1
|
Kitaya S, Nakano M, Katori Y, Yasuda S, Kanamori H. QTc Interval Prolongation as an Adverse Event of Azole Antifungal Drugs: Case Report and Literature Review. Microorganisms 2024; 12:1619. [PMID: 39203461 PMCID: PMC11356777 DOI: 10.3390/microorganisms12081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
QTc prolongation and torsade de pointes (TdP) are significant adverse events linked to azole antifungals. Reports on QTc interval prolongation caused by these agents are limited. In this study, we report a case of a 77-year-old male with cardiovascular disease who experienced QTc prolongation and subsequent TdP while being treated with fluconazole for Candida albicans-induced knee arthritis. Additionally, a literature review was conducted on cases where QTc prolongation and TdP were triggered as adverse events of azole antifungal drugs. The case study detailed the patient's experience, whereas the literature review analyzed cases from May 1997 to February 2023, focusing on patient demographics, underlying diseases, antifungal regimens, concurrent medications, QTc changes, and outcomes. The review identified 16 cases, mainly in younger individuals (median age of 29) and women (75%). Fluconazole (63%) and voriconazole (37%) were the most common agents. Concurrent medications were present in 75% of cases, and TdP occurred in 81%. Management typically involved discontinuing or switching antifungals and correcting electrolytes, with all patients surviving. Risk assessment and concurrent medication review are essential before starting azole therapy. High-risk patients require careful electrocardiogram monitoring to prevent arrhythmias. Remote monitoring may enhance safety for patients with implanted devices. Further studies are needed to understand risk factors and management strategies.
Collapse
Affiliation(s)
- Shiori Kitaya
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan;
- Laboratory Medicine, Department of Infectious Diseases, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Makoto Nakano
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (M.N.); (S.Y.)
| | - Yukio Katori
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan;
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; (M.N.); (S.Y.)
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Laboratory Medicine, Department of Infectious Diseases, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| |
Collapse
|
2
|
Hughes G, Young WJ, Bern H, Crook A, Lambiase PD, Goodall RL, Nunn AJ, Meredith SK. T-wave morphology abnormalities in the STREAM stage 1 trial. Expert Opin Drug Saf 2024; 23:469-476. [PMID: 38462751 PMCID: PMC11761056 DOI: 10.1080/14740338.2024.2322116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/15/2023] [Indexed: 03/12/2024]
Abstract
BACKGROUND Shorter regimens for drug-resistant tuberculosis (DR-TB) have non-inferior efficacy compared with longer regimens, but QT prolongation is a concern. T-wave morphology abnormalities may be a predictor of QT prolongation. RESEARCH DESIGN AND METHODS STREAM Stage 1 was a randomized controlled trial in rifampicin-resistant TB, comparing short and long regimens. All participants had regular ECGs. QT/QTcF prolongation (≥500 ms or increase in ≥60 ms from baseline) was more common on the short regimen which contained high-dose moxifloxacin and clofazimine. Blinded ECGs were selected from the baseline, early (weeks 1-4), and late (weeks 12-36) time points. T-wave morphology was categorized as normal or abnormal (notched, asymmetric, flat-wave, flat peak, or broad). Differences between groups were assessed using Chi-Square tests (paired/unpaired, as appropriate). RESULTS Two-hundred participants with available ECGs at relevant times were analyzed (QT prolongation group n = 82; non-prolongation group n = 118). At baseline, 23% (45/200) of participants displayed abnormal T-waves, increasing to 45% (90/200, p < 0.001) at the late time point. Abnormalities were more common in participants allocated the Short regimen (75/117, 64%) than the Long (14/38, 36.8%, p = 0.003); these occurred prior to QT/QTcF ≥500 ms in 53% of the participants (Long 2/5; Short 14/25). CONCLUSIONS T-wave abnormalities may help identify patients at risk of QT prolongation on DR-TB treatment. TRIAL REGISTRATION The trial is registered at ClinicalTrials.gov (CT.gov identifier: NCT02409290). Current Controlled Trial number, ISRCTN78372190.
Collapse
Affiliation(s)
- Gareth Hughes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, London, UK
| | - William J. Young
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Heart Centre, St Bartholomews Hospital, Barts Health NHS Trust, London, UK
| | - Henry Bern
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, London, UK
| | - Angela Crook
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, London, UK
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, London, UK
- NIHR Barts Biomedical Research Centre, London, UK
| | - Ruth L. Goodall
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, London, UK
| | - Andrew J. Nunn
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, London, UK
| | - Sarah K. Meredith
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, London, UK
| |
Collapse
|
3
|
Pan Z, Fu Q, Jiang H, Wei Z, Zhang S. Computational analysis of long QT syndrome type 2 and the therapeutic effects of KCNQ1 antibodies. Digit Health 2024; 10:20552076241277032. [PMID: 39484649 PMCID: PMC11526401 DOI: 10.1177/20552076241277032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Long QT interval syndrome (LQTS) is a highly dangerous cardiac disease that can lead to sudden cardiac death; however, its underlying mechanism remains largely unknown. This study is conceived to investigate the impact of two general genotypes of LQTS type 2, and also the therapeutic effects of an emerging immunology-based treatment named KCNQ1 antibody. Methods A multiscale virtual heart is developed, which contains multiple biological levels ranging from ion channels to a three-dimensional cardiac structure with realistic geometry. Critical biomarkers at different biological levels are monitored to investigate the remodeling of cardiac electrophysiology induced by mutations. Results Simulations revealed multiple important mechanisms that are hard to capture via conventional clinical techniques, including the augmented dispersion of repolarization, the increased vulnerability to arrhythmias, the impaired adaptability in tissue to high heart rates, and so on. An emerging KCNQ1 antibody-based therapy could rescue the prolonged QT interval but did not reduce the vulnerable window. Conclusions Tiny molecular alterations can lead to cardiac electrophysiological remodeling at multiple biological levels, which in turn contributes to higher susceptibility to lethal arrhythmias in long QT syndrome type 2 patients. The KCNQ1 antibody-based therapy has proarrhythmic risks notwithstanding its QT-rescuing effects.
Collapse
Affiliation(s)
- Zhujun Pan
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Qi Fu
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Bury A, Day K, Cortez D. Decreased vector magnitudes may help identify events in patients with Long QT syndrome. J Electrocardiol 2023; 80:51-55. [PMID: 37196379 DOI: 10.1016/j.jelectrocard.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
INTRODUCTION All Long QT syndrome (LQTS) patients are at elevated risk for channelopathy-induced delayed myocardial repolarization and consequently potentially life-threatening cardiac events with 90% of initial cardiac events occurring between preteen and 40 years old. Utilizing ECG and derived vectorcardiographic parameters, including T wave Vector Magnitude (TwVM) measurement data, this study attempts to determine whether TwVM from baseline ECGs is effectively predictive of future cardiac events for genotype-positive LQTS patients. METHODS Verified carriers of established LQTS disease-causing genotypes were selected from University of Minnesota patient encounters between 2010 and 2020 for inclusion in this retrospective study. Baseline and predictive ECG and derived vectorcardiographic parameter evaluation, clinical data, and statistical analysis were compared between patients with and patients without cardiac events. First recorded ECG was at presentation to our hospital and final ECG is defined as ECG just prior to cardiac event (event defined below in Methods) or the most final documented ECG before cut-off year of 2020 for the event-free group. RESULTS Of 41 participants, 15 experienced cardiac events and 26 did not. While many baseline electrocardiographic parameter measurements did not show significant differences between patient groups, vectorcardiographic parameters at baseline, specifically the QRS vector magnitude (QRSVM) and azimuth of the spatial ventricular gradient, showed significance. Additionally, final vectorcardiographic parameters, particularly the QRSVM, TwVM, and azimuth of the spatial ventricular gradient showed significant differences between patient groups. Final T-wave frontal axis was significantly larger in those without cardiac events. Significant Kaplan-Meier curve separation between patient groups was noted based on a QRSVM of 1.43 mV or lower, with additional consideration to patient age, genotype, and beta blocker use. CONCLUSION This study shows evidence of ECG and derived vectorcardiographic parameters, including TwVM, being effective in early prediction of cardiac events in genotype-positive LQTS patients.
Collapse
Affiliation(s)
- Anastasia Bury
- Central Michigan University College of Medicine, Mount Pleasant, MI, USA.
| | - Kim Day
- University of Minnesota/Masonic Children's Hospital, Minneapolis, MN, USA
| | - Daniel Cortez
- University of Minnesota/Masonic Children's Hospital, Minneapolis, MN, USA; University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Vink AS, Hermans BJM, Hooglugt JLQ, Peltenburg PJ, Meijborg VMF, Hofman N, Clur SAB, Blom NA, Delhaas T, Wilde AAM, Postema PG. Diagnostic Accuracy of the Standing Test in Adults Suspected for Congenital Long-QT Syndrome. J Am Heart Assoc 2023:e026419. [PMID: 37421262 PMCID: PMC10382089 DOI: 10.1161/jaha.122.026419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/08/2023] [Indexed: 07/10/2023]
Abstract
Background An elegant bedside provocation test has been shown to aid the diagnosis of long-QT syndrome (LQTS) in a retrospective cohort by evaluation of QT intervals and T-wave morphology changes resulting from the brief tachycardia provoked by standing. We aimed to prospectively determine the potential diagnostic value of the standing test for LQTS. Methods and Results In adults suspected for LQTS who had a standing test, the QT interval was assessed manually and automated. In addition, T-wave morphology changes were determined. A total of 167 controls and 131 genetically confirmed patients with LQTS were included. A prolonged heart rate-corrected QT interval (QTc) (men ≥430 ms, women ≥450 ms) at baseline before standing yielded a sensitivity of 61% (95% CI, 47-74) in men and 54% (95% CI, 42-66) in women, with a specificity of 90% (95% CI, 80-96) and 89% (95% CI, 81-95), respectively. In both men and women, QTc≥460 ms after standing increased sensitivity (89% [95% CI, 83-94]) but decreased specificity (49% [95% CI, 41-57]). Sensitivity further increased (P<0.01) when a prolonged baseline QTc was accompanied by a QTc≥460 ms after standing in both men (93% [95% CI, 84-98]) and women (90% [95% CI, 81-96]). However, the area under the curve did not improve. T-wave abnormalities after standing did not further increase the sensitivity or the area under the curve significantly. Conclusions Despite earlier retrospective studies, a baseline ECG and the standing test in a prospective evaluation displayed a different diagnostic profile for congenital LQTS but no unequivocal synergism or advantage. This suggests that there is markedly reduced penetrance and incomplete expression in genetically confirmed LQTS with retention of repolarization reserve in response to the brief tachycardia provoked by standing.
