1
|
Dovrat S, Shabat A, Yahav-Dovrat A, Soufiev Z, Mendelson E, Kashi-Zagdoun E, Rahav G. Analysis of HSV1/2 Infection Reveals an Association between HSV-2 Reactivation and Pregnancy. Viruses 2024; 16:1370. [PMID: 39339846 PMCID: PMC11437484 DOI: 10.3390/v16091370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The herpes simplex viruses consist of the strains, HSV-1 and HSV-2, which are prevalent worldwide and lack a definitive cure. We aimed to explore the specific characteristics of HSV 1 and 2 infections, such as differences between gender assigned at birth, age at infection, site of infection, comorbidities, and effect of pregnancy, through a data analysis. Between 2011 and 2018, the Israeli Central Virology Laboratory diagnosed 9189 samples using multiplexed real-time PCR. In addition, we extracted all of the medical data for 287 females hospitalized at the Sheba Medical Center with HSV-1 (161) or HSV-2 (126) genital infections. HSV-2 was almost absent in the orofacial samples from both genders, while in other lesion sites, HSV-2 was significantly more abundant in females than in males (p < 0.05,). HSV-2 was initially detected at puberty. In the hospitalized females' malignancies, both HSV-1 and HSV-2 were found with a non-significant difference. Simultaneously, pregnancies were more common in females who were HSV-2-positive compared with those who were HSV-1-positive (27.8% vs. 12.4%, respectively, p < 0.01). Primary infections occur more with HSV-1 than with HSV-2 (15.6% vs. 3.2%, respectively). Our findings demonstrate that genital HSV-2 infection episodes are more frequent during pregnancy, suggesting that pregnancy may serve as a risk factor for HSV-2 reactivation or infection.
Collapse
Affiliation(s)
- Sara Dovrat
- National Center for Herpes, Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Adar Shabat
- National Center for Herpes, Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Anat Yahav-Dovrat
- Department of Radiology, Rambam Health Care Campus, Haifa 31096, Israel
| | - Zvia Soufiev
- National Center for Herpes, Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Ella Mendelson
- National Center for Herpes, Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Ela Kashi-Zagdoun
- National Center for Herpes, Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Galia Rahav
- Infectious Diseases Unit, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Fischer MD, Green ML, Selke S, Limaye AP, Wald A, Boeckh MJ, Phipps AI, Pergam SA, Johnston C. Evaluation of oral herpes simplex virus shedding among solid organ transplant recipients: A pilot study. Transpl Infect Dis 2024; 26:e14335. [PMID: 39010324 PMCID: PMC11329158 DOI: 10.1111/tid.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Herpes simplex viruses (HSVs) frequently reactivate during immunosuppression and may be a risk factor for adverse outcomes after solid organ transplant (SOT). While suppressive antiviral therapy reduces the risk of symptomatic HSV reactivation, the kinetics of asymptomatic viral shedding with chronic immunosuppression after transplant are not well understood. We report the characteristics of oral HSV shedding among 15 HSV-1 seropositive SOT recipients (n = 8 liver, n = 7 kidney, median age 58.5 years, median 20 months post-transplant) who were not taking daily antiviral suppressive therapy. METHODS Participants self-collected oral swabs three times daily for 6 weeks for HSV quantification and recorded the presence of oral symptoms or lesions in a diary. RESULTS Sample collection adherence was high (median 122 swabs/person, range: 85.7%-101.6% of expected swabs). Most participants (n = 12, 80%) experienced at least one shedding episode, with a median shedding rate of 8.9% (range: 0%-33.6%). There were 32 total shedding episodes, 24 (75%) of which occurred without symptoms or lesions. For episodes of known duration, the median length was 21.8 hrs (interquartile range: 10.8-46.1 hrs). CONCLUSION Most shedding episodes (78.1%) lasted >12 hrs, suggesting that twice-daily sampling may be sufficient to detect most episodes. These data show that self-collection of oral swabs is feasible for patients who have undergone SOTs and can provide insight into the frequency of oral HSV reactivation, which can be used to design future studies in this population.
Collapse
Affiliation(s)
- Molly D Fischer
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Margaret L Green
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Stacy Selke
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ajit P Limaye
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Anna Wald
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael J Boeckh
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Steven A Pergam
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Christine Johnston
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Zhu J, Miner MD. Local Power: The Role of Tissue-Resident Immunity in Human Genital Herpes Simplex Virus Reactivation. Viruses 2024; 16:1019. [PMID: 39066181 PMCID: PMC11281577 DOI: 10.3390/v16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
From established latency, human herpes virus type 2 (HSV-2) frequently reactivates into the genital tract, resulting in symptomatic ulcers or subclinical shedding. Tissue-resident memory (TRM) CD8+ T cells that accumulate and persist in the genital skin at the local site of recrudescence are the "first responders" to viral reactivation, performing immunosurveillance and containment and aborting the ability of the virus to induce clinical lesions. This review describes the unique spatiotemporal characteristics, transcriptional signatures, and noncatalytic effector functions of TRM CD8+ T cells in the tissue context of human HSV-2 infection. We highlight recent insights into the intricate overlaps between intrinsic resistance, innate defense, and adaptive immunity in the tissue microenvironment and discuss how rapid virus-host dynamics at the skin and mucosal level influence clinical outcomes of genital herpes diseases.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Maurine D. Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
4
|
Mehrmal S, Mojica R, Guo AM, Missall TA. Diagnostic Methods and Management Strategies of Herpes Simplex and Herpes Zoster Infections. Clin Geriatr Med 2024; 40:147-175. [PMID: 38000858 DOI: 10.1016/j.cger.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Herpesviruses are medium-sized double-stranded DNA viruses. Of more than 80 herpesviruses identified, only 9 human herpesviruses have been found to cause infection in humans. These include herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), human cyto-megalovirus (HCMV), Epstein-Barr virus (EBV), and human herpesvirus (HHV-6A, HHV-6B, HHV-7, HHV-8). HSV-1, HSV-2, and VZV can be problematic given their characteristic neurotropism which is the ability to invade via fusion of its plasma membrane and reside within neural tissue. HSV and VZV primarily infect mucocutaneous surfaces and remain latent in the dorsal root ganglia for a host's entire life. Reactivation causes either asymptomatic shedding of virus or clinical manifestation of vesicular lesions. The clinical presentation is influenced by the portal of entry, the immune status of the host, and whether the infection is primary or recurrent. Affecting 60% to 95% of adults, herpesvirus-associated infections include gingivostomatitis, orofacial and genital herpes,and primary varicella and herpes zoster. Symptomatology, treatment, and potential complications vary based on primary and recurrent infections as well as the patient's immune status.
