertensive activity, where compounds 7a, 8a and 9a exhibited the highest activity compared to nifedipine. Moreover, compounds 4a,b, 5a,b, 7a,b, 8a,c and 9a showed promising ACE2:SARS-CoV-2 Spike RBD inhibitory effect. Finally, compounds 5a, 7b and 9a exerted a promising anti-inflammatory effect by inhibition of CRP and IL-6 production. Ultimately, compound 9a may be a promising antihypertensive candidate with anti-inflammatory and potential efficacy against COVID-19 via ACE2 receptor inhibition.
Collapse
Affiliation(s)
- Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, P.O. Box, 11795 Cairo, Egypt.
| | - Mohamed-I Kotb El-Sayed
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, P.O. Box, 11795 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed F El-Shehry
- Pesticide Chemistry Department, National Research Centre, P.O. Box, 12622 Dokki, Egypt
| | - Samir Mohamed Awad
- Pharmaceutical Organic Chemistry Department, Helwan University, P.O. Box, 11795 Cairo, Egypt
| | - Yara E Mansour
- Pharmaceutical Organic Chemistry Department, Helwan University, P.O. Box, 11795 Cairo, Egypt
| | - Samar S Fatahala
- Pharmaceutical Organic Chemistry Department, Helwan University, P.O. Box, 11795 Cairo, Egypt.
| |
Collapse
|
48
|
Kaundal RK, Kalvala AK, Kumar A. Neurological Implications of COVID-19: Role of Redox Imbalance and Mitochondrial Dysfunction. Mol Neurobiol 2021; 58:4575-4587. [PMID: 34110602 PMCID: PMC8190166 DOI: 10.1007/s12035-021-02412-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 or COVID-19 has been declared as a pandemic disease by the World Health Organization (WHO). Globally, this disease affected 159 million of the population and reported ~ 3.3 million deaths to the current date (May 2021). There is no definitive treatment strategy that has been identified, although this disease has prevailed in its current form for the past 18 months. The main challenges in the (SARS-CoV)-2 infections are in identifying the heterogeneity in viral strains and the plausible mechanisms of viral infection to human tissues. In parallel to the investigations into the patho-mechanism of SARS-CoV-2 infection, understanding the fundamental processes underlying the clinical manifestations of COVID-19 is very crucial for designing effective therapies. Since neurological symptoms are very apparent in COVID-19 infected patients, here, we tried to emphasize the involvement of redox imbalance and subsequent mitochondrial dysfunction in the progression of the COVID-19 infection. It has been articulated that mitochondrial dysfunction is very apparent and also interlinked to neurological symptoms in COVID-19 infection. Overall, this article provides an in-depth overview of redox imbalance and mitochondrial dysfunction involvement in aggravating COVID-19 infection and its probable contribution to the neurological manifestation of the disease.
Collapse
Affiliation(s)
- Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
- Icahn School of Medicine At Mount Sinai, 1470 Madison Ave, New York, NY, USA
| | - Anil K Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, North America, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India.
| |
Collapse
|
49
|
Philips CA, Kakkar K, Joseph M, Yerol PK, Ahamed R, Rajesh S, Augustine P. Critically Ill COVID-19 Patient with Chronic Liver Disease - Insights into a Comprehensive Liver Intensive Care. J Clin Transl Hepatol 2021; 9:576-586. [PMID: 34447688 PMCID: PMC8369022 DOI: 10.14218/jcth.2020.00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/07/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The novel coronavirus-related coronavirus disease 2019 (COVID-19) pandemic has been relentless in disrupting and overwhelming healthcare the world over. Clinical outcomes of COVID-19 in patients with chronic comorbidities, especially in those with metabolic syndrome, are well documented. Chronic liver disease and cirrhosis patients are a special sub-group, among whom the management of COVID-19 is challenging. Understanding the pathophysiology of COVID-19 in patients with cirrhosis and portal hypertension improves our identification of at-risk patients for disease progression that will further help compartmentalize generalized and specialized treatment options in this special patient group. In this exhaustive review, we critically review the impact of COVID-19 on the liver and in chronic liver disease and cirrhosis patients. We further discuss common features associated with the pathophysiology of COVID-19 and cirrhosis, based on the renin-angiotensin system and deliberate current literature on guidelines for the treatment of COVID-19 and extrapolate the same to the cirrhosis population to provide a concise and stepwise, evidence-based management for cirrhosis patients with severe and critical COVID-19. There are no specific management guidelines for cirrhosis patients with COVID-19 and current recommendations for treatment are as per guidelines for general population. Nevertheless, specific issues like avoiding corticosteroids in decompensated patients with variceal bleeding, suspected sepsis, high grade hepatic encephalopathy and acute kidney injury, use of early mechanical ventilation strategies in those with severe ascites and hepatopulmonary syndrome, avoidance of remdesivir in advanced liver disease, and application of liver-specific severity scores for prognostication and identification of futility need to be highlighted.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- Department of Clinical Hepatology, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