Collapse
Affiliation(s)
- Arja S Vink
- Department of Clinical and Experimental Cardiology Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands
- Department of Pediatric Cardiology Amsterdam UMC, University of Amsterdam, Emma Children's Hospital Amsterdam The Netherlands
| | - Ben J M Hermans
- Department of Biomedical Engineering Maastricht University Maastricht The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Maastricht The Netherlands
| | - Jean-Luc Q Hooglugt
- Department of Clinical and Experimental Cardiology Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands
- Department of Pediatric Cardiology Amsterdam UMC, University of Amsterdam, Emma Children's Hospital Amsterdam The Netherlands
| | - Puck J Peltenburg
- Department of Clinical and Experimental Cardiology Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands
- Department of Pediatric Cardiology Amsterdam UMC, University of Amsterdam, Emma Children's Hospital Amsterdam The Netherlands
| | - Veronique M F Meijborg
- Department of Clinical and Experimental Cardiology Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands
| | - Nynke Hofman
- Department of Clinical and Experimental Cardiology Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands
| | - Sally-Ann B Clur
- Department of Pediatric Cardiology Amsterdam UMC, University of Amsterdam, Emma Children's Hospital Amsterdam The Netherlands
| | - Nico A Blom
- Department of Pediatric Cardiology Amsterdam UMC, University of Amsterdam, Emma Children's Hospital Amsterdam The Netherlands
- Department of Pediatric Cardiology Leiden University Medical Center Leiden The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering Maastricht University Maastricht The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Maastricht The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
6
|
Nagata Y, Watanabe R, Eichhorn C, Ohno S, Aiba T, Ishikawa T, Nakano Y, Aizawa Y, Hayashi K, Murakoshi N, Nakajima T, Yagihara N, Mishima H, Sudo T, Higuchi C, Takahashi A, Sekine A, Makiyama T, Tanaka Y, Watanabe A, Tachibana M, Morita H, Yoshiura KI, Tsunoda T, Watanabe H, Kurabayashi M, Nogami A, Kihara Y, Horie M, Shimizu W, Makita N, Tanaka T. Targeted deep sequencing analyses of long QT syndrome in a Japanese population. PLoS One 2022; 17:e0277242. [PMID: 36480497 PMCID: PMC9731492 DOI: 10.1371/journal.pone.0277242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is one of the most common inherited arrhythmias and multiple genes have been reported as causative. Presently, genetic diagnosis for LQTS patients is becoming widespread and contributing to implementation of therapies. However, causative genetic mutations cannot be detected in about 20% of patients. To elucidate additional genetic mutations in LQTS, we performed deep-sequencing of previously reported 15 causative and 85 candidate genes for this disorder in 556 Japanese LQTS patients. We performed in-silico filtering of the sequencing data and found 48 novel variants in 33 genes of 53 cases. These variants were predicted to be damaging to coding proteins or to alter the binding affinity of several transcription factors. Notably, we found that most of the LQTS-related variants in the RYR2 gene were in the large cytoplasmic domain of the N-terminus side. They might be useful for screening of LQTS patients who had no known genetic factors. In addition, when the mechanisms of these variants in the development of LQTS are revealed, it will be useful for early diagnosis, risk stratification, and selection of treatment.
Collapse
Affiliation(s)
- Yuki Nagata
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Christian Eichhorn
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takeshi Aiba
- Devision of Arrhythmia, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chihiro Higuchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Sekine
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Tanaka
- Center for Arrhythmia Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Atsuyuki Watanabe
- Department of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Motomi Tachibana
- Department of Cardiology, Sakakibara heart institute of Okayama, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Division of Advanced Preventive Medical Sciences and Leading Medical Research Core Unit, Nagasaki Univerisity Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University, Hiroshima, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshihiro Tanaka
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
7
|
García-Sancha N, Corchado-Cobos R, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Blanco-Gómez A, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Mendiburu-Eliçabe M, Pérez-Losada J. Evolutionary Origins of Metabolic Reprogramming in Cancer. Int J Mol Sci 2022; 23:12063. [PMID: 36292921 PMCID: PMC9603151 DOI: 10.3390/ijms232012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. These changes are not specific to tumors but also take place during the physiological growth of tissues. Indeed, the cellular and tissue mechanisms present in the tumor have their physiological counterpart in the repair of tissue lesions and wound healing. These molecular mechanisms have been acquired during metazoan evolution, first to eliminate the infection of the tissue injury, then to enter an effective regenerative phase. Cancer itself could be considered a phenomenon of antagonistic pleiotropy of the genes involved in effective tissue repair. Cancer and tissue repair are complex traits that share many intermediate phenotypes at the molecular, cellular, and tissue levels, and all of these are integrated within a Systems Biology structure. Complex traits are influenced by a multitude of common genes, each with a weak effect. This polygenic component of complex traits is mainly unknown and so makes up part of the missing heritability. Here, we try to integrate these different perspectives from the point of view of the metabolic changes observed in cancer.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
8
|
Homma K. The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants. Biomedicines 2022; 10:biomedicines10092254. [PMID: 36140355 PMCID: PMC9496569 DOI: 10.3390/biomedicines10092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; ; Tel.: +1-312-503-5344
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
9
|
Yang Y, Lv T, Li S, Liu P, Gao Q, Zhang P. Utility of Provocative Testing in the Diagnosis and Genotyping of Congenital Long QT Syndrome: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2022; 11:e025246. [PMID: 35861842 PMCID: PMC9707831 DOI: 10.1161/jaha.122.025246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Background Diagnosis is particularly challenging in concealed or asymptomatic long QT syndrome (LQTS). Provocative testing, unmasking the characterization of LQTS, is a promising alternative method for the diagnosis of LQTS, but without uniform standards. Methods and Results A comprehensive search was conducted in PubMed, Embase, and the Cochrane Library through October 14, 2021. The fixed effects model was used to assess the effect of the provocative testing on QTc interval. A total of 22 studies with 1137 patients with LQTS were included. At baseline, QTc interval was 40 ms longer in patients with LQTS than in controls (mean difference [MD], 40.54 [95% CI, 37.43-43.65]; P<0.001). Compared with the control group, patients with LQTS had 28 ms longer ΔQTc upon standing (MD, 28.82 [95% CI, 23.05-34.58]; P<0.001), nearly 30 ms longer both at peak exercise (MD, 27.31 [95% CI, 21.51-33.11]; P<0.001) and recovery 4 to 5 minutes (MD, 29.85 [95% CI, 24.36-35.35]; P<0.001). With epinephrine infusion, QTc interval was prolonged both in controls and patients with QTS, most obviously in LQT1 (MD, 68.26 [95% CI, 58.91-77.60]; P<0.001) and LQT2 (MD, 60.17 [95% CI, 50.18-70.16]; P<0.001). Subgroup analysis showed QTc interval response to abrupt stand testing and exercise testing varied between LQT1, LQT2, and LQT3, named Type Ⅰ, Type Ⅱ, and Type Ⅲ. Conclusions QTc trend Type Ⅰ and Type Ⅲ during abrupt stand testing and exercise testing can be used to propose a prospective evaluation of LQT1 and LQT3, respectively. Type Ⅱ QTc trend combined epinephrine infusion testing could distinguish LQT2 from control. A preliminary diagnostic workflow was proposed but deserves further evaluation.
Collapse
Affiliation(s)
- Ying Yang
- School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Ting‐ting Lv
- Department of CardiologySchool of Clinical MedicineBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Si‐yuan Li
- Department of CardiologySchool of Clinical MedicineBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Peng Liu
- School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Qing‐gele Gao
- School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Ping Zhang
- School of Clinical MedicineTsinghua UniversityBeijingChina
- Department of CardiologySchool of Clinical MedicineBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| |
Collapse
|
10
|
Rieder M, Kreifels P, Stuplich J, Ziupa D, Servatius H, Nicolai L, Castiglione A, Zweier C, Asatryan B, Odening KE. Genotype-Specific ECG-Based Risk Stratification Approaches in Patients With Long-QT Syndrome. Front Cardiovasc Med 2022; 9:916036. [PMID: 35911527 PMCID: PMC9329832 DOI: 10.3389/fcvm.2022.916036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Congenital long-QT syndrome (LQTS) is a major cause of sudden cardiac death (SCD) in young individuals, calling for sophisticated risk assessment. Risk stratification, however, is challenging as the individual arrhythmic risk varies pronouncedly, even in individuals carrying the same variant. Materials and Methods In this study, we aimed to assess the association of different electrical parameters with the genotype and the symptoms in patients with LQTS. In addition to the heart-rate corrected QT interval (QTc), markers for regional electrical heterogeneity, such as QT dispersion (QTmax-QTmin in all ECG leads) and delta Tpeak/end (Tpeak/end V5 – Tpeak/end V2), were assessed in the 12-lead ECG at rest and during exercise testing. Results QTc at rest was significantly longer in symptomatic than asymptomatic patients with LQT2 (493.4 ms ± 46.5 ms vs. 419.5 ms ± 28.6 ms, p = 0.004), but surprisingly not associated with symptoms in LQT1. In contrast, post-exercise QTc (minute 4 of recovery) was significantly longer in symptomatic than asymptomatic patients with LQT1 (486.5 ms ± 7.0 ms vs. 463.3 ms ± 16.3 ms, p = 0.04), while no such difference was observed in patients with LQT2. Enhanced delta Tpeak/end and QT dispersion were only associated with symptoms in LQT1 (delta Tpeak/end 19.0 ms ± 18.1 ms vs. −4.0 ms ± 4.4 ms, p = 0.02; QT-dispersion: 54.3 ms ± 10.2 ms vs. 31.4 ms ± 10.4 ms, p = 0.01), but not in LQT2. Delta Tpeak/end was particularly discriminative after exercise, where all symptomatic patients with LQT1 had positive and all asymptomatic LQT1 patients had negative values (11.8 ± 7.9 ms vs. −7.5 ± 1.7 ms, p = 0.003). Conclusion Different electrical parameters can distinguish between symptomatic and asymptomatic patients in different genetic forms of LQTS. While the classical “QTc at rest” was only associated with symptoms in LQT2, post-exercise QTc helped distinguish between symptomatic and asymptomatic patients with LQT1. Enhanced regional electrical heterogeneity was only associated with symptoms in LQT1, but not in LQT2. Our findings indicate that genotype-specific risk stratification approaches based on electrical parameters could help to optimize risk assessment in LQTS.
Collapse
Affiliation(s)
- Marina Rieder
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Paul Kreifels
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Judith Stuplich
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - David Ziupa
- Department of Cardiology and Angiology I, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Helge Servatius
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Luisa Nicolai
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Alessandro Castiglione
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Babken Asatryan
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Holter Recordings at Initial Assessment for Long QT Syndrome: Relationship to Genotype Status and Cardiac Events. J Cardiovasc Dev Dis 2022; 9:jcdd9050164. [PMID: 35621875 PMCID: PMC9147587 DOI: 10.3390/jcdd9050164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The relationship of Holter recordings of repolarization length to outcome in long QT syndrome (LQTS) is unknown. Methods: Holter recordings and initial 12 lead ECG QTc were related to outcome in 101 individuals with LQTS and 28 gene-negative relatives. Mean QTc (mQTc) and mean RTPc (R-wave to peak T-wave, mRTPc) using Bazett correction were measured, analyzing heart rates 40 to 120 bpm. Previously reported upper limit of normal (ULN) were: women and children (<15 years), mQTc 454, mRTPc 318 ms; men mQTc 446 ms, mRTPc 314 ms. Results: Measurements in LQTS patients were greatly prolonged; children and women mean mQTc 482 ms (range 406−558), mRTPc 351 ms (259−443); males > 15 years mQTc 469 ms (407−531), mRTPc 338 ms (288−388). Ten patients had cardiac arrest (CA), and 24 had arrhythmic syncope before or after the Holter. Holter values were more closely related to genotype status and symptoms than 12 lead QTc, e.g., sensitivity/specificity for genotype positive status, mRTPc > ULN (89%/86%); CA, mRTPc > 30 ms over ULN (48%/100%). Of 34 symptomatic (CA/syncope) patients, only 9 (26%) had 12 lead QTc > 500 ms, whereas 33/34 (94%) had an mRTPc or mQTc above ULN. In 10 with CA, all Holter measurements were > 15 ms above ULN, but only two had 12 lead QTc > 500 m. Conclusions: Holter average repolarization length, particularly mRTPc, reflects definite LQTS status and clinical risk better than the initial 12 lead QTc. Values below ULN indicate both a low risk of having LQTS and a low risk of cardiac events in the small percentage that do.