Collapse
Affiliation(s)
- Sino Mehrmal
- Department of Dermatology, Saint Louis University School of Medicine, 1225 South Grand Boulevard, Saint Louis, MO 63104, USA
| | - Rafael Mojica
- Department of Dermatology, University of Florida College of Medicine, 4037 Northwest 86th Terrace, Gainesville, FL 32606, USA
| | - Aibing Mary Guo
- Department of Dermatology, Saint Louis University School of Medicine, 1225 South Grand Boulevard, Saint Louis, MO 63104, USA
| | - Tricia A Missall
- Department of Dermatology, University of Florida College of Medicine, 4037 Northwest 86th Terrace, Gainesville, FL 32606, USA.
| |
Collapse
|
5
|
Anderson E, Johns E, Conlon J, Saleh E. Neonatal herpes simplex presenting as a zosteriform eruption. BMJ Case Rep 2023; 16:e252627. [PMID: 36657819 PMCID: PMC9853119 DOI: 10.1136/bcr-2022-252627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Herpes simplex virus (HSV) infection in newborn infants is a potentially devastating disease leading to death and disability. Skin, eye and mouth (SEM) infections account for approximately half of the cases in the USA. The appearance of skin findings often guides clinicians towards early diagnosis of HSV infection, prompt interventions and life-saving management; however, less than half of neonates with proven disease present with characteristic vesicular lesions. Furthermore, if SEM infections are not treated promptly, there is significant risk of progression to central nervous system and disseminated disease. We present a case of HSV-2 infection in a neonate with an atypical zosteriform eruption on day 3 of life. This case demonstrates that neonatal HSV can unusually present in a zosteriform rash. By elucidating this unique presentation, we highlight atypical HSV skin presentation and emphasise on the importance of earlier diagnosis and antiviral treatment to prevent the associated morbidity and mortality.
Collapse
Affiliation(s)
- Elizabeth Anderson
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Emma Johns
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Joseph Conlon
- Department of Pediatrics and Department of Dermatology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Pediatrics, Springfield Clinic, Springfield, Illinois, USA
| | - Ezzeldin Saleh
- Pediatrics-Infectious Diseases, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
6
|
Johnston C, Magaret A, Son H, Stern M, Rathbun M, Renner D, Szpara M, Gunby S, Ott M, Jing L, Campbell VL, Huang ML, Selke S, Jerome KR, Koelle DM, Wald A. Viral Shedding 1 Year Following First-Episode Genital HSV-1 Infection. JAMA 2022; 328:1730-1739. [PMID: 36272098 PMCID: PMC9588168 DOI: 10.1001/jama.2022.19061] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Herpes simplex virus type 1 (HSV-1) is the leading cause of first-episode genital herpes in many countries. OBJECTIVE To inform counseling messages regarding genital HSV-1 transmission, oral and genital viral shedding patterns among persons with first-episode genital HSV-1 infection were assessed. The trajectory of the development of HSV-specific antibody and T-cell responses was also characterized. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort followed up for up to 2 years, with 82 participants followed up between 2013 and 2018. Participants were recruited from sexual health and primary care clinics in Seattle, Washington. Persons with laboratory-documented first-episode genital HSV-1 infection, without HIV infection or current pregnancy, were referred for enrollment. EXPOSURES First-episode genital HSV-1 infection. MAIN OUTCOMES AND MEASURES Genital and oral HSV-1 shedding and lesion rates at 2 months, 11 months, and up to 2 years after initial genital HSV-1 infection. Participants self-collected oral and genital swabs for HSV polymerase chain reaction testing for 30 days at 2 and 11 months and up to 2 years after diagnosis of genital HSV-1. Blood samples were collected at serial time points to assess immune responses to HSV-1. Primary HSV-1 infection was defined as absent HSV antibody at baseline or evolving antibody profile using the University of Washington HSV Western Blot. HSV-specific T-cell responses were detected using interferon γ enzyme-linked immunospot. RESULTS Among the 82 participants, the median (range) age was 26 (16-64) years, 54 (65.9%) were women, and 42 (51.2%) had primary HSV-1 infection. At 2 months, HSV-1 was detected from the genital tract in 53 participants (64.6%) and in the mouth in 24 participants (29.3%). Genital HSV-1 shedding was detected on 275 of 2264 days (12.1%) at 2 months and declined significantly to 122 of 1719 days (7.1%) at 11 months (model-predicted rate, 6.2% [95% CI, 4.3%-8.9%] at 2 months vs 3.2% [95% CI, 1.8%-5.7%] at 11 months; relative risk, 0.52 [95% CI, 0.29-0.93]). Genital lesions were rare, reported on 65 of 2497 days (2.6%) at 2 months and 72 of 1872 days (3.8%) at 11 months. Oral HSV-1 shedding was detected on 88 of 2247 days (3.9%) at 2 months. Persons with primary HSV-1 infection had a higher risk of genital shedding compared with those with nonprimary infection (model-predicted rate, 7.9% [95% CI, 5.4%-11.7%] vs 2.9% [95% CI, 1.7%-5.0%]; relative risk, 2.75 [95% CI, 1.40-5.44]). Polyfunctional HSV-specific CD4+ and CD8+ T-cell responses were maintained during the follow-up period. CONCLUSIONS AND RELEVANCE Genital HSV-1 shedding was frequent after first-episode genital HSV-1, particularly among those with primary infection, and declined rapidly during the first year after infection.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, Seattle
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Amalia Magaret
- Department of Medicine, University of Washington, Seattle
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Hyunju Son
- Department of Medicine, University of Washington, Seattle
| | - Michael Stern
- Department of Medicine, University of Washington, Seattle
| | - Molly Rathbun
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| | - Daniel Renner
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| | - Moriah Szpara
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| | - Sarah Gunby
- Department of Medicine, University of Washington, Seattle
| | - Mariliis Ott
- Department of Medicine, University of Washington, Seattle
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle
| | | | - Meei-li Huang
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Stacy Selke
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Keith R. Jerome
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Departments of Global Health, University of Washington, Seattle
- Benaroya Research Institute, Seattle, Washington
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Departments of Epidemiology, University of Washington, Seattle
| |
Collapse
|
7
|
Chang A, Sholukh AM, Wieland A, Jaye DL, Carrington M, Huang ML, Xie H, Jerome KR, Roychoudhury P, Greninger AL, Koff JL, Cohen JB, Koelle DM, Corey L, Flowers CR, Ahmed R. Herpes simplex virus lymphadenitis is associated with tumor reduction in a patient with chronic lymphocytic leukemia. J Clin Invest 2022; 132:e161109. [PMID: 35862190 PMCID: PMC9479599 DOI: 10.1172/jci161109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundHerpes simplex virus lymphadenitis (HSVL) is an unusual presentation of HSV reactivation in patients with chronic lymphocytic leukemia (CLL) and is characterized by systemic symptoms and no herpetic lesions. The immune responses during HSVL have not, to our knowledge, been studied.MethodsPeripheral blood and lymph node (LN) samples were obtained from a patient with HSVL. HSV-2 viral load, antibody levels, B and T cell responses, cytokine levels, and tumor burden were measured.ResultsThe patient showed HSV-2 viremia for at least 6 weeks. During this period, she had a robust HSV-specific antibody response with neutralizing and antibody-dependent cellular phagocytotic activity. Activated (HLA-DR+, CD38+) CD4+ and CD8+ T cells increased 18-fold, and HSV-specific CD8+ T cells in the blood were detected at higher numbers. HSV-specific B and T cell responses were also detected in the LN. Markedly elevated levels of proinflammatory cytokines in the blood were also observed. Surprisingly, a sustained decrease in CLL tumor burden without CLL-directed therapy was observed with this and also a prior episode of HSVL.ConclusionHSVL should be considered part of the differential diagnosis in patients with CLL who present with signs and symptoms of aggressive lymphoma transformation. An interesting finding was the sustained tumor control after 2 episodes of HSVL in this patient. A possible explanation for the reduction in tumor burden may be that the HSV-specific response served as an adjuvant for the activation of tumor-specific or bystander T cells. Studies in additional patients with CLL are needed to confirm and extend these findings.FundingNIH grants 4T32CA160040, UL1TR002378, and 5U19AI057266 and NIH contracts 75N93019C00063 and HHSN261200800001E. Neil W. and William S. Elkin Fellowship (Winship Cancer Institute).
Collapse
Affiliation(s)
- Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| | - Anton M. Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andreas Wieland
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| | - David L. Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Hong Xie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jean L. Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
| | - Jonathon B. Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
| | - David M. Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department Medicine and
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department Medicine and
| | | | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| |
Collapse
|
8
|
Gornalusse GG, Zhang M, Wang R, Rwigamba E, Kirby AC, Fialkow M, Nance E, Hladik F, Vojtech L. HSV-2 Infection Enhances Zika Virus Infection of Primary Genital Epithelial Cells Independently of the Known Zika Virus Receptor AXL. Front Microbiol 2022; 12:825049. [PMID: 35126336 PMCID: PMC8811125 DOI: 10.3389/fmicb.2021.825049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Zika virus (ZIKV) is transmitted to people by bite of an infected mosquito and by sexual contact. ZIKV infects primary genital epithelial cells, the same cells targeted by herpes simplex virus 2 (HSV-2). HSV-2 seroprevalence is high in areas where ZIKV is endemic, but it is unknown whether HSV-2 increases the risk for ZIKV infection. Here, we found that pre-infecting female genital tract epithelial cells with HSV-2 leads to enhanced binding of ZIKV virions. This effect did not require active replication by HSV-2, implying that the effect results from the immune response to HSV-2 exposure or to viral genes expressed early in the HSV-2 lifecycle. Treating cells with toll-like receptor-3 ligand poly-I:C also lead to enhanced binding by ZIKV, which was inhibited by the JAK-STAT pathway inhibitor ruxolitinib. Blocking or knocking down the well-studied ZIKV receptor AXL did not prevent binding of ZIKV to epithelial cells, nor prevent enhanced binding in the presence of HSV-2 infection. Blocking the α5 integrin receptor did not prevent ZIKV binding to cells either. Overall, our results indicate that ZIKV binding to genital epithelial cells is not mediated entirely by a canonical receptor, but likely occurs through redundant pathways that may involve lectin receptors and glycosaminoglycans. Our studies may pave the way to new interventions that interrupt the synergism between herpes and Zika viruses.
Collapse
Affiliation(s)
- Germán G. Gornalusse
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States
| | - Ruofan Wang
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Emery Rwigamba
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Anna C. Kirby
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Michael Fialkow
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Florian Hladik
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- *Correspondence: Lucia Vojtech,
| |
Collapse
|
9
|
Abstract
This article describes procedures for two preclinical animal models for genital herpes infection. The guinea pig model shares many features of genital herpes in humans, including a natural route of inoculation, self-limiting primary vulvovaginitis, spontaneous recurrences, symptomatic and subclinical shedding of HSV-2, and latent infection of the associated sensory ganglia (lumbosacral dorsal root ganglia, DRG). Many humoral and cytokine responses to HSV-2 infection in the guinea pig have been characterized; however, due to the limited availability of immunological reagents, assessments of cellular immune responses are lacking. In contrast, the mouse model has been important in assessing cellular immune responses to herpes infection. Both the mouse and guinea pig models have been extremely useful for evaluating preventative and immunotherapeutic approaches for controlling HSV infection and recurrent disease. In this article, we describe procedures for infecting guinea pigs and mice with HSV-2, scoring subsequent genital disease, and measuring replicating virus to confirm infection. We also provide detailed protocols for dissecting and isolating DRG (the site of HSV-2 latency), quantifying HSV-2 genomic copies in DRG, and assessing symptomatic and subclinical shedding of HSV-2 in the vagina. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Primary and recurrent genital herpes infection in the guinea pig model Support Protocol 1: Blood collection via lateral saphenous vein or by cardiac puncture after euthanasia Support Protocol 2: Dissection and isolation of dorsal root ganglia from guinea pigs Support Protocol 3: PCR amplification and quantification of HSV-2 genomic DNA from samples Basic Protocol 2: Primary genital herpes infection in the mouse model Alternate Protocol: Flank infection with HSV-2 in the mouse model Support Protocol 4: Dissection and isolation of mouse dorsal root ganglia.
Collapse
Affiliation(s)
- Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Awasthi S, Knox JJ, Desmond A, Alameh MG, Gaudette BT, Lubinski JM, Naughton A, Hook LM, Egan KP, Tam YK, Pardi N, Allman D, Luning Prak ET, Cancro MP, Weissman D, Cohen GH, Friedman HM. Trivalent nucleoside-modified mRNA vaccine yields durable memory B cell protection against genital herpes in preclinical models. J Clin Invest 2021; 131:e152310. [PMID: 34618692 PMCID: PMC8631595 DOI: 10.1172/jci152310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Nucleoside-modified mRNA vaccines have gained global attention because of COVID-19. We evaluated a similar vaccine approach for preventing a chronic, latent genital infection rather than an acute respiratory infection. We used animal models to compare an HSV-2 trivalent nucleoside-modified mRNA vaccine with the same antigens prepared as proteins, with an emphasis on antigen-specific memory B cell responses and immune correlates of protection. In guinea pigs, serum neutralizing-antibody titers were higher at 1 month and declined far less by 8 months in mRNA- compared with protein-immunized animals. Both vaccines protected against death and genital lesions when infected 1 month after immunization; however, protection was more durable in the mRNA group compared with the protein group when infected after 8 months, an interval representing greater than 15% of the animal's lifespan. Serum and vaginal neutralizing-antibody titers correlated with protection against infection, as measured by genital lesions and vaginal virus titers 2 days after infection. In mice, the mRNA vaccine generated more antigen-specific memory B cells than the protein vaccine at early times after immunization that persisted for up to 1 year. High neutralizing titers and robust B cell immune memory likely explain the more durable protection by the HSV-2 mRNA vaccine.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine and
| | - James J. Knox
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Angela Desmond
- Infectious Disease Division, Department of Medicine and
- Infectious Disease Division, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Brian T. Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Kevin P. Egan
- Infectious Disease Division, Department of Medicine and
| | - Ying K. Tam
- Acuitas Therapeutics Inc., Vancouver, British Columbia, Canada
| | - Norbert Pardi
- Infectious Disease Division, Department of Medicine and
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael P. Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Weissman
- Infectious Disease Division, Department of Medicine and
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
11
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Peng T, Phasouk K, Sodroski CN, Sun S, Hwangbo Y, Layton ED, Jin L, Klock A, Diem K, Magaret AS, Jing L, Laing K, Li A, Huang ML, Mertens M, Johnston C, Jerome KR, Koelle DM, Wald A, Knipe DM, Corey L, Zhu J. Tissue-Resident-Memory CD8 + T Cells Bridge Innate Immune Responses in Neighboring Epithelial Cells to Control Human Genital Herpes. Front Immunol 2021; 12:735643. [PMID: 34552595 PMCID: PMC8450389 DOI: 10.3389/fimmu.2021.735643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/11/2021] [Indexed: 12/02/2022] Open
Abstract
Tissue-resident-memory T cells (TRM) populate the body's barrier surfaces, functioning as frontline responders against reencountered pathogens. Understanding of the mechanisms by which CD8TRM achieve effective immune protection remains incomplete in a naturally recurring human disease. Using laser capture microdissection and transcriptional profiling, we investigate the impact of CD8TRM on the tissue microenvironment in skin biopsies sequentially obtained from a clinical cohort of diverse disease expression during herpes simplex virus 2 (HSV-2) reactivation. Epithelial cells neighboring CD8TRM display elevated and widespread innate and cell-intrinsic antiviral signature expression, largely related to IFNG expression. Detailed evaluation via T-cell receptor reconstruction confirms that CD8TRM recognize viral-infected cells at the specific HSV-2 peptide/HLA level. The hierarchical pattern of core IFN-γ signature expression is well-conserved in normal human skin across various anatomic sites, while elevation of IFI16, TRIM 22, IFITM2, IFITM3, MX1, MX2, STAT1, IRF7, ISG15, IFI44, CXCL10 and CCL5 expression is associated with HSV-2-affected asymptomatic tissue. In primary human cells, IFN-γ pretreatment reduces gene transcription at the immediate-early stage of virus lifecycle, enhances IFI16 restriction of wild-type HSV-2 replication and renders favorable kinetics for host protection. Thus, the adaptive immune response through antigen-specific recognition instructs innate and cell-intrinsic antiviral machinery to control herpes reactivation, a reversal of the canonical thinking of innate activating adaptive immunity in primary infection. Communication from CD8TRM to surrounding epithelial cells to activate broad innate resistance might be critical in restraining various viral diseases.
Collapse
Affiliation(s)
- Tao Peng
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Khamsone Phasouk
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Catherine N. Sodroski
- Department of Microbiology and Virology Program, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Sijie Sun
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Yon Hwangbo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Erik D. Layton
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Alexis Klock
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kurt Diem
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Amalia S. Magaret
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Kerry Laing
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Alvason Li
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Max Mertens
- Department of Microbiology and Virology Program, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Christine Johnston
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David M. Koelle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Anna Wald
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - David M. Knipe
- Department of Microbiology and Virology Program, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Lawrence Corey
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Abstract
Viral venereal diseases remain difficult to treat. Human papilloma virus (HPV) and herpes simplex virus (HSV) are two common viral venereal diseases. HPV infections are characterized by anogenital warts and less commonly by premalignant or malignant lesions. HSV infections classically present as grouped vesicles on an erythematous base with associated burning or pain; however, immunosuppressed patients may have atypical presentations with nodular or ulcerative lesions. This review discusses the epidemiology, diagnosis, and management of anogenital HPV and HSV infections with an emphasis on treatment modalities for the practicing dermatologist. Diagnosis of these diseases typically relies on clinical assessment, although multiple diagnostic techniques can be utilized and are recommended when diagnosis is uncertain or evaluating an individual with increased risk of malignancy. Management of HPV and HSV infections involves appropriate counseling, screening, and multiple treatment techniques. Particularly for HPV infections, a practitioner may need to use a combination of techniques to achieve the desired outcome.
Collapse
|
14
|
Abstract
Herpes simplex viruses (HSV) cause chronic infection in humans that are characterized by periodic episodes of mucosal shedding and ulcerative disease. HSV causes millions of infections world-wide, with lifelong bouts of viral reactivation from latency in neuronal ganglia. Infected individuals experience different levels of disease severity and frequency of reactivation. There are two distantly related HSV species, with HSV-1 infections historically found most often in the oral niche and HSV-2 infections in the genital niche. Over the last two decades, HSV-1 has emerged as the leading cause of first-episode genital herpes in multiple countries. While HSV-1 has the highest level of genetic diversity among human alpha-herpesviruses, it is not yet known how quickly the HSV-1 viral population in a human host adapts over time, or if there are population bottlenecks associated with viral reactivation and/or transmission. It is also unknown how the ecological environments in which HSV infections occur influence their evolutionary trajectory, or that of co-occurring viruses and microbes. In this review, we explore how HSV accrues genetic diversity within each new infection, and yet maintains its ability to successfully infect most of the human population. A holistic examination of the ecological context of natural human infections can expand our awareness of how HSV adapts as it moves within and between human hosts, and reveal the complexity of these lifelong human-virus interactions. These insights may in turn suggest new areas of exploration for other chronic pathogens that successfully evolve and persist among their hosts.
Collapse
|
15
|
Ford ES, Sholukh AM, Boytz R, Carmack SS, Klock A, Phasouk K, Shao D, Rossenkhan R, Edlefsen PT, Peng T, Johnston C, Wald A, Zhu J, Corey L. B cells, antibody-secreting cells, and virus-specific antibodies respond to herpes simplex virus 2 reactivation in skin. J Clin Invest 2021; 131:142088. [PMID: 33784252 PMCID: PMC8087200 DOI: 10.1172/jci142088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Tissue-based T cells are important effectors in the prevention and control of mucosal viral infections; less is known about tissue-based B cells. We demonstrate that B cells and antibody-secreting cells (ASCs) are present in inflammatory infiltrates in skin biopsy specimens from study participants during symptomatic herpes simplex virus 2 (HSV-2) reactivation and early healing. Both CD20+ B cells, most of which are antigen inexperienced based on their coexpression of IgD, and ASCs - characterized by dense IgG RNA expression in combination with CD138, IRF4, and Blimp-1 RNA - were found to colocalize with T cells. ASCs clustered with CD4+ T cells, suggesting the potential for crosstalk. HSV-2-specific antibodies to virus surface antigens were also present in tissue and increased in concentration during HSV-2 reactivation and healing, unlike in serum, where concentrations remained static over time. B cells, ASCs, and HSV-specific antibody were rarely detected in biopsies of unaffected skin. Evaluation of samples from serial biopsies demonstrated that B cells and ASCs followed a more migratory than resident pattern of infiltration in HSV-affected genital skin, in contrast to T cells. Together, these observations suggest the presence of distinct phenotypes of B cells in HSV-affected tissue; dissecting their role in reactivation may reveal new therapeutic avenues to control these infections.
Collapse
Affiliation(s)
- Emily S. Ford
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
| | - Anton M. Sholukh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - RuthMabel Boytz
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Alexis Klock
- Department of Laboratory Medicine and Pathology, and
| | - Khamsone Phasouk
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raabya Rossenkhan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tao Peng
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, and
| | - Christine Johnston
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
| | - Anna Wald
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
- Department of Laboratory Medicine and Pathology, and
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, and
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
- Department of Laboratory Medicine and Pathology, and
| |
Collapse
|
16
|
Paradise SL, Hu YWE. Infectious Dermatoses in Sport: A Review of Diagnosis, Management, and Return-to-Play Recommendations. Curr Sports Med Rep 2021; 20:92-103. [PMID: 33560033 DOI: 10.1249/jsr.0000000000000808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Infectious dermatoses represent a significant source of morbidity and missed athletic participation among athletes. Close quarters and skin trauma from contact sports can lead to outbreaks among teams and athletic staff. The National Collegiate Athletic Association and National Federation of State High School Associations have published guidance with recommended management and return-to-play criteria for common fungal, bacterial, viral, and parasitic rashes. In addition to rapidly diagnosing and treating infectious dermatoses, team physicians should counsel athletes and athletic staff on proper equipment care and personal hygiene to reduce infection transmission. Clinicians should always consult sport and athlete governing bodies for sport-specific recommendations.
Collapse
Affiliation(s)
- Scott L Paradise
- Navy Medicine Readiness and Training Command, Naval Hospital Guam, Agana Heights, GU
| | - Yao-Wen Eliot Hu
- Primary Care Sports Medicine Fellowship, Naval Hospital Camp Pendleton, Oceanside, CA
| |
Collapse
|
17
|
Stinn T, Kuntz S, Varon D, Huang ML, Selke S, Njikan S, Ford ES, Dragavon J, Coombs RW, Johnston C, Bull ME. Subclinical Genital Herpes Shedding in HIV/Herpes Simplex Virus 2-Coinfected Women during Antiretroviral Therapy Is Associated with an Increase in HIV Tissue Reservoirs and Potentially Promotes HIV Evolution. J Virol 2020; 95:e01606-20. [PMID: 33028713 PMCID: PMC7737750 DOI: 10.1128/jvi.01606-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023] Open
Abstract
Antigen (Ag)-specific immune responses to chronic infections, such as herpes simplex virus type 2 (HSV-2) in HIV/HSV-coinfected persons, may sustain HIV tissue reservoirs by promoting T-cell proliferation but are poorly studied in women on antiretroviral therapy (ART). Mixed anogenital swabs and cervical secretions were self-collected by nine HIV/HSV-2-coinfected women during ART for 28 days to establish subclinical HSV DNA shedding rates and detection of HIV RNA by real-time PCR. Typical herpes lesion site biopsy (TLSB) and cervical biopsy specimens were collected at the end of the daily sampling period. Nucleic acids (NA) isolated from biopsy specimens had HIV quantified and HIV envC2-V5 single-genome amplification (SGA) and T-cell receptor (TCR) repertoires assessed. Women had a median CD4 count of 537 cells/μl (IQR: 483 to 741) at enrollment and HIV plasma viral loads of <40 copies/ml. HSV DNA was detected on 12% of days (IQR: 2 to 25%) from anogenital specimens. Frequent subclinical HSV DNA shedding was associated with increased HIV DNA tissue concentrations and increased divergence from the most recent common ancestor (MRCA), an indicator of HIV replication. Distinct predominant TCR clones were detected in cervical and TLSB specimens in a woman with frequent HSV DNA shedding, with mixing of minor variants between her tissues. In contrast, more limited TCR repertoire mixing was observed in two women with less frequent subclinical HSV DNA shedding. Subclinical HSV shedding in HIV/HSV-coinfected women during ART may sustain HIV tissue reservoirs via Ag exposure or HIV replication. This study provides evidence supporting further study of interventions targeting suppression of Ag-specific immune responses as a component of HIV cure strategies.IMPORTANCE Persons with HIV infection are frequently coinfected with chronic herpesviruses, which periodically replicate and produce viable herpes virions, particularly in anogenital and cervical tissues. Persistent protein expression results in proliferation of CD8+ and CD4+ T cells, and the latter could potentially expand and sustain HIV tissue reservoirs. We found HSV genital shedding rates were positively correlated with HIV DNA concentrations and HIV divergence from ancestral sequences in tissues. Our work suggests that immune responses to common coinfections, such as herpesviruses, may sustain HIV tissue reservoirs during suppressive ART, suggesting future cure strategies should study interventions to suppress replication or reactivation of chronic herpes infections.
Collapse
Affiliation(s)
- Tajanna Stinn
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Steve Kuntz
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dana Varon
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Stacy Selke
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Samuel Njikan
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Emily S Ford
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joan Dragavon
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Robert W Coombs
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Marta E Bull
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Abstract
Prophylactic and therapeutic vaccines for the alphaherpesviruses including varicella zoster virus (VZV) and herpes simplex virus types 1 and 2 have been the focus of enormous preclinical and clinical research. A live viral vaccine for prevention of chickenpox and a subunit therapeutic vaccine to prevent zoster are highly successful. In contrast, progress towards the development of effective prophylactic or therapeutic vaccines against HSV-1 and HSV-2 has met with limited success. This review provides an overview of the successes and failures, the different types of immune responses elicited by various vaccine modalities, and the need to reconsider the preclinical models and immune correlates of protection against HSV.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C. Herald
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
19
|
Ayoub HH, Chemaitelly H, Abu-Raddad LJ. Epidemiological Impact of Novel Preventive and Therapeutic HSV-2 Vaccination in the United States: Mathematical Modeling Analyses. Vaccines (Basel) 2020; 8:E366. [PMID: 32650385 PMCID: PMC7564812 DOI: 10.3390/vaccines8030366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022] Open
Abstract
This study aims to inform herpes simplex virus type 2 (HSV-2) vaccine development, licensure, and implementation by delineating the population-level impact of vaccination. Mathematical models were constructed to describe the transmission dynamics in presence of prophylactic or therapeutic vaccines assuming 50% efficacy, with application to the United States. Catch-up prophylactic vaccination will reduce, by 2050, annual number of new infections by 58%, incidence rate by 60%, seroprevalence by 21%, and avert yearly as much as 350,000 infections. Number of vaccinations needed to avert one infection was only 50 by 2050, 34 by prioritizing those aged 15-19 years, 4 by prioritizing the highest sexual risk group, 43 by prioritizing women, and 47 by prioritizing men. Therapeutic vaccination of infected adults with symptomatic disease will reduce, by 2050, annual number of new infections by 12%, incidence rate by 13%, seroprevalence by 4%, and avert yearly as much as 76,000 infections. Number of vaccinations needed to avert one infection was eight by 2050, two by prioritizing those aged 15-19 years, three by prioritizing the highest sexual risk group, seven by prioritizing men, and ten by prioritizing women. HSV-2 vaccination offers an impactful and cost-effective intervention to prevent genital herpes medical and psychosexual disease burden.
Collapse
Affiliation(s)
- Houssein H. Ayoub
- Department of Mathematics, Statistics, and Physics, Qatar University, Doha 2713, Qatar;
| | - Hiam Chemaitelly
- Infectious Diseases Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar;
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar
| | - Laith J. Abu-Raddad
- Infectious Diseases Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar;
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York City, NY 10065, USA
| |
Collapse
|
20
|
Looker KJ, Johnston C, Welton NJ, James C, Vickerman P, Turner KME, Boily MC, Gottlieb SL. The global and regional burden of genital ulcer disease due to herpes simplex virus: a natural history modelling study. BMJ Glob Health 2020; 5:e001875. [PMID: 32201620 PMCID: PMC7061890 DOI: 10.1136/bmjgh-2019-001875] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 11/03/2022] Open
Abstract
Introduction Herpes simplex virus (HSV) infection can cause painful, recurrent genital ulcer disease (GUD), which can have a substantial impact on sexual and reproductive health. HSV-related GUD is most often due to HSV type 2 (HSV-2), but may also be due to genital HSV type 1 (HSV-1), which has less frequent recurrent episodes than HSV-2. The global burden of GUD has never been quantified. Here we present the first global and regional estimates of GUD due to HSV-1 and HSV-2 among women and men aged 15-49 years old. Methods We developed a natural history model reflecting the clinical course of GUD following HSV-2 and genital HSV-1 infection, informed by a literature search for data on model parameters. We considered both diagnosed and undiagnosed symptomatic infection. This model was then applied to existing infection estimates and population sizes for 2016. A sensitivity analysis was carried out varying the assumptions made. Results We estimated that 187 million people aged 15-49 years had at least one episode of HSV-related GUD globally in 2016: 5.0% of the world's population. Of these, 178 million (95% of those with HSV-related GUD) had HSV-2 compared with 9 million (5%) with HSV-1. GUD burden was highest in Africa, and approximately double in women compared with men. Altogether there were an estimated 8 billion person-days spent with HSV-related GUD globally in 2016, with 99% of days due to HSV-2. Taking into account parameter uncertainty, the percentage with at least one episode of HSV-related GUD ranged from 3.2% to 7.9% (120-296 million). However, the estimates were sensitive to the model assumptions. Conclusion Our study represents a first attempt to quantify the global burden of HSV-related GUD, which is large. New interventions such as HSV vaccines, antivirals or microbicides have the potential to improve the quality of life of millions of people worldwide.
Collapse
Affiliation(s)
- Katharine Jane Looker
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Virology Research Clinic, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nicky J Welton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Charlotte James
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Vickerman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Marie-Claude Boily
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneve, Switzerland
| |
Collapse
|
21
|
Herpes Simplex Virus Latency Is Noisier the Closer We Look. J Virol 2020; 94:JVI.01701-19. [PMID: 31776275 DOI: 10.1128/jvi.01701-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
During herpes simplex virus (HSV) latency, the viral genome is harbored in peripheral neurons in the absence of infectious virus but with the potential to restart infection. Advances in epigenetics have helped explain how viral gene expression is largely inhibited during latency. Paradoxically, at the same time, the view that latency is entirely silent has been eroding. This low-level noise has implications for our understanding of HSV latency and should not be ignored.
Collapse
|
22
|
Szöllősi A, Raffai T, Bogdanov A, Endrész V, Párducz L, Somogyvári F, Janovák L, Burián K, Virok DP. Correlation between detergent activity and anti-herpes simplex virus-2 activity of commercially available vaginal gels. BMC Res Notes 2020; 13:52. [PMID: 32005126 PMCID: PMC6995179 DOI: 10.1186/s13104-020-4918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVE Herpes simplex virus-2 (HSV-2) infections are almost exclusively sexually transmitted. The presence of vaginal gels during sexual activity may have a significant positive or negative impact on viral transmission. Therefore we investigated three off-the-shelf vaginal lubricants and one pH restoring gel to evaluate their impact on HSV-2 replication. RESULTS HeLa cells were infected with untreated virions and virions incubated with the particular gels. The accumulation of viral genomes was monitored by quantitative PCR (qPCR) method at 24 h post infection. Two of the tested gels had no significant effect on HSV-2 replication at the maximum applied concentration, while two had a strong inhibitory effect (~ 98% reduction of replication). The replication inhibitory effect was observed at various multiplicity of infection (MOI 0.4-6.4) and the two inhibitory gels were also capable of inhibiting the HSV-2 induced cytopathic effect on HeLa cells. The surface tension decreasing activity-an indication of detergent activity-was strongly correlated with the anti-HSV-2 activity of the gels (R2: 0.88). Our results indicate that off-the-shelf vaginal gels have a markedly different anti-HSV-2 activity that may influence HSV-2 transmission.
Collapse
Affiliation(s)
- Andrea Szöllősi
- Department of Health and Social Sciences, Gál Ferenc College, Szent István st. 17-19, Gyula, 5700, Hungary
| | - Tímea Raffai
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
| | - Anita Bogdanov
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
| | - Valéria Endrész
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
| | - László Párducz
- Department of Health and Social Sciences, Gál Ferenc College, Szent István st. 17-19, Gyula, 5700, Hungary.,Pándy Kálmán County Hospital, Semmelweis st. 1, Gyula, 5700, Hungary
| | - Ferenc Somogyvári
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
| | - László Janovák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla sqr. 1, Szeged, 6720, Hungary
| | - Katalin Burián
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
| | - Dezső P Virok
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary.
| |
Collapse
|
23
|
Marchese V, Dal Zoppo S, Quaresima V, Rossi B, Matteelli A. Vaccines for STIs: Present and Future Directions. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
24
|
Schiffer JT, Gottlieb SL. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development. Vaccine 2019; 37:7363-7371. [PMID: 28958807 PMCID: PMC5867191 DOI: 10.1016/j.vaccine.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States; University of Washington, Department of Medicine, Seattle, WA, United States.
| | - Sami L Gottlieb
- World Health Organization, Department of Reproductive Health and Research, Geneva, Switzerland
| |
Collapse
|
25
|
Gardner JK, Swaims-Kohlmeier A, Herbst-Kralovetz MM. IL-36γ Is a Key Regulator of Neutrophil Infiltration in the Vaginal Microenvironment and Limits Neuroinvasion in Genital HSV-2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2655-2664. [PMID: 31578266 PMCID: PMC9978960 DOI: 10.4049/jimmunol.1900280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
Abstract
HSV-2 is a neurotropic virus that causes a persistent, lifelong infection that increases risk for other sexually transmitted infections. The vaginal epithelium is the first line of defense against HSV-2 and coordinates the immune response through the secretion of immune mediators, including the proinflammatory cytokine IL-36γ. Previously, we showed that IL-36γ treatment promoted transient polymorphonuclear cell infiltration to the vaginal cavity and protected against lethal HSV-2 challenge. In this report, we reveal that IL-36γ specifically induces transient neutrophil infiltration but does not impact monocyte and macrophage recruitment. Using IL-36γ-/- mice in a lethal HSV-2 challenge model, we show that neutrophil counts are significantly reduced at 1 and 2 d postinfection and that KC-mediated mature neutrophil recruitment is impaired in IL-36γ-/- mice. Additionally, IL-36γ-/- mice develop genital disease more rapidly, have significantly reduced survival time, and exhibit an increased incidence of hind limb paralysis that is linked to productive HSV-2 infection in the brain stem. IL-36γ-/- mice also exhibit a significant delay in clearance of the virus from the vaginal epithelium and a more rapid spread of HSV-2 to the spinal cord, bladder, and colon. We further show that the decreased survival time and increased virus spread observed in IL-36γ-/- mice are not neutrophil-dependent, suggesting that IL-36γ may function to limit HSV-2 spread in the nervous system. Ultimately, we demonstrate that IL-36γ is a key regulator of neutrophil recruitment in the vaginal microenvironment and may function to limit HSV-2 neuroinvasion.
Collapse
Affiliation(s)
- Jameson K. Gardner
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA,Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Alison Swaims-Kohlmeier
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
26
|
Ding L, Jiang P, Xu X, Lu W, Yang C, Zhou P, Liu S. Resveratrol promotes HSV-2 replication by increasing histone acetylation and activating NF-κB. Biochem Pharmacol 2019; 171:113691. [PMID: 31704236 DOI: 10.1016/j.bcp.2019.113691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 01/25/2023]
Abstract
Resveratrol is a natural compound found in many plant species that has broad therapeutic benefits. Here, we investigated the effects of resveratrol on the replication of HSV-2. We found that resveratrol accelerated replication of HSV-2 and increased release of progeny virion. A time-of-addition study suggested that resveratrol worked primarily in the early stage of viral infection. Resveratrol regulated HSV-2 infection by increasing histone acetylation and activating NF-κB. In addition, inhibition of CDK9 activity restrained the promoting effect of resveratrol on HSV-2 infection. Altogether, our experiments revealed the regulatory effect of resveratrol and its mechanism of action on HSV-2 replication.
Collapse
Affiliation(s)
- Liqiong Ding
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinfeng Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanzhen Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
27
|
DeLong K, Bensouda S, Zulfiqar F, Zierden HC, Hoang TM, Abraham AG, Coleman JS, Cone RA, Gravitt PE, Hendrix CW, Fuchs EJ, Gaydos CA, Weld ED, Ensign LM. Conceptual Design of a Universal Donor Screening Approach for Vaginal Microbiota Transplant. Front Cell Infect Microbiol 2019; 9:306. [PMID: 31555606 PMCID: PMC6722226 DOI: 10.3389/fcimb.2019.00306] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023] Open
Abstract
The success of fecal microbiota transplant (FMT) in treating recurrent Clostridioides difficile infection has led to growing excitement about the potential of using transplanted human material as a therapy for a wide range of diseases and conditions related to microbial dysbiosis. We anticipate that the next frontier of microbiota transplantation will be vaginal microbiota transplant (VMT). The composition of the vaginal microbiota has broad impact on sexual and reproductive health. The vaginal microbiota in the "optimal" state are one of the simplest communities, dominated by one of only a few species of Lactobacillus. Diversity in the microbiota and the concomitant depletion of lactobacilli, a condition referred to as bacterial vaginosis (BV), is associated with a wide range of deleterious effects, including increased risk of acquiring sexually transmitted infections and increased likelihood of having a preterm birth. However, we have very few treatment options available, and none of them curative or restorative, for "resetting" the vaginal microbiota to a more protective state. In order to test the hypothesis that VMT may be a more effective treatment option, we must first determine how to screen donors to find those with minimal risk of pathogen transmission and "optimal" vaginal microbiota for transplant. Here, we describe a universal donor screening approach that was implemented in a small pilot study of 20 women. We further characterized key physicochemical properties of donor cervicovaginal secretions (CVS) and the corresponding composition of the vaginal microbiota to delineate criteria for inclusion/exclusion. We anticipate that the framework described here will help accelerate clinical studies of VMT.
Collapse
Affiliation(s)
- Kevin DeLong
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sabrine Bensouda
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Fareeha Zulfiqar
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hannah C. Zierden
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Thuy M. Hoang
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alison G. Abraham
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Jenell S. Coleman
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Patti E. Gravitt
- Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
- Department of Global Health, George Washington University, Washington, DC, United States
| | - Craig W. Hendrix
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Edward J. Fuchs
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Charlotte A. Gaydos
- Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ethel D. Weld
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laura M. Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
28
|
Money DM, Steben M. No. 208-Guidelines for the Management of Herpes Simplex Virus in Pregnancy. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2019; 39:e199-e205. [PMID: 28729112 DOI: 10.1016/j.jogc.2017.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To provide recommendations for the management of genital herpes infection in women who want to get pregnant or are pregnant and for the management of genital herpes in pregnancy and strategies to prevent transmission to the infant. OUTCOMES More effective management of complications of genital herpes in pregnancy and prevention of transmission of genital herpes from mother to infant. EVIDENCE Medline was searched for articles published in French or English related to genital herpes and pregnancy. Additional articles were identified through the references of these articles. All study types and recommendation reports were reviewed. VALUES Recommendations were made according to the guidelines developed by the Canadian Task Force on Preventive Health Care. RECOMMENDATIONS VALIDATION: These guidelines have been reviewed and approved by the Infectious Diseases Committee of the SOGC. SPONSOR The Society of Obstetricians and Gynaecologists of Canada.
Collapse
|
29
|
Schiffer JT, Swan DA, Prlic M, Lund JM. Herpes simplex virus-2 dynamics as a probe to measure the extremely rapid and spatially localized tissue-resident T-cell response. Immunol Rev 2019; 285:113-133. [PMID: 30129205 DOI: 10.1111/imr.12672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus-2 infection is characterized by frequent episodic shedding in the genital tract. Expansion in HSV-2 viral load early during episodes is extremely rapid. However, the virus invariably peaks within 18 hours and is eliminated nearly as quickly. A critical feature of HSV-2 shedding episodes is their heterogeneity. Some episodes peak at 108 HSV DNA copies, last for weeks due to frequent viral re-expansion, and lead to painful ulcers, while others only reach 103 HSV DNA copies and are eliminated within hours and without symptoms. Within single micro-environments of infection, tissue-resident CD8+ T cells (TRM ) appear to contain infection within a few days. Here, we review components of TRM biology relevant to immune surveillance between HSV-2 shedding episodes and containment of infection upon detection of HSV-2 cognate antigen. We then describe the use of mathematical models to correlate large spatial gradients in TRM density with the heterogeneity of observed shedding within a single person. We describe how models have been leveraged for clinical trial simulation, as well as future plans to model the interactions of multiple cellular subtypes within mucosa, predict the mechanism of action of therapeutic vaccines, and describe the dynamics of 3-dimensional infection environment during the natural evolution of an HSV-2 lesion.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - David A Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Barros KMA, Ribeiro Paulino M, Batista MIHDM, Gueiros LAM, Souza PRED, Leão JC, de Albuquerque Tavares Carvalho A. Absence of influence of polymorphisms of the MBL2 gene in oral infections by HSV-1 in individuals with HIV. Braz J Microbiol 2019; 50:663-668. [PMID: 31001794 DOI: 10.1007/s42770-019-00074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/25/2019] [Indexed: 11/30/2022] Open
Abstract
Polymorphisms in the structural gene MBL-2 (mannose-binding lectin-2) may result in low MBL serum concentration, associated with greater susceptibility to infection. The study evaluated the effects of MBL-2 polymorphisms with the oral manifestations of the HSV in human immunodeficiency virus (HIV)-infected patients. An observational case-control study was carried out, with the sample comprising 64 HIV+ and 65 healthy individuals. The signs and symptoms of HSV oral infection were evaluated, and oral mucosa buccal smears were collected. Polymorphisms of the MBL-2 gene and HSV-1 DNA were amplified through real-time PCR. The data revealed that of 64 HIV+, 29.6% presented signs and symptoms of HSV oral infection. Of these, the HSV-1 DNA was detected through real-time PCR in 21% of cases, and in 13.3% of asymptomatic individuals. There was no statistically significant difference between the symptomatic (p = 1) and the asymptomatic (p = 0.52) individuals, HIV+ and HIV-. Different genotypes (AA, A0, or 00) did not contribute to the oral manifestation of HSV in the HIV+ patients (p = 0.81) or HIV- (p = 0.45). There was no statistically significant difference in either group (p = 0.52). No significant association was identified between the MBL-2 gene polymorphisms in the oral manifestation of HSV infection. However, further studies are recommended with larger population groups before discarding this interrelationship.
Collapse
Affiliation(s)
| | - Marcília Ribeiro Paulino
- University Federal of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Recife, PE, 50670-901, Brazil.
| | | | | | | | - Jair Carneiro Leão
- University Federal of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Recife, PE, 50670-901, Brazil
| | | |
Collapse
|
31
|
Ramchandani MS, Jing L, Russell RM, Tran T, Laing KJ, Magaret AS, Selke S, Cheng A, Huang ML, Xie H, Strachan E, Greninger AL, Roychoudhury P, Jerome KR, Wald A, Koelle DM. Viral Genetics Modulate Orolabial Herpes Simplex Virus Type 1 Shedding in Humans. J Infect Dis 2019; 219:1058-1066. [PMID: 30383234 PMCID: PMC6420167 DOI: 10.1093/infdis/jiy631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Orolabial herpes simplex virus type 1 (HSV-1) infection has a wide spectrum of severity in immunocompetent persons. To study the role of viral genotype and host immunity, we characterized oral HSV-1 shedding rates and host cellular response, and genotyped viral strains, in monozygotic (MZ) and dizygotic (DZ) twins. METHODS A total of 29 MZ and 22 DZ HSV-1-seropositive twin pairs were evaluated for oral HSV-1 shedding for 60 days. HSV-1 strains from twins were genotyped as identical or different. CD4+ T-cell responses to HSV-1 proteins were studied. RESULTS The median per person oral HSV shedding rate was 9% of days that a swab was obtained (mean, 10.2% of days). A positive correlation between shedding rates was observed within all twin pairs, and in the MZ and DZ twins. In twin subsets with sufficient HSV-1 DNA to genotype, 15 had the same strain and 14 had different strains. Viral shedding rates were correlated for those with the same but not different strains. The median number of HSV-1 open reading frames recognized per person was 16. The agreement in the CD4+ T-cell response to specific HSV-1 open reading frames was greater between MZ twins than between unrelated persons (P = .002). CONCLUSION Viral strain characteristics likely contribute to oral HSV-1 shedding rates.
Collapse
Affiliation(s)
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ronnie M Russell
- Department of Medicine, University of Washington, Seattle, Washington
| | - Tran Tran
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, Washington
| | - Amalia S Magaret
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stacy Selke
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Anqi Cheng
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Eric Strachan
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Alex L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
32
|
Gromov D, Bulla I, Romero-Severson EO. Systematic evaluation of the population-level effects of alternative treatment strategies on the basic reproduction number. J Theor Biol 2018; 462:381-390. [PMID: 30500598 DOI: 10.1016/j.jtbi.2018.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 11/28/2022]
Abstract
An approach to estimate the influence of the treatment-type controls on the basic reproduction number, R0, is proposed and elaborated. The presented approach allows one to estimate the effect of a given treatment strategy or to compare a number of different treatment strategies on the basic reproduction number. All our results are valid for sufficiently small values of the control. However, in many cases it is possible to extend this analysis to larger values of the control as was illustrated by examples.
Collapse
Affiliation(s)
- Dmitry Gromov
- Faculty of Applied Mathematics and Control Processes, Saint Petersburg State University, St. Petersburg, Russia.
| | - Ingo Bulla
- Institut für Mathematik und Informatik, Universität Greifswald, Walther-Rathenau-Straße 47, Greifswald 17487, Germany; Université Perpignan Via Domitia, IHPE UMR 5244, CNRS, Perpignan F-66860, France.
| | - Ethan O Romero-Severson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
| |
Collapse
|
33
|
Patton ME, Bernstein K, Liu G, Zaidi A, Markowitz LE. Seroprevalence of Herpes Simplex Virus Types 1 and 2 Among Pregnant Women and Sexually Active, Nonpregnant Women in the United States. Clin Infect Dis 2018; 67:1535-1542. [PMID: 29668856 PMCID: PMC6369524 DOI: 10.1093/cid/ciy318] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/13/2018] [Indexed: 11/14/2022] Open
Abstract
Background Neonatal herpes is a rare, devastating consequence of herpes simplex virus type 1 (HSV-1) or 2 (HSV-2) infection during pregnancy. The risk of neonatal infection is higher among pregnant women seronegative for HSV-1 or HSV-2 who acquire their first HSV infection near delivery. Methods We estimated HSV-1 and HSV-2 seroprevalence among pregnant women aged 20-39 years in 1999-2014, assessed HSV seroprevalence changes between 1999-2006 and 2007-2014, and compared HSV seroprevalence between pregnant women and sexually active, nonpregnant women aged 20-39 years in 2007-2014 using National Health and Nutrition Examination Survey data. Results Among pregnant women in 1999-2014, HSV-1 seroprevalence was 59.3%, HSV-2 seroprevalence was 21.1%, and HSV seronegativity was 30.6%. Between 1999-2006 and 2007-2014, HSV-1 and HSV-2 seroprevalence among pregnant women remained stable. However, among pregnant women with ≤3 sex partners (approximately 40% of all pregnant women), seronegativity for both HSV-1 and HSV-2 increased from 35.6% to 51.4% (P < .05). In 2007-2014, nonpregnant women who were (1) unmarried, (2) living below poverty level, or (3) had ≥4 sex partners were more likely than pregnant women to be seronegative for both HSV-1 and HSV-2 (P < .05). Conclusions HSV-1 and HSV-2 seroprevalence among US pregnant women remained stable between 1999 and 2014. However, pregnant women with fewer sex partners were increasingly seronegative for both HSV-1 and HSV-2, indicating an increasing proportion of pregnant women who are vulnerable to primary HSV acquisition in pregnancy, which confers an increased risk of transmitting HSV to their neonates.
Collapse
Affiliation(s)
- Monica E Patton
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kyle Bernstein
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Gui Liu
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Akbar Zaidi
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lauri E Markowitz
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
34
|
Agyemang E, Magaret AS, Selke S, Johnston C, Corey L, Wald A. Herpes Simplex Virus Shedding Rate: Surrogate Outcome for Genital Herpes Recurrence Frequency and Lesion Rates, and Phase 2 Clinical Trials End Point for Evaluating Efficacy of Antivirals. J Infect Dis 2018; 218:1691-1699. [PMID: 30020484 PMCID: PMC6195656 DOI: 10.1093/infdis/jiy372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
Background We tested whether genital herpes simplex virus (HSV) shedding is an appropriate surrogate outcome for the clinical outcome of genital herpes lesions in studies of HSV-2 antiviral interventions. Methods We analyzed prospective data from natural history studies and clinical trials of antiviral agents for HSV-2 in which HSV-2-seropositive participants provided self-collected anogenital swab specimens daily over ≥25 days for HSV DNA quantitation by polymerase chain reaction (PCR). Genital recurrences were self-reported. Results Among 674 participants, genital HSV shedding was detected on 17% of days, and genital lesions were reported on 10% of days. Within the same session, HSV shedding rates were strongly correlated with lesion rates (ρ = 0.61, P < .0001). The relative reduction in the recurrence rate was 72% (P = .041) for recipients of the antiviral agent pritelivir as compared to recipients of placebo, but it decreased to 21% (P = .75) after adjustment for HSV shedding rate. When evaluating valacyclovir and acyclovir, adjustment for the HSV shedding rate also led to a reduced association of these antivirals with the recurrence rate. Overall, 40%-82% of the antiviral effect on recurrences was explained by its effect on HSV shedding. Conclusion HSV genital shedding measured by PCR analysis in swab specimens self-collected daily is an appropriate surrogate outcome for genital herpes lesions because it is in the causal pathway to recurrences.
Collapse
Affiliation(s)
- Elfriede Agyemang
- Department of Medicine, University of Washington, Seattle, Washington
| | - Amalia S Magaret
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stacy Selke
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Larry Corey
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
35
|
Schiffer JT, Swan DA, Roychoudhury P, Lund JM, Prlic M, Zhu J, Wald A, Corey L. A Fixed Spatial Structure of CD8 + T Cells in Tissue during Chronic HSV-2 Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:1522-1535. [PMID: 30045971 DOI: 10.4049/jimmunol.1800471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022]
Abstract
Tissue-resident CD8+ T cells (Trm) can rapidly eliminate virally infected cells, but their heterogeneous spatial distribution may leave gaps in protection within tissues. Although Trm patrol prior sites of viral replication, murine studies suggest they do not redistribute to adjacent uninfected sites to provide wider protection. We perform mathematical modeling of HSV-2 shedding in Homo sapiens and predict that infection does not induce enough Trm in many genital tract regions to eliminate shedding; a strict spatial distribution pattern of mucosal CD8+ T cell density is maintained throughout chronic infection, and trafficking of Trm across wide genital tract areas is unlikely. These predictions are confirmed with spatial analysis of CD8+ T cell distribution in histopathologic specimens from human genital biopsies. Further simulