1
|
Ninkuu V, Zhou Y, Liu H, Sun S, Liu Z, Liu Y, Yang J, Hu M, Guan L, Sun X. Regulation of nitrogen metabolism by COE2 under low sulfur stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112137. [PMID: 38815871 DOI: 10.1016/j.plantsci.2024.112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The interplay between nitrogen and sulfur assimilation synergistically supports and sustains plant growth and development, operating in tandem to ensure coordinated and optimal outcomes. Previously, we characterized Arabidopsis CHLOROPHYLL A/B-BINDING (CAB) overexpression 2 (COE2) mutant, which has a mutation in the NITRIC OXIDE-ASSOCIATED (NOA1) gene and exhibits deficiency in root growth under low nitrogen (LN) stress. This study found that the growth suppression in roots and shoots in coe2 correlates with decreased sensitivity to low sulfur stress treatment compared to the wild-type. Therefore, we examined the regulatory role of COE2 in nitrogen and sulfur interaction by assessing the expression of nitrogen metabolism-related genes in coe2 seedlings under low sulfur stress. Despite the notable upregulation of nitrate reductase genes (NIA1 and NIA2), there was a considerable reduction in nitrogen uptake and utilization, resulting in a substantial growth penalty. Moreover, the elevated expression of miR396 perhaps complemented growth stunting by selectively targeting and curtailing the expression levels of GROWTH REGULATING FACTOR 2 (GRF2), GRF4, and GRF9. This study underscores the vital role of COE2-mediated nitrogen signaling in facilitating seedling growth under sulfur deficiency stress.
Collapse
Affiliation(s)
- Vincent Ninkuu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Hao Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Susu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhixin Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yumeng Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jincheng Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengke Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Liping Guan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China.
| |
Collapse
|
2
|
Scaccini D, Fornasiero D, Lombardo V, Galli G, Mirandola E, Pozzebon A. Application of sulfur-based products reduces Halyomorpha halys infestation and damage in pome fruit orchards. PEST MANAGEMENT SCIENCE 2024. [PMID: 39105291 DOI: 10.1002/ps.8354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The brown marmorated stink bug, Halyomorpha halys (Stål, 1855) (Hemiptera: Pentatomidae) is an invasive pest that causes economic damage on crops, decreasing fruit yield and quality. Conventional insecticides are frequently used to reduce infestations, but these are often with a limited residual effect, besides being costly and detrimental to nontarget organisms and the environment. In integrated pest management, novel strategies against H. halys are proposed, such as the use of alternative substances with an effect on insect behaviour and mobility. As one of the oldest multi-site fungicides applied against fungal pathogens and as an insecticide and acaricide to control scales and mites, sulfur is proposed here to reduce H. halys infestation in fruit orchards. RESULTS Field experiments were performed to evaluate the effect of repeated wettable sulfur applications on H. halys in apple and pear orchards. Sulfur-induced plant phytotoxicity effects and quanti-qualitative parameters on apple fruits were also recorded. Halyomorpha halys infestation was significantly reduced in sulfur-treated compared to untreated pears and apples. Furthermore, sulfur sprays reduced fruit damage caused by H. halys. Besides, sulfur-mediated phytotoxicity such as symptoms on leaves and fruit drop were not observed. Fruit quality was not influenced by sulfur treatments. CONCLUSIONS Wettable sulfur seems to be a promising formulation given the low phytotoxicity, considering the technical aspects for an effective use of sulfur-based products to counteract H. halys in pome fruit orchards. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Davide Scaccini
- Department of Agronomy, Food, Natural resources, Animals, Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Diego Fornasiero
- Department of Agronomy, Food, Natural resources, Animals, Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Veronica Lombardo
- Department of Agronomy, Food, Natural resources, Animals, Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Giulia Galli
- Department of Agronomy, Food, Natural resources, Animals, Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Enrico Mirandola
- Department of Agronomy, Food, Natural resources, Animals, Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural resources, Animals, Environment (DAFNAE), University of Padua, Legnaro, Italy
| |
Collapse
|
3
|
Bao J, Yang J, Lu X, Ma L, Shi X, Lan S, Zhao Y, Cao J, Ma S, Li S. Exogenous Melatonin Promotes Glucoraphanin Biosynthesis by Mediating Glutathione in Hairy Roots of Broccoli ( Brassica oleracea L. var. italica Planch). PLANTS (BASEL, SWITZERLAND) 2023; 13:106. [PMID: 38202414 PMCID: PMC10780497 DOI: 10.3390/plants13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
To investigate the mechanism of melatonin (MT)-mediated glutathione (GSH) in promoting glucoraphanin (GRA) and sulforaphane (SF) synthesis, the gene expression pattern and protein content of hairy broccoli roots under MT treatment were analyzed by a combination of RNA-seq and tandem mass spectrometry tagging (TMT) techniques in this study. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that both proteins and mRNAs with the same expression trend were enriched in the "Glutathione metabolism (ko00480)" and "Proteasome (ko03050)" pathways, and most of the differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) regulating the two pathways were downregulated. The results showed that endogenous GSH concentration and GR activity were increased in hairy roots after MT treatment. Exogenous GSH could promote the biosynthesis of GRA and SF, and both exogenous MT and GSH could upregulate the expression of the GSTF11 gene related to the sulfur transport gene, thus promoting the biosynthesis of GRA. Taken together, this study provides a new perspective to explore the complex molecular mechanisms of improving GRA and SF synthesis levels by MT and GSH regulation.
Collapse
Affiliation(s)
- Jinyu Bao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jie Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Lei Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
| | - Xiaotong Shi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Shimin Lan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Yi Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Jie Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Sheng Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.B.); (L.M.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (X.S.); (S.L.); (Y.Z.); (J.C.)
| |
Collapse
|
4
|
Zeng W, Yang J, He Y, Zhu Z. Bioactive compounds in cruciferous sprouts and microgreens and the effects of sulfur nutrition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7323-7332. [PMID: 37254614 DOI: 10.1002/jsfa.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Cruciferous sprouts and microgreens are a good source of bioactive compounds for human health as they are rich in glucosinolates, polyphenols, carotenoids, and vitamins. Glucosinolates - sulfur-containing bioactive phytochemicals - have anti-cancer effects. They mainly exist in cruciferous vegetables. Sulfur is one of the essential elements for plants and is an indispensable component of glucosinolates. This paper summarizes the nutritional value of cruciferous spouts and microgreens, along with the effects of sulfur nutrition on bioactive phytochemical compounds of cruciferous sprouts and microgreens, especially glucosinolates, with the aim of providing information about the dietary effects of cruciferous sprouts and microgreens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjing Zeng
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- College of Environmental and Resource Science, Zhejiang A&F University, Hangzhou, China
| | - Jing Yang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yong He
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
5
|
Kasamatsu S, Owaki T, Komae S, Kinno A, Ida T, Akaike T, Ihara H. Untargeted polysulfide omics analysis of alternations in polysulfide production during the germination of broccoli sprouts. Redox Biol 2023; 67:102875. [PMID: 37699321 PMCID: PMC10500461 DOI: 10.1016/j.redox.2023.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023] Open
Abstract
Higher consumption of broccoli (Brassica oleracea var. italica) is associated with a reduced risk of cardiometabolic diseases, neurological disorders, diabetes, and cancer. Broccoli is rich in various phytochemicals, including glucosinolates, and isothiocyanates. Moreover, it has recently reported the endogenous production of polysulfides, such as cysteine hydropersulfide (CysS2H) and glutathione hydropersulfide (GS2H), in mammals including humans, and that these bioactive substances function as potent antioxidants and important regulators of redox signaling in vivo. However, few studies have focused on the endogenous polysulfide content of broccoli and the impact of germination on the polysulfide content and composition in broccoli. In this study, we investigated the alternations in polysulfide biosynthesis in broccoli during germination by performing untargeted polysulfide omics analysis and quantitative targeted polysulfide metabolomics through liquid chromatography-electrospray ionization-tandem mass spectrometry. We also performed 2,2-diphenyl-1-picrylhydrazyl radical-scavenging assay to determine the antioxidant properties of the polysulfides. The results revealed that the total polysulfide content of broccoli sprouts significantly increased during germination and growth; CysS2H and cysteine hydrotrisulfide were the predominant organic polysulfide metabolites. Furthermore, we determined that novel sulforaphane (SFN) derivatives conjugated with CysS2H and GS2H were endogenously produced in the broccoli sprouts, and the novel SFN conjugated with CysS2H exhibited a greater radical scavenging capacity than SFN and cysteine. These results suggest that the abundance of polysulfides in broccoli sprouts contribute to their health-promoting properties. Our findings have important biological implications for the development of novel pharmacological targets for the health-promoting effects of broccoli sprouts in humans.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Takuma Owaki
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Somei Komae
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Ayaka Kinno
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Tomoaki Ida
- Organization for Research Promotion, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, 599-8531, Japan.
| |
Collapse
|
6
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
7
|
Yang S, Zhou Z, Zhang T, Zhang Q, Li R, Li J. Overexpression of BoLSU1 and BoLSU2 Confers Tolerance to Sulfur Deficiency in Arabidopsis by Manipulating Glucosinolate Metabolism. Int J Mol Sci 2023; 24:13520. [PMID: 37686325 PMCID: PMC10487721 DOI: 10.3390/ijms241713520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Sulfur is an essential element for plant growth, development and resistance to environmental stresses. Glucosinolates (GSLs), a group of sulfur rich secondary metabolites found in Brassicaceae plants, are known for their defensive properties against pathogens and herbivores. Due to their integration of a large proportion of total sulfur, their biosynthesis and degradation are closely linked to sulfur metabolism. It has been demonstrated that GSLs can be broken down to release sulfur and facilitate the production of other thio-metabolites when the plant is under stress. However, the regulation of this process is still not fully understood. In this study, we constructed two broccoli LSU (low sulfur responsive) gene overexpressing lines, 35S::BoLSU1 and 35S::BoLSU2, to detect changes in GSL metabolism after sulfur deficiency treatment. The results showed that BoLSU1 and BoLSU2 inhibit the biosynthesis of aliphatic GSLs, while also promoting their degradation and increasing the content of glutathione (GSH), leading to the reallocation of sulfur from the GSL pool to other thio-metabolites such as GSH. Furthermore, this regulation of GSL metabolism mediated by BoLSU1 and BoLSU2 is found to be dependent on myrosinases BGLU28 and BGLU30. Our study provides insight into the physiological role of LSU proteins and their regulation of sulfur metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Rui Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (S.Y.)
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (S.Y.)
| |
Collapse
|
8
|
Li R, Zhou Z, Zhang T, Su H, Li J. Overexpression of LSU1 and LSU2 confers cadmium tolerance by manipulating sulfur metabolism in Arabidopsis. CHEMOSPHERE 2023; 334:139046. [PMID: 37244555 DOI: 10.1016/j.chemosphere.2023.139046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Phytoremediation using plants is an environmentally friendly and cost-effective strategy for removing cadmium (Cd) from soil. Plants used for phytoremediation must have a high Cd accumulation capacity and strong Cd tolerance. Therefore, understanding the molecular mechanism of Cd tolerance and accumulation in plants is of great interest. In response to Cd exposure, plants produce various thio-rich compounds, such as glutathione, phytochelatins, and metallothioneins, which play important roles in Cd immobilization, sequestration, and detoxification. Therefore, sulfur (S) metabolism is crucial for Cd tolerance and accumulation. In this study, we report that the overexpression of low-S responsive genes, LSU1 and LSU2, confers Cd tolerance in Arabidopsis. First, LSU1 and LSU2 promoted S assimilation under Cd stress. Second, LSU1 and LSU2 inhibited the biosynthesis and promoted the degradation of aliphatic glucosinolates, which could limit the consumption and enhance the release of S, thus, facilitating the production of the S-rich metabolites, glutathione, phytochelatins, and metallothioneins. We further demonstrated that the Cd tolerance mediated by LSU1 and LSU2 was dependent on the myrosinases BGLU28 and BGLU30, which catalyze the degradation of aliphatic glucosinolates. In addition, the overexpression of LSU1 and LSU2 improved Cd accumulation, which has great potential for the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Rui Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zihuan Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tianqi Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hongzhu Su
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Wang M, Cai C, Li Y, Tao H, Meng F, Sun B, Miao H, Wang Q. Brassinosteroids fine-tune secondary and primary sulfur metabolism through BZR1-mediated transcriptional regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1153-1169. [PMID: 36573424 DOI: 10.1111/jipb.13442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
For adaptation to ever-changing environments, plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates (GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promoting hormone brassinosteroid (BR) inhibits GSLs accumulation while enhancing biosynthesis of primary sulfur metabolites, including cysteine (Cys) and glutathione (GSH) both in Arabidopsis and Brassica crops, fine-tuning secondary and primary sulfur metabolism to promote plant growth. Furthermore, we demonstrate that of BRASSINAZOLE RESISTANT 1 (BZR1), the central component of BR signaling, exerts distinct transcriptional inhibition regulation on indolic and aliphatic GSL via direct MYB51 dependent repression of indolic GSL biosynthesis, while exerting partial MYB29 dependent repression of aliphatic GSL biosynthesis. Additionally, BZR1 directly activates the transcription of APR1 and APR2 which encodes rate-limiting enzyme adenosine 5'-phosphosulfate reductases in the primary sulfur metabolic pathway. In summary, our findings indicate that BR inhibits the biosynthesis of GSLs to prioritize sulfur usage for primary metabolites under normal growth conditions. These findings expand our understanding of BR promoting plant growth from a metabolism perspective.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Congxi Cai
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 221116, China
| | - Yubo Li
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Han Tao
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fanliang Meng
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huiying Miao
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Qiaomei Wang
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Lyčka M, Barták M, Helia O, Kopriva S, Moravcová D, Hájek J, Fojt L, Čmelík R, Fajkus J, Fojtová M. Sulfate supplementation affects nutrient and photosynthetic status of Arabidopsis thaliana and Nicotiana tabacum differently under prolonged exposure to cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130527. [PMID: 36495640 DOI: 10.1016/j.jhazmat.2022.130527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Hydroponic experiments were performed to examine the effect of prolonged sulfate limitation combined with cadmium (Cd) exposure in Arabidopsis thaliana and a potential Cd hyperaccumulator, Nicotiana tabacum. Low sulfate treatments (20 and 40 µM MgSO4) and Cd stress (4 µM CdCl2) showed adverse effects on morphology, photosynthetic and biochemical parameters and the nutritional status of both species. For example, Cd stress decreased NO3- root content under 20 µM MgSO4 to approximately 50% compared with respective controls. Interestingly, changes in many measured parameters, such as chlorophyll and carotenoid contents, the concentrations of anions, nutrients and Cd, induced by low sulfate supply, Cd exposure or a combination of both factors, were species-specific. Our data showed opposing effects of Cd exposure on Ca, Fe, Mn, Cu and Zn levels in roots of the studied plants. In A. thaliana, levels of glutathione, phytochelatins and glucosinolates demonstrated their distinct involvement in response to sub-optimal growth conditions and Cd stress. In shoot, the levels of phytochelatins and glucosinolates in the organic sulfur fraction were not dependent on sulfate supply under Cd stress. Altogether, our data showed both common and species-specific features of the complex plant response to prolonged sulfate deprivation and/or Cd exposure.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislav Kopriva
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Dana Moravcová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Richard Čmelík
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
11
|
Yang Q, Luo M, Zhou Q, Zhao Y, Chen J, Ji S. Insights into the loss of glucoraphanin in post-harvested broccoli--Possible involvement of the declined supply capacity of sulfur donor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111580. [PMID: 36587585 DOI: 10.1016/j.plantsci.2022.111580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The loss of characteristic nutrient glucoraphanin during the shelf life seriously affects the nutritional quality of broccoli. Here, we monitored the changes in the levels of sulfur donors (cysteine and glutathione) required for glucoraphanin biosynthesis. Similar to glucoraphanin, cysteine content decreased sharply. Continuous down-regulation of BoCysK1 and BoCysK2 genes encoding cysteine synthase might account for cysteine loss. Contrarily, glutathione content accumulated steadily, which might owe to the up-regulation of biosynthetic gene (BoEC1). Additionally, the change of malondialdehyde content was positively correlated with glutathione, implying that oxidative stress might stimulate glutathione accumulation. Nevertheless, the expression of BoGSTF11 gene encoding glutathione S-transferases was down-regulated, which blocked the supply of glutathione. The increase in the content of raphanusamic acid (degradation product) indicated that insufficient supply of sulfur donors not only could constrain the biosynthesis of glucoraphanin but also triggered its degradation.
Collapse
Affiliation(s)
- Qingxi Yang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Manli Luo
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yingbo Zhao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
12
|
Ali V, Rashid A, Kumar D, Vyas D. Stage-specific metabolomics suggests a trade-off between primary and secondary metabolites for nutritional advantage in Lepidium latifolium L. Food Chem 2023; 419:136035. [PMID: 37027970 DOI: 10.1016/j.foodchem.2023.136035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Lepidium latifolium L. is an established phytofood of the Ladakh Himalayas that contains differential content of important glucosinolates (GLS) in specific stages of sprouts. Therefore, in order to harness its nutraceutical potential, a comprehensive mass spectrometry-based stage-specific untargeted metabolomic analysis was performed. A total of 318 metabolites were detected, out of which 229 were significantly (p ≤ 0.05) changed during different stages. The Principal Component Analysis plot clearly differentiated different growth stages into three clusters. The nutritionally important metabolites, including amino acids, sugars, organic acids, and fatty acids, were found significantly (p ≤ 0.05) higher in the first cluster consisting of 1st, 2nd and 3rd week sprouts. The higher energy requirements during the early growth stages were observed with the higher metabolites of glycolysis and the TCA cycle. Further, the trade-off between primary and secondary sulfur-containing metabolites was observed, which may explain the differential GLS content in different growth stages.
Collapse
|
13
|
Mohammadi-Cheraghabadi M, Modarres-Sanavy SAM, Sefidkon F, Mokhtassi-Bidgoli A, Hazrati S. Harvest time explains substantially more variance in yield, essential oil and quality performances of Salvia officinalis than irrigation and putrescine application. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:109-120. [PMID: 36733840 PMCID: PMC9886791 DOI: 10.1007/s12298-022-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Elicitors, irrigation regimes and harvest times influence the content, yield and compound of the essential oil (EO) in Salvia officinalis (sage), through changes in biomass dynamics and biosynthetic pathways. A two-year field experiment was conducted to determine if foliar application of putrescine under optimum and deficit stress conditions would favorably affect EO yield, content and profile of sage harvested in spring and summer. The response of dry weight, EO yield and content, myrcene and borneol concentrations to irrigation regime and putrescine concentration can be expressed by a quadratic model. The maximum dry weight (182.63 g m-2) and EO yield (1.68 g m-2) were predicted under irrigation regimes of 9.06% and 27.75% available soil water depletion (ASWD), respectively. The highest EO content (1.05%) was predicted under 3.04 mM of putrescine. Based on results obtained from GC/MS analyses, 25 compounds (mostly monoterpenes) were identified in the EO of sage. Among EO compounds, α-thujone (54.08%), 1, 8-cineole (17.87%), pinocarvone (14.30%), β-thujone (7.97%) and camphor (8.76%) in turn were the most abundant. The concentration of myrcene was higher in spring than summer under the irrigation regimes of 60% and 80% ASWD. The myrcene concentration reached its maximum (4.53%) under the irrigation regime of 86.5% ASWD. The irrigation regimes of 48.03% and 45.6% ASWD caused the highest borneol concentrations of 1.47% and 1.41% by application of 1.5 mM and 2.25 mM putrescine, respectively. All treatments tested on sage, particularly harvest time, can play an important role in the improvement of EO quality and quantity. Averaged over both years, the irrigation regime of nearly 30% ASWD resulted in the highest EO yield harvested with greater quantity and better quality in summer. The EO content and quality changed slightly with the application of putrescine, without significant effect on yield.
Collapse
Affiliation(s)
| | | | | | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
14
|
Fernandes I, Paulo OS, Marques I, Sarjkar I, Sen A, Graça I, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Salt Stress Tolerance in Casuarina glauca: Insights from the Branchlets Transcriptome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2942. [PMID: 36365395 PMCID: PMC9658546 DOI: 10.3390/plants11212942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.
Collapse
Affiliation(s)
- Isabel Fernandes
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Indrani Sarjkar
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Arnab Sen
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Inês Graça
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - José C. Ramalho
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| |
Collapse
|
15
|
Chao H, Li H, Yan S, Zhao W, Chen K, Wang H, Raboanatahiry N, Huang J, Li M. Further insight into decreases in seed glucosinolate content based on QTL mapping and RNA-seq in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2969-2991. [PMID: 35841418 DOI: 10.1007/s00122-022-04161-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The QTL hotspots determining seed glucosinolate content instead of only four HAG1 loci and elucidation of a potential regulatory model for rapeseed SGC variation. Glucosinolates (GSLs) are amino acid-derived, sulfur-rich secondary metabolites that function as biopesticides and flavor compounds, but the high seed glucosinolate content (SGC) reduces seed quality for rapeseed meal. To dissect the genetic mechanism and further reduce SGC in rapeseed, QTL mapping was performed using an updated high-density genetic map based on a doubled haploid (DH) population derived from two parents that showed significant differences in SGC. In 15 environments, a total of 162 significant QTLs were identified for SGC and then integrated into 59 consensus QTLs, of which 32 were novel QTLs. Four QTL hotspot regions (QTL-HRs) for SGC variation were discovered on chromosomes A09, C02, C07 and C09, including seven major QTLs that have previously been reported and four novel major QTLs in addition to HAG1 loci. SGC was largely determined by superimposition of advantage allele in the four QTL-HRs. Important candidate genes directly related to GSL pathways were identified underlying the four QTL-HRs, including BnaC09.MYB28, BnaA09.APK1, BnaC09.SUR1 and BnaC02.GTR2a. Related differentially expressed candidates identified in the minor but environment stable QTLs indicated that sulfur assimilation plays an important rather than dominant role in SGC variation. A potential regulatory model for rapeseed SGC variation constructed by combining candidate GSL gene identification and differentially expressed gene analysis based on RNA-seq contributed to a better understanding of the GSL accumulation mechanism. This study provides insights to further understand the genetic regulatory mechanism of GSLs, as well as the potential loci and a new route to further diminish the SGC in rapeseed.
Collapse
Affiliation(s)
- Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
16
|
Tseng YH, Bartram S, Reichelt M, Scholz SS, Meents AK, Ludwig A, Mithöfer A, Oelmüller R. Tris(methylthio)methane produced by Mortierella hyalina affects sulfur homeostasis in Arabidopsis. Sci Rep 2022; 12:14202. [PMID: 35987806 PMCID: PMC9392766 DOI: 10.1038/s41598-022-16827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Microbial volatiles are important factors in symbiotic interactions with plants. Mortierella hyalina is a beneficial root-colonizing fungus with a garlic-like smell, and promotes growth of Arabidopsis seedlings. GC–MS analysis of the M. hyalina headspace and NMR analysis of the extracted essential oil identified the sulfur-containing volatile tris(methylthio)methane (TMTM) as the major compound. Incorporation of the sulfur from the fungal volatile into plant metabolism was shown by 34S labeling experiments. Under sulfur deficiency, TMTM down-regulated sulfur deficiency-responsive genes, prevented glucosinolate (GSL) and glutathione (GSH) diminishment, and sustained plant growth. However, excess TMTM led to accumulation of GSH and GSL and reduced plant growth. Since TMTM is not directly incorporated into cysteine, we propose that the volatile from M. hyalina influences the plant sulfur metabolism by interfering with the GSH metabolism, and alleviates sulfur imbalances under sulfur stress.
Collapse
|
17
|
Ye H, Wen Y, Chen Z, Zhang T, Li S, Guan M, Zhang Y, Su S. Relationship of Soil Microbiota to Seed Kernel Metabolism in Camellia oleifera Under Mulched. FRONTIERS IN PLANT SCIENCE 2022; 13:920604. [PMID: 35795350 PMCID: PMC9251579 DOI: 10.3389/fpls.2022.920604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
An experiment was conducted from 2016 to 2017 to assess the effect of kernel metabolism in development stages after organic mulching compared to control. Organic mulching significantly increased crop yields (higher 128% in 2016, higher 60% in 2017), oil content (the highest oil content was 27.6% higher than that of the control), and improved soil properties (SOC, SAN, AP, and AK). In this study, soil pH, SOC, AN, AP, and AK in 0-30 cm soil depth were measured. Results showed that the effect of mulching on soil pH was not significant at the harvesting stage. The greatest metabolic differences occurred during the period of high oil conversion (S2-S4), primarily involving 11 relevant metabolic pathways. This further verified that Camellia oleifera oil yield was improved after mulching. A total of 1,106 OTUs were detected by using 16S rRNA, and Venn diagram showed that there were 106 unique OTUs in control and 103 OTUs in the treatment, respectively. Correlation analysis showed that soil pH and soil temperature were two indicators with the most correlations with soil microbiota. The yield was significantly positively correlated with soil microbial Proteobacteria, Bacteroidetes, and soil nutrition indexes. Organic mulching improved the physicochemical properties of soils, caused differences in the relative abundance of dominant bacteria in soil bacteria, and improved the soil microbiological environment to promote plant growth, indicating that organic mulching is an effective measure to alleviate seasonal drought.
Collapse
Affiliation(s)
- Honglian Ye
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
- Department of Plant Science, University of California, Davis, Davis, CA, United States
| | - Yue Wen
- Research Center for Xinjiang Characteristic Fruit Tree, College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Zhigang Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Taikui Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shengxing Li
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Menglong Guan
- West China Hospital of Sichuan University, Chengdu, China
| | - Yunqi Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Shuchai Su
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Rakpenthai A, Apodiakou A, Whitcomb SJ, Hoefgen R. In silico analysis of cis-elements and identification of transcription factors putatively involved in the regulation of the OAS cluster genes SDI1 and SDI2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1286-1304. [PMID: 35315155 DOI: 10.1111/tpj.15735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis thaliana sulfur deficiency-induced 1 and sulfur deficiency-induced 2 (SDI1 and SDI2) are involved in partitioning sulfur among metabolite pools during sulfur deficiency, and their transcript levels strongly increase in this condition. However, little is currently known about the cis- and trans-factors that regulate SDI expression. We aimed at identifying DNA sequence elements (cis-elements) and transcription factors (TFs) involved in regulating expression of the SDI genes. We performed in silico analysis of their promoter sequences cataloging known cis-elements and identifying conserved sequence motifs. We screened by yeast-one-hybrid an arrayed library of Arabidopsis TFs for binding to the SDI1 and SDI2 promoters. In total, 14 candidate TFs were identified. Direct association between particular cis-elements in the proximal SDI promoter regions and specific TFs was established via electrophoretic mobility shift assays: sulfur limitation 1 (SLIM1) was shown to bind SURE cis-element(s), the basic domain/leucine zipper (bZIP) core cis-element was shown to be important for HY5-homolog (HYH) binding, and G-box binding factor 1 (GBF1) was shown to bind the E box. Functional analysis of GBF1 and HYH using mutant and over-expressing lines indicated that these TFs promote a higher transcript level of SDI1 in vivo. Additionally, we performed a meta-analysis of expression changes of the 14 TF candidates in a variety of conditions that alter SDI expression. The presented results expand our understanding of sulfur pool regulation by SDI genes.
Collapse
Affiliation(s)
- Apidet Rakpenthai
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Anastasia Apodiakou
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sarah J Whitcomb
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
19
|
Local and Systemic Response to Heterogeneous Sulfate Resupply after Sulfur Deficiency in Rice. Int J Mol Sci 2022; 23:ijms23116203. [PMID: 35682882 PMCID: PMC9181796 DOI: 10.3390/ijms23116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Sulfur (S) is an essential mineral nutrient required for plant growth and development. Plants usually face temporal and spatial variation in sulfur availability, including the heterogeneous sulfate content in soils. As sessile organisms, plants have evolved sophisticated mechanisms to modify their gene expression and physiological processes in order to optimize S acquisition and usage. Such plasticity relies on a complicated network to locally sense S availability and systemically respond to S status, which remains poorly understood. Here, we took advantage of a split-root system and performed transcriptome-wide gene expression analysis on rice plants in S deficiency followed by sulfate resupply. S deficiency altered the expressions of 6749 and 1589 genes in roots and shoots, respectively, accounting for 18.07% and 4.28% of total transcripts detected. Homogeneous sulfate resupply in both split-root halves recovered the expression of 27.06% of S-deficiency-responsive genes in shoots, while 20.76% of S-deficiency-responsive genes were recovered by heterogeneous sulfate resupply with only one split-root half being resupplied with sulfate. The local sulfate resupply response genes with expressions only recovered in the split-root half resupplied with sulfate but not in the other half remained in S deficiency were identified in roots, which were mainly enriched in cellular amino acid metabolic process and root growth and development. Several systemic response genes were also identified in roots, whose expressions remained unchanged in the split-root half resupplied with sulfate but were recovered in the other split-root half without sulfate resupply. The systemic response genes were mainly related to calcium signaling and auxin and ABA signaling. In addition, a large number of S-deficiency-responsive genes exhibited simultaneous local and systemic responses to sulfate resupply, such as the sulfate transporter gene OsSULTR1;1 and the O-acetylserine (thiol) lyase gene, highlighting the existence of a systemic regulation of sulfate uptake and assimilation in S deficiency plants followed by sulfate resupply. Our studies provided a comprehensive transcriptome-wide picture of a local and systemic response to heterogeneous sulfate resupply, which will facilitate an understanding of the systemic regulation of S homeostasis in rice.