Collapse
|
12
|
Krahn AD, Laksman Z, Sy RW, Postema PG, Ackerman MJ, Wilde AAM, Han HC. Congenital Long QT Syndrome. JACC Clin Electrophysiol 2022; 8:687-706. [PMID: 35589186 DOI: 10.1016/j.jacep.2022.02.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Congenital long QT syndrome (LQTS) encompasses a group of heritable conditions that are associated with cardiac repolarization dysfunction. Since its initial description in 1957, our understanding of LQTS has increased dramatically. The prevalence of LQTS is estimated to be ∼1:2,000, with a slight female predominance. The diagnosis of LQTS is based on clinical, electrocardiogram, and genetic factors. Risk stratification of patients with LQTS aims to identify those who are at increased risk of cardiac arrest or sudden cardiac death. Factors including age, sex, QTc interval, and genetic background all contribute to current risk stratification paradigms. The management of LQTS involves conservative measures such as the avoidance of QT-prolonging drugs, pharmacologic measures with nonselective β-blockers, and interventional approaches such as device therapy or left cardiac sympathetic denervation. In general, most forms of exercise are considered safe in adequately treated patients, and implantable cardioverter-defibrillator therapy is reserved for those at the highest risk. This review summarizes our current understanding of LQTS and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada.
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Sy
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota, USA; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA; Departments of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart), Academic University Medical Center, Amsterdam, the Netherlands
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, BC, Canada; Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Cócera-Ortega L, Wilders R, Kamps SC, Fabrizi B, Huber I, van der Made I, van den Bout A, de Vries DK, Gepstein L, Verkerk AO, Pinto YM, Tijsen AJ. shRNAs Targeting a Common KCNQ1 Variant Could Alleviate Long-QT1 Disease Severity by Inhibiting a Mutant Allele. Int J Mol Sci 2022; 23:ijms23074053. [PMID: 35409410 PMCID: PMC9000197 DOI: 10.3390/ijms23074053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Long-QT syndrome type 1 (LQT1) is caused by mutations in KCNQ1. Patients heterozygous for such a mutation co-assemble both mutant and wild-type KCNQ1-encoded subunits into tetrameric Kv7.1 potassium channels. Here, we investigated whether allele-specific inhibition of mutant KCNQ1 by targeting a common variant can shift the balance towards increased incorporation of the wild-type allele to alleviate the disease in human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). We identified the single nucleotide polymorphisms (SNP) rs1057128 (G/A) in KCNQ1, with a heterozygosity of 27% in the European population. Next, we determined allele-specificity of short-hairpin RNAs (shRNAs) targeting either allele of this SNP in hiPSC-CMs that carry an LQT1 mutation. Our shRNAs downregulated 60% of the A allele and 40% of the G allele without affecting the non-targeted allele. Suppression of the mutant KCNQ1 allele by 60% decreased the occurrence of arrhythmic events in hiPSC-CMs measured by a voltage-sensitive reporter, while suppression of the wild-type allele increased the occurrence of arrhythmic events. Furthermore, computer simulations based on another LQT1 mutation revealed that 60% suppression of the mutant KCNQ1 allele shortens the prolonged action potential in an adult cardiomyocyte model. We conclude that allele-specific inhibition of a mutant KCNQ1 allele by targeting a common variant may alleviate the disease. This novel approach avoids the need to design shRNAs to target every single mutation and opens up the exciting possibility of treating multiple LQT1-causing mutations with only two shRNAs.
Collapse
Affiliation(s)
- Lucía Cócera-Ortega
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Selina C. Kamps
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Benedetta Fabrizi
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Irit Huber
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa 3109601, Israel; (I.H.); (L.G.)
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Anouk van den Bout
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Dylan K. de Vries
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Lior Gepstein
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa 3109601, Israel; (I.H.); (L.G.)
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Yigal M. Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Anke J. Tijsen
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
- Correspondence: ; Tel.: +31-205668544
| |
Collapse
|
14
|
Wu X, Hoeker GS, Blair GA, King DR, Gourdie RG, Weinberg SH, Poelzing S. Hypernatremia and intercalated disc edema synergistically exacerbate long-QT syndrome type 3 phenotype. Am J Physiol Heart Circ Physiol 2021; 321:H1042-H1055. [PMID: 34623182 DOI: 10.1152/ajpheart.00366.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac voltage-gated sodium channel gain-of-function prolongs repolarization in the long-QT syndrome type 3 (LQT3). Previous studies suggest that narrowing the perinexus within the intercalated disc, leading to rapid sodium depletion, attenuates LQT3-associated action potential duration (APD) prolongation. However, it remains unknown whether extracellular sodium concentration modulates APD prolongation during sodium channel gain-of-function. We hypothesized that elevated extracellular sodium concentration and widened perinexus synergistically prolong APD in LQT3. LQT3 was induced with sea anemone toxin (ATXII) in Langendorff-perfused guinea pig hearts (n = 34). Sodium concentration was increased from 145 to 160 mM. Perinexal expansion was induced with mannitol or the sodium channel β1-subunit adhesion domain antagonist (βadp1). Epicardial ventricular action potentials were optically mapped. Individual and combined effects of varying clefts and sodium concentrations were simulated in a computational model. With ATXII, both mannitol and βadp1 significantly widened the perinexus and prolonged APD, respectively. The elevated sodium concentration alone significantly prolonged APD as well. Importantly, the combination of elevated sodium concentration and perinexal widening synergistically prolonged APD. Computational modeling results were consistent with animal experiments. Concurrently elevating extracellular sodium and increasing intercalated disc edema prolongs repolarization more than the individual interventions alone in LQT3. This synergistic effect suggests an important clinical implication that hypernatremia in the presence of cardiac edema can markedly increase LQT3-associated APD prolongation. Therefore, to our knowledge, this is the first study to provide evidence of a tractable and effective strategy to mitigate LQT3 phenotype by means of managing sodium levels and preventing cardiac edema in patients.NEW & NOTEWORTHY This is the first study to demonstrate that the long-QT syndrome type 3 (LQT3) phenotype can be exacerbated or concealed by regulating extracellular sodium concentrations and/or the intercalated disc separation. The animal experiments and computational modeling in the current study reveal a critically important clinical implication: sodium dysregulation in the presence of edema within the intercalated disc can markedly increase the risk of arrhythmia in LQT3. These findings strongly suggest that maintaining extracellular sodium within normal physiological limits may be an effective and inexpensive therapeutic option for patients with congenital or acquired sodium channel gain-of-function diseases.
Collapse
Affiliation(s)
- Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Seth H Weinberg
- Department of Biomedical Engineering, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
15
|
Desmarais J, Rosenbaum JT, Costenbader KH, Ginzler EM, Fett N, Goodman S, O'Dell J, Pineau CA, Schmajuk G, Werth VP, Link MS, Kovacs R. American College of Rheumatology White Paper on Antimalarial Cardiac Toxicity. Arthritis Rheumatol 2021; 73:2151-2160. [PMID: 34697918 DOI: 10.1002/art.41934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Hydroxychloroquine (HCQ) and chloroquine (CQ) are well-established medications used in treating systemic lupus erythematosus and rheumatoid arthritis, as well as skin conditions such as cutaneous lupus erythematosus. In rare cases, arrhythmias and conduction system abnormalities, as well as cardiomyopathy, have been reported in association with HCQ/CQ use. Recently, however, the corrected QT interval (QTc)-prolonging potential of these medications, and risk of torsade de pointes (TdP) in particular, have been highlighted in the setting of their experimental use for COVID-19 infection. This report was undertaken to summarize the current understanding of HCQ/CQ cardiac toxicity, describe QTc prolongation and TdP risks, and discuss areas of priority for future research. A working group of experts across rheumatology, cardiology, and dermatology performed a nonsystematic literature review and offered a consensus-based expert opinion. Current data clearly indicate that HCQ and CQ are invaluable medications in the management of rheumatic and dermatologic diseases, but they are associated with QTc prolongation by directly affecting cardiac repolarization. Prescribing clinicians should be cognizant of this small effect, especially in patients taking additional medications that prolong the QTc interval. Long-term use of HCQ/CQ may lead to a cardiomyopathy associated with arrhythmias and heart failure. Risk and benefit assessment should be considered prior to initiation of any medication, and both initial and ongoing risk-benefit assessments are important with regard to prescription of HCQ/CQ. While cardiac toxicity related to HCQ/CQ treatment of rheumatic diseases is rarely reported, it can be fatal. Awareness of the potential adverse cardiac effects of HCQ and CQ can increase the safe use of these medications. There is a clear need for additional research to allow better understanding of the cardiovascular risk and safety profile of these therapies used in the management of rheumatic and cutaneous diseases.
Collapse
Affiliation(s)
| | - James T Rosenbaum
- Oregon Health & Science University and Legacy Devers Eye Institute, Portland, Oregon
| | | | - Ellen M Ginzler
- State University of New York Downstate Health Sciences University, Brooklyn
| | - Nicole Fett
- Oregon Health & Science University, Portland
| | - Susan Goodman
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York
| | - James O'Dell
- University of Nebraska Medical Center and Omaha VA Hospital, Omaha, Nebraska
| | | | - Gabriela Schmajuk
- University of California San Francisco, San Francisco VA Medical Center, and Philip R. Lee Institute for Health Policy, San Francisco, California
| | - Victoria P Werth
- University of Pennsylvania and Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania
| | - Mark S Link
- University of Texas Southwestern Medical Center, Dallas
| | | |
Collapse
|
16
|
Kojima T, Wasano K, Takahashi S, Homma K. Cell death-inducing cytotoxicity in truncated KCNQ4 variants associated with DFNA2 hearing loss. Dis Model Mech 2021; 14:272416. [PMID: 34622280 PMCID: PMC8628632 DOI: 10.1242/dmm.049015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/22/2021] [Indexed: 01/30/2023] Open
Abstract
KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants. Summary: Expression of truncated KCNQ4 variants lacking the C-terminal tetramerization domain results in cell-death inducing cytotoxicity, providing novel insight into the development of alternative therapeutic strategies for DFNA2 hearing loss.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichiro Wasano
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
17
|
Choi SH, Jurgens SJ, Haggerty CM, Hall AW, Halford JL, Morrill VN, Weng LC, Lagerman B, Mirshahi T, Pettinger M, Guo X, Lin HJ, Alonso A, Soliman EZ, Kornej J, Lin H, Moscati A, Nadkarni GN, Brody JA, Wiggins KL, Cade BE, Lee J, Austin-Tse C, Blackwell T, Chaffin MD, Lee CJY, Rehm HL, Roselli C, Redline S, Mitchell BD, Sotoodehnia N, Psaty BM, Heckbert SR, Loos RJ, Vasan RS, Benjamin EJ, Correa A, Boerwinkle E, Arking DE, Rotter JI, Rich SS, Whitsel EA, Perez M, Kooperberg C, Fornwalt BK, Lunetta KL, Ellinor PT, Lubitz SA, Lubitz SA. Rare Coding Variants Associated With Electrocardiographic Intervals Identify Monogenic Arrhythmia Susceptibility Genes: A Multi-Ancestry Analysis. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003300. [PMID: 34319147 PMCID: PMC8373440 DOI: 10.1161/circgen.120.003300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic intervals and rare genetic variation at a population level are poorly understood. METHODS Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, P-wave, PR, and QRS intervals and corrected QT interval). RESULTS We found that rare variants associated with population-based electrocardiographic intervals identify established monogenic SCD genes (KCNQ1, KCNH2, and SCN5A), a controversial monogenic SCD gene (KCNE1), and novel genes (PAM and MFGE8) involved in cardiac conduction. Loss-of-function and pathogenic SCN5A variants, carried by 0.1% of individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block (P=8.4×10-5). Similar variants in KCNQ1 and KCNH2 (0.2% of individuals) were associated with a 23-fold increased odds of marked corrected QT interval prolongation (P=4×10-25), a marker of SCD risk. Incomplete penetrance of such deleterious variation was common as over 70% of carriers had normal electrocardiographic intervals. CONCLUSIONS Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked electrocardiographic interval prolongation.
Collapse
Affiliation(s)
- Seung Hoan Choi
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Sean J. Jurgens
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Christopher M. Haggerty
- Department of Translational Data Science and Informatics (C.M.H., B.K.F.), Geisinger, Danville, PA.,Heart Institute (C.M.H., B.K.F.), Geisinger, Danville, PA
| | - Amelia W. Hall
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA
| | - Jennifer L. Halford
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Harvard Medical School (J.L.H., C.A.-T., H.L.R.), Boston, MA
| | - Valerie N. Morrill
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA
| | - Lu-Chen Weng
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA
| | - Braxton Lagerman
- Phenomic Analytics and Clinical Data Core (B.L.), Geisinger, Danville, PA
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics (T.M.), Geisinger, Danville, PA
| | - Mary Pettinger
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (M.P., C.K.)
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Insti for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (X.G., H.J.L., J.I.R.)
| | - Henry J. Lin
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Insti for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (X.G., H.J.L., J.I.R.)
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA (A.A.)
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center, Wake Forest School of Medicine, Winston Salem, NC (E.Z.S.)
| | - Jelena Kornej
- NHLBI and Boston University’s Framingham Heart Study (J.K., E.J.B., R.S.V).,Sections of Cardiovascular Medicine and Preventive Medicine, Boston Medical Center (J.K., R.S.V), Boston University School of Medicine, MA
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine (H.L.), Boston University School of Medicine, MA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N., R.J.F.L.), Icahn School of Medicine, Mount Sinai, New York, NY
| | - Girish N. Nadkarni
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N., R.J.F.L.), Icahn School of Medicine, Mount Sinai, New York, NY.,Division of Nephrology, Department of Medicine (G.N.), Icahn School of Medicine, Mount Sinai, New York, NY
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle
| | - Brian E. Cade
- Massachusetts General Hospital. Division of Sleep Medicine, Department of Medicine (B.E.C.), Boston, MA.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology (B.E.C.), Harvard Medical School, Brigham and Women’s Hospital, Boston
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders (J.L.), Harvard Medical School, Brigham and Women’s Hospital, Boston
| | - Christina Austin-Tse
- Center for Genomic Medicine (C.A.-T., H.L.R.), Boston, MA.,Harvard Medical School (J.L.H., C.A.-T., H.L.R.), Boston, MA.,Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA (C.A.-T.)
| | - Tom Blackwell
- Department of Biostatistics, University of Michigan, Ann Arbor (T.B.)
| | - Mark D. Chaffin
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Christina J.-Y. Lee
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Heidi L. Rehm
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Center for Genomic Medicine (C.A.-T., H.L.R.), Boston, MA.,Harvard Medical School (J.L.H., C.A.-T., H.L.R.), Boston, MA
| | - Carolina Roselli
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Susan Redline
- Regeneron Genetics Center, Tarrytown, NY. Departments of Medicine, Brigham and Women’s Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.R.)
| | - Braxton D. Mitchell
- University of Maryland School of Medicine (B.D.M.).,Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, MD (B.D.M.)
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle.,Division of Cardiology, Department of Epidemiology (N.S.), University of Washington, Seattle
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle.,Department of Epidemiology (B.M.P., S.R.H.), University of Washington, Seattle.,Department of Health Services (B.M.P.), University of Washington, Seattle.,Kaiser Permanente Washington Health Research Institute, Seattle (B.M.P.)
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle.,Department of Epidemiology (B.M.P., S.R.H.), University of Washington, Seattle
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N., R.J.F.L.), Icahn School of Medicine, Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute (R.J.F.L.), Icahn School of Medicine, Mount Sinai, New York, NY
| | - Ramachandran S. Vasan
- NHLBI and Boston University’s Framingham Heart Study (J.K., E.J.B., R.S.V).,Sections of Cardiovascular Medicine and Preventive Medicine, Boston Medical Center (J.K., R.S.V), Boston University School of Medicine, MA.,Department of Medicine (E.J.B., R.S.V), Boston University School of Medicine, MA
| | - Emelia J. Benjamin
- NHLBI and Boston University’s Framingham Heart Study (J.K., E.J.B., R.S.V).,Department of Medicine (E.J.B., R.S.V), Boston University School of Medicine, MA.,Department of Epidemiology (E.J.B.), Boston University School of Public Health, MA
| | - Adolfo Correa
- Departments of Medicine, Pediatrics, and Population Health Science, University of Mississippi Medical Center, Jackson (A.C.)
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston (E.B.)
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A.)
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Insti for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (X.G., H.J.L., J.I.R.)
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville (S.S.R.)
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill.,Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill
| | - Marco Perez
- Division of Cardiovascular Medicine, Stanford University, CA (M.P.). Dr Sotoodehnia is supported by NIH grant R01HL141989, by AHA grant 19SFRN34830063, and by the Laughlin Family
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (M.P., C.K.)
| | - Brandon K. Fornwalt
- Department of Translational Data Science and Informatics (C.M.H., B.K.F.), Geisinger, Danville, PA.,Heart Institute (C.M.H., B.K.F.), Geisinger, Danville, PA.,Department of Radiology (B.K.F.), Geisinger, Danville, PA
| | - Kathryn L. Lunetta
- Department of Biostatistics (K.L.L.), Boston University School of Public Health, MA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA.,Cardiac Arrhythmia Service (P.T.E., S.A.L.), Boston, MA
| | - Steven A. Lubitz
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA.,Cardiac Arrhythmia Service (P.T.E., S.A.L.), Boston, MA
| | - Steven A Lubitz
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA.,Cardiac Arrhythmia Service (P.T.E., S.A.L.), Boston, MA
| | | |
Collapse
|
18
|
Vink AS, Hermans BJM, Pimenta J, Peltenburg PJ, Filippini LHPM, Hofman N, Clur SAB, Blom NA, Wilde AAM, Delhaas T, Postema PG. Diagnostic accuracy of the response to the brief tachycardia provoked by standing in children suspected for long QT syndrome. Heart Rhythm O2 2021; 2:149-159. [PMID: 34113917 PMCID: PMC8183857 DOI: 10.1016/j.hroo.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Adult long QT syndrome (LQTS) patients have inadequate corrected QT interval (QTc) shortening and an abnormal T-wave response to the sudden heart rate acceleration provoked by standing. In adults, this knowledge can be used to aid an LQTS diagnosis and, possibly, for risk stratification. However, data on the diagnostic value of the standing test in children are currently limited. Objective To determine the potential value of the standing test to aid LQTS diagnostics in children. Methods In a prospective cohort including children (≤18 years) who had a standing test, comprehensive analyses were performed including manual and automated QT interval assessments and determination of T-wave morphology changes. Results We included 47 LQTS children and 86 control children. At baseline, the QTc that identified LQTS children with a 90% sensitivity was 435 ms, which yielded a 65% specificity. A QTc ≥ 490 ms after standing only slightly increased sensitivity (91%, 95% confidence interval [CI]: 80%–98%) and slightly decreased specificity (58%, 95% CI: 47%–70%). Sensitivity increased slightly more when T-wave abnormalities were present (94%, 95% CI: 82%–99%; specificity 53%, 95% CI: 42%–65%). When a baseline QTc ≥ 440 ms was accompanied by a QTc ≥ 490 ms and T-wave abnormalities after standing, sensitivity further increased (96%, 95% CI: 85%–99%) at the expense of a further specificity decrease (41%, 95% CI: 30%–52%). Beat-to-beat analysis showed that 30 seconds after standing, LQTS children had a greater increase in heart rate compared to controls, which was more evidently present in LQTS boys and LQTS type 1 children. Conclusion In children, the standing test has limited additive diagnostic value for LQTS over a baseline electrocardiogram, while T-wave abnormalities after standing also have limited additional value. The standing test for LQTS should only be used with caution in children.
Collapse
Affiliation(s)
- Arja S Vink
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands.,Department of Pediatric Cardiology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben J M Hermans
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joana Pimenta
- Department of Pediatric Cardiology, Centro Hospitalar de São João, Porto, Portugal
| | - Puck J Peltenburg
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands.,Department of Pediatric Cardiology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luc H P M Filippini
- Department of Pediatric Cardiology, Juliana Children's Hospital, The Hague, The Netherlands
| | - Nynke Hofman
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands
| | - Sally-Ann B Clur
- Department of Pediatric Cardiology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nico A Blom
- Department of Pediatric Cardiology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Pieter G Postema
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Abstract
Long QT syndrome (LQTS) is a cardiovascular disorder characterized by an abnormality in cardiac repolarization leading to a prolonged QT interval and T-wave irregularities on the surface electrocardiogram. It is commonly associated with syncope, seizures, susceptibility to torsades de pointes, and risk for sudden death. LQTS is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. The availability of therapy for this lethal disease emphasizes the importance of early and accurate diagnosis. Additionally, understanding of the molecular mechanisms underlying LQTS could help to optimize genotype-specific treatments to prevent deaths in LQTS patients. In this review, we briefly summarize current knowledge regarding molecular underpinning of LQTS, in particular focusing on LQT1, LQT2, and LQT3, and discuss novel strategies to study ion channel dysfunction and drug-specific therapies in LQT1, LQT2, and LQT3 syndromes.
Collapse
Affiliation(s)
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
20
|
Matsuda S, Ohnuki Y, Okami M, Ochiai E, Yamada S, Takahashi K, Osawa M, Okami K, Iida M, Mochizuki H. Jervell and Lange-Nielsen syndrome with novel KCNQ1 and additional gene mutations. Hum Genome Var 2020; 7:34. [PMID: 33082985 PMCID: PMC7562699 DOI: 10.1038/s41439-020-00121-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 11/19/2022] Open
Abstract
We encountered a boy with Jervell and Lange-Nielsen syndrome (JLNS) with compound heterozygous KCNQ1 mutations, maternal Trp248Phe and a novel paternal mutation, Leu347Arg. His father showed long QT (LQT) and arrhythmia. His mother was asymptomatic with no ECG abnormalities. The proband and his father had an additional mutation (SNTA1 Thr372Met), which is reportedly related to SIDS. These results suggest that multiple gene mutations influence the phenotype of KCNQ1 mutation-related arrhythmia.
Collapse
Affiliation(s)
- Shinichi Matsuda
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Yuko Ohnuki
- Department of Medical Ethics, Tokai University School of Medicine, Isehara, Japan
- Department of Clinical Genetics, Tokai University Hospital, Isehara, Japan
| | - Mayuri Okami
- Department of Clinical Genetics, Tokai University Hospital, Isehara, Japan
- Department of Otolaryngology, Tokai University School of Medicine, Isehara, Japan
- Department of Otolaryngology, Samukawa Hospital, Samukawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shiro Yamada
- Department of Pediatrics, Tokai University Oiso Hospital, Oiso, Japan
| | - Kazumi Takahashi
- Department of Medical Ethics, Tokai University School of Medicine, Isehara, Japan
- Department of Clinical Genetics, Tokai University Hospital, Isehara, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenji Okami
- Department of Otolaryngology, Tokai University School of Medicine, Isehara, Japan
| | - Masahiro Iida
- Department of Otolaryngology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Mochizuki
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
21
|
A computational model of induced pluripotent stem-cell derived cardiomyocytes for high throughput risk stratification of KCNQ1 genetic variants. PLoS Comput Biol 2020; 16:e1008109. [PMID: 32797034 PMCID: PMC7449496 DOI: 10.1371/journal.pcbi.1008109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/26/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023] Open
Abstract
In the last decade, there has been tremendous progress in identifying genetic anomalies linked to clinical disease. New experimental platforms have connected genetic variants to mechanisms underlying disruption of cellular and organ behavior and the emergence of proarrhythmic cardiac phenotypes. The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) signifies an important advance in the study of genetic disease in a patient-specific context. However, considerable limitations of iPSC-CM technologies have not been addressed: 1) phenotypic variability in apparently identical genotype perturbations, 2) low-throughput electrophysiological measurements, and 3) an immature phenotype which may impact translation to adult cardiac response. We have developed a computational approach intended to address these problems. We applied our recent iPSC-CM computational model to predict the proarrhythmic risk of 40 KCNQ1 genetic variants. An IKs computational model was fit to experimental data for each mutation, and the impact of each mutation was simulated in a population of iPSC-CM models. Using a test set of 15 KCNQ1 mutations with known clinical long QT phenotypes, we developed a method to stratify the effects of KCNQ1 mutations based on proarrhythmic markers. We utilized this method to predict the severity of the remaining 25 KCNQ1 mutations with unknown clinical significance. Tremendous phenotypic variability was observed in the iPSC-CM model population following mutant perturbations. A key novelty is our reporting of the impact of individual KCNQ1 mutant models on adult ventricular cardiomyocyte electrophysiology, allowing for prediction of mutant impact across the continuum of aging. This serves as a first step toward translating predicted response in the iPSC-CM model to predicted response of the adult ventricular myocyte given the same genetic mutation. As a whole, this study presents a new computational framework that serves as a high throughput method to evaluate risk of genetic mutations based-on proarrhythmic behavior in phenotypically variable populations. In the last decade, there has been tremendous progress in identifying genetic mutations linked to clinical diseases, such as cardiac arrhythmia. Many experimental platforms have been developed to study this link, including induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). IPSC-CMs are patient-derived cardiac cells which allow for the study of genetic variants within a patient-specific context. However, experimentally iPSC-CMs have certain limitations, including: (1) they exhibit variability in behavior within cells that are apparently genetically identical, and (2) they are immature compared to adult cardiac cells. In our study, we have developed a computational approach to model 40 genetic variants in the KCNQ1 gene and predict the proarrhythmic risk of each variant. To do this, we modeled the ionic current determined by KCNQ1, IKs, to fit experimental data for each mutation. We then simulated the impact of each mutation in a population of iPSC-CMs, incorporating variability across the population. We also simulated each variant in an adult cardiac cell model, providing a link between iPSC-CM response to mutants and adult cardiac cell response to the same mutants. Overall, this study provides a new computational framework to evaluate risk of genetic mutations based-on proarrhythmic behavior diverse populations of iPSC-CM models.
Collapse
|
22
|
Landstrom AP, Shah SH. Rare Things Being Common: Implications for Common Genetic Variants in Rare Diseases Like Long-QT Syndrome. Circulation 2020; 142:339-341. [PMID: 32718255 DOI: 10.1161/circulationaha.120.048339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andrew P Landstrom
- Department of Pediatrics (A.P.L.), Duke University School of Medicine, Durham, NC.,Division of Cardiology, Department of Cell Biology (A.P.L.), Duke University School of Medicine, Durham, NC
| | - Svati H Shah
- Department of Medicine (S.H.S.), Duke University School of Medicine, Durham, NC.,Duke Molecular Physiology Institute (S.H.S.), Duke University School of Medicine, Durham, NC
| |
Collapse
|
23
|
Is there a relationship between epicardial fat tissue thickness and Tp-Te/QT ratio in healthy individuals? ACTA ACUST UNITED AC 2020; 5:e127-e139. [PMID: 32665987 PMCID: PMC7339868 DOI: 10.5114/aoms.2020.96147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/10/2020] [Indexed: 11/17/2022]
Abstract
Introduction Epicardial fat is a tissue that releases many proinflammatory and atherogenic mediators, with endocrine and paracrine effects on the heart. In this study, the implication of the EFT thickness (EFTt) on transmural dispersion of repolarisation (TDR) was analysed utilizing the T-wave peak to end interval (Tp-Te), the Tp-Te dispersion (Tp-Te (d)), and the Tp-Te/QT ratio. Material and methods One thousand seven hundred and thirteen subjects were enrolled in the research. The subjects were chosen to be healthy individuals, without any cardiovascular/systemic disorders or risk factors for atherosclerosis. Transthoracic echocardiography (TTE) was applied to all subjects, and EFTt was measured in both diastole and systole. The ECG measurements were taken from standard 12-lead surface ECG. Results Correlation analysis revealed that the EFTt is highly associated with the Tp-Te interval, Tp-Te/QT ratio, Tp-Te (d), increasing age, body mass index (BMI), body surface area (BSA), left ventricular (LV) mass, LV mass index, plasma glucose during fasting, triglycerides, and low-density lipoprotein cholesterol. Conclusions The study results showed that increased EFTt was associated with increased TDR values of Tp-Te, Tp-Te (d), and Tp-Te/QT ratio, even in the absence of other factors that could increase TDR and EFTt. Therefore, it can be stated that increased EFTt may cause an increase the risk for ventricular arrhythmia.
Collapse
|
24
|
Ruiz Diaz JC, Frenkel D, Aronow WS. The relationship between atypical antipsychotics drugs, QT interval prolongation, and torsades de pointes: implications for clinical use. Expert Opin Drug Saf 2020; 19:559-564. [PMID: 32189527 DOI: 10.1080/14740338.2020.1745184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 03/17/2020] [Indexed: 01/08/2023]
Abstract
Introduction: Increased mortality has been observed in patients with mental health disorders. Specifically, exposure to antipsychotic medications conveys a greater than 2 fold risk of sudden death, thought to be mediated through effects on QT prolongation and risk of torsades de pointes.Areas covered: We review the association between antipsychotic drugs and sudden cardiac death, the physiologic basis for these associations, assessment of patients at risk, and strategies to minimize risk of sudden cardiac death.Expert opinion: Despite the prevalence of antipsychotic medication use for many decades, there remain considerable challenges in reducing the associated risk of sudden cardiac death. A structured algorithm that incorporates patient clinical factors and antipsychotic drug factors may improve risk assessment and reduce the risk of adverse cardiac events. Future advancements in genetics and artificial intelligence may allow for enhanced risk stratification and predicting response (efficacy and adverse effects) to therapy.
Collapse
Affiliation(s)
- Juan Carlos Ruiz Diaz
- Division of Cardiology, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Daniel Frenkel
- Division of Cardiology, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Wilbert S Aronow
- Division of Cardiology, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| |
Collapse
|
25
|
Diebold I, Schön U, Scharf F, Benet-Pagès A, Laner A, Holinski-Feder E, Abicht A. Critical assessment of secondary findings in genes linked to primary arrhythmia syndromes. Hum Mutat 2020; 41:1025-1032. [PMID: 32048431 PMCID: PMC7187207 DOI: 10.1002/humu.23996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/16/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
As comprehensive sequencing technologies gain widespread use, questions about so-called secondary findings (SF) require urgent consideration. The American College of Medical Genetics and Genomics has recommended to report SF in 59 genes (ACMG SF v2.0) including four actionable genes associated with inherited primary arrhythmia syndromes (IPAS) such as catecholaminergic polymorphic ventricular tachycardia, long QT syndrome, and Brugada syndrome. Databases provide conflicting results for the purpose of identifying pathogenic variants in SF associated with IPAS at a level of sufficient evidence for clinical return. As IPAS account for a significant proportion of sudden cardiac deaths (SCD) in young and apparently healthy individuals, variant interpretation has a great impact on diagnosis and prevention of disease. Of 6381 individuals, 0.4% carry pathogenic variants in one of the four actionable genes related to IPAS: RYR2, KCNQ1, KCNH2, and SCN5A. Comparison of the databases ClinVar, Leiden Open-source Variant Database, and Human Gene Mutation Database showed impactful differences (0.2% to 1.3%) in variant interpretation improvable by expert-curation depending on database and classification system used. These data further highlight the need for international consensus regarding the variant interpretation, and subsequently management of SF in particular with regard to treatable arrhythmic disorders with increased risk of SCD.
Collapse
Affiliation(s)
- Isabel Diebold
- Department of Genomics, Medical Genetics Center Munich, Munich, Germany.,Department of Pediatrics, Technical University of Munich School of Medicine, Munich, Germany
| | - Ulrike Schön
- Department of Genomics, Medical Genetics Center Munich, Munich, Germany
| | - Florentine Scharf
- Department of Genomics, Medical Genetics Center Munich, Munich, Germany
| | - Anna Benet-Pagès
- Department of Genomics, Medical Genetics Center Munich, Munich, Germany
| | - Andreas Laner
- Department of Genomics, Medical Genetics Center Munich, Munich, Germany
| | | | - Angela Abicht
- Department of Genomics, Medical Genetics Center Munich, Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
26
|
Waddell-Smith KE, Chaptynova AA, Li J, Crawford JR, Hinds H, Skinner JR. Normative Heart-Rate Corrected Values for Repolarisation Length From Holter Recordings in Children and Adults. Heart Lung Circ 2020; 29:1469-1475. [PMID: 31983548 DOI: 10.1016/j.hlc.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 12/05/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Normative values for heart-rate corrected repolarisation length are not available in children and are scarce in adults. We wished to define repeatability and normative values of Holter recording measurements of repolarisation length in healthy individuals using a commercially available system, and compare measurements with those from 12-lead electrocardiograms (ECGs). METHODS Twenty-four-hour (24-) Holter recordings were made on 99 Healthy volunteers: 52 children (7 months to 14 years) and 47 adults (≥15 yrs). Mean and peak values of QTc, and RTPc (R-wave to peak T-wave) were assessed. Bazett heart rate correction was employed for each measurement and only heart rates between 40 and 120 bpm were analysed. The end of the T-wave was defined from the zero-crossing point. QTc was also determined from 12-lead ECGs from the same population by manual measurement recording the longest QTc of leads 2 and V5. The tangent technique was used to define the end of the T-wave. RESULTS Interobserver repeatability: mean QTc ±15 ms (CI 3.5%), peak QTc ±25 ms (CI 4.5%), mean RTPc ±3 ms (CI 1%), peak RTPc ±44 ms (CI 11%). Mean values were very similar for <15 years and all females and were therefore amalgamated: mean (±2 SD); mean QTc 424 ms (394-454), mean RTPc 291ms (263-319). Values were lower in males ≥15 years; (mean QTc 408 ms (370-446), p<0.01; mean RTPc 274 ms (234-314), p<0.01. The highest mean QTc value was 467 ms in an adult female. QTc from 12-lead ECG: females <15 years 409 ms (384-434) males <15 years 408 ms (383-433), females ≥15 years 426 ms (401-451), males ≥15 years 385 ms (362-408). CONCLUSIONS Holter measurements of mean QTc and RTPc are highly repeatable. Males ≥15 years have shorter mean repolarisation length over 24 hours than males <15 years and all females. Mean QTc Holter values were on average 15-17 ms longer than QTc from 12-lead ECGs except in females >15 years.
