1
|
Yang Z, Wang Y, Cheng Q, Zou X, Yang Y, Li P, Wang S, Su Y, Yang D, Kim HS, Jia X, Li L, Kwak SS, Wang W. Overexpression of sweetpotato glutamylcysteine synthetase (IbGCS) in Arabidopsis confers tolerance to drought and salt stresses. JOURNAL OF PLANT RESEARCH 2024; 137:669-683. [PMID: 38758249 DOI: 10.1007/s10265-024-01548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.
Collapse
Affiliation(s)
- Zhe Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuan Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Qirui Cheng
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zou
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanxin Yang
- College of Basic Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Sijie Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yue Su
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu, 221131, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 1 25 Gwahak-ro, Daejeon, 34141, South Korea
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Lingzhi Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 1 25 Gwahak-ro, Daejeon, 34141, South Korea.
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
2
|
Alenazi MM, El-Ebidy AM, El-shehaby OA, Seleiman MF, Aldhuwaib KJ, Abdel-Aziz HMM. Chitosan and Chitosan Nanoparticles Differentially Alleviate Salinity Stress in Phaseolus vulgaris L. Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:398. [PMID: 38337931 PMCID: PMC10857083 DOI: 10.3390/plants13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024]
Abstract
Salinity stress can significantly cause negative impacts on the physiological and biochemical traits of plants and, consequently, a reduction in the yield productivity of crops. Therefore, the current study aimed to investigate the effects of chitosan (Cs) and chitosan nanoparticles (CsNPs) to mitigate salinity stress (i.e., 25, 50, 100, and 200 mM NaCl) and improve pigment fractions, carbohydrates content, ions content, proline, hydrogen peroxide, lipid peroxidation, electrolyte leakage content, and the antioxidant system of Phaseolus vulgaris L. grown in clay-sandy soil. Methacrylic acid was used to synthesize CsNPs, with an average size of 40 ± 2 nm. Salinity stress negatively affected yield traits, pigment fractions, and carbohydrate content. However, in plants grown under salt stress, the application of either Cs or CsNPs significantly improved yield, pigment fractions, carbohydrate content, proline, and the antioxidant system, while these treatments reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage. The positive effects of CsNPs were shown to be more beneficial than Cs when applied exogenously to plants grown under salt stress. In this context, it could be concluded that CsNPs could be used to mitigate salt stress effects on Phaseolus vulgaris L. plants grown in saline soils.
Collapse
Affiliation(s)
- Mekhled M. Alenazi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Aya M. El-Ebidy
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Omar A. El-shehaby
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
3
|
Rai GK, Kumar P, Choudhary SM, Singh H, Adab K, Kosser R, Magotra I, Kumar RR, Singh M, Sharma R, Corrado G, Rouphael Y. Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1133. [PMID: 36903992 PMCID: PMC10005112 DOI: 10.3390/plants12051133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutathione (GSH) is an abundant tripeptide that can enhance plant tolerance to biotic and abiotic stress. Its main role is to counter free radicals and detoxify reactive oxygen species (ROS) generated in cells under unfavorable conditions. Moreover, along with other second messengers (such as ROS, calcium, nitric oxide, cyclic nucleotides, etc.), GSH also acts as a cellular signal involved in stress signal pathways in plants, directly or along with the glutaredoxin and thioredoxin systems. While associated biochemical activities and roles in cellular stress response have been widely presented, the relationship between phytohormones and GSH has received comparatively less attention. This review, after presenting glutathione as part of plants' feedback to main abiotic stress factors, focuses on the interaction between GSH and phytohormones, and their roles in the modulation of the acclimatation and tolerance to abiotic stress in crops plants.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya M. Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Hira Singh
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Adab
- Department of Biotechnology, BGSB University, Rajouri 185131, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Monika Singh
- GLBajaj Institute of Technology and Management, Greater Noida 201306, India
| | - Rajni Sharma
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
4
|
Cao Y, Ma C, Yu H, Tan Q, Dhankher OP, White JC, Xing B. The role of sulfur nutrition in plant response to metal(loid) stress: Facilitating biofortification and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130283. [PMID: 36370480 DOI: 10.1016/j.jhazmat.2022.130283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Metal(loid)s contamination poses a serious threat to ecosystem biosafety and human health. Phytoremediation is a cost-effective and eco-friendly technology with good public acceptance, although the process does require a significant amount of time for success. To enhance the phytoremediation efficiency, numerous approaches have been explored, including soil amendments application with chelators to facilitate remediation. Sulfur (S), a macronutrient for plant growth, plays vital roles in several metabolic pathways that can actively affect metal(loid)s phytoextraction, as well as attenuate metal(loid) toxicity. In this review, different forms of S-amendments (fertilizers) on uptake and translocation in plants upon exposure to various metal(loid) are evaluated. Possible mechanisms for S application alleviating metal(loid) toxicity are documented at the physiological, biochemical and molecular levels. Furthermore, this review highlights the crosstalk between S-assimilation and other biomolecules, such as phytohormones, polyamines and nitric oxide, which are also important for metal(loid) stress tolerance. Given the effectiveness and potential of S amendments on phytoremediation, future studies should focus on optimizing phytoremediation efficiency in long-term field studies and on investigating the appropriate S dose to maximize the food safety and ecosystem health.
Collapse
Affiliation(s)
- Yini Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1672, 70211 Kuopio, Finland
| | - Qian Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
5
|
Zhang Y, Li B, Luo P, Xian Y, Xiao R, Wu J. Glutamine synthetase plays an important role in ammonium tolerance of Myriophyllum aquaticum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157596. [PMID: 35905951 DOI: 10.1016/j.scitotenv.2022.157596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
High-strength ammonium (NH4+), the main characteristic of swine wastewater, poses a significant threat to the rural ecological environment. As a novel phytoremediation technology, Myriophyllum aquaticum wetlands have high tolerance and removal rate of NH4+. Glutamine synthetase (GS), a pivotal enzyme in nitrogen (N) metabolism, is hypothesized to play an important role in the tolerance of M. aquaticum to high NH4+. Herein, the responses of M. aquaticum to GS inhibition by 0.1 mM methionine sulfoximine (MSX) under 15 mM NH4+ were investigated. After 5 days, visible NH4+ toxicity symptoms were observed in MSX-treated plants. Compared with the control, the NH4+ accumulation in the leaves increased by 20.99 times, while that of stems and roots increased by 3.27 times and 47.76 %, suggesting that GS inhibition had a greater impact on the leaves. GS inhibition decreased pigments in the leaves by 8.64 %-41.06 %, triggered oxidative stress, and affected ions concentrations in M. aquaticum. The concentrations of glutamine (Gln) and asparagine decreased by 63.46 %-97.43 % and 12.37 %-76.41 %, respectively, while the concentrations of most other amino acids increased after 5 days of MSX treatment, showing that GS inhibition reprogrammed the amino acids synthesis. A decrease in Gln explains the regulations of N-related genes, including increased expression of AMT in roots and decreased expression of GS, GOGAT, GDH, and AS, which would cause further NH4+ accumulation via promoting NH4+ uptake and decreasing NH4+ assimilation in M. aquaticum. This study revealed for the first time that GS inhibition under high NH4+ condition can lead to phytotoxicity in M. aquaticum due to NH4+ accumulation. The physiological and molecular responses of the leaves, stems, and roots confirmed the importance of GS in the high NH4+ tolerance of M. aquaticum. These findings provide new insights into NH4+ tolerance mechanisms in M. aquaticum and a theoretical foundation for the phytoremediation of high NH4+-loaded swine wastewater.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Baozhen Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China.
| | - Pei Luo
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yingnan Xian
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Runlin Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region/Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| |
Collapse
|
6
|
Liu X, Zong X, Wu X, Liu H, Han J, Yao Z, Ren Y, Ma L, Wang B, Zhang H. Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco. PLANTA 2022; 256:105. [PMID: 36315282 DOI: 10.1007/s00425-022-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
HaNAC3 is a transcriptional activator located in the nucleus that may be involved in the response to high temperature, high salt and drought stresses as well as phytohormone IAA and ABA treatments. Our study demonstrated that HaNAC3 increased the tolerance of transgenic tobacco to abiotic stress and was involved in the regulation of a range of downstream genes and metabolic pathways. This also indicates the potential application of HaNAC3 as a plant tolerance gene. NAC transcription factors play a key role in plant growth and development and plant responses to biotic and abiotic stresses. However, the biological functions of NAC transcription factors in the desert plant Haloxylon ammodendron are still poorly understood. In this study, the NAC transcription factor HaNAC3 was isolated and cloned from a typical desert plant H. ammodendron, and its possible biological functions were investigated. Bioinformatics analysis showed that HaNAC3 has the unique N-terminal NAC structural domain of NAC transcription factor. Quantitative real-time fluorescence analysis showed that HaNAC3 was able to participate in the response to simulated drought, high temperature, high salt, and phytohormone IAA and ABA treatments, and was very sensitive to simulated high temperature and phytohormone ABA treatments. Subcellular localization analysis showed that the GFP-HaNAC3 fusion protein was localized in the nucleus of tobacco epidermal cells. The transcriptional self-activation assay showed that HaNAC3 had transcriptional self-activation activity, and the truncation assay confirmed that the transcriptional activation activity was located at the C-terminus. HaNAC3 gene was expressed exogenously in wild-type Nicotiana benthamiana, and the physiological function of HaNAC3 was verified by simulating drought and other abiotic stresses. The results indicated that transgenic tobacco had better resistance to abiotic stresses than wild-type B. fuminata. Further transcriptome analysis showed that HaNAC3 was involved in the regulation of a range of downstream resistance genes, wax biosynthesis and other metabolic pathways. These results suggest that HaNAC3 may have a stress resistance role in H. ammodendron and has potential applications in plant molecular breeding.
Collapse
Affiliation(s)
- Xiashun Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xingfeng Zong
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xia Wu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hao Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jvdong Han
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zhengpei Yao
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yanping Ren
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Li Ma
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Bo Wang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hua Zhang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China.