- Correspondence to: Cyriac Abby Philips, Department of Clinical Hepatology, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala 683112, India. ORCID: https://orcid.org/0000-0002-9587-336X. Tel: +91-484-2905000, Fax: +91-484-7184000, E-mail:
| | - Kamna Kakkar
- Department of Pulmonary and Critical Care Medicine, Pt. B. D. Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Moby Joseph
- Great Western Hospitals, NHS Foundation Trust, Swindon, United Kingdom
| | - Praveen Kumar Yerol
- Department of Gastroenterology, State Government Medicine College and Hospital, Thrissur, Kerala, India
| | - Rizwan Ahamed
- Gastroenterology and Advanced G.I Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Sasidharan Rajesh
- Interventional Hepatobiliary Radiology, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| | - Philip Augustine
- Gastroenterology and Advanced G.I Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| |
Collapse
|
50
|
Trapé ÁA, Camacho-Cardenosa M, Camacho-Cardenosa A, Merellano-Navarro E, Rodrigues JAL, da Silva Lizzi EA, Sorgi CA, Papoti M, Brazo-Sayavera J. Effects of moderate-intensity intermittent hypoxic training on health outcomes of patients recovered from COVID-19: the AEROBICOVID study protocol for a randomized controlled trial. Trials 2021; 22:534. [PMID: 34384461 PMCID: PMC8358903 DOI: 10.1186/s13063-021-05414-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies point to a lower number and reduced severity of cases in higher altitude cities with decreased oxygen concentration. Specific literature has shown several benefits of physical training, so, in this sense, physical training with hypoxic stimulus appears as an alternative that supports the conventional treatments of the COVID-19 patient’s recovery. Thus, this study’s primary aim is to analyze the effects of moderate-intensity intermittent hypoxic training on health outcomes in COVID-19 recovered patients. Methods A clinical trial controlled double-blind study was designed. Participants (30–69 years old) will be recruited among those with moderate to severe COVID-19 symptoms, approximately 30 days after recovery. They will be included in groups according to the training (T) and recovery (R) association with hypoxia (H) or normoxia (N): (a) TH:RH, (b) TN:RH, (c) TN:RN, and last (d) the control group. The 8-week exercise bike intervention will be carried out with a gradual load increase according to the established periods, three times a week in sets of 5 min, 90 to 100% of the anaerobic threshold (AT), and a 2.5-min break. Blood will be collected for genotyping. First, after 4 weeks (partial), after 8 weeks, and later, 4 weeks after the end of the physical training intervention, participants will perform assessments. The primary outcome is the maximum oxygen consumption (VO2peak). The secondary outcomes include lung function, inflammatory mediators, hematological, autonomic parameters, AT, body composition analysis, quality of life, mental health, anthropometric measurements, and physical fitness. The statistical analysis will be executed using the linear regression model with mixed effects at a 5% significance level. Discussion This study is designed to provide evidence to support the clinical benefits of moderate-intensity intermittent hypoxic training as a part of the treatment of patients recovered from COVID-19. It may also provide evidence on the efficacy and safety of intermittent hypoxic training in different health conditions. Lastly, this study presents an innovative strategy enabling up to 16 participants in the same training session. Trial registration ClinicalTrials.gov RBR-5d7hkv. Registered after the start of inclusion on 3 November 2020 with the Brazilian Clinical Trials Registry Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05414-2.
Collapse
Affiliation(s)
- Átila Alexandre Trapé
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, SP, Brazil. .,Ribeirão Preto College of Nursing, USP, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | - Carlos Arterio Sorgi
- Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Javier Brazo-Sayavera
- Department of Sports and Computer Science, Universidad Pablo de Olavide (UPO), Seville, Spain.,PDU EFISAL, Centro Universitario Regional Noreste, Universidad de la República, Rivera, Uruguay
| |
Collapse
|