Collapse
|
20
|
Ortega-Hernández E, Antunes-Ricardo M, Cisneros-Zevallos L, Jacobo-Velázquez DA. Selenium, Sulfur, and Methyl Jasmonate Treatments Improve the Accumulation of Lutein and Glucosinolates in Kale Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091271. [PMID: 35567272 PMCID: PMC9100039 DOI: 10.3390/plants11091271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/12/2023]
Abstract
Kale sprouts contain health-promoting compounds that could be increased by applying plant nutrients or exogenous phytohormones during pre-harvest. The effects of selenium (Se), sulfur (S), and methyl jasmonate (MeJA) on lutein, glucosinolate, and phenolic accumulation were assessed in kale sprouts. Red Russian and Dwarf Green kale were chamber-grown using different treatment concentrations of Se (10, 20, 40 mg/L), S (30, 60, 120 mg/L), and MeJA (25, 50, 100 µM). Sprouts were harvested every 24 h for 7 days to identify and quantify phytochemicals. The highest lutein accumulation occurred 7 days after S 120 mg/L (178%) and Se 40 mg/L (199%) treatments in Red Russian and Dwarf Green kale sprouts, respectively. MeJA treatment decreased the level of most phenolic levels, except for kaempferol and quercetin, where increases were higher than 70% for both varieties when treated with MeJA 25 µM. The most effective treatment for glucosinolate accumulation was S 120 mg/L in the Red Russian kale variety at 7 days of germination, increasing glucoraphanin (262.4%), glucoerucin (510.8%), 4-methoxy-glucobrassicin (430.7%), and glucoiberin (1150%). Results show that kales treated with Se, S, and MeJA could be used as a functional food for fresh consumption or as raw materials for different industrial applications.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Jal, Mexico
| |
Collapse
|
21
|
Identification of Potential Genes Encoding Protein Transporters in Arabidopsis thaliana Glucosinolate (GSL) Metabolism. Life (Basel) 2022; 12:life12030326. [PMID: 35330077 PMCID: PMC8953324 DOI: 10.3390/life12030326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Several species in Brassicaceae produce glucosinolates (GSLs) to protect themselves against pests. As demonstrated in A. thaliana, the reallocation of defence compounds, of which GSLs are a major part, is highly dependent on transport processes and serves to protect high-value tissues such as reproductive tissues. This study aimed to identify potential GSL-transporter proteins (TPs) using a network-biology approach. The known A. thaliana GSL genes were retrieved from the literature and pathway databases and searched against several co-expression databases to generate a gene network consisting of 1267 nodes and 14,308 edges. In addition, 1151 co-expressed genes were annotated, integrated, and visualised using relevant bioinformatic tools. Based on three criteria, 21 potential GSL genes encoding TPs were selected. The AST68 and ABCG40 potential GSL TPs were chosen for further investigation because their subcellular localisation is similar to that of known GSL TPs (SULTR1;1 and SULTR1;2) and ABCG36, respectively. However, AST68 was selected for a molecular-docking analysis using AutoDOCK Vina and AutoDOCK 4.2 with the generated 3D model, showing that both domains were well superimposed on the homologs. Both molecular-docking tools calculated good binding-energy values between the sulphate ion and Ser419 and Val172, with the formation of hydrogen bonds and van der Waals interactions, respectively, suggesting that AST68 was one of the sulphate transporters involved in GSL biosynthesis. This finding illustrates the ability to use computational analysis on gene co-expression data to screen and characterise plant TPs on a large scale to comprehensively elucidate GSL metabolism in A. thaliana. Most importantly, newly identified potential GSL transporters can serve as molecular tools in improving the nutritional value of crops.
Collapse
|
22
|
Appolloni E, Pennisi G, Zauli I, Carotti L, Paucek I, Quaini S, Orsini F, Gianquinto G. Beyond vegetables: effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:472-487. [PMID: 34462916 PMCID: PMC9292972 DOI: 10.1002/jsfa.11513] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 05/11/2023]
Abstract
Specialized metabolites from plants are important for human health due to their antioxidant properties. Light is one of the main factors modulating the biosynthesis of specialized metabolites, determining the cascade response activated by photoreceptors and the consequent modulation of expressed genes and biosynthetic pathways. Recent developments in light emitting diode (LED) technology have enabled improvements in artificial light applications for horticulture. In particular, the possibility to select specific spectral light compositions, intensities and photoperiods has been associated with altered metabolite content in a variety of crops. This review aims to analyze the effects of indoor LED lighting recipes and management on the specialized metabolite content in different groups of crop plants (namely medicinal and aromatic plants, microgreens and edible flowers), focusing on the literature from the last 5 years. The literature collection produced a total of 40 papers, which were analyzed according to the effects of artificial LED lighting on the content of anthocyanins, carotenoids, phenols, tocopherols, glycosides, and terpenes, and ranked on a scale of 1 to 3. Most studies applied a combination of red and blue light (22%) or monochromatic blue (23%), with a 16 h day-1 photoperiod (78%) and an intensity greater than 200 μmol m-2 s-1 (77%). These treatment features were often the most efficient in enhancing specialized metabolite content, although large variations in performance were observed, according to the species considered and the compound analyzed. The review aims to provide valuable indications for the definition of the most promising spectral components toward the achievement of nutrient-rich indoor-grown products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Appolloni
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Giuseppina Pennisi
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Ilaria Zauli
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Laura Carotti
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Ivan Paucek
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | | | - Francesco Orsini
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Giorgio Gianquinto
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| |
Collapse
|
23
|
Mohammadi-Cheraghabadi M, Modarres-Sanavy SAM, Sefidkon F, Mokhtassi-Bidgoli A, Hazrati S. Phytochemical and physiological changes in Salvia officinalis L. under different irrigation regimes by exogenous applications of putrescine. Saudi J Biol Sci 2021; 28:7227-7240. [PMID: 34867026 PMCID: PMC8626343 DOI: 10.1016/j.sjbs.2021.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
Water stress is the major factor limiting plant productivity and quality in most regions of the world. In the present study, a two-year field experiment was conducted to determine the influence of putrescine (Put) on phytochemical, physiological, and growth parameters of Salvia officinalis L. under different irrigation regimes. The highest stem dry weight (56.05 and 65.21 g m−2) plus leaf dry weight (124.51 g m−2) were predicted in irrigation regimes of (20 and 40%) plus 20% available soil water was depleted (ASWD), respectively. Total phenolic content (TPC) was increased significantly under the irrigation regime of 80% with the application of distilled water in spring. TPC showed an increasing trend with increases in Put concentration under all irrigation regimes in both spring and summer. The highest total flavonoids content (TFC) in wavelengths of 415 and 367 nm were predicted in 2.25 mM Put. The highest ascorbate peroxidase (APX) activity (0.13 μmol mg−1 protein) was predicted in the irrigation regime of 20% with the application of distilled water in spring and summer. There was a significantly negative correlation coefficient between APX, TPC, and TFC. Indeed, there was a decreasing trend in APX and an increasing trend in TPC and TFC with increases in Put concentration under the irrigation regime of 20% ASWD. The highest hydroxyl radical scavenging activity (HRSA) values were obtained under irrigation regimes of 49.27% and 20% ASWD in spring and summer, respectively. There was an increasing trend in endogenous Put with increases in the Put concentration. The responses of compatible osmolytes to irrigation regime can be expressed by quadratic model, suggesting maximum proline (0.52 mg g−1), total reducing sugars (TRS) (0.37 mg g−1), xylose (0.68 mg g−1), and mannose (0.37 mg g−1) values would be obtained in irrigation regimes of 68.33%, 48.33%, 53.75%, and 56.25% ASWD, respectively.
Collapse
Affiliation(s)
| | | | | | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
24
|
Li L, Zhang H, Chai X, Wei S, Luo S, Wang H, Lv J, Yu J, Liu Z. Transcriptome and Proteome Conjoint Analysis Revealed That Exogenous Sulfur Regulates Glucosinolate Synthesis in Cabbage. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102104. [PMID: 34685913 PMCID: PMC8539766 DOI: 10.3390/plants10102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glucosinolates (GLS) are important anionic secondary metabolites that are rich in thiocyanin in cabbage, Brassica oleracea L. var. capitata. GLS are important in food flavor, plant antimicrobial activity, insect resistance, disease resistance, and human anti-cancer effects. Sulfur is an important raw material of GLS, directly affecting their synthesis. However, the mechanism of sulfur regulation of GLS biosynthesis in cabbage is unclear. In the present study, cabbage was treated with sulfur-free Hoagland nutrient solution (control; -S), and normal Hoagland nutrient solution (treatment; +S). Through joint transcriptomic and proteomic analyses, the effect of exogenous S on GLS synthesis was explored. S application induced GLS accumulation; especially, indole glycosides. Transcriptome analysis showed that +S treatment correlated positively with differentially expressed genes and proteins involved in amino acid biosynthesis, carbon metabolism, and plant hormone signal transduction. Compared with -S treatment, the mRNA expression of GLS synthesis genes (CYP, GSTU, UGT, and FMO) and those encoding transcription factors (RLK, MYB, AP2, bHLH, AUX/IAA, and WRKY) were upregulated significantly in the +S group. Combined transcriptome and proteome analysis suggested that the main pathway influenced by S during GLS synthesis in cabbage is amino acid biosynthesis. Moreover, S treatment activated GLS synthesis and accumulation.
Collapse
Affiliation(s)
- Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua 617000, China
| | - Hui Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Xiaohong Chai
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China;
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (H.Z.); (S.W.); (S.L.); (H.W.); (J.L.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
25
|
Harun S, Afiqah-Aleng N, Karim MB, Altaf Ul Amin M, Kanaya S, Mohamed-Hussein ZA. Potential Arabidopsis thaliana glucosinolate genes identified from the co-expression modules using graph clustering approach. PeerJ 2021; 9:e11876. [PMID: 34430080 PMCID: PMC8349163 DOI: 10.7717/peerj.11876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background Glucosinolates (GSLs) are plant secondary metabolites that contain nitrogen-containing compounds. They are important in the plant defense system and known to provide protection against cancer in humans. Currently, increasing the amount of data generated from various omics technologies serves as a hotspot for new gene discovery. However, sometimes sequence similarity searching approach is not sufficiently effective to find these genes; hence, we adapted a network clustering approach to search for potential GSLs genes from the Arabidopsis thaliana co-expression dataset. Methods We used known GSL genes to construct a comprehensive GSL co-expression network. This network was analyzed with the DPClusOST algorithm using a density of 0.5. 0.6. 0.7, 0.8, and 0.9. Generating clusters were evaluated using Fisher’s exact test to identify GSL gene co-expression clusters. A significance score (SScore) was calculated for each gene based on the generated p-value of Fisher’s exact test. SScore was used to perform a receiver operating characteristic (ROC) study to classify possible GSL genes using the ROCR package. ROCR was used in determining the AUC that measured the suitable density value of the cluster for further analysis. Finally, pathway enrichment analysis was conducted using ClueGO to identify significant pathways associated with the GSL clusters. Results The density value of 0.8 showed the highest area under the curve (AUC) leading to the selection of thirteen potential GSL genes from the top six significant clusters that include IMDH3, MVP1, T19K24.17, MRSA2, SIR, ASP4, MTO1, At1g21440, HMT3, At3g47420, PS1, SAL1, and At3g14220. A total of Four potential genes (MTO1, SIR, SAL1, and IMDH3) were identified from the pathway enrichment analysis on the significant clusters. These genes are directly related to GSL-associated pathways such as sulfur metabolism and valine, leucine, and isoleucine biosynthesis. This approach demonstrates the ability of the network clustering approach in identifying potential GSL genes which cannot be found from the standard similarity search.
Collapse
Affiliation(s)
- Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohammad Bozlul Karim
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Md Altaf Ul Amin
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology & NAIST Data Science Center, Nara Institute of Science and Technology, Nara, Japan
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
26
|
Effects of Amendment with Various Vermicomposts on the Soil Fertility, Growth of Brassica chinensis L., and Resistance of Spodoptera litura Fabricius larvae. SUSTAINABILITY 2021. [DOI: 10.3390/su13169441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amendments with vermicomposts can reduce the incidence of pests. In this study, earthworms were fed different foods to produce four vermicomposts. A pot experiment was then conducted to assess different vermicomposts’ effects on soil fertility, and the secondary metabolite content and antioxidant capacity of Brassica chinensis L., and on the growth of Spodoptera litura larvae. The results showed that the characteristics of vermicomposts are mainly affected by food supplements, and that the application of vermicomposts can improve soil fertility, whereas increasing the soil and leaf sulfur content can decrease the relative growth rate of S. litura larvae. However, there were no significant differences in the total phenolic content (TPC), total flavonoid content (TFC), nor the DPPH free radical scavenging ability under the different treatments.
Collapse
|
27
|
Gülüt KY, Hoşgökdelen B. Sulfur and nitrogen nutrition status in flag leaf and shoot samples collected from wheat growing areas in Çukurova, Central Anatolia and GAP regions of Turkey. Saudi J Biol Sci 2021; 28:4807-4817. [PMID: 34354470 PMCID: PMC8325053 DOI: 10.1016/j.sjbs.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
Sulfur (S) deficiency in soils and plants has been increased in the recent decade which is reducing crop yield and quality. Unfortunately, no extensive study has been conducted on S nutritional status of plants in Turkey. In this study, soil and plant samples were collected from Çukurova, Central Anatolia and GAP regions where wheat is extensively cultivated. Plant samples either as flag leaf or the whole shoot were collected depending on growth stage of wheat crop at sample collection. Similarly, surface (0-20 cm) and sub-surface (20-40 cm) soil samples were collected from plant sampling sites and a total 963 plant and 1947 soil samples were collected during the study. The S concentration in flag leaf samples varied between 0.18 and 0.67%, 0.11-0.59% and 0.17-0.82% for central Anatolia, Çukurova and GAP regions, respectively. According to S concentration in flag leaf samples, 99% of the plants in Çukurova region were found sufficient in S nutrition. However, 49% of the samples collected from central Anatolia and GAP regions were deficient in S. Critical N:S ratio indicating S nutrition status of plants was lower than the widely accepted critical value of 17. This low N:S ratio was a consequence of deficient N nutrition rather than S nutrition. Moreover, it was observed that plant available SO4-S concentration of soils varied within and among sampled provinces with an average value of 20.6 and 31.6 mg kg-1 for surface and sub-surface samples, respectively. The SO4-S concentration increased with increasing soil depth. The results indicate a significantly positive correlation between S concentration in plant shoot and plant available SO4-S concentration in soils. In conclusion, S-containing fertilizer use in central Anatolia and GAP regions must be considered as an important approach for the prevention of yield and quality losses. Furthermore, rapid and sensitive plant and soil analysis methods are needed, which must also consider the local and site-specific conditions.
Collapse
Affiliation(s)
- Kemal Yalçın Gülüt
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | - Bilgen Hoşgökdelen
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Çukurova University, Adana, Turkey
| |
Collapse
|
28
|
Kacjan Maršić N, Može KS, Mihelič R, Nečemer M, Hudina M, Jakopič J. Nitrogen and Sulphur Fertilisation for Marketable Yields of Cabbage ( Brassica oleracea L. var. Capitata), Leaf Nitrate and Glucosinolates and Nitrogen Losses Studied in a Field Experiment in Central Slovenia. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071304. [PMID: 34199139 PMCID: PMC8309008 DOI: 10.3390/plants10071304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 05/09/2023]
Abstract
A field trial of white cabbage (Brassica oleracea var. Capitata L.) was carried out under the humid temperate climate conditions in Central Slovenia to investigate the effects of calcium ammonium nitrate (0, 180 and 240 kg N ha-1) and gypsum (0 and 40 kg S ha-1) fertilisation on yield, yield quality (nitrate, glucosinolate levels and glucosinolate profile) and nitrogen use efficiency. The highest marketable yield, dry matter yield and nitrogen uptake were obtained at the highest nitrogen fertilisation rate when in combination with sulphur. For this treatment, the nitrogen surplus in the soil after harvesting was lower than for the same nitrogen fertilisation without sulphur application. For the combination N240S40, the sulphur addition significantly increased nitrogen use efficiency, which resulted in reduced nitrate content in the cabbage heads. The chemical forms of glucosinolates showed that 80-85% were aliphatic glucosinolates with the remainder as the indole group. For the aliphatic glucosinolates, significant interactions between nitrogen and sulphur fertilisations were reflected in increased levels of progoitrin and glucoiberin when sulphur was applied at the lower nitrogen fertilisation rates. For the indole group, the levels of glucobrassicin and the indole group itself decreased at higher nitrogen fertilisation rates, independent of sulphur fertilisation.
Collapse
Affiliation(s)
- Nina Kacjan Maršić
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.M.); (M.H.); (J.J.)
- Correspondence: (N.K.M.); (R.M.)
| | - Ksenija Sinkovič Može
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.M.); (M.H.); (J.J.)
| | - Rok Mihelič
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.M.); (M.H.); (J.J.)
- Correspondence: (N.K.M.); (R.M.)
| | - Marijan Nečemer
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
| | - Metka Hudina
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.M.); (M.H.); (J.J.)
| | - Jerneja Jakopič
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.M.); (M.H.); (J.J.)
| |
Collapse
|
29
|
Abstract
Specialized (secondary) metabolites have been largely considered bioactive “end” products synthesized from primary metabolites. We report biochemical evidence of a retrograde flow of sulfur atoms from specialized metabolites (glucosinolates) to primary metabolites (cysteine) in Arabidopsis thaliana. The reaction begins with glucosinolate breakdown by specific beta-glucosidases, which facilitates sulfur deficiency tolerance, demonstrating a physiological advantage of utilizing specialized metabolites as nutrient reservoirs. Our findings address the breadth of turnover systems in nature and enhance our understanding of how plants coordinate primary and specialized metabolism under different environmental conditions. Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such “end” products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana. Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.
Collapse
|
30
|
So Much for Glucosinolates: A Generalist Does Survive and Develop on Brassicas, but at What Cost? PLANTS 2021; 10:plants10050962. [PMID: 34066079 PMCID: PMC8150600 DOI: 10.3390/plants10050962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
While plants produce complex cocktails of chemical defences with different targets and efficacies, the biochemical effects of phytotoxin ingestion are often poorly understood. Here, we examine the physiological and metabolic effects of the ingestion of glucosinolates (GSLs), the frontline chemical defenses of brassicas (crucifers), on the generalist herbivore Helicoverpa armigera. We focus on kale and cabbage, two crops with similar foliar GSL concentrations but strikingly different GSL compositions. We observed that larval growth and development were well correlated with the nutritional properties of the insect diets, with low protein contents appearing to exacerbate the negative effects of GSLs on growth, pupation and adult eclosion, parameters that were all delayed upon exposure to GSLs. The different GSLs were metabolized similarly by the insect, indicating that the costs of detoxification via conjugation to glutathione (GSH) were similar on the two plant diets. Nevertheless, larval GSH contents, as well as some major nutritional markers (larval protein, free amino acids, and fat), were differentially affected by the different GSL profiles in the two crops. Therefore, the interplay between GSL and the nitrogen/sulfur nutritional availability of different brassicas strongly influences the effectiveness of these chemical defenses against this generalist herbivore.
Collapse
|
31
|
Blubaugh C, Carpenter-Boggs L, Reganold J, Snyder W. Herbivore-herbivore interactions complicate links between soil fertility and pest resistance. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Pacifico D, Lanzanova C, Pagnotta E, Bassolino L, Mastrangelo AM, Marone D, Matteo R, Lo Scalzo R, Balconi C. Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection-A Review. Molecules 2021; 26:2174. [PMID: 33918886 PMCID: PMC8070479 DOI: 10.3390/molecules26082174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Defatted seed meals of oleaginous Brassicaceae, such as Eruca sativa, and potato peel are excellent plant matrices to recover potentially useful biomolecules from industrial processes in a circular strategy perspective aiming at crop protection. These biomolecules, mainly glycoalkaloids and phenols for potato and glucosinolates for Brassicaceae, have been proven to be effective against microbes, fungi, nematodes, insects, and even parasitic plants. Their role in plant protection is overviewed, together with the molecular basis of their synthesis in plant, and the description of their mechanisms of action. Possible genetic and biotechnological strategies are presented to increase their content in plants. Genetic mapping and identification of closely linked molecular markers are useful to identify the loci/genes responsible for their accumulation and transfer them to elite cultivars in breeding programs. Biotechnological approaches can be used to modify their allelic sequence and enhance the accumulation of the bioactive compounds. How the global challenges, such as reducing agri-food waste and increasing sustainability and food safety, could be addressed through bioprotector applications are discussed here.
Collapse
Affiliation(s)
- Daniela Pacifico
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Chiara Lanzanova
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Eleonora Pagnotta
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Laura Bassolino
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Anna Maria Mastrangelo
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Daniela Marone
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Roberto Matteo
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Roberto Lo Scalzo
- CREA Council for Agricultural Research and Economics—Research Centre for Engineering and Agro-Food Processing, 00198 Rome, Italy;
| | - Carlotta Balconi
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| |
Collapse
|
33
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Wu X, Huang H, Childs H, Wu Y, Yu L, Pehrsson PR. Glucosinolates in Brassica Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake. Annu Rev Food Sci Technol 2021; 12:485-511. [PMID: 33467908 DOI: 10.1146/annurev-food-070620-025744] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucosinolates (GSLs) are a class of sulfur-containing compounds found predominantly in the genus Brassica of the Brassicaceae family. Certain edible plants in Brassica, known as Brassica vegetables, are among the most commonly consumed vegetables in the world. Over the last three decades, mounting evidence has suggested an inverse association between consumption of Brassica vegetables and the risk of various types of cancer. The biological activities of Brassica vegetables have been largely attributed to the hydrolytic products of GSLs. GSLs can be hydrolyzed by enzymes; thermal or chemical degradation also breaks down GSLs. There is considerable variation of GSLs in Brassica spp., which are caused by genetic and environmental factors. Most Brassica vegetables are consumed after cooking; common cooking methods have a complex influence on the levels of GSLs. The variationof GSLs in Brassica vegetables and the influence of cooking and processing methods ultimately affect their intake and health-promoting properties.
Collapse
Affiliation(s)
- Xianli Wu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA;
| | - Hui Huang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Holly Childs
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
35
|
The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense-A Road to Disease Resistance. PLANTS 2020; 9:plants9121705. [PMID: 33287437 PMCID: PMC7761819 DOI: 10.3390/plants9121705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
Sulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. This review attempts to recapitulate results on the various functions of sulfur-containing defense compounds (SDCs) in plant defense responses to pathogens. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide. SDCs play versatile roles both in pathogen perception and initiating signal transduction pathways that are interconnected with various defense processes regulated by plant hormones (salicylic acid, jasmonic acid and ethylene) and reactive oxygen species (ROS). Importantly, ROS-mediated reversible oxidation of cysteine residues on plant proteins have profound effects on protein functions like signal transduction of plant defense responses during pathogen infections. Indeed, the multifaceted plant defense responses initiated by SDCs should provide novel tools for plant breeding to endow crops with efficient defense responses to invading pathogens.
Collapse
|
36
|
Aarabi F, Naake T, Fernie AR, Hoefgen R. Coordinating Sulfur Pools under Sulfate Deprivation. TRENDS IN PLANT SCIENCE 2020; 25:1227-1239. [PMID: 32800669 DOI: 10.1016/j.tplants.2020.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 05/22/2023]
Abstract
Plants display manifold metabolic changes on sulfate deficiency (S deficiency) with all sulfur-containing pools of primary and secondary metabolism affected. O-Acetylserine (OAS), whose levels are rapidly altered on S deficiency, is correlated tightly with novel regulators of plant sulfur metabolism that have key roles in balancing plant sulfur pools, including the Sulfur Deficiency Induced genes (SDI1 and SDI2), More Sulfur Accumulation1 (MSA1), and GGCT2;1. Despite the importance of OAS in the coordination of S pools under stress, mechanisms of OAS perception and signaling have remained elusive. Here, we put particular focus on the general OAS-responsive genes but also elaborate on the specific roles of SDI1 and SDI2 genes, which downregulate the glucosinolate (GSL) pool size. We also highlight the key open questions in sulfur partitioning.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thomas Naake
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
37
|
Wawrzyńska A, Sirko A. Proteasomal Degradation of Proteins Is Important for the Proper Transcriptional Response to Sulfur Deficiency Conditions in Plants. PLANT & CELL PHYSIOLOGY 2020; 61:1548-1564. [PMID: 32502259 PMCID: PMC7511249 DOI: 10.1093/pcp/pcaa076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/29/2020] [Indexed: 05/11/2023]
Abstract
Plants are continuously exposed to different abiotic and biotic stresses; therefore, to protect themselves, they depend on the fast reprogramming of large gene repertoires to prioritize the expression of a given stress-induced gene set over normal cellular household genes. The activity of the proteasome, a large proteolytic complex that degrades proteins, is vital to coordinate the expression of such genes. Proteins are labeled for degradation by the action of E3 ligases that site-specifically alter their substrates by adding chains of ubiquitin. Recent publications have revealed an extensive role of ubiquitination in the utilization of nutrients. This study presents the transcriptomic profiles of sulfur-deficient rosettes and roots of Arabidopsis thaliana rpt2a mutant with proteasomal malfunction. We found that genes connected with sulfur metabolism are regulated to the lesser extent in rpt2a mutant while genes encoding transfer RNAs and small nucleolar RNAs are highly upregulated. Several genes encoding E3 ligases are specifically regulated by sulfur deficiency. Furthermore, we show that a key transcription factor of sulfur deficiency response, Sulfur LIMitation1, undergoes proteasomal degradation and is able to interact with F-box protein, EBF1.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A St, 02-106 Warsaw, Poland
- Corresponding author: E-mail, ; Fax, +48 22 5922190
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A St, 02-106 Warsaw, Poland
| |
Collapse
|
38
|
Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA. A Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7281-7297. [PMID: 32551569 DOI: 10.1021/acs.jafc.0c01916] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Glucosinolates (GSLs) are plant secondary metabolites comprising sulfur and nitrogen mainly found in plants from the order of Brassicales, such as broccoli, cabbage, and Arabidopsis thaliana. The activated forms of GSL play important roles in fighting against pathogens and have health benefits to humans. The increasing amount of data on A. thaliana generated from various omics technologies can be investigated more deeply in search of new genes or compounds involved in GSL biosynthesis and metabolism. This review describes a comprehensive inventory of A. thaliana GSLs identified from published literature and databases such as KNApSAcK, KEGG, and AraCyc. A total of 113 GSL genes encoding for 23 transcription components, 85 enzymes, and five protein transporters were experimentally characterized in the past two decades. Continuous efforts are still on going to identify all molecules related to the production of GSLs. A manually curated database known as SuCCombase (http://plant-scc.org) was developed to serve as a comprehensive GSL inventory. Realizing lack of information on the regulation of GSL biosynthesis and degradation mechanisms, this review also includes relevant information and their connections with crosstalk among various factors, such as light, sulfur metabolism, and nitrogen metabolism, not only in A. thaliana but also in other crucifers.
Collapse
Affiliation(s)
- Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Centre for Plant Biotechnology, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
39
|
Morikawa-Ichinose T, Miura D, Zhang L, Kim SJ, Maruyama-Nakashita A. Involvement of BGLU30 in Glucosinolate Catabolism in the Arabidopsis Leaf under Dark Conditions. PLANT & CELL PHYSIOLOGY 2020; 61:1095-1106. [PMID: 32255184 DOI: 10.1093/pcp/pcaa035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites that play important roles in plant defense and are suggested to act as storage compounds. Despite their important roles, metabolic dynamics of GSLs under various growth conditions remain poorly understood. To determine how light conditions influence the levels of different GSLs and their distribution in Arabidopsis leaves, we visualized the GSLs under different light conditions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We observed the unique distribution patterns of each GSL in the inner regions of leaves and marked decreases under darkness, indicating light conditions influenced GSL metabolism. GSLs are hydrolyzed by a group of ß-glucosidase (BGLU) called myrosinase. Previous transcriptome data for GSL metabolism under light and dark conditions have revealed the highly induced expression of BGLU30, one of the putative myrosinases, which is also annotated as Dark INducible2, under darkness. Impairment of the darkness-induced GSL decrease in the disruption mutants of BGLU30, bglu30, indicated that BGLU30 mediated GSL hydrolysis under darkness. Based on the GSL profiles in the wild-type and bglu30 leaves under both conditions, short-chain GSLs were potentially preferable substrates for BGLU30. Our findings provide an effective way of visualizing GSL distribution in plants and highlighted the carbon storage GSL function.
Collapse
Affiliation(s)
- Tomomi Morikawa-Ichinose
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Miura
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Liu Zhang
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
40
|
Zhang L, Kawaguchi R, Morikawa-Ichinose T, Allahham A, Kim SJ, Maruyama-Nakashita A. Sulfur Deficiency-Induced Glucosinolate Catabolism Attributed to Two β-Glucosidases, BGLU28 and BGLU30, is Required for Plant Growth Maintenance under Sulfur Deficiency. PLANT & CELL PHYSIOLOGY 2020; 61:803-813. [PMID: 32049325 DOI: 10.1093/pcp/pcaa006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Sulfur (S) is an essential element for plants, and S deficiency causes severe growth retardation. Although the catabolic process of glucosinolates (GSLs), the major S-containing metabolites specific to Brassicales including Arabidopsis, has been recognized as one of the S deficiency (-S) responses in plants, the physiological function of this metabolic process is not clear. Two β-glucosidases (BGLUs), BGLU28 and BGLU30, are assumed to be responsible for this catabolic process as their transcript levels were highly upregulated by -S. To clarify the physiological function of BGLU28 and BGLU30 and their roles in GSL catabolism, we analyzed the accumulation of GSLs and other S-containing compounds in the single and double mutant lines of BGLU28 and BGLU30 and in wild-type plants under different S conditions. GSL levels were highly increased, while the levels of sulfate, cysteine, glutathione and protein were decreased in the double mutant line of BGLU28 and BGLU30 (bglu28/30) under -S. Furthermore, transcript level of Sulfate Transporter1;2, the main contributor of sulfate uptake from the environment, was increased in bglu28/30 mutants under -S. With these metabolic and transcriptional changes, bglu28/30 mutants displayed obvious growth retardation under -S. Overall, our results indicate that BGLU28 and BGLU30 are required for -S-induced GSL catabolism and contribute to sustained plant growth under -S by recycling sulfate to primary S metabolism.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Ryota Kawaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Tomomi Morikawa-Ichinose
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Alaa Allahham
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
41
|
Chen J, Chen Z, Li Z, Zhao Y, Chen X, Wang-Pruski G, Guo R. Effect of Photoperiod on Chinese Kale ( Brassica alboglabra) Sprouts Under White or Combined Red and Blue Light. FRONTIERS IN PLANT SCIENCE 2020; 11:589746. [PMID: 33510744 PMCID: PMC7835638 DOI: 10.3389/fpls.2020.589746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
To determine the response of Chinese kale (Brassica alboglabra) sprouts to photoperiods under different light sources, we used four photoperiods (0-h light/24-h dark, 8-h light/16-h dark, 12-h light/12-h dark, and 16-h light/8-h dark) to investigate their sprout growth and secondary metabolite glucosinolates (GSs) accumulation under white or combined red-and-blue (RB) light sources. We found that the 16-h light condition under RB light produced plants with the greatest dry matter. Sprouts grown under 16-h RB light condition achieved greater length than those under white light. To investigate the role of RB light in plant growth and GS accumulation, we applied RB light sources with different RB ratios (0:10, 2:8, 5:5, 8:2, and 10:0) to cultivate sprouts. The results showed that significant differential accumulation of GSs existed between sprouts grown under blue (RB, 0:10) and red (RB, 10:0) light; there was greater GS content under blue light. The underlying mechanism of differential GS content in sprouts under red or blue light condition was studied using RNA sequencing technique. Interestingly, abundant GS biosynthetic gene transcripts were observed in sprouts grown under red light compared with under blue light. The expression of β-glucosidase family homolog genes related to GS degradation differed under red and blue light conditions, among those TGG4 homolog was detected with higher expression under red light than with blue light. Taking into consideration, the lower GS accumulation in sprouts under red rather than blue light, we conclude that the degradation of GSs may play a key role in sprouts GS homeostasis.
Collapse
Affiliation(s)
- Jiaxuan Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyuan Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zunwen Li
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijiao Zhao
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodong Chen
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gefu Wang-Pruski
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Gefu Wang-Pruski,
| | - Rongfang Guo
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Rongfang Guo,
| |
Collapse
|
42
|
ElSayed AI, El-hamahmy MAM, Rafudeen MS, Mohamed AH, Omar AA. The Impact of Drought Stress on Antioxidant Responses and Accumulation of Flavonolignans in Milk Thistle ( Silybum marianum (L.) Gaertn). PLANTS (BASEL, SWITZERLAND) 2019; 8:E611. [PMID: 31888166 PMCID: PMC6963737 DOI: 10.3390/plants8120611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 01/24/2023]
Abstract
Biosynthesis and accumulation of flavonolignans in plants are influenced by different environmental conditions. Biosynthesis and accumulation of silymarin in milk thistle (Silybum marianum L.) were studied under drought stress with respect to the antioxidant defense system at the physiological and gene expression level. The results revealed a reduction in leaf chlorophyll, ascorbic acid, and glutathione contents. In contrast, H2O2, proline, and antioxidative enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR), were increased. These results confirmed that milk thistle undergoes oxidative stress under drought stress. Furthermore, transcription levels of APX, SOD, CAT, 1-Cys-Prx, and PrxQ were significantly increased in milk thistle under drought stress. Overall this suggests that protection against reactive oxygen species and peroxidation reactions in milk thistle are provided by enzymatic and non-enzymatic antioxidants. Flavonolignans from milk thistle seeds after different drought treatments were quantified by high-performance liquid chromatography (HPLC) and showed that severe drought stress enhanced the accumulation of silymarin and its components compared with seeds from the control (100% water capacity). Silybin is the major silymarin component and the most bioactive ingredient of the milk thistle extract. Silybin accumulation was the highest among all silymarin components in seeds obtained from drought-stressed plants. The expression of the chalcone synthase (CHS) genes (CHS1, CHS2, and CHS3), which are associated with the silybin biosynthetic pathway, was also increased during drought stress. These results indicated that milk thistle exhibits tolerance to drought stress and that seed derived from severe drought-stressed plants had higher levels of silymarin.
Collapse
Affiliation(s)
- Abdelaleim I. ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. M. El-hamahmy
- Department of Agricultural Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed S. Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa;
| | - Azza H. Mohamed
- Agricultural Chemistry Department, Faculty of Agricultural, Mansoura University, Mansoura 35516, Egypt;
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| | - Ahmad A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| |
Collapse
|
43
|
Meier K, Ehbrecht MD, Wittstock U. Glucosinolate Content in Dormant and Germinating Arabidopsis thaliana Seeds Is Affected by Non-Functional Alleles of Classical Myrosinase and Nitrile-Specifier Protein Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1549. [PMID: 31850033 PMCID: PMC6901928 DOI: 10.3389/fpls.2019.01549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/06/2019] [Indexed: 05/05/2023]
Abstract
While the defensive function of glucosinolates is well established, their possible role as a nutrient reservoir is poorly understood and glucosinolate turnover pathways have not been elucidated. Previous research showed that glucosinolate content in germinating seeds of Arabidopsis thaliana Columbia-0 (Col-0) increases within the first two to four days on culture medium and then decreases below the level at day 0. In this study we used previously characterized T-DNA mutants to investigate if enzymes known to be involved in glucosinolate breakdown upon tissue damage affect the time course of glucosinolate content in germinating seeds. Besides dormant seeds, we analyzed seeds subjected to stratification in water for up to 72 h or germination on plates for up to ten days. Although seeds of tgg1 tgg2 (deficient in above-ground classical myrosinases) had higher glucosinolate levels than Col-0, the changes during germination were not different to those in seeds of Col-0. This demonstrates that TGG1/TGG2 are not responsible for the decline in glucosinolate content upon germination and suggests the involvement of other enzymes. Expression data extracted from publically available databases show a number of β-glucosidases of the BGLU18-BGLU33 clade to be expressed at specific time points of seed maturation and germination identifying them as good candidates for a role in glucosinolate turnover. Although nitrile-specifier proteins (NSPs) act downstream of myrosinases upon glucosinolate breakdown in tissue homogenates, mutants deficient in either seed-expressed NSP2 or seedling-expressed NSP1 were affected in glucosinolate content in seeds and during stratification or germination when compared to Col-0 indicating a direct role in turnover. The mutant lines nsp1-1, nsp2-1 and nsp2-2 had significantly higher glucosinolate levels in dry seeds than Col-0. After 24 h of stratification in water, nsp2-2 seeds contained 2.3 fold higher levels of glucosinolate than Col-0 seeds. This might indicate downregulation of hydrolytic enzymes when nitrile formation following glucosinolate hydrolysis is impaired. The time course of total glucosinolate content during ten days of germination depended on functional NSP1. Based on the present data, we propose a number of experiments that might aid in establishing the pathway(s) of glucosinolate turnover in germinating A. thaliana seeds.
Collapse
Affiliation(s)
| | | | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
44
|
Huang XY, Li M, Luo R, Zhao FJ, Salt DE. Epigenetic regulation of sulfur homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4171-4182. [PMID: 31087073 DOI: 10.1093/jxb/erz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved sophisticated mechanisms for adaptation to fluctuating availability of nutrients in soil. Such mechanisms are of importance for plants to maintain homeostasis of nutrient elements for their development and growth. The molecular mechanisms controlling the homeostasis of nutrient elements at the genetic level have been gradually revealed, including the identification of regulatory factors and transporters responding to nutrient stresses. Recent studies have suggested that such responses are controlled not only by genetic regulation but also by epigenetic regulation. In this review, we present recent studies on the involvement of DNA methylation, histone modifications, and non-coding RNA-mediated gene silencing in the regulation of sulfur homeostasis and the response to sulfur deficiency. We also discuss the potential effect of sulfur-containing metabolites such as S-adenosylmethionine on the maintenance of DNA and histone methylation.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengzhen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rongjian Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
45
|
Hassini I, Rios JJ, Garcia-Ibañez P, Baenas N, Carvajal M, Moreno DA. Comparative effect of elicitors on the physiology and secondary metabolites in broccoli plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:1-9. [PMID: 31177025 DOI: 10.1016/j.jplph.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Elicitation is an economic and sustainable technique for increasing the content of secondary metabolites, mainly bioactive compounds, in plants grown for better human nutrition. The aim of this study was to compare the physiological responses (water relations and mineral nutrition) and the enrichment in glucosinolates (GLSs) and phenolic compounds of broccoli plants (Brassica oleracea L. var. italica) receiving different elicitation treatments. The treatments involved the priming of seeds with KCl and the exposure of plants to elicitors, including K2SO4 and NaCl solutions and foliar sprays of methyl jasmonate (MeJA), salicylic acid (SA), and methionine (Met). The physiological response of the plants in terms of root hydraulic conductance was improved by priming with KCl and elicitation with MeJA or Met. Foliar application of Met significantly increased the plant biomass and enhanced mineral nutrition. In general, all treatments increased the accumulation of indole GLSs, but K2SO4 and MeJA gave the best response and MeJA also favored the formation of a newly described compound, cinnamic-GLS, in the plants. Also, the use of Met and SA as elicitors and the supply of K2SO4 increased the abundance of phenolic compounds; K2SO4 also enhanced growth but did not alter the water relations or the accumulation of mineral nutrients. Therefore, although the response to elicitation was positive, with an increased content of bioactive compounds, regulation of the water relations and of the mineral status of the broccoli plants was critical to maintain the yield.
Collapse
Affiliation(s)
- Ismahen Hassini
- Department of Life Sciences. Faculty of Sciences of Bizerte. University of Carthage 7021 Zarzouna, Tunisia
| | - Juan J Rios
- Group of Aquaporins. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain
| | - Paula Garcia-Ibañez
- Group of Aquaporins. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain
| | - Nieves Baenas
- Phytochemistry and Healthy Foods Lab. Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain
| | - Micaela Carvajal
- Group of Aquaporins. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain.
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab. Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain
| |
Collapse
|
46
|
Eisenschmidt‐Bönn D, Schneegans N, Backenköhler A, Wittstock U, Brandt W. Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:329-343. [PMID: 30900313 PMCID: PMC6850609 DOI: 10.1111/tpj.14327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 05/20/2023]
Abstract
Secondary metabolism is characterized by an impressive structural diversity. Here, we have addressed the mechanisms underlying structural diversification upon damage-induced activation of glucosinolates, a group of thioglucosides found in the Brassicales. The classical pathway of glucosinolate activation involves myrosinase-catalyzed hydrolysis and rearrangement of the aglucone to an isothiocyanate. Plants of the Brassicaceae possess specifier proteins, i.e. non-heme iron proteins that promote the formation of alternative products by interfering with this reaction through unknown mechanisms. We have used structural information available for the thiocyanate-forming protein from Thlaspi arvense (TaTFP), to test the impact of loops protruding at one side of its β-propeller structure on product formation using the allylglucosinolate aglucone as substrate. In silico loop structure sampling and semiempirical quantum mechanical calculations identified a 3L2 loop conformation that enabled the Fe2+ cofactor to interact with the double bond of the allyl side chain. Only this arrangement enabled the formation of allylthiocyanate, a specific product of TaTFP. Simulation of 3,4-epithiobutane nitrile formation, the second known product of TaTFP, required an alternative substrate docking arrangement in which Fe2+ interacts with the aglucone thiolate. In agreement with these results, substitution of 3L2 amino acid residues involved in the conformational change as well as exchange of critical amino acid residues of neighboring loops affected the allylthiocyanate versus epithionitrile proportion obtained upon myrosinase-catalyzed allylglucosinolate hydrolysis in the presence of TaTFP in vitro. Based on these insights, we propose that specifier proteins are catalysts that might be classified as Fe2+ -dependent lyases.
Collapse
Affiliation(s)
- Daniela Eisenschmidt‐Bönn
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120Halle (Saale)Germany
| | - Nicola Schneegans
- Institute of Pharmaceutical BiologyTechnische Universität BraunschweigMendelssohnstr. 138106BraunschweigGermany
| | - Anita Backenköhler
- Institute of Pharmaceutical BiologyTechnische Universität BraunschweigMendelssohnstr. 138106BraunschweigGermany
| | - Ute Wittstock
- Institute of Pharmaceutical BiologyTechnische Universität BraunschweigMendelssohnstr. 138106BraunschweigGermany
| | - Wolfgang Brandt
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120Halle (Saale)Germany
| |
Collapse
|
47
|
Monsees H, Suhl J, Paul M, Kloas W, Dannehl D, Würtz S. Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS One 2019; 14:e0218368. [PMID: 31220125 PMCID: PMC6586398 DOI: 10.1371/journal.pone.0218368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/02/2019] [Indexed: 11/18/2022] Open
Abstract
Decoupled aquaponic systems have the potential to become one of the most effective sustainable production systems for the combined production of animal protein and plant crops. Here, recirculating aquaculture systems for fish production are combined with hydroponics for soilless plant production thereby recycling dissolved nutrients derived from metabolism of the fish. The aim of the present study was to characterize hydroponic lettuce production using conventional nutrient solution in comparison with decoupled aquaponics using the nutrient rich fish water as basis for the nutrient solution being supplemented by missing nutrients. In addition, one aquaponic treatment became disinfected in order to assess any occurring advantage of the aquaponics derived fish water. For evaluation the temperature, electrical conductivity, pH, and the mineral composition of the nutrient solution, as well as colony forming units in the fish water were monitored. Additionally, plant growth (fresh and dry weight, number and area of leaves) and quality parameters of lettuce leaves (nitrate, mineral content, phenolic compounds) were examined. Carbon sources and microorganisms derived from fish water seem to have neither beneficial nor detrimental effects on plant growth in this study. Except for some differences in the mineral content of the lettuce leaves, all other quality parameters were not significantly different. The use of aquaponic fish water saved 62.8% mineral fertilizer and fully substituted the required water for the nutrient solution in comparison to the control. Additionally, the reduced fertilizer demand using decoupled aquaponics can contribute to reduce greenhouse gas emissions of an annual lettuce production site per ha by 72% due to saving the energy for fertilizer production. This study clearly demonstrates the huge potential of the innovative approach of decoupled aquaponics to foster the transformation of our conventional agriculture towards sustainable production systems saving resources and minimizing emissions.
Collapse
Affiliation(s)
- Hendrik Monsees
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johanna Suhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer–Institute of Agricultural and Horticultural Sciences, Division Biosystems Engineering, Berlin, Germany
| | - Maurice Paul
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Institute of Biology, Department of Endocrinology, Berlin, Germany
| | - Dennis Dannehl
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer–Institute of Agricultural and Horticultural Sciences, Division Biosystems Engineering, Berlin, Germany
| | - Sven Würtz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
48
|
Ouassou M, Mukhaimar M, El Amrani A, Kroymann J, Chauveau O. [Biosynthesis of indole glucosinolates and ecological role of secondary modification pathways]. C R Biol 2019; 342:58-80. [PMID: 31088733 DOI: 10.1016/j.crvi.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/26/2022]
Abstract
Indole glucosinolates are plant secondary metabolites derived from the amino acid tryptophan. They are part of a large group of sulfur-containing molecules almost exclusively found among Brassicales, which include the mustard family (Brassicaceae) with many edible plant species of major nutritional importance. These compounds mediate numerous interactions between these plants and their natural enemies and are therefore of major biological and economical interest. This literature review aims at taking stock of recent advances of our knowledge about the biosynthetic pathways of indole glucosinolates, but also about the defense strategies and ecological processes involving these metabolites.
Collapse
Affiliation(s)
- Malika Ouassou
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France; Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Maisara Mukhaimar
- National Agricultural Research Center (NARC)-Jenin/Gaza, Ministry of Agriculture, Jenin, Palestine
| | - Amal El Amrani
- Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Juergen Kroymann
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France
| | - Olivier Chauveau
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
49
|
Morikawa-Ichinose T, Kim SJ, Allahham A, Kawaguchi R, Maruyama-Nakashita A. Glucosinolate Distribution in the Aerial Parts of sel1-10, a Disruption Mutant of the Sulfate Transporter SULTR1;2, in Mature Arabidopsis thaliana Plants. PLANTS 2019; 8:plants8040095. [PMID: 30974830 PMCID: PMC6524378 DOI: 10.3390/plants8040095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
Abstract
Plants take up sulfur (S), an essential element for all organisms, as sulfate, which is mainly attributed to the function of SULTR1;2 in Arabidopsis. A disruption mutant of SULTR1;2, sel1-10, has been characterized with phenotypes similar to plants grown under sulfur deficiency (−S). Although the effects of −S on S metabolism were well investigated in seedlings, no studies have been performed on mature Arabidopsis plants. To study further the effects of −S on S metabolism, we analyzed the accumulation and distribution of S-containing compounds in different parts of mature sel1-10 and of the wild-type (WT) plants grown under long-day conditions. While the levels of sulfate, cysteine, and glutathione were almost similar between sel1-10 and WT, levels of glucosinolates (GSLs) differed between them depending on the parts of the plant. GSLs levels in the leaves and stems were generally lower in sel1-10 than those in WT. However, sel1-10 seeds maintained similar levels of aliphatic GSLs to those in WT plants. GSL accumulation in reproductive tissues is likely to be prioritized even when sulfate supply is limited in sel1-10 for its role in S storage and plant defense.
Collapse
Affiliation(s)
- Tomomi Morikawa-Ichinose
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea.
| | - Alaa Allahham
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ryota Kawaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
50
|
Borpatragohain P, Rose TJ, Liu L, Raymond CA, Barkla BJ, King GJ. Seed glucosinolate yield is maximized by higher rates of sulfur nutrition than required for seed yield in condiment mustard (Brassica juncea L.). PLoS One 2019; 14:e0213429. [PMID: 30939141 PMCID: PMC6445519 DOI: 10.1371/journal.pone.0213429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Brassica crops require high amounts of inorganic sulfur (S) for optimum yield, and are characterized by the synthesis of S-rich glucosinolates (GSL). Although it is well established that seed and GSL yield can be increased by S fertilizer, the detailed relationship between S supply as primary source and the harvestable sinks of seed GSL and storage proteins is poorly understood. We tested the hypothesis that Brassica juncea mustard seed acts as a secondary S sink, and so require a higher rate of S to achieve maximum seed GSL compared to rates required to attain maximum seed biomass. Our experimental strategy involved comparing responses to available S for seed biomass, GSL, and protein. This was carried out in a protected environment using sand culture for a high-GSL condiment-type homozygous B. juncea genotype. A low-GSL canola-type was used as a control, in order to establish a base-line of response. Significantly more S was required to achieve maximum seed GSL than was required to achieve maximum seed mass. Total seed protein content was not significantly affected by increased S. The high-GSL line appeared to have an efficient mechanism of S supply to the secondary S sink, given the observed increase in seed S with increased S availability. From a practical point of view, increases in seed GSL with S availability suggests that S fertilizer rates should be optimized for maximum seed GSL yield, rather that optimizing for seed yield, as occurs for most other crops.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Carolyn A. Raymond
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
- * E-mail:
| |
Collapse
|