- Arid Desert Research Institute, Ürümqi, China.
| |
Collapse
|
7
|
Crop Root Responses to Drought Stress: Molecular Mechanisms, Nutrient Regulations, and Interactions with Microorganisms in the Rhizosphere. Int J Mol Sci 2022; 23:ijms23169310. [PMID: 36012575 PMCID: PMC9409098 DOI: 10.3390/ijms23169310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Roots play important roles in determining crop development under drought. Under such conditions, the molecular mechanisms underlying key responses and interactions with the rhizosphere in crop roots remain limited compared with model species such as Arabidopsis. This article reviews the molecular mechanisms of the morphological, physiological, and metabolic responses to drought stress in typical crop roots, along with the regulation of soil nutrients and microorganisms to these responses. Firstly, we summarize how root growth and architecture are regulated by essential genes and metabolic processes under water-deficit conditions. Secondly, the functions of the fundamental plant hormone, abscisic acid, on regulating crop root growth under drought are highlighted. Moreover, we discuss how the responses of crop roots to altered water status are impacted by nutrients, and vice versa. Finally, this article explores current knowledge of the feedback between plant and soil microbial responses to drought and the manipulation of rhizosphere microbes for improving the resilience of crop production to water stress. Through these insights, we conclude that to gain a more comprehensive understanding of drought adaption mechanisms in crop roots, future studies should have a network view, linking key responses of roots with environmental factors.
Collapse
|
8
|
Karhoff S, Vargas-Garcia C, Lee S, Mian MAR, Graham MA, Dorrance AE, McHale LK. Identification of Candidate Genes for a Major Quantitative Disease Resistance Locus From Soybean PI 427105B for Resistance to Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2022; 13:893652. [PMID: 35774827 PMCID: PMC9237613 DOI: 10.3389/fpls.2022.893652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a yield-limiting soybean disease caused by the soil-borne oomycete Phytophthora sojae. Although multiple quantitative disease resistance loci (QDRL) have been identified, most explain <10% of the phenotypic variation (PV). The major QDRL explaining up to 45% of the PV were previously identified on chromosome 18 and represent a valuable source of resistance for soybean breeding programs. Resistance alleles from plant introductions 427105B and 427106 significantly increase yield in disease-prone fields and result in no significant yield difference in fields with less to no disease pressure. In this study, high-resolution mapping reduced the QDRL interval to 3.1 cm, and RNA-seq analysis of near-isogenic lines (NILs) varying at QDRL-18 pinpointed a single gene of interest which was downregulated in inoculated NILs carrying the resistant allele compared to inoculated NILs with the susceptible allele. This gene of interest putatively encodes a serine-threonine kinase (STK) related to the AtCR4 family and may be acting as a susceptibility factor, based on the specific increase of jasmonic acid concentration in inoculated NILs. This work facilitates further functional analyses and marker-assisted breeding efforts by prioritizing candidate genes and narrowing the targeted region for introgression.
Collapse
Affiliation(s)
- Stephanie Karhoff
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
| | - Christian Vargas-Garcia
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Sungwoo Lee
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - M. A. Rouf Mian
- United States Department of Agriculture-Agricultural Research Service, Soybean Research Unit, Raleigh, NC, United States
| | - Michelle A. Graham
- Department of Agronomy, Iowa State University, Ames, IA, United States
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Resources Unit, Ames, IA, United States
| | - Anne E. Dorrance
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Leah K. McHale
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Gao Y, Li H, Song Y, Zhang F, Yang Z, Yang Y, Grohmann T. Response of glutathione pools to cadmium stress and the strategy to translocate cadmium from roots to leaves (Daucus carota L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153575. [PMID: 35114244 DOI: 10.1016/j.scitotenv.2022.153575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Carrots are one of the most highly consumed vegetables in the world. Due to the large area of cadmium (Cd) contaminated farmland, to abate the impact of Cd contamination on carrot quality and safety, a novel strategy is required to drive Cd translocation from the soil to the overground leafy tissues of carrots to protect the edible roots and thus ensure food security. To this end, this article presents an experimental study with mathematical models to assess the tolerance and accumulation capacity of Cd in inedible carrot leaves, as well as the regulatory factors affecting Cd distribution in carrots. The glutathione (GSH) pools were examined in carrot leaves in response to the oxidation stress induced by Cd exposures, and it was found that under low Cd stress (1 and 3 mg/L) the changes of GSH pools were dominated by the variation of GSH, showing higher GSH content and low levels of oxidized GSH content (GSSG). In contrast, both of these two indicator variables as well as the GSH/GSSG ratio all decreased under high Cd stress (5 and 9 mg/L). Combining this information with Cd concentrations in leaves, a model was established to predict the Cd accumulation capacity of leaves. The data showed that the potential Cd accumulation in carrot leaves could be as high as 514 μg/kg dry weight. Furthermore, the factors and primary physiological indicators affecting and regulating GSH pools by multiple stepwise regression were analyzed. The results showed that increasing chlorophyll a/b ratio and γ-glutamylcyclotransferase activity while inhibiting phytochelatin synthase activity could expand the tolerance of carrot leaves to Cd. These findings suggest a possible strategy for regulating the distribution of toxic metals in plants through a molecular-based approach and provide some important information that could be conducive to achieving food safety and phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China.
| | - Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China
| | - Fenglin Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, PR China.
| | - Ying Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Teresa Grohmann
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, Kalidindi U, Bansal R, Roy S, Anand A, Singh B. Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect" of heavy metals. CHEMOSPHERE 2022; 287:131957. [PMID: 34450367 DOI: 10.1016/j.chemosphere.2021.131957] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
An increase in technological interventions and ruthless urbanization in the name of development has deteriorated our environment over time and caused the buildup of heavy metals (HMs) in the soil and water resources. These heavy metals are gaining increased access into our food chain through the plant and/or animal-based products, to adversely impact human health. The issue of how to restrict the entry of HMs or modulate their response in event of their ingress into the plant system is worrisome. The current knowledge on the interactive-regulatory role and contribution of different physical, biophysical, biochemical, physiological, and molecular factors that determine the heavy metal availability-uptake-partitioning dynamics in the soil-plant-environment needs to be updated. The present review critically analyses the interactive overlaps between different adaptation and tolerance strategies that may be causally related to their cellular localization, conjugation and homeostasis, a relative affinity for the transporters, rhizosphere modifications, activation of efflux pumps and vacuolar sequestration that singly or collectively determine a plant's response to HM stress. Recently postulated role of gaseous pollutants such as SO2 and other secondary metabolites in heavy metal tolerance, which may be regulated at the whole plant and/or tissue/cell is discussed to delineate and work towards a "not so heavy" response of plants to heavy metals present in the contaminated soils.
Collapse
Affiliation(s)
- Meenakshi Thakur
- College of Horticulture and Forestry (Dr. Y.S. Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Shamima Praveen
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Mahesh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413 115, India
| | - Chandan Kumar Gupta
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226 002, India
| | - Usha Kalidindi
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ruchi Bansal
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Suman Roy
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700 120, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
11
|
Park SI, Kim JJ, Kim HS, Kim YS, Yoon HS. Enhanced glutathione content improves lateral root development and grain yield in rice plants. PLANT MOLECULAR BIOLOGY 2021; 105:365-383. [PMID: 33206358 DOI: 10.1007/s11103-020-01093-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/04/2020] [Indexed: 05/20/2023]
Abstract
Enhanced glutathione content improves lateral root development by positively regulating the transcripts of root development genes responsive to glutathione treatment, thereby increasing the overall productivity of rice plants. Glutathione is primarily known as a cellular antioxidant molecule, but its role in lateral root development in rice plants has not been elucidated. Here, we have investigated its role in lateral root development of rice Oryza sativa L. Exogenous glutathione (GSH) promoted both the number and length of lateral roots in rice, and the GSH biosynthesis inhibitor buthionine sulfoximine (BSO) significantly reduced these parameters, compared to untreated plants. The inhibition by BSO was reversed with exogenous GSH. Transcript profiling by RNA-seq revealed that expression of the transcription factor genes DREB and ERF and the hormone-related genes AOS, LOX, JAZ, and SAUR were significantly downregulated in the BSO-treated plants and, in contrast, upregulated in plants treated with GSH and with GSH and BSO together. We generated OsGS-overexpressing transgenic plants in which the transgene is controlled by the abiotic-stress-inducible OsRab21 promoter to study the effect of endogenously increased GSH levels. In cold stress, transgenic rice plants enhanced stress tolerance and lateral root development by maintaining redox homeostasis and improving upregulating the expression of transcription factors and hormone-related genes involved in lateral root development. We observed improved root growth of OsGS-overexpressing plants in paddy fields compared to the wild-type controls. These traits may have alleviated transplanting stress during early growth in the field and accounted for the increased productivity. These results provide information and perspectives on the role of GSH in gene expression, lateral root development, and grain yield in rice.
Collapse
Affiliation(s)
- Seong-Im Park
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jin-Ju Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyeng-Soo Kim
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Saeng Kim
- Research Institute for Dok-Do and Ulleung-Do, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Gandin A, Dizengremel P, Jolivet Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:202-210. [PMID: 33385703 DOI: 10.1016/j.plaphy.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 05/27/2023]
Abstract
Ozone is a secondary air pollutant, which causes oxidative stress in plants by producing reactive oxygen species (ROS) starting by an external attack of leaf apoplast. ROS have a dual role, acting as signaling molecules, regulating different physiological processes and response to stress, but also inducing oxidative damage. The production of ROS in plant cells is compartmented and regulated by scavengers and specific enzyme pathways. Chronic doses of ozone are known to trigger an important increase of the respiratory process while decreasing photosynthesis. Mitochondria, which normally operate with usual levels of intracellular ROS, would have to play a prominent role to cope with an enhanced ozone-derived ROS production. It is thus needed to compile the available literature on the effects of ozone on mitochondria to precise their strategy facing oxidative stress. An overview of the mitochondrial fate in three steps is proposed, i) starting with the initial responses of the mitochondria for alleviating the overproduction of ROS by the enhancement of existing antioxidant metabolism and adjustments of the electron transport chain, ii) followed by the setting up of detoxifying processes through exchanges between mitochondria and the cell, and iii) ending by an accelerated senescence initiated by mitochondrial membrane permeability and leading to programmed cell death.
Collapse
Affiliation(s)
- Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| | - Pierre Dizengremel
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France.
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| |
Collapse
|
13
|
Do DTH, Fickers P, Ben Tahar I. Improvement of glutathione production by a metabolically engineered Yarrowia lipolytica strain using a small-scale optimization approach. Biotechnol Lett 2020; 43:407-414. [PMID: 33151450 DOI: 10.1007/s10529-020-03039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE In this study, we aimed to maximize glutathione (GSH) production by a metabolically engineered Yarrowia lipolytica strain using a small-scale optimization approach. RESULTS A three levels four factorial Box-Behnken Design was used to assess the effect of pH, inulin extract, yeast extract and ammonium sulfate concentrations on cell growth and to generate a mathematical model which predict optimal conditions to maximize biomass production and thus GSH titer. The obtained results revealed that only yeast and inulin extract concentrations significantly affect biomass production. Based on the generated model, a medium composed of 10 g/L of yeast extract and 10 g/L of inulin extract from Jerusalem artichoke was used to conduct batch cultures in 2 L bioreactor. After 48 h of culture, the biomass and the glutathione titer increased by 55% (5.8 gDCW/L) and 61% (1011.4 mg/L), respectively, as compared to non-optimized conditions. CONCLUSION From the obtained results, it could be observed that the model established from small scale culture (i.e. 2 mL) is able to predict performance at larger scale (i.e. 2 L bioreactor, two orders of magnitude scale-up). Moreover, the results highlight the ability of the optimized process to ensure high titer of glutathione using a low-cost carbon source.
Collapse
Affiliation(s)
- Diem T H Do
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Av. de la Faculté, 2B, 5030, Gembloux, Belgium
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Av. de la Faculté, 2B, 5030, Gembloux, Belgium.
| | - Imen Ben Tahar
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Av. de la Faculté, 2B, 5030, Gembloux, Belgium
| |
Collapse
|
14
|
Wang J, Zhai L, Ma J, Zhang J, Wang GG, Liu X, Zhang S, Song J, Wu Y. Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata. MYCORRHIZA 2020; 30:341-355. [PMID: 32388674 DOI: 10.1007/s00572-020-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi enhance plant salt tolerance. However, physiological mechanisms of enhanced salt tolerance in leaves and roots of trees rarely have been compared. To reveal the different mechanisms, our study utilized comprehensive analyses of leaves and roots to examine the effects of Funneliformis mosseae on the salinity tolerance of Zelkova serrata. Seedlings of Z. serrata were exposed to four salt levels in a greenhouse with and without F. mosseae inoculation. Treatment comparisons revealed that following F. mosseae inoculation, (1) nutrient deficiency caused by osmotic stress was mitigated by the fungus enhancing nutrient contents (K, Ca, and Mg) in roots and (N, P, K, Ca, and Mg) in leaves, with Ca and K contents being higher in both leaves and roots; (2) mycorrhizas alleviated ion toxicity by maintaining a favorable ion balance (e.g., K+/Na+), and this regulatory effect was higher in leaves than that in roots; and (3) oxidative damage was reduced by an increase in the activities of antioxidant enzymes and accumulation of antioxidant compounds in mycorrhizal plants although the increase differed in leaves and roots. In particular, AM fungus-enhanced catalase activity and reduced glutathione content only occurred in leaves, whereas an enhanced content of reduced ascorbic acid was only noted in roots. Growth, root vitality, leaf photosynthetic pigments, net photosynthetic rate, and dry weight were higher in seedlings with AM fungus inoculation. These results suggest that AM fungus inoculation improved salinity tolerance of Z. serrata, but the physiological mechanisms differed between leaves and roots.
Collapse
Affiliation(s)
- Jinping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, 29634, USA
| | - Lu Zhai
- Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jieyi Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China.
| | - G Geoff Wang
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, 29634, USA.
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Shuifeng Zhang
- Department of Forest Fire, Nanjing Forest Police College, Nanjing, 210023, Jiangsu, China
| | - Juan Song
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Yingkang Wu
- Dafeng Forest Farm, Yancheng, 224136, Jiangsu, China
| |
Collapse
|
15
|
Decou R, Delmail D, Labrousse P. Myriophyllum alterniflorum biochemical changes during in vitro Cu/Cd metal stress: Focusing on cell detoxifying enzymes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105361. [PMID: 31862548 DOI: 10.1016/j.aquatox.2019.105361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Given the toxicity of trace metals, their concentration, speciation and bioavailability serve to induce various plant detoxification processes, which themselves are specific to several parameters like plant species, tissue type and developmental stage. In this study, Myriophyllum alterniflorum (or alternate watermilfoil) enzyme activities (ascorbate peroxidase, catalase, glutathione peroxidase and superoxide dismutase) from in vitro cultures was measured over 27 days in response to copper (Cu) or cadmium (Cd) stress. These enzymes are unique to reactive oxygen species (ROS) scavenging (mainly hydrogen peroxide H2O2 and superoxide anion O2-) and moreover showed specific or unspecific activity profiles, depending on the metal concentrations used. Our results suggest a higher-priority protection of chloroplasts during the initial days of exposure to both metals. At the same time, the increased catalase activity could indicate an H2O2 diffusion in peroxisome in order to protect other organelles from ROS accumulation. However, as opposed to the Cd effects, high Cu concentrations appear to induce a "limited oxidative threshold" for some antioxidant enzymes, which could suggest an ion absorption competition between Cu2+ and Fe2+. In spite of an overall analysis conducted of the scavenging processes occurring in plant cells, biochemical analyses still yielded relevant indications regarding the watermilfoil strategies used for ROS management.
Collapse
Affiliation(s)
- Raphaël Decou
- University of Limoges, PEIRENE, EA 7500, F-87000 Limoges, France.
| | - David Delmail
- University of Limoges, PEIRENE, EA 7500, F-87000 Limoges, France; University of Rennes 1, UMR 6118 Géosciences, F-35043 Rennes, France
| | - Pascal Labrousse
- University of Limoges, PEIRENE, EA 7500, F-87000 Limoges, France
| |
Collapse
|
16
|
Hell AF, Gasulla F, Gonzï Lez-Hourcade MA, Del Campo EM, Centeno DC, Casano LM. Tolerance to Cyclic Desiccation in Lichen Microalgae is Related to Habitat Preference and Involves Specific Priming of the Antioxidant System. PLANT & CELL PHYSIOLOGY 2019; 60:1880-1891. [PMID: 31127294 DOI: 10.1093/pcp/pcz103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Oxidative stress is a crucial challenge for lichens exposed to cyclic desiccation and rehydration (D/R). However, strategies to overcome this potential stress are still being unraveled. Therefore, the physiological performance and antioxidant mechanisms of two lichen microalgae, Trebouxia sp. (TR9) and Coccomyxa simplex (Csol), were analyzed. TR9 was isolated from Ramalina farinacea, a Mediterranean fruticose epiphytic lichen adapted to xeric habitats, while Csol is the phycobiont of Solorina saccata, a foliaceous lichen that grows on humid rock crevices. The tolerance to desiccation of both species was tested by subjecting them to different drying conditions and to four consecutive daily cycles of D/R. Our results show that a relative humidity close to that of their habitats was crucial to maintain the photosynthetic rates. Concerning antioxidant enzymes, in general, manganese superoxide dismutases (MnSODs) were induced after desiccation and decreased after rehydration. In TR9, catalase (CAT)-A increased, and its activity was maintained after four cycles of D/R. Ascorbate peroxidase activity was detected only in Csol, while glutathione reductase increased only in TR9. Transcript levels of antioxidant enzymes indicate that most isoforms of MnSOD and FeSOD were induced by desiccation and repressed after rehydration. CAT2 gene expression was also upregulated and maintained at higher levels even after four cycles of D/R in accordance with enzymatic activities. To our knowledge, this is the first study to include the complete set of the main antioxidant enzymes in desiccation-tolerant microalgae. The results highlight the species-specific induction of the antioxidant system during cyclic D/R, suggesting a priming of oxidative defence metabolism.
Collapse
Affiliation(s)
- Aline F Hell
- Department of Life Sciences, University of Alcal�, Alcal� de Henares, Madrid, Spain
- Centre of Natural Sciences and Humanities, Federal University of ABC, S�o Bernardo do Campo, SP, Brazil
| | - Francisco Gasulla
- Department of Life Sciences, University of Alcal�, Alcal� de Henares, Madrid, Spain
| | | | - Eva M Del Campo
- Department of Life Sciences, University of Alcal�, Alcal� de Henares, Madrid, Spain
| | - Danilo C Centeno
- Centre of Natural Sciences and Humanities, Federal University of ABC, S�o Bernardo do Campo, SP, Brazil
| | - Leonardo M Casano
- Department of Life Sciences, University of Alcal�, Alcal� de Henares, Madrid, Spain
| |
Collapse
|
17
|
Rehman MZU, Rizwan M, Sohail MI, Ali S, Waris AA, Khalid H, Naeem A, Ahmad HR, Rauf A. Opportunities and challenges in the remediation of metal-contaminated soils by using tobacco (Nicotiana tabacum L.): a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18053-18070. [PMID: 31093913 DOI: 10.1007/s11356-019-05391-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 05/06/2023]
Abstract
The successful phytoextraction of potentially toxic elements (PTEs) from polluted soils can be achieved by growing non-food and industrial crops. Tobacco (Nicotiana tabacum L.) is one of the main industrial crops and is widely grown in many countries. Tobacco can uptake high concentrations of PTEs especially in aboveground biomass without suffering from toxicity. This review highlighted the potential of tobacco for the phytoextraction of heavy metals and tolerance mechanisms under metal stress. Different management practices have been discussed which can enhance the potential of this plant for metal extraction. Finally, suitable options for the management/disposal of biomass enriched in excess metal have been elaborated to prevent secondary pollution.
Collapse
Affiliation(s)
- Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Muhammad Irfan Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Aisha A Waris
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hinnan Khalid
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Asif Naeem
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Jhang Road, Faisalabad, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Arslan Rauf
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
18
|
Plant glutathione biosynthesis revisited: redox-mediated activation of glutamylcysteine ligase does not require homo-dimerization. Biochem J 2019; 476:1191-1203. [PMID: 30877193 PMCID: PMC6463388 DOI: 10.1042/bcj20190072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022]
Abstract
Plant γ-glutamylcysteine ligase (GCL), catalyzing the first and tightly regulated step of glutathione (GSH) biosynthesis, is redox-activated via formation of an intramolecular disulfide bond. In vitro, redox-activation of recombinant GCL protein causes formation of homo-dimers. Here, we have investigated whether dimerization occurs in vivo and if so whether it contributes to redox-activation. FPLC analysis indicated that recombinant redox-activated WT (wild type) AtGCL dissociates into monomers at concentrations below 10-6 M, i.e. below the endogenous AtGCL concentration in plastids, which was estimated to be in the micromolar range. Thus, dimerization of redox-activated GCL is expected to occur in vivo To determine the possible impact of dimerization on redox-activation, AtGCL mutants were generated in which salt bridges or hydrophobic interactions at the dimer interface were interrupted. WT AtGCL and mutant proteins were analyzed by non-reducing SDS-PAGE to address their redox state and probed by FPLC for dimerization status. Furthermore, their substrate kinetics (K M, V max) were compared. The results indicate that dimer formation is not required for redox-mediated enzyme activation. Also, crystal structure analysis confirmed that dimer formation does not affect binding of GSH as competitive inhibitor. Whether dimerization affects other enzyme properties, e.g. GCL stability in vivo, remains to be investigated.
Collapse
|
19
|
Yu Z, Juhasz A, Islam S, Diepeveen D, Zhang J, Wang P, Ma W. Impact of mid-season sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein. Sci Rep 2018; 8:2499. [PMID: 29410526 PMCID: PMC5802717 DOI: 10.1038/s41598-018-20935-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/26/2018] [Indexed: 01/02/2023] Open
Abstract
Wheat (Triticum aestivum) quality is mainly determined by grain storage protein compositions. Sulphur availability is essential for the biosynthesis of the main wheat storage proteins. In this study, the impact of different sulphur fertilizer regimes on a range of agronomically important traits and associated gene networks was studied. High-performance liquid chromatography was used to analyse the protein compositions of grains grown under four different sulphur treatments. Results revealed that sulphur supplementation had a significant effect on grain yield, harvest index, and storage protein compositions. Consequently, two comparative sulphur fertilizer treatments (0 and 30 kg ha-1 sulphur, with 50 kg ha-1 nitrogen) at seven days post-anthesis were selected for a transcriptomics analysis to screen for differentially expressed genes (DEGs) involved in the regulation of sulphur metabolic pathways. The International Wheat Genome Sequencing Consortium chromosome survey sequence was used as reference. Higher sulphur supply led to one up-regulated DEG and sixty-three down-regulated DEGs. Gene ontology enrichment showed that four down-regulated DEGs were significantly enriched in nitrogen metabolic pathway related annotation, three of which were annotated as glutamine synthetase. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment identified three significantly enriched pathways involved in nitrogen and amino acid metabolism.
Collapse
Affiliation(s)
- Zitong Yu
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
| | - Angela Juhasz
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
| | - Dean Diepeveen
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
- Western Australian Department of Agriculture & Food, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
| | - Penghao Wang
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Centre, School of Veterinary and Life Science, Murdoch University, Perth, WA, 6150, Australia.
- Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
20
|
Park SI, Kim YS, Kim JJ, Mok JE, Kim YH, Park HM, Kim IS, Yoon HS. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:39-47. [PMID: 28527337 DOI: 10.1016/j.jplph.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields.
Collapse
Affiliation(s)
- Seong-Im Park
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Saeng Kim
- Research Institute of Ulleung-do & Dok-do, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Ju Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Eun Mok
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Yul-Ho Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea
| | - Hyang-Mi Park
- National Institute of Crop Science, Rural Development Administration, Wanju 54955, Republic of Korea
| | - Il-Sup Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
21
|
Gill RA, Ali B, Yang S, Tong C, Islam F, Gill MB, Mwamba TM, Ali S, Mao B, Liu S, Zhou W. Reduced Glutathione Mediates Pheno-Ultrastructure, Kinome and Transportome in Chromium-Induced Brassica napus L. FRONTIERS IN PLANT SCIENCE 2017; 8:2037. [PMID: 29312362 PMCID: PMC5732361 DOI: 10.3389/fpls.2017.02037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 11/14/2017] [Indexed: 05/19/2023]
Abstract
Chromium (Cr) as a toxic metal is widely used for commercial purposes and its residues have become a potential environmental threat to both human and plant health. Oilseed rape (Brassica napus L.) is one of the candidate plants that can absorb the considerable quantity of toxic metals from the soil. Here, we used two cultivars of B. napus cvs. ZS 758 (metal-tolerant) and Zheda 622 (metal-susceptible) to investigate the phenological attributes, cell ultrastructure, protein kinases (PKs) and molecular transporters (MTs) under the combined treatments of Cr stress and reduced glutathione (GSH). Seeds of these cultivars were grown in vitro at different treatments i.e., 0, 400 μM Cr, and 400 μM Cr + 1 mM GSH in control growth chamber for 6 days. Results had confirmed that Cr significantly reduced the plant length, stem and root, and fresh biomass such as leaf, stem and root. Cr noticeably caused the damages in leaf mesophyll cells. Exogenous application of GSH significantly recovered both phenological and cell structural damages in two cultivars under Cr stress. For the PKs, transcriptomic data advocated that Cr stress alone significantly increased the gene expressions of BnaA08g16610D, BnaCnng19320D, and BnaA08g00390D over that seen in controls (Ck). These genes encoded both nucleic acid and transition metal ion binding proteins, and protein kinase activity (PKA) and phosphotransferase activities in both cultivars. Similarly, the presence of Cr revealed elite MT genes [BnaA04g26560D, BnaA02g28130D, and BnaA02g01980D (novel)] that were responsible for water transmembrane transporter activity. However, GSH in combination with Cr stress significantly up-regulated the genes for PKs [such as BnaCnng69940D (novel) and BnaC08g49360D] that were related to PKA, signal transduction, and oxidoreductase activities. For MTs, BnaC01g29930D and BnaA07g14320D were responsible for secondary active transmembrane transporter and protein transporter activities that were expressed more in GSH treatment than either Ck or Cr-treated cells. In general, it can be concluded that cultivar ZS 758 is more tolerant toward Cr-induced stress than Zheda 622.
Collapse
Affiliation(s)
- Rafaqat A. Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Su Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Chaobo Tong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Bilal Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Theodore M. Mwamba
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou
| |
Collapse
|
22
|
Sarwat M, Hashem A, Ahanger MA, Abd_Allah EF, Alqarawi AA, Alyemeni MN, Ahmad P, Gucel S. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:869. [PMID: 27458462 PMCID: PMC4931734 DOI: 10.3389/fpls.2016.00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/02/2016] [Indexed: 05/03/2023]
Abstract
Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones.
Collapse
Affiliation(s)
- Maryam Sarwat
- Department of Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity UniversityNoida, India
| | - Abeer Hashem
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research CenterGiza, Egypt
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Mohammad A. Ahanger
- Stress Physiology Laboratory, Department of Botany, Jiwaji UniversityGwalior, India
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - A. A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Mohammed N. Alyemeni
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany, Sri Pratap CollegeSrinagar, India
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
23
|
Lee BR, Zaman R, Avice JC, Ourry A, Kim TH. Sulfur Use Efficiency Is a Significant Determinant of Drought Stress Tolerance in Relation to Photosynthetic Activity in Brassica napus Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:459. [PMID: 27092167 PMCID: PMC4824789 DOI: 10.3389/fpls.2016.00459] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 05/23/2023]
Abstract
To investigate the varietal difference in sulfur use efficiency (SUE) and drought stress tolerance, Brassica napus 'Mosa' and 'Saturnin' were exposed to polyethylene glycol (PEG)-induced drought stress for 72 h. Direct quantification of S uptake, de novo synthesis of amino acids and proteins was performed by tracing (34)S. The responses of photosynthetic activity in relation to SUE were also examined. The total amount of newly absorbed S decreased with drought stress in both cultivars but the decrease rate was significantly higher in Mosa (-64%) than in Saturnin (-41%). Drought stress also decreased the amount of S assimilated into amino acids ((34)S-amino acids) and proteins ((34)S-proteins). The total amount of S incorporated into amino acids and proteins was generally higher in Saturnin (663.7 μg S per plant) than in Mosa (337.3 μg S per plant). The estimation of SUE based on S uptake (SUpE) and S assimilation (SUaE) showed that SUE was much higher in Saturnin than in Mosa. The inhibition of photosynthetic activity including Rubisco protein degradation caused by drought stress was much lower in the cultivar with higher SUE (Saturnin). The present study clearly indicates that the genotype with higher SUE is more tolerant to PEG-induced drought stress.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National UniversityGwangju, South Korea; Biotechnology Research Institute, Chonnam National UniversityGwangju, South Korea
| | - Rashed Zaman
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University Gwangju, South Korea
| | - Jean-Christophe Avice
- Université de Caen Basse-NormandieCaen, France; UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N, Université de Caen Basse NormandieCaen, France
| | - Alain Ourry
- Université de Caen Basse-NormandieCaen, France; UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N, Université de Caen Basse NormandieCaen, France
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University Gwangju, South Korea
| |
Collapse
|
24
|
Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD. Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:86-96. [PMID: 26741538 DOI: 10.1016/j.plaphy.2015.11.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
Arsenic (As) contamination in rice is at alarming level as majority of rice growing regions are As contaminated such as South East Asia. Restricting the As in aerial parts of rice plant may be an effective strategy to reduce As contamination in food chain. Sulfur (S), an essential element for plant growth and development, plays a crucial role in diminishing heavy metal toxicity. Current study is designed to investigate the role of S to mitigate As toxicity in rice under different S regimes. High S (5 mM) treatment resulted in enhanced root As accumulation as well as prevented its entry in to shoot. Results of thiol metabolism indicate that As was complexed in plant roots through enhanced synthesis of phytochelatins. High S treatment also reduced the expression of OsLsi1 and OsLsi2, the potent transporters of As in rice. High S treatment enhanced the activities of antioxidant enzymes and mitigated the As induced oxidative stress. Thus from present study it is evident that proper supply of S nutrition may be helpful in prevention of As accumulation in aerial parts of plant as well as As induced toxicity.
Collapse
Affiliation(s)
- Garima Dixit
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Amit Pal Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Amit Kumar
- Department of Botany, University of Lucknow, Lucknow, India
| | - Seema Mishra
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Dwivedi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Smita Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Vivek Pandey
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
25
|
Hashem A, Abd Allah EF, Alqarawi AA, Egamberdieva D. Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi J Biol Sci 2015; 23:39-47. [PMID: 26858537 PMCID: PMC4705279 DOI: 10.1016/j.sjbs.2015.11.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023] Open
Abstract
Cassia italica Mill is an important medicinal plant within the family Fabaceae. Pot experiment was conducted to evaluate cadmium stress induced changes in physiological and biochemical attributes in C. italica with and without arbuscular mycorrhizal fungi (AMF). Cadmium stressed plant showed reduced chlorophyll pigment and protein content while AMF inoculation enhanced the chlorophyll and protein content considerably. AMF also ameliorated the cadmium stress induced reduction in total chlorophyll and protein contents by 19.30% and 38.29%, respectively. Cadmium stress enhanced lipid peroxidation while AMF inoculation reduced lipid peroxidation considerably. Increase in proline and phenol content was observed due to cadmium stress and AMF inoculation caused a further increase in proline and phenol content ensuring better growth under stressed conditions. AMF alone also enhanced proline and phenol content. Activity of antioxidant enzymes enhanced under cadmium treatment and AMF inoculation further enhanced their activity thereby strengthening the antioxidant system. Enhanced activities of antioxidants and increased accumulation of osmolytes help plants to avoid damaging impact of oxidative damage. The research has shown that AMF inoculation mitigated the negative impact of stress by reducing the lipid peroxidation and enhancing the antioxidant activity. The present study strongly supports employing AMF as the biological mean for enhancing the cadmium stress tolerance of C. italica.
Collapse
Affiliation(s)
- Abeer Hashem
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - E F Abd Allah
- Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - A A Alqarawi
- Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Dilfuza Egamberdieva
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
26
|
Liu D, An Z, Mao Z, Ma L, Lu Z. Enhanced Heavy Metal Tolerance and Accumulation by Transgenic Sugar Beets Expressing Streptococcus thermophilus StGCS-GS in the Presence of Cd, Zn and Cu Alone or in Combination. PLoS One 2015; 10:e0128824. [PMID: 26057126 PMCID: PMC4461316 DOI: 10.1371/journal.pone.0128824] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/30/2015] [Indexed: 11/18/2022] Open
Abstract
Phytoremediation is a promising means of ameliorating heavy metal pollution through the use of transgenic plants as artificial hyperaccumulators. A novel Streptococcus thermophilusγ-glutamylcysteine synthetase-glutathione synthetase (StGCS-GS) that synthesizes glutathione (GSH) with limited feedback inhibition was overexpressed in sugar beet (Beta vulgaris L.), yielding three transgenic lines (s2, s4 and s5) with enhanced tolerance to different concentrations of cadmium, zinc and copper, as indicated by their increased biomass, root length and relative growth compared with wild-type plants. Transgenic sugar beets accumulated more Cd, Zn and Cu ions in shoots than wild-type, as well as higher GSH and phytochelatin (PC) levels under different heavy metal stresses. This enhanced heavy metal tolerance and increased accumulation were likely due to the increased expression of StGCS-GS and consequent overproduction of both GSH and PC. Furthermore, when multiple heavy metal ions were present at the same time, transgenic sugar beets overexpressing StGCS-GS resisted two or three of the metal combinations (50 μM Cd-Zn, Cd-Cu, Zn-Cu and Cd-Zn-Cu), with greater absorption in shoots. Additionally, there was no obvious competition between metals. Overall, the results demonstrate the explicit role of StGCS-GS in enhancing Cd, Zn and Cu tolerance and accumulation in transgenic sugar beet, which may represent a highly promising new tool for phytoremediation.
Collapse
Affiliation(s)
- Dali Liu
- Key Laboratory of Sugar beet Genetics and Breeding, Academy of Crop Sciences, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Forest Plant Ecology, the Ministry of Education of China, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhigang An
- Key Laboratory of Forest Plant Ecology, the Ministry of Education of China, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zijun Mao
- Key Laboratory of Forest Plant Ecology, the Ministry of Education of China, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Longbiao Ma
- Key Laboratory of Sugar beet Genetics and Breeding, Academy of Crop Sciences, Heilongjiang University, Harbin, 150080, P. R. China
- * E-mail: (LM); (ZL)
| | - Zhenqiang Lu
- Key Laboratory of Biochemistry and Molecular Biology, College of Life Sciences, Heilongjiang University, Harbin, 150080, P. R. China
- * E-mail: (LM); (ZL)
| |
Collapse
|
27
|
Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2901-11. [PMID: 25750419 DOI: 10.1093/jxb/erv063] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation.
Collapse
Affiliation(s)
- Luis E Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Juan Sobrino-Plata
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - M Belén Montero-Palmero
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - Sandra Carrasco-Gil
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain † Present address: Aula Dei Experimental Research Station-CSIC, Avd. Montañana, ES- 50059 Zaragoza, Spain
| | - M Laura Flores-Cáceres
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Carolina Escobar
- Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| |
Collapse
|
28
|
Zhang Y, Du N, Wang L, Zhang H, Zhao J, Sun G, Wang P. Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3477-3488. [PMID: 25242588 DOI: 10.1007/s11356-014-3524-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
Phthalic acid ester (PAE) pollution to soil can lead to phytotoxicity in plants and potential health risks to human being. Dibutyl phthalate (DBP) as a kind of PAE has a large usage amount and large residues in soil. To analyze antioxidant responses of plants to DBP stress, effects of varying DBP concentrations on cucumber seedlings growth had been investigated. Malonaldehyde (MDA), hydrogen peroxide (H2O2), chlorophyll, proline, glutathione (GSH), and oxidized glutathione (GSSH) contents and activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) were studied. The results showed that H2O2 content increased in cucumber seedlings with the increase of DBP concentration. The chlorophyll content in the higher DBP significantly declined compared to the control. In the present study, a disturbance of the GSH redox balance was evidenced by a marked decrease in GSH/GSSG ratio in cucumber seedlings subjected DBP stress. Our results indicated that DBP treatment not only inhibited antioxidant capacity and antioxidant enzyme activity in seedlings' leaves but might also induce chlorophyll degradation or reduce the synthesis of chlorophyll. Moreover, it could also enhance the accumulation of reactive oxygen species (ROS) which induced membrane lipid peroxidation. DBP also altered the ultrastructure of mesophyll cells, damaged membrane structure of chloroplast and mitochondrion, and increased the number and size of starch grains in chloroplasts reducing the photosynthetic capacity.
Collapse
Affiliation(s)
- Ying Zhang
- Northeast Agricultural University, School of Resources & Environment, Harbin, Heilongjiang Province, China,
| | | | | | | | | | | | | |
Collapse
|
29
|
Klug K, Hogekamp C, Specht A, Myint SS, Blöink D, Küster H, Horst WJ. Spatial gene expression analysis in tomato hypocotyls suggests cysteine as key precursor of vascular sulfur accumulation implicated in Verticillium dahliae defense. PHYSIOLOGIA PLANTARUM 2015; 153:253-268. [PMID: 24930426 DOI: 10.1111/ppl.12239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Verticillium dahliae is a prominent generator of plant vascular wilting disease and sulfur (S)-enhanced defense (SED) mechanisms contribute to its in-planta elimination. The accumulation of S-containing defense compounds (SDCs) including elemental S (S(0) ) has been described based on the comparison of two near-isogenic tomato (Solanum lycopersicum) lines differing in fungal susceptibility. To better understand the effect of S nutrition on V. dahliae resistance both lines were supplied with low, optimal or supraoptimal sulfate-S. An absolute quantification demonstrated a most effective fungal elimination due to luxury plant S nutrition. High-pressure liquid chromatography (HPLC) showed a strong regulation of Cys levels and an S-responsive GSH pool rise in the bulk hypocotyl. High-frequency S peak accumulations were detected in vascular bundles of resistant tomato plants after fungal colonization by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Global transcriptomic analysis suggested that early steps of the primary S metabolism did not promote the SDCs synthesis in the whole hypocotyl as gene expression was downregulated after infection. Enhanced S fertilization mostly alleviated the repressive fungal effect but did not reverse it. Upregulation of glutathione (GSH)-associated genes in bulk hypocotyls but not in vascular bundles indicated a global antioxidative role of GSH. To finally assign the contribution of S metabolism-associated genes to high S(0) accumulations exclusively found in the resistant tomato line, a spatial gene expression approach was applied. Laser microdissection of infected vascular bundles revealed a switch toward transcription of genes connected with cysteine (Cys) synthesis. The upregulation of LeOASTLp1 suggests a role for Cys as key precursor for local S accumulations (possibly S(0) ) in the vascular bundles of the V. dahliae-resistant tomato line.
Collapse
Affiliation(s)
- Katharina Klug
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhäuserstraße 2, 30419, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Yu Z, Yin D, Deng H. The combinational effects between sulfonamides and metals on nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 111:66-71. [PMID: 25450916 DOI: 10.1016/j.ecoenv.2014.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/16/2014] [Accepted: 09/24/2014] [Indexed: 06/04/2023]
Abstract
As emerging pollutants, antibiotic sulfonamides are continuously emitted into the environment and encounter those already-existing contaminants, e.g., heavy metals, which may cause toxicity interactions in polluted habitats. So far, the sulfonamide mixture effects and the combinational effects between sulfonamides and metals have been seldom studied. In this study, lifespan, lethality (24 and 120 h), locomotion behavior and growth (96 h) of Caenorhabditis elegans were measured after exposure to mixtures containing sulfonamides (sulfadiazine, sulfapyridine, sulfamethoxazole and sulfamethazine as representatives) and/or metals (cadmium, copper, lead and zinc as representatives) at environmental concentrations. Results showed that sulfonamides did not cause acute (24 h) lethality at chosen concentrations, but they decreased the lifespan in a concentration dependent fashion. Moreover, sulfonamide mixtures caused synergisms at higher concentrations but antagonisms at lower concentrations on the subacute (120 h) lethal effects. The toxicity interactions of sulfonamide mixtures were addition action on body bending frequency, and antagonism on reversal movement and body length. In sulfonamide and metal mixtures, the toxicity interactions were different in acute and subacute lethal results, indicating the influence of the exposure time. According to the comparison among effects of mixtures containing sulfonamides and/or metals, subacute lethality of sulfonamides was enhanced by metals based on the synergistic mixture effects, while their inhibitions on the growth and behavior were weakened by metals based on the antagonistic mixture effects. Our findings highlighted studies on combinational effects between emerging and common contaminants for more accurate environmental risk evaluation, and also urged further mechanism studies.
Collapse
Affiliation(s)
- ZhenYang Yu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - DaQiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - HuiPing Deng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
31
|
Frendo P, Matamoros MA, Alloing G, Becana M. Thiol-based redox signaling in the nitrogen-fixing symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:376. [PMID: 24133498 PMCID: PMC3783977 DOI: 10.3389/fpls.2013.00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/03/2013] [Indexed: 05/04/2023]
Abstract
In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N 2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS) so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed us to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, that their spatio-temporally distribution is correlated with the corresponding (homo)glutathione synthetase activities, and that they are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume-rhizobial symbiosis.
Collapse
Affiliation(s)
- Pierre Frendo
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisNice, France
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Unité Mixte de Recherches 1355Nice, France
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Unité Mixte de Recherches 7254Nice, France
- Pierre Frendo and Manuel A. Matamoros have contributed equally to this review.
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Pierre Frendo and Manuel A. Matamoros have contributed equally to this review.
| | - Geneviève Alloing
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisNice, France
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Unité Mixte de Recherches 1355Nice, France
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Unité Mixte de Recherches 7254Nice, France
| | - Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- *Correspondence: Manuel Becana, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain e-mail:
| |
Collapse
|
32
|
Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:204-12. [PMID: 23792825 DOI: 10.1016/j.plaphy.2013.05.032] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/24/2013] [Indexed: 05/05/2023]
Abstract
Abiotic stresses such as salinity, drought, clilling, heavy metal are the major limiting factors for crop productivity. These stresses induce the overproduction of reactive oxygen species (ROS) which are highly reactive and toxic, which must be minimized to protect the cell from oxidative damage. The cell organelles, particularly chloroplast and mitochondria are the major sites of ROS production in plants where excessive rate of electron flow takes place. Plant cells are well equipped to efficiently scavenge ROS and its reaction products by the coordinated and concerted action of antioxidant machinery constituted by vital enzymatic and non-enzymatic antioxidant components. Glutathione reductase (GR, EC 1.6.4.2) and tripeptide glutathione (GSH, γ-Glutamyl-Cysteinyl-Glycine) are two major components of ascorbate-glutathione (AsA-GSH) pathway which play significant role in protecting cells against ROS and its reaction products-accrued potential anomalies. Both GR and GSH are physiologically linked together where, GR is a NAD(P)H-dependent enzymatic antioxidant and efficiently maintains the reduced pool of GSH - a cellular thiol. The differential modulation of both GR and GSH in plants has been widely implicated for the significance of these two enigmatic antioxidants as major components of plant defense operations. Considering recent informations gained through molecular-genetic studies, the current paper presents an overview of the structure, localization, biosynthesis (for GSH only), discusses GSH and GR significance in abiotic stress (such as salinity, drought, clilling, heavy metal)-exposed crop plants and also points out unexplored aspects in the current context for future studies.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Faculty of Life Sciences, MD University, Rohtak 124 001, India.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS. Homologous expression of γ-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:610-8. [PMID: 23294545 DOI: 10.1016/j.jplph.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 05/17/2023]
Abstract
Various environmental stresses induce reactive oxygen species (ROS), causing deleterious effects on plant cells. Glutathione (GSH), a critical antioxidant, is used to combat ROS. GSH is produced by γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the Oryza sativa L. Japonica cv. Ilmi ECS (OsECS) gene, we generated transgenic rice plants overexpressing OsECS under the control of an inducible promoter (Rab21). When grown under saline conditions (100mM) for 4 weeks, 2-independent transgenic (TGR1 and TGR2) rice plants remained bright green in comparison to control wild-type (WT) rice plants. TGR1 and TGR2 rice plants also showed a higher GSH/GSSG ratio than did WT rice plants in the presence of 100mM NaCl, which led to enhanced redox homeostasis. TGR1 and TGR2 rice plants also showed lower ion leakage and higher chlorophyll-fluorescence when exposed to 10μM methyl viologen (MV). Furthermore, the TGR1 and TGR2 rice seeds had approximately 1.5-fold higher germination rates in the presence of 200mM salt. Under paddy field conditions, OsECS-overexpression in transgenic rice plants increased rice grain yield (TGW) and improved biomass. Overall, our results show that OsECS overexpression in transgenic rice increases tolerance and germination rate in the presence of abiotic stress by improving redox homeostasis via an enhanced GSH pool. Our findings suggest that increases in grain yield by OsECS overexpression could improve crop yields under natural environmental conditions.
Collapse
MESH Headings
- Acclimatization
- Agrobacterium/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Epistasis, Genetic
- Gene Expression Regulation, Plant
- Glutamate-Cysteine Ligase/genetics
- Glutamate-Cysteine Ligase/metabolism
- Glutathione/genetics
- Glutathione/metabolism
- Homeostasis
- Oryza/genetics
- Oryza/growth & development
- Oryza/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/physiology
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Salt Tolerance
- Stress, Physiological
Collapse
Affiliation(s)
- Yong-Hoe Choe
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Skladanka J, Adam V, Zitka O, Krystofova O, Beklova M, Kizek R, Havlicek Z, Slama P, Nawrath A. Investigation into the effect of molds in grasses on their content of low molecular mass thiols. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012. [PMID: 23202817 PMCID: PMC3524598 DOI: 10.3390/ijerph9113789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH) and oxidized (GSSG) glutathione, and phytochelatins (PC2, PC3, PC4 and PC5). Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05) PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05) PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05) GSSG content in June than did L. perenne and F. braunii.
Collapse
Affiliation(s)
- Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic;
- Author to whom correspondence should be addressed; ; Tel.: +420-5-4513-3079; Fax: +420-5-4521-2044
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic; (M.B.)
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
| | - Miroslava Beklova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic; (M.B.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zdenek Havlicek
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.H.); (P.S.)
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.H.); (P.S.)
| | - Adam Nawrath
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic;
| |
Collapse
|
35
|
Király L, Künstler A, Höller K, Fattinger M, Juhász C, Müller M, Gullner G, Zechmann B. Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to Tobacco mosaic virus during a hypersensitive response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:44-54. [PMID: 22122784 PMCID: PMC3458214 DOI: 10.1016/j.plaphy.2011.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/28/2011] [Indexed: 05/19/2023]
Abstract
Sufficient sulfate supply has been linked to the development of sulfur induced resistance or sulfur enhanced defense (SIR/SED) in plants. In this study we investigated the effects of sulfate (S) supply on the response of genetically resistant tobacco (Nicotiana tabacum cv. Samsun NN) to Tobacco mosaic virus (TMV). Plants grown with sufficient sulfate (+S plants) developed significantly less necrotic lesions during a hypersensitive response (HR) when compared to plants grown without sulfate (-S plants). In +S plants reduced TMV accumulation was evident on the level of viral RNA. Enhanced virus resistance correlated with elevated levels of cysteine and glutathione and early induction of a Tau class glutathione S-transferase and a salicylic acid-binding catalase gene. These data indicate that the elevated antioxidant capacity of +S plants was able to reduce the effects of HR, leading to enhanced virus resistance. Expression of pathogenesis-related genes was also markedly up-regulated in +S plants after TMV-inoculation. On the subcellular level, comparison of TMV-inoculated +S and -S plants revealed that +S plants contained 55-132 % higher glutathione levels in mitochondria, chloroplasts, nuclei, peroxisomes and the cytosol than -S plants. Interestingly, mitochondria were the only organelles where TMV-inoculation resulted in a decrease of glutathione levels when compared to mock-inoculated plants. This was particularly obvious in -S plants, where the development of necrotic lesions was more pronounced. In summary, the overall higher antioxidative capacity and elevated activation of defense genes in +S plants indicate that sufficient sulfate supply enhances a preexisting plant defense reaction resulting in reduced symptom development and virus accumulation.
Collapse
Key Words
- cysteine
- glutathione
- nicotiana tabacum
- salicylic acid
- sulfur induced resistance
- tobacco mosaic virus
- apr, adenosine 5′-phosphosulfate reductase
- bsa, bovine serum albumin
- catsab, salicylic acid-binding catalase
- cp, coat protein
- dpi, days post inoculation
- gsh1, γ-glutamyl cysteine synthetase
- gsh2, glutathione synthetase
- gsttau1, tau class glutathione s-transferase
- hr, hypersensitive response
- pbs, phosphate buffered saline
- pcd, programmed cell death
- ros, reactive oxygen species
- s, sulfate
- sir, sulfur induced resistance
- sed, sulfur enhanced defense
- tmv, tobacco mosaic virus
Collapse
Affiliation(s)
- Lóránt Király
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary
| | - András Künstler
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary
| | - Kerstin Höller
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | - Maria Fattinger
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | - Csilla Juhász
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary
| | - Maria Müller
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | - Gábor Gullner
- Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, 1525 Budapest, Hungary
| | - Bernd Zechmann
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| |
Collapse
|
36
|
Narai-Kanayama A, Hanaishi T, Aso K. α-Chymotrypsin-catalyzed synthesis of poly-l-cysteine in a frozen aqueous solution. J Biotechnol 2012; 157:428-36. [DOI: 10.1016/j.jbiotec.2011.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/15/2023]
|
37
|
Herschbach C, Gessler A, Rennenberg H. Long-Distance Transport and Plant Internal Cycling of N- and S-Compounds. PROGRESS IN BOTANY 2012. [DOI: 10.1007/978-3-642-22746-2_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
38
|
Abstract
AbstractSalinity is an important abiotic factor that adversely affects major agricultural soils of the world and hence limits crop productivity. An optimum mineral-nutrient status of plants plays critical role in determining plant tolerance to various stresses. A pot experiment was conducted on mustard (Brassica campestris L.) to study the protective role of added potassium (K, 40 mg kg−1 soil) against salinity-stress (0, 40 and 80 mM NaCl)-induced changes in plant growth, photosynthetic traits, ion accumulation, oxidative stress, enzymatic antioxidants and non-enzymatic antioxidants at 30 days after sowing. Increasing NaCl levels decreased the growth, photosynthetic traits and the leaf ascorbate and glutathione content but increased the leaf ion accumulation and oxidative stress, and the activity of antioxidant enzymes. In contrast, K-nutrition improved plant growth, photosynthetic traits, activity of antioxidant enzymes and the ascorbate and glutathione content, and reduced ion accumulation and oxidative stress traits in the leaves, more appreciably at 40 mM than at 80 mM NaCl. The study illustrates the physiological and biochemical basis of K-nutrition-induced NaCl tolerance in mustard as a means to achieving increased crop productivity in a sustainable way.
Collapse
|
39
|
Bräutigam A, Schaumlöffel D, Preud'homme H, Thondorf I, Wesenberg D. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2011; 34:2071-2082. [PMID: 21819413 DOI: 10.1111/j.1365-3040.2011.02404.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chlamydomonas reinhardtii is a common model organism for investigation of metal stress. This green alga produces phytochelatins in the presence of metal ions. The influence of cadmium is of main interest, because it is a strong activator of phytochelatin synthase. Cell wall bound and intracellular cadmium content was determined after exposition to 70 µm CdCl(2), showing the main portion of the metal outside the cell. Nevertheless, imported cadmium was sufficient to cause significant changes in thiolpeptide metabolism and its transcriptional regulation. Modern analytical approaches enable new insights into phytochelatin (PC) distribution. A new rapid and precise UPLC-MS method allowed high-throughput PC quantification in algal samples after 1, 4, 24 and 48 h cadmium stress. Initially, canonic PCs were synthesized in C. reinhardtii during cadmium exposition, but afterwards CysPCs became the major thiolpeptides. Thus, after 48 h the concentration of the PC-isoforms CysPC(2-3) and CysGSH attained between 105 and 199 nmol g(-1) fresh weight (FW), whereas the PC(2-3) concentrations were only 15 nmol g(-1) FW. The relative quantification of γ-glutamyl transpeptidase (γ-GT) mRNA suggests the generation of CysPCs by glutamate cleavage from canonic PCs by γ-GT. Furthermore, a homology model of C. reinhardtii phytochelatin synthase was constructed to verify the use of crystal structures from Anabaena sp. phytochelatin synthase (PCS) for docking studies with canonical PCs and CysPCs. From the difference in energy scores, we hypothesize that CysPC may prevent the synthesis of canonical PCs by blocking the binding pocket. Finally, possible physiological reasons for the high abundance of CysPC compared with their canonic precursors are discussed.
Collapse
Affiliation(s)
- Anja Bräutigam
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, 06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
40
|
Na G, Salt DE. Differential regulation of serine acetyltransferase is involved in nickel hyperaccumulation in Thlaspi goesingense. J Biol Chem 2011; 286:40423-32. [PMID: 21930704 PMCID: PMC3220491 DOI: 10.1074/jbc.m111.247411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 09/02/2011] [Indexed: 11/06/2022] Open
Abstract
When growing in its native habitat, Thlaspi goesingense can hyperaccumulate 1.2% of its shoot dry weight as nickel. We reported previously that both constitutively elevated activity of serine acetyltransferase (SAT) and concentration of glutathione (GSH) are involved in the ability of T. goesingense to tolerate nickel. A feature of SAT is its feedback inhibition by L-cysteine. To understand the role of this regulation of SAT by Cys on GSH-mediated nickel tolerance in T. goesingense, we characterized the enzymatic properties of SATs from T. goesingense. We demonstrate that all three isoforms of SAT in T. goesingense are insensitive to inhibition by Cys. Further, two amino acids (proline and alanine) in the C-terminal region of the cytosolic SAT (SAT-c) from T. goesingense are responsible for converting the enzyme from a Cys-sensitive to a Cys-insensitive form. Furthermore, the Cys-insensitive isoform of SAT-c confers elevated resistance to nickel when expressed in Escherichia coli and Arabidopsis thaliana, supporting a role for altered regulation of SAT by Cys in nickel tolerance in T. goesingense.
Collapse
Affiliation(s)
- GunNam Na
- From the Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - David E. Salt
- From the Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
41
|
Boltovets PN, Savchenko AA, Filippov AP, Snopok BA. Immobilization of glutathione by complementary coordination binding. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:616-26. [DOI: 10.1134/s1068162011040030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Zsigmond L, Tomasskovics B, Deák V, Rigó G, Szabados L, Bánhegyi G, Szarka A. Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate-glutathione cycle in mitochondria from complex III deficient Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:809-15. [PMID: 21601466 DOI: 10.1016/j.plaphy.2011.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/27/2011] [Indexed: 05/03/2023]
Abstract
The mitochondrial antioxidant homeostasis was investigated in Arabidopsis ppr40-1 mutant, which presents a block of electron flow at complex III. The activity of the ascorbate biosynthetic enzyme, L-galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) (GLDH) was elevated in mitochondria isolated from mutant plants. In addition increased activities of the enzymes of Foyer-Halliwell-Asada cycle and elevated glutathione (GSH) level were observed in the mutant mitochondria. Lower ascorbate and ascorbate plus dehydroascorbate contents were detected at both cellular and mitochondrial level. Moreover, the more oxidized mitochondrial redox status of ascorbate in the ppr40-1 mutant indicated that neither the enhanced activity of GLDH nor Foyer-Halliwell-Asada cycle could compensate for the enhanced ascorbate consumption in the absence of a functional respiratory chain.
Collapse
Affiliation(s)
- Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári Körút 62, H-6726 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
43
|
Nazar R, Iqbal N, Syeed S, Khan NA. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:807-15. [PMID: 21112120 DOI: 10.1016/j.jplph.2010.11.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) is known to affect photosynthesis under normal conditions and induces tolerance in plants to biotic and abiotic stresses through influencing physiological processes. In this study, physiological processes were compared in salt-tolerant (Pusa Vishal) and salt-sensitive (T44) cultivars of mungbean and examined how much these processes were induced by SA treatment to alleviate decrease in photosynthesis under salt stress. Cultivar T44 accumulated higher leaf Na(+) and Cl(-) content and exhibited greater oxidative stress than Pusa Vishal. Activity of antioxidant enzymes, ascorbate peroxidase (APX) and glutathione reductase (GR) was greater in Pusa Vishal than T44. Contrarily, activity of superoxide dismutase (SOD) was greater in T44. The greater accumulation of leaf nitrogen and sulfur through higher activity of their assimilating enzymes, nitrate reductase (NR) and ATP-sulfurylase (ATPS) increased reduced glutathione (GSH) content more conspicuously in Pusa Vishal than T44. Application of 0.5 mM SA increased nitrogen and sulfur assimilation, GSH content and activity of APX and GR. This resulted in the increase in photosynthesis under non-saline condition and alleviated the decrease in photosynthesis under salt stress. It also helped in restricting Na(+) and Cl(-) content in leaf, and maintaining higher efficiency of PSII, photosynthetic N-use efficiency (NUE) and water relations in Pusa Vishal. However, application of 1.0 mM SA resulted in inhibitory effects. The effect of SA was more pronounced in Pusa Vishal than T44. These results indicate that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the activity of NR and ATPS, and increasing antioxidant metabolism to a greater extent in Pusa Vishal than T44.
Collapse
Affiliation(s)
- Rahat Nazar
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| | | | | | | |
Collapse
|
44
|
Höller K, Király L, Künstler A, Müller M, Gullner G, Fattinger M, Zechmann B. Enhanced glutathione metabolism is correlated with sulfur-induced resistance in Tobacco mosaic virus-infected genetically susceptible Nicotiana tabacum plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1448-59. [PMID: 20923352 DOI: 10.1094/mpmi-05-10-0117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sulfur-induced resistance, also known as sulfur-enhanced defense (SIR/SED) was investigated in Nicotiana tabacum cv. Samsun nn during compatible interaction with Tobacco mosaic virus (TMV) in correlation with glutathione metabolism. To evaluate the influence of sulfur nutritional status on virus infection, tobacco plants were treated with nutrient solutions containing either sufficient sulfate (+S) or no sulfate (-S). Sufficient sulfate supply resulted in a suppressed and delayed symptom development and diminished virus accumulation over a period of 14 days after inoculation as compared with -S conditions. Expression of the defense marker gene PR-1a was markedly upregulated in sulfate-treated plants during the first day after TMV inoculation. The occurrence of SIR/SED correlated with a higher level of activity of sulfate assimilation, cysteine, and glutathione metabolism in plants treated with sulfate. Additionally, two key genes involved in cysteine and glutathione biosynthesis (encoding adenosine 5'-phosphosulfate reductase and γ-glutamylcysteine synthetase, respectively) were upregulated within the first day after TMV inoculation under +S conditions. Sulfate withdrawal from the soil was accelerated at the beginning of the infection, whereas it declined in the long term, leading to an accumulation of sulfur in the soil of plants grown with sulfate. This observation could be correlated with a decrease in sulfur contents in TMV-infected leaves in the long term. In summary, this is the first study that demonstrates a link between the activation of cysteine and glutathione metabolism and the induction of SIR/SED during a compatible plant-virus interaction in tobacco plants, indicating a general mechanism behind SIR/SED.
Collapse
Affiliation(s)
- Kerstin Höller
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
45
|
Koprivova A, Mugford ST, Kopriva S. Arabidopsis root growth dependence on glutathione is linked to auxin transport. PLANT CELL REPORTS 2010; 29:1157-67. [PMID: 20669021 DOI: 10.1007/s00299-010-0902-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/12/2010] [Accepted: 07/18/2010] [Indexed: 05/03/2023]
Abstract
Glutathione depletion, e.g. by the inhibitor of its synthesis, buthionine sulphoximine (BSO), is well known to specifically reduce primary root growth. To obtain an insight into the mechanism of this inhibition, we explored the effects of BSO on Arabidopsis root growth in more detail. BSO inhibits root growth and reduces glutathione (GSH) concentration in a concentration-dependent manner leading to a linear correlation of root growth and GSH content. Microarray analysis revealed that the effect of BSO on gene expression is similar to the effects of misregulation of auxin homeostasis. In addition, auxin-resistant mutants axr1 and axr3 are less sensitive to BSO than the wild-type plants. Indeed, exposure of Arabidopsis to BSO leads to disappearance of the auxin maximum in root tips and the expression of QC cell marker. BSO treatment results in loss of the auxin carriers, PIN1, PIN2 and PIN7, from the root tips of primary roots, but not adventitious roots. Since BSO did not abolish transcription of PIN1, and since the effect of BSO was complemented by dithiothreitol, we conclude that as yet an uncharacterised post-transcriptional redox mechanism regulates the expression of PIN proteins, and thus auxin transport, in the root tips.
Collapse
Affiliation(s)
- Anna Koprivova
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
46
|
Liedschulte V, Wachter A, Zhigang A, Rausch T. Exploiting plants for glutathione (GSH) production: Uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:807-20. [PMID: 20233332 DOI: 10.1111/j.1467-7652.2010.00510.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glutathione (GSH) is a key factor for cellular redox homeostasis and tolerance against abiotic and biotic stress (May et al., 1998; Noctor et al., 1998a). Previous attempts to increase GSH content in plants have met with moderate success (Rennenberg et al., 2007), largely because of tight and multilevel control of its biosynthesis (Rausch et al., 2007). Here, we report the in planta expression of the bifunctional gamma-glutamylcysteine ligase-glutathione synthetase enzyme from Streptococcus thermophilus (StGCL-GS), which is shown to be neither redox-regulated nor sensitive to feedback inhibition by GSH. Transgenic tobacco plants expressing StGCL-GS under control of a constitutive promoter reveal an extreme accumulation of GSH in their leaves (up to 12 micromol GSH/gFW, depending on the developmental stage), which is more than 20- to 30-fold above the levels observed in wild-type (wt) plants and which can be even further increased by additional sulphate fertilization. Surprisingly, this dramatically increased GSH production has no impact on plant growth while enhancing plant tolerance to abiotic stress. Furthermore, StGCL-GS-expressing plants are a novel, cost-saving source for GSH production, being competitive with current yeast-based systems (Li et al., 2004).
Collapse
|
47
|
Mature embryo-derived wheat transformation with major stress-modulated antioxidant target gene. ARCH BIOL SCI 2010. [DOI: 10.2298/abs1003539g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The mature embryos of fourteen elite winter wheat cultivars have been transformed by a biolistic approach. The gene coding for ?-glutamylcysteine synthetase (EC 6.3.2.2) was used as a transgene in order to obtain stable transformants resistant to drought stress. A binary vector, pBinarUTRECS, was used. The gene was under the control of the CaMV35S promoter region. GUS::GFP gene fusion was used as a reporter system and nptII served as a selectable marker gene. A high regeneration capacity of callus tissue under the selective pressure and successful GUS assay of transformed tissue were an indication of successful insertion of a transgene into mature embryo derived wheat tissue. .
Collapse
|
48
|
Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J. Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. PLANT PHYSIOLOGY 2009; 151:768-81. [PMID: 19710230 PMCID: PMC2754620 DOI: 10.1104/pp.109.144808] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/24/2009] [Indexed: 05/22/2023]
Abstract
Selenium-Binding Protein1 (SBP1) gene expression was studied in Arabidopsis (Arabidopsis thaliana) seedlings challenged with several stresses, including cadmium (Cd), selenium {selenate [Se(VI)] and selenite [Se(IV)]}, copper (Cu), zinc (Zn), and hydrogen peroxide (H(2)O(2)) using transgenic lines expressing the luciferase (LUC) reporter gene under the control of the SBP1 promoter. In roots and shoots of SBP1LUC lines, LUC activity increased in response to Cd, Se(VI), Cu, and H(2)O(2) but not in response to Se(IV) or Zn. The pattern of expression of SBP1 was similar to that of PRH43, which encodes the 5'-Adenylylphosphosulfate Reductase2, a marker for the induction of the sulfur assimilation pathway, suggesting that an enhanced sulfur demand triggers SBP1 up-regulation. Correlated to these results, SBP1 promoter showed enhanced activity in response to sulfur starvation. The sulfur starvation induction of SBP1 was abolished by feeding the plants with glutathione (GSH) and was enhanced when seedlings were treated simultaneously with buthionine sulfoxide, which inhibits GSH synthesis, indicating that GSH level participates in the regulation of SBP1 expression. Changes in total GSH level were observed in seedlings challenged with Cd, Se(VI), and H(2)O(2). Accordingly, cad2-1 seedlings, affected in GSH synthesis, were more sensitive than wild-type plants to these three stresses. Moreover, wild-type and cad2-1 seedlings overexpressing SBP1 showed a significant enhanced tolerance to Se(VI) and H(2)O(2) in addition to the previously described resistance to Cd, highlighting that SBP1 expression decreases sensitivity to stress requiring GSH for tolerance. These results are discussed with regard to the potential regulation and function of SBP1 in plants.
Collapse
Affiliation(s)
- Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, Commissariat à l'Energie Atomique/CNRS/Université Joseph-Fourier/INRA, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble cedex 9, France.
| | | | | | | | | | | |
Collapse
|
49
|
Valtaud C, Foyer CH, Fleurat-Lessard P, Bourbouloux A. Systemic effects on leaf glutathione metabolism and defence protein expression caused by esca infection in grapevines. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:260-279. [PMID: 32688645 DOI: 10.1071/fp08293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/12/2009] [Indexed: 05/26/2023]
Abstract
Esca is a devastating disease of Vitis vinifera L., caused by fungal pathogen(s) inhabiting the wood. The pathogens induce symptoms in the foliage, which are associated with structural and biochemical changes in leaves. The present study was undertaken to examine the effects of the disease on leaf glutathione metabolism in field-grown plants. The glutathione pool decreased and defence proteins such as PR-proteins and chitinases were expressed in the leaves before the appearance of visible symptoms in esca-infected canes. Glutathione depletion was increased as the disease developed in the leaves. The ratio of glutathione disulfide (GSSG) to the total glutathione pool was slightly decreased in leaves without visible symptoms, but it was significantly increased as the disease progressed. The abundance of γ-glutamylcysteine synthetase (γ-ECS) transcripts and of γ-ECS protein was greatly decreased in leaves exhibiting esca symptoms. Although glutathione reductase and glutathione peroxidase transcripts were largely unchanged by the spread of the esca disease, leaf glutathione S-transferase (GST) activities, the amounts of mRNAs encoding GSTU1 and GSTF2 and the abundance of the GSTU1 and GSTF2 proteins were highest at the early stages of infection and then decreased as visible symptoms appeared in the leaves. The GSTF2 protein, which was more abundant than GSTU1, was found in the nucleus and in the cytoplasm, whereas the GSTU1 protein was found largely in the plastids. These data demonstrate that the fungi involved in the esca disease induce pronounced systemic effects in the leaves before the appearance of visible damage. We conclude that the expression of GSTs, the extent of glutathione accumulation and the ratio of GSSG to total glutathione are early indicators of the presence of the esca disease in grapevine canes and thus these parameters can be used as stress markers in field-grown vines.
Collapse
Affiliation(s)
- Christophe Valtaud
- Université de Poitiers, Laboratoire de Physiologie et Biochimie Végétales, UMR-CNRS 6161, Bâtiment Botanique, 40 Avenue du Recteur Pineau, F-86022 Poitiers, France
| | - Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, The University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Pierrette Fleurat-Lessard
- Université de Poitiers, Laboratoire de Physiologie et Biochimie Végétales, UMR-CNRS 6161, Bâtiment Botanique, 40 Avenue du Recteur Pineau, F-86022 Poitiers, France
| | - Andrée Bourbouloux
- Université de Poitiers, Laboratoire de Physiologie et Biochimie Végétales, UMR-CNRS 6161, Bâtiment Botanique, 40 Avenue du Recteur Pineau, F-86022 Poitiers, France
| |
Collapse
|
50
|
Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A. Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. ANNALS OF BOTANY 2009; 103:599-607. [PMID: 18492734 PMCID: PMC2707342 DOI: 10.1093/aob/mcn081] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/11/2008] [Accepted: 04/21/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Photosynthetic electron transport is performed by a chain of redox components that are electrochemically connected in series. Its efficiency depends on the balanced action of the photosystems and on the interaction with the dark reaction. Plants are sessile and cannot escape from environmental conditions such as fluctuating illumination, limitation of CO(2) fixation by low temperatures, salinity, or low nutrient or water availability, which disturb the homeostasis of the photosynthetic process. Photosynthetic organisms, therefore, have developed various molecular acclimation mechanisms that maintain or restore photosynthetic efficiency under adverse conditions and counteract abiotic stresses. Recent studies indicate that redox signals from photosynthetic electron transport and reactive oxygen species (ROS) or ROS-scavenging molecules play a central role in the regulation of acclimation and stress responses. SCOPE The underlying signalling network of photosynthetic redox control is largely unknown, but it is already apparent that gene regulation by redox signals is of major importance for plants. Signalling cascades controlling the expression of chloroplast and nuclear genes have been identified and dissection of the different pathways is advancing. Because of the direction of information flow, photosynthetic redox signals can be defined as a distinct class of retrograde signals in addition to signals from organellar gene expression or pigment biosynthesis. They represent a vital signal of mature chloroplasts that report their present functional state to the nucleus. Here we describe possible problems in the elucidation of redox signalling networks and discuss some aspects of plant cell biology that are important for developing suitable experimental approaches. CONCLUSIONS The photosynthetic function of chloroplasts represents an important sensor that integrates various abiotic changes in the environment into corresponding molecular signals, which, in turn, regulate cellular activities to counterbalance the environmental changes or stresses.
Collapse
|