Collapse
Affiliation(s)
- Kathryn E Waddell-Smith
- Green Lane Paediatric and Congenital Cardiac Services, Starship Children's Hospital Auckland New Zealand; The University of Auckland, Department of Child Health, Auckland, New Zealand; Green Lane Cardiovascular Services, Auckland City Hospital, Auckland, New Zealand
| | | | - Jian Li
- Green Lane Paediatric and Congenital Cardiac Services, Starship Children's Hospital Auckland New Zealand
| | - Jackie R Crawford
- Green Lane Paediatric and Congenital Cardiac Services, Starship Children's Hospital Auckland New Zealand
| | - Halina Hinds
- Green Lane Cardiovascular Services, Auckland City Hospital, Auckland, New Zealand
| | - Jonathan R Skinner
- Green Lane Paediatric and Congenital Cardiac Services, Starship Children's Hospital Auckland New Zealand; The University of Auckland, Department of Child Health, Auckland, New Zealand; Green Lane Cardiovascular Services, Auckland City Hospital, Auckland, New Zealand.
| |
Collapse
|
27
|
Waddell-Smith KE, Skinner JR, Bos JM. Pre-Test Probability and Genes and Variants of Uncertain Significance in Familial Long QT Syndrome. Heart Lung Circ 2020; 29:512-519. [PMID: 32044265 DOI: 10.1016/j.hlc.2019.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022]
Abstract
The genetics underlying familial long QT syndrome (LQTS) are among the best characterised of all of the inherited heart conditions. Cohort and registry studies have demonstrated important genotype-phenotype correlations that are now essential in guiding clinical practice of patients with the most common three genotypes; KCNQ1 (LQT type 1), KCNH2 (LQT type 2) and SCN5A (LQT type 3). However, the growing number of genes-now more than 16-is confusing, and there is much doubt as to whether many actually cause LQTS at all. Furthermore, changes in sequencing techniques, evolving variant classification criteria and new scientific discoveries make all genes and variants subject to a continuous process of re-classification. This review discusses the nature of variant adjudication, the important concept of pre-test probability in interpreting a genetic result and how the nomenclature of LQTS is shifting in response to this new knowledge. It further discusses the role of deep phenotyping, the inclusion of evaluation of family members in interpreting a genetic test result, or even deciding if genetic testing should occur at all, and the role of specialist multidisciplinary teams to translate this continuously evolving knowledge into the best clinical advice, in partnership with referring cardiologists.
Collapse
Affiliation(s)
- Kathryn E Waddell-Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia.
| | - Jonathan R Skinner
- Green Lane Paediatric and Congenital Cardiac Service, Starship Children's Hospital, Auckland, New Zealand; Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - J Martijn Bos
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Cortez D, Zareba W, McNitt S, Polonsky B, Rosero SZ, Platonov PG. Quantitative T-wave morphology assessment from surface ECG is linked with cardiac events risk in genotype-positive KCNH2 mutation carriers with normal QTc values. J Cardiovasc Electrophysiol 2019; 30:2907-2913. [PMID: 31579959 DOI: 10.1111/jce.14210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Long QT syndrome (LQTS) mutation carriers have elevated the risk of cardiac events even in the absence of QTc prolongation; however, mutation penetrance in patients with normal QTc may be reflected in abnormal T-wave shape, particularly in KCNH2 mutation carriers. We aimed to assess whether the magnitude of a three-dimensional T-wave vector (TwVM) will identify KCNH2-mutation carriers with normal QTc at risk for cardiac events. METHODS Adult LQT2 patients with QTc < 460 ms in men and <470 ms in women (n = 113, age 42 ± 16 years, 43% male) were compared with genotype-negative family members (n = 1007). The TwVM was calculated using T-wave amplitudes in leads V6, II, and V2 as the square root of (TV62 + TII2 + (0.5*TV2)2 ). Cox regression analysis adjusted for gender and time-dependent beta-blocker use was performed to assess cardiac event (CE) risk, defined as syncope, aborted cardiac arrest, implantable cardioverter-defibrillator therapy, or sudden death. RESULTS Dichotomized by median of 0.30 mV, lower TwVM was associated with elevated CE risk compared to those with high TwVM (HR = 2.95, 95% CI, 1.25-6.98, P = .014) and also remained significant after including sex and time-dependent beta-blocker usage in the Cox regression analysis (HR = 2.64, 95% CI, 1.64-4.24, P < .001). However, these associations were found only in women but not in men who had low event rates. CONCLUSION T-wave morphology quantified as repolarization vector magnitude using T-wave amplitudes retrieved from standard 12-lead electrocardiogram predicts cardiac events risk in LQT2 women and appears useful for risk stratification of KCNH2-mutation carriers without QTc prolongation.
Collapse
Affiliation(s)
- Daniel Cortez
- Clinical Sciences, Cardiology, Lund University, Lund, Sweden.,Pediatric Cardiology and Electrophysiology, University of Minnesota/Masonic Children's Hospital, Minneapolis, Minnesota
| | - Wojciech Zareba
- Heart Research Follow-up Program, University of Rochester Medical Center, Rochester, New York
| | - Scott McNitt
- Heart Research Follow-up Program, University of Rochester Medical Center, Rochester, New York
| | - Bronislava Polonsky
- Heart Research Follow-up Program, University of Rochester Medical Center, Rochester, New York
| | - Spencer Z Rosero
- Heart Research Follow-up Program, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
29
|
Riesel A, Klawohn J, Grützmann R, Kaufmann C, Heinzel S, Bey K, Lennertz L, Wagner M, Kathmann N. Error-related brain activity as a transdiagnostic endophenotype for obsessive-compulsive disorder, anxiety and substance use disorder. Psychol Med 2019; 49:1207-1217. [PMID: 30744714 PMCID: PMC6498788 DOI: 10.1017/s0033291719000199] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Increased neural error-signals have been observed in obsessive-compulsive disorder (OCD), anxiety disorders, and inconsistently in depression. Reduced neural error-signals have been observed in substance use disorders (SUD). Thus, alterations in error-monitoring are proposed as a transdiagnostic endophenotype. To strengthen this notion, data from unaffected individuals with a family history for the respective disorders are needed. METHODS The error-related negativity (ERN) as a neural indicator of error-monitoring was measured during a flanker task from 117 OCD patients, 50 unaffected first-degree relatives of OCD patients, and 130 healthy comparison participants. Family history information indicated, that 76 healthy controls were free of a family history for psychopathology, whereas the remaining had first-degree relatives with depression (n = 28), anxiety (n = 27), and/or SUD (n = 27). RESULTS Increased ERN amplitudes were found in OCD patients and unaffected first-degree relatives of OCD patients. In addition, unaffected first-degree relatives of individuals with anxiety disorders were also characterized by increased ERN amplitudes, whereas relatives of individuals with SUD showed reduced amplitudes. CONCLUSIONS Alterations in neural error-signals in unaffected first-degree relatives with a family history of OCD, anxiety, or SUD support the utility of the ERN as a transdiagnostic endophenotype. Reduced neural error-signals may indicate vulnerability for under-controlled behavior and risk for substance use, whereas a harm- or error-avoidant response style and vulnerability for OCD and anxiety appears to be associated with increased ERN. This adds to findings suggesting a common neurobiological substrate across psychiatric disorders involving the anterior cingulate cortex and deficits in cognitive control.
Collapse
Affiliation(s)
- Anja Riesel
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Departments of Biomedical Sciences and Psychology, Florida State University, Tallahassee, FL, USA
| | - Rosa Grützmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan Heinzel
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, Freie University Berlin, Berlin, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Leonhard Lennertz
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Liang W, Gasparyan L, AlQarawi W, Davis DR. Disease modeling of cardiac arrhythmias using human induced pluripotent stem cells. Expert Opin Biol Ther 2019; 19:313-333. [PMID: 30682895 DOI: 10.1080/14712598.2019.1575359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Inherited arrhythmias are an uncommon, but malignant family of cardiac diseases that result from genetic abnormalities in the ion channels and/or structural proteins within cardiomyocytes. Given the inherent differences between species and the limited reproducibility of in vitro heterologous cell models, progress in understanding the mechanisms underlying these malignant diseases has always languished far behind the clinical science and need. The ability to study human induced pluripotent stem cells (iPSCs) derived cardiomyocytes promises to change this paradigm as patient cells have the potential to become testing platforms for disease phenotyping or therapeutic discovery. AREAS COVERED This review will outline methods developed to genetically reprogram adult cells into iPSCs, differentiate iPSCs into ex vivo models of adult cardiac tissue and iPSCs-based progress in exploring the mechanisms underlying pro-arrhythmic disease phenotypes. EXPERT OPINION Despite being discovered less than 15 years ago, several studies have successfully leveraged iPSCs-derived cardiomyocytes to study malignant arrhythmogenic diseases. These models promise to increase our understanding of the pathophysiology underlying these complex diseases and may identify personalized approaches to treatment.
Collapse
Affiliation(s)
- Wenbin Liang
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada.,b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada
| | - Lilit Gasparyan
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada
| | - Wael AlQarawi
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada
| | - Darryl R Davis
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada.,b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
31
|
Association between nephropathy and QT dispersion in type 2 diabetic patients. JOURNAL OF SURGERY AND MEDICINE 2018. [DOI: 10.28982/josam.465499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Abstract
The discovery of the human genome has ushered in a new era of molecular testing, advancing our knowledge and ability to identify cardiac channelopathies. Genetic variations can affect the opening and closing of the potassium, sodium, and calcium channels, resulting in arrhythmias and sudden death. Cardiac arrhythmias caused by disorders of ion channels are known as cardiac channelopathies. Nurses are important members of many interdisciplinary teams and must have a general understanding of the pathophysiology of the most commonly encountered cardiac channelopathies, electrocardiogram characteristics, approaches to treatment, and care for patients and their families. This article provides an overview of cardiac channelopathies that nurses might encounter in an array of clinical and research settings, focusing on the clinically relevant features of long QT syndrome, short QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and arrhythmogenic right ventricular dysplasia/cardiomyopathy.
Collapse
Affiliation(s)
- Kathleen T Hickey
- Kathleen T. Hickey is Professor of Nursing, Columbia University Medical Center, 622 W 168th St, New York, NY 10032 . Amir Elzomor is a premedical student at the Albert Dorman Honors College at the New Jersey Institute of Technology, Newark, New Jersey
| | - Amir Elzomor
- Kathleen T. Hickey is Professor of Nursing, Columbia University Medical Center, 622 W 168th St, New York, NY 10032 . Amir Elzomor is a premedical student at the Albert Dorman Honors College at the New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
33
|
Morita H. They Are Not Monozygotic Twins - Long QT Syndrome Type 1 (LQT1) and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Circ J 2018; 82:2246-2247. [PMID: 30089744 DOI: 10.1253/circj.cj-18-0810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Affiliation(s)
- Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
34
|
Yankelson L, Hochstadt A, Sadeh B, Pick B, Finkelstein A, Rosso R, Viskin S. New formula for defining "normal" and "prolonged" QT in patients with bundle branch block. J Electrocardiol 2018; 51:481-486. [PMID: 29395105 DOI: 10.1016/j.jelectrocard.2017.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To predict the QT interval in the presence of normal QRS for patients with left bundle branch block (LBBB). BACKGROUND There is no acceptable method for simple and reliable QT correction for patients with bundle branch block (BBB). METHODS We measured the QT interval in patients with new onset LBBB who had a recent electrocardiogram with narrow QRS for comparison. 48 patients who developed in-hospital LBBB were studied. Patients who had similar heart rate before and after LBBB were included. We used linear regression, the Bogossian method, and our new fixed QRS replacement method to evaluate the most reliable correction method. RESULTS JTc (QTc-QRS) interval was preserved before and after LBBB (328.9 ± 25.4 ms before LBBB vs. 327.3 ms post LBBB (p = 0.550). Mean predicted preLBBB QTc difference was 1.3 ms, -21.3 ms and 1.6 ms for the three methods respectively (p < 0.001 for Bogossian comparison with the other methods). Coefficients of correlation (R) between actual preLBBB QTc with predicted preLBBB QTc were 0.707, 0.683 and 0.665 respectively (p > 0.3 for R comparisons between all methods). The average absolute difference in preLBBB QTc was 15.5 ms and 16.7 ms for the regression and fixed-gender methods (p value between the two = 0.321) and 25.5 ms for the Bogossian method, which was found to be significantly underperforming. CONCLUSIONS In patients with LBBB, replacing of the QRS duration after deriving the QTc interval with a fixed value of 88 ms for female and 95 ms for male provides a simple and reliable method for predicting the QTc before the development of LBBB.
Collapse
Affiliation(s)
- Lior Yankelson
- Cardiac Electrophysiology, Division of Cardiology, NYU Langone Health, New York University School of Medicine, New York, USA.
| | - Aviram Hochstadt
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Israel
| | - Ben Sadeh
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Israel
| | - Benley Pick
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Israel
| | - Ariel Finkelstein
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Israel
| | - Raphael Rosso
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Israel
| | - Sami Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
35
|
Follansbee CW, Beerman L, Arora G. Automated QT analysis on Holter monitors in pediatric patients can differentiate long QT syndrome from controls. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2018; 41:50-56. [DOI: 10.1111/pace.13244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/26/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Lee Beerman
- Division of Pediatric Cardiology; Children's Hospital of Pittsburgh of UPMC; Pittsburgh PA USA
| | - Gaurav Arora
- Division of Pediatric Cardiology; Children's Hospital of Pittsburgh of UPMC; Pittsburgh PA USA
| |
Collapse
|
36
|
Kwok SY, Pflaumer A, Pantaleo SJ, Date E, Jadhav M, Davis AM. Ten-year experience in atenolol use and exercise evaluation in children with genetically proven long QT syndrome. J Arrhythm 2017; 33:624-629. [PMID: 29255512 PMCID: PMC5728996 DOI: 10.1016/j.joa.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Background Due to its availability, atenolol is the primary beta-blocker used in Australia for children with long QT syndrome. There is limited data on long-term follow-up of its use. Methods A single-tertiary-center, retrospective, observational study investigating all children and adolescents who had genetically proven long QT syndrome type 1 (LQT1) and type 2 (LQT2) was conducted. Their pretreatment exercise tests were evaluated for QTc intervals into the recovery phase of exercise. Results Eighty six patients were identified (LQT1, 67, and LQT2, 19) from 2004 to 2014. The majority (86%) of patients were initially referred for family screening. Atenolol was administered at a mean dose of 1.58 ± 0.51 mg/kg/day. During the median follow-up period of 4.29 years, only one proband developed ventricular arrhythmia whilst taking atenolol, No patient had cardiac arrest or aborted cardiac arrest. With respect to side effects of atenolol, only two patients had intolerable side effects necessitating changes of medication. Evaluation of exercise tests (pretreatment) demonstrated that corrected QT (QTc) intervals at 2–3 min into the recovery phase of exercise were significantly prolonged for LQT1 patients. LQT1 patients with transmembrane mutation had longer QTc intervals than their C-terminus mutation counterparts, reaching statistical significance at 3 min into the recovery phase of exercise. Conclusions Atenolol is an effective treatment for genetically proven LQT1 and LQT2 children and adolescents, with good tolerability. In LQT1 patients, QTc intervals at 2–3 min into the recovery phase of exercise were significantly prolonged, particularly in patients with transmembrane mutations.
Collapse
Key Words
- Atenolol
- Beta-blocker
- ECG, Electrocardiogram
- Exercise
- ICD, Implantable cardioverter-defibrillator
- LCSD, Left cardiac sympathetic denervation
- LQT1, Long QT syndrome type 1
- LQT2, Long QT syndrome type 2
- LQTS, Long QT syndrome
- Long QT syndrome
- Pediatrics
- QTc, Corrected QT
- SD, Standard deviation
- SFM, Screened family members
- TdP, Torsade de pointes
- min, Minutes
- s, Seconds
Collapse
Affiliation(s)
- Sit-Yee Kwok
- Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Andreas Pflaumer
- Department of Cardiology, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, VIC 3052, Australia.,Department of Paediatrics, Melbourne University, Australia
| | | | - Erin Date
- Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Mangesh Jadhav
- Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Andrew Mark Davis
- Department of Cardiology, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, VIC 3052, Australia.,Department of Paediatrics, Melbourne University, Australia
| |
Collapse
|
37
|
Luceri RM, Kroll MW, Calkins H, Halperin H. Commentary on: Gibbons J, Mojica A, Peele M. Human electrical muscular incapacitation and effects on QTc interval. J Forensic Sci https://doi.org/10.1111/1556-4029.13490. Epub 2017 April 17. J Forensic Sci 2017; 62:1682-1683. [PMID: 29152803 DOI: 10.1111/1556-4029.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Richard M Luceri
- Cardiac Electrophysiology, Holy Cross Hospital, Ft. Lauderdale, FL
| | - Mark W Kroll
- University of Minnesota, Minneapolis, MN.,Cal Poly University, San Luis Obispo, CA
| | - Hugh Calkins
- Nicholas J. Fortuin M.D. Professor of Cardiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.,Cardiac Arrhythmia Services, Baltimore, MD
| | - Henry Halperin
- Johns Hopkins University School of Medicine, Baltimore, MD.,Johns Hopkins Imaging Institute of Excellence, Baltimore, MD
| |
Collapse
|
38
|
Muñoz-Esparza C, Zorio E, Domingo Valero D, Peñafiel-Verdú P, Sánchez-Muñoz JJ, García-Molina E, Sabater M, Navarro M, San-Román I, Pérez I, Santos JJ, Cabañas-Perianes V, Valdés M, Pascual D, García-Alberola A, Gimeno Blanes JR. Valor del «test de bipedestación» en el diagnóstico y la evaluación de la respuesta al tratamiento con bloqueadores beta en el síndrome de QT largo. Rev Esp Cardiol (Engl Ed) 2017. [DOI: 10.1016/j.recesp.2016.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Waddell‐Smith K, Gow RM, Skinner JR. How to measure a QT interval. Med J Aust 2017; 207:107-110. [DOI: 10.5694/mja16.00442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Affiliation(s)
| | - Robert M Gow
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | |
Collapse
|
40
|
Ataro G. Anesthesia for children with long QT syndrome: Challenges and solutions from pediatric studies. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2017. [DOI: 10.1016/j.tacc.2017.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Wang B, Zhang LI, Cong P, Chu H, Liu Y, Liu J, Surkis W, Xia Y. A New Formula for Estimating the True QT Interval in Left Bundle Branch Block. J Cardiovasc Electrophysiol 2017; 28:684-689. [PMID: 28297125 DOI: 10.1111/jce.13203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION QT prolongation is an independent risk factor for cardiac mortality. Left bundle branch block (LBBB) is more common in patients as they age. Widening of the QRS in LBBB causes false QT prolongation and thus makes true QT assessment difficult. We aimed to develop a simple formula to achieve a good estimate of the QT interval in the presence of LBBB. METHODS AND RESULTS To determine the effect of QRS duration on the QT interval, QRS and QT were measured in sinus rhythm and during right ventricular apical pacing in 62 patients (age 55 ± 11 years, 60% male) undergoing electrophysiology studies. A QT formula for LBBB (QT-LBBB) was derived based on the effect of increased QRSLBBB on QTLBBB . The predictive accuracy of the QT-LBBB formula was then tested in 22 patients (age 66 ± 13 years, 64% male) with intermittent LBBB with comparisons to prior QT formulae and JT index. On average, the net increase in QRSLBBB constituted 92% of the net increase in QTLBBB . A new formula, QT-LBBB = QTLBBB - (0.86 * QRSLBBB - 71), which takes the net increase in QRSLBBB into account, best predicted the QT interval with heart rate corrected QTc in the test set of LBBB ECGs when compared to the baseline value and prior formulae. CONCLUSION The QT-LBBB formula developed in this study best estimates the true QT interval in the presence of LBBB. It is simple and therefore can be easily utilized in clinical practice.
Collapse
Affiliation(s)
- Binhao Wang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - L I Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Lankenau Medical Center and Lankenau Institute for Medical Research, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Peixin Cong
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Huimin Chu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Ying Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jinqiu Liu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - William Surkis
- Lankenau Medical Center and Lankenau Institute for Medical Research, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
42
|
Bagnall RD, Semsarian C. Role of the molecular autopsy in the investigation of sudden cardiac death. PROGRESS IN PEDIATRIC CARDIOLOGY 2017. [DOI: 10.1016/j.ppedcard.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Kapplinger JD, Erickson A, Asuri S, Tester DJ, McIntosh S, Kerr CR, Morrison J, Tang A, Sanatani S, Arbour L, Ackerman MJ. KCNQ1 p.L353L affects splicing and modifies the phenotype in a founder population with long QT syndrome type 1. J Med Genet 2017; 54:390-398. [PMID: 28264985 PMCID: PMC5502312 DOI: 10.1136/jmedgenet-2016-104153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Background Variable expressivity and incomplete penetrance between individuals with identical long QT syndrome (LQTS) causative mutations largely remain unexplained. Founder populations provide a unique opportunity to explore modifying genetic effects. We examined the role of a novel synonymous KCNQ1 p.L353L variant on the splicing of exon 8 and on heart rate corrected QT interval (QTc) in a population known to have a pathogenic LQTS type 1 (LQTS1) causative mutation, p.V205M, in KCNQ1-encoded Kv7.1. Methods 419 adults were genotyped for p.V205M, p.L353L and a previously described QTc modifier (KCNH2-p.K897T). Adjusted linear regression determined the effect of each variant on QTc, alone and in combination. In addition, peripheral blood RNA was extracted from three controls and three p.L353L-positive individuals. The mutant transcript levels were assessed via qPCR and normalised to overall KCNQ1 transcript levels to assess the effect on splicing. Results For women and men, respectively, p.L353L alone conferred a 10.0 (p=0.064) ms and 14.0 (p=0.014) ms increase in QTc and in men only a significant interaction effect in combination with the p.V205M (34.6 ms, p=0.003) resulting in a QTc of ∼500 ms. The mechanism of p.L353L's effect was attributed to approximately threefold increase in exon 8 exclusion resulting in ∼25% mutant transcripts of the total KCNQ1 transcript levels. Conclusions Our results provide the first evidence that synonymous variants outside the canonical splice sites in KCNQ1 can alter splicing and clinically impact phenotype. Through this mechanism, we identified that p.L353L can precipitate QT prolongation by itself and produce a clinically relevant interactive effect in conjunction with other LQTS variants.
Collapse
Affiliation(s)
- Jamie D Kapplinger
- Mayo Medical School, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Anders Erickson
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Sirisha Asuri
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Tester
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah McIntosh
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles R Kerr
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie Morrison
- Gitxsan Health Society, Hazelton, British Columbia, Canada
| | - Anthony Tang
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Shubhayan Sanatani
- Division of Cardiology, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Laura Arbour
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael J Ackerman
- Mayo Medical School, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA.,Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
44
|
Cortez D, Bos JM, Ackerman MJ. Vectorcardiography identifies patients with electrocardiographically concealed long QT syndrome. Heart Rhythm 2017; 14:894-899. [PMID: 28279743 DOI: 10.1016/j.hrthm.2017.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Long QT syndrome (LQTS) and genotypic subtypes are associated with distinctive T-wave patterns, arrhythmogenic triggers, and corrected QT (QTc) interval risk associations. Twenty percent of patients with LQTS have normal QTc values, defined as electrographically concealed LQTS (ecLQTS). Vectorcardiography (VCG) has value for sudden cardiac death risk assessment. OBJECTIVE The purpose of this study was to determine the use of VCG to identify patients with ecLQTS. METHODS We performed a retrospective analysis in patients with ecLQTS with resting QTc values <440 ms. Computerized derivation of the spatial mean and peak QRS-T angles, QTpeak, Tpeak-Tend (angle between QRS and T-wave peak amplitudes in 3-dimensional space), and T-wave eigenvalues (TwEVs; amplitudes [in microvolts] for each of the first 4 TwEVs were derived from the 12-lead electrocardiogram) was performed. The results were compared with those for healthy controls. Intergenotype differences were analyzed. RESULTS Of 610 patients with LQTS, 169 patients (28%) had ecLQTS (86 (51%) men; mean age 22 ± 16 years; mean QTc interval 422 ± 14 ms). There were 519 healthy controls (44% men; mean age 19.8 ± 13.8 years) with a mean QTc interval of 426 ± 28 ms. Among VCG parameters, QTpeak and TwEVs significantly differentiated patients with ecLQTS from controls (P ≤ .01 for each) as well as differentiated KCNQ1-encoded type 1 LQTS (ecLQT1), KCNH2-encoded type 2 LQTS (ecLQT2), and SCN5A-encoded type 3 LQTS (ecLQT3) from controls (P < .01). ecLQT3 was differentiated from controls and ecLQT1 and ecLQT2 by the fourth TwEV (P < .01 for each). The fourth TwEV differentiated symptomatic patients with ecLQTS from asymptomatic patients with ecLQTS (P < .01). CONCLUSION ecLQTS can be distinguished from controls using QTpeak. ecLQT3 was best differentiated by the fourth TwEV. VCG may facilitate familial diagnostic anticipation of LQTS status before the completion of mutation-specific genetic testing even with normal resting QTc values.
Collapse
Affiliation(s)
- Daniel Cortez
- Department of Electrophysiology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania; Clinical Sciences, Lund University, Lund, Sweden
| | - J Martijn Bos
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
45
|
Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, Gerche AL, Ackerman MJ, Borjesson M, Salerno JC, Asif IM, Owens DS, Chung EH, Emery MS, Froelicher VF, Heidbuchel H, Adamuz C, Asplund CA, Cohen G, Harmon KG, Marek JC, Molossi S, Niebauer J, Pelto HF, Perez MV, Riding NR, Saarel T, Schmied CM, Shipon DM, Stein R, Vetter VL, Pelliccia A, Corrado D. International criteria for electrocardiographic interpretation in athletes: Consensus statement. Br J Sports Med 2017; 51:704-731. [PMID: 28258178 DOI: 10.1136/bjsports-2016-097331] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 01/16/2023]
Abstract
Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD.
Collapse
Affiliation(s)
- Jonathan A Drezner
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, London, UK
| | - Aaron Baggish
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, US
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St. George's, University of London, London, UK
| | - Mathew G Wilson
- Department of Sports Medicine, ASPETAR, Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Jordan M Prutkin
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Andre La Gerche
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.,Department of Paediatric, Mayo Clinic, Rochester, Minnesota, USA.,Department of Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Mats Borjesson
- Department of Neuroscience, Sahlgrenska University Hospital/Ostra Sahlgrenska Academy, Goteborg, Sweden.,Department of Physiology, Sahlgrenska University Hospital/Ostra Sahlgrenska Academy, Goteborg, Sweden
| | - Jack C Salerno
- Department of Pediatrics, University of Washington, Seattle, Washington, US
| | - Irfan M Asif
- Department of Family Medicine, University of South Carolina, Greenville, USA
| | - David S Owens
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Eugene H Chung
- Division of Cardiology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael S Emery
- Center of Cardiovascular Care in Athletics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Carmen Adamuz
- Department of Sports Medicine, ASPETAR, Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Gordon Cohen
- Division of Paediatric Surgery, University of California, San Francisco School of Medicine, San Francisco, California, USA.,Division of Cardiothoracic Surgery, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Kimberly G Harmon
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | | | - Silvana Molossi
- Division of Pediatric, Baylor College of Medicine, Houston, Texas, USA.,Division of Cardiology, Baylor College of Medicine, Houston, Texas, USA
| | - Josef Niebauer
- University Institute of Sports Medicine, Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Hank F Pelto
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | - Marco V Perez
- Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Nathan R Riding
- Department of Sports Medicine, ASPETAR, Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Tess Saarel
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - David M Shipon
- Heart Centre of Philadelphia, Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Ricardo Stein
- Department of Cardiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victoria L Vetter
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Domenico Corrado
- Department of Cardiac Science, University of Padua Medical School, Padua, Italy.,Department of Thoracic Sciences, University of Padua Medical School, Padua, Italy.,Department of Vascular Sciences, University of Padua Medical School, Padua, Italy
| |
Collapse
|
46
|
Muñoz-Esparza C, Zorio E, Domingo Valero D, Peñafiel-Verdú P, Sánchez-Muñoz JJ, García-Molina E, Sabater M, Navarro M, San-Román I, Pérez I, Santos JJ, Cabañas-Perianes V, Valdés M, Pascual D, García-Alberola A, Gimeno Blanes JR. Value of the "Standing Test" in the Diagnosis and Evaluation of Beta-blocker Therapy Response in Long QT Syndrome. ACTA ACUST UNITED AC 2017; 70:907-914. [PMID: 28233664 DOI: 10.1016/j.rec.2017.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION AND OBJECTIVES Patients with congenital long QT syndrome (LQTS) have an abnormal QT adaptation to sudden changes in heart rate provoked by standing. The present study sought to evaluate the standing test in a cohort of LQTS patients and to assess if this QT maladaptation phenomenon is ameliorated by beta-blocker therapy. METHODS Electrographic assessments were performed at baseline and immediately after standing in 36 LQTS patients (6 LQT1 [17%], 20 LQT2 [56%], 3 LQT7 [8%], 7 unidentified-genotype patients [19%]) and 41 controls. The corrected QT interval (QTc) was measured at baseline (QTcsupine) and immediately after standing (QTcstanding); the QTc change from baseline (ΔQTc) was calculated as QTcstanding - QTcsupine. The test was repeated in 26 patients receiving beta-blocker therapy. RESULTS Both QTcstanding and ΔQTc were significantly higher in the LQTS group than in controls (QTcstanding, 528 ± 46ms vs 420 ± 15ms, P < .0001; ΔQTc, 78 ± 40ms vs 8 ± 13ms, P < .0001). No significant differences were noted between LQT1 and LQT2 patients. Typical ST-T wave patterns appeared after standing in LQTS patients. Receiver operating characteristic curves of QTcstanding and ΔQTc showed a significant increase in diagnostic value compared with the QTcsupine (area under the curve for both, 0.99 vs 0.85; P < .001). Beta-blockers attenuated the response to standing in LQTS patients (QTcstanding, 440 ± 32ms, P < .0001; ΔQTc, 14 ± 16ms, P < .0001). CONCLUSIONS Evaluation of the QTc after the simple maneuver of standing shows a high diagnostic performance and could be important for monitoring the effects of beta-blocker therapy in LQTS patients.
Collapse
Affiliation(s)
- Carmen Muñoz-Esparza
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain.
| | - Esther Zorio
- Unidad de Valoración del Riesgo de Muerte Súbita Familiar, Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Diana Domingo Valero
- Unidad de Valoración del Riesgo de Muerte Súbita Familiar, Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Pablo Peñafiel-Verdú
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Juan J Sánchez-Muñoz
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Esperanza García-Molina
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - María Sabater
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Marina Navarro
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Irene San-Román
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Inmaculada Pérez
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Juan J Santos
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Valentín Cabañas-Perianes
- Departamento de Hematología y Análisis Clínico, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Mariano Valdés
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Domingo Pascual
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Arcadio García-Alberola
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Juan R Gimeno Blanes
- Unidad de Cardiopatías Familiares, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| |
Collapse
|
47
|
Madan N, Carvalho KS. Neurological Complications of Cardiac Disease. Semin Pediatr Neurol 2017; 24:3-13. [PMID: 28779863 DOI: 10.1016/j.spen.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article focuses on the complex interactions between the cardiovascular and neurologic systems. Initially, we focus on neurological complications in children with congenital heart disease both secondary to the underlying cardiac disease and complications of interventions. We later discuss diagnosis and management of common syncope syndromes with emphasis on vasovagal syncope. We also review the diagnosis, classification, and management of children and adolescents with postural orthostatic tachycardia syndrome. Lastly, we discuss long QT syndrome and sudden unexpected death in epilepsy (SUDEP), reviewing advances in genetics and current knowledge of pathophysiology of these conditions. This article attempts to provide an overview of these disorders with focus on pathophysiology, advances in molecular genetics, and current medical interventions.
Collapse
Affiliation(s)
- Nandini Madan
- From the Section of Cardiology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA.
| | - Karen S Carvalho
- Section of Neurology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
48
|
Chorin E, Hochstadt A, Viskin S, Rozovski U, Havakuk O, Baranchuk A, Enriquez A, Strasberg B, Guevara-Valdivia ME, Márquez MF, González-Pacheco H, Hasdemir C, Rosso R. Female gender as independent risk factor of torsades de pointes during acquired atrioventricular block. Heart Rhythm 2017; 14:90-95. [DOI: 10.1016/j.hrthm.2016.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Indexed: 11/29/2022]
|
49
|
Pham CP, de Feiter PW, van der Kuy PHM, van Mook WN. Long QTc Interval and Torsade de Pointes Caused by Fluconazole. Ann Pharmacother 2016; 40:1456-61. [PMID: 16849620 DOI: 10.1345/aph.1g741] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Objective: To describe a patient who developed torsade de pointes while being treated with fluconazole. Case Summary: A 33-year-old woman with a 5 year history of systemic lupus erythematosus was admitted to the intensive care unit because of respiratory insufficiency due to Candida albicans pneumonia. Therapy with intravenous fluconazole 200 mg/day, with dose later adjusted according to her renal function, was started. Prolongation of the QTc interval and torsade de pointes occurred. Initially, domperidone, which had been initiated the day before fluconazole, was suspected as the possible cause and was discontinued; ultimately, both drugs were discontinued. However, torsade de pointes recurred several weeks later when the patient was treated with fluconazole for a second time and disappeared again on withdrawal of the drug. According to the Naranjo probability scale, this adverse reaction was highly probable. Discussion: The risk of torsade de pointes does not correlate in a linear fashion with prolongation of the QTc interval, but an interval beyond 500 msec is considered a significant risk factor. Given that both fluconazole and domperidone are metabolized by the cytochrome P450 system, they may intensify each other's proarrhythmic effects, particularly in patients with concurrent renal dysfunction. These risks are of particular concern in patients whose baseline QTc interval is prolonged for any reason. Conclusions: From the case history, as well as use of the Naranjo scale, we concluded that fluconazole was the highly probable cause of the development of torsade de pointes in our patient.
Collapse
Affiliation(s)
- C Phu Pham
- Department of Intensive Care, Twenteborg Hospital Almelo, Netherlands
| | | | | | | |
Collapse
|
50
|
J E, T D, M S, M KN, J D, M NW. Mutation analysis for the detection of long QT-syndrome (LQTS) associated SNPs. Int J Legal Med 2016; 131:333-338. [PMID: 27613431 DOI: 10.1007/s00414-016-1446-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023]
Abstract
Congenital long QT-syndrome (LQTS) is an inherited cardiac arrhythmia, which is characterized by a prolonged QT interval which predisposes to sudden cardiac death due to ventricular arrhythmias. The altered functions are based on different mutations in LQTS-associated genes. In this study, we performed a mutation analysis for the detection of 125 LQTS-associated single nucleotide polymorphisms (SNPs) focused on the genes KCNQ1, KCNH2, and SCN5A by using the SNaPshot multiplex minisequencing technique. Furthermore, we investigated 152 autopsy-negative cases from younger adults and infants, as well as samples from patients with clinically suspicion for LQTS, in which we found two types of variations.
Collapse
Affiliation(s)
- Edelmann J
- Institute of Legal Medicine, University of Leipzig, Leipzig, Germany.
| | - Dobosz T
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sobieszczanska M
- Department of Pathophysiology, Division of Electrocardiology and Cardiovascular Diseases Prevention, Wroclaw Medical University, Wroclaw, Poland
| | - Kawecka-Negrusz M
- Department and Clinic of Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Dreßler J
- Institute of Legal Medicine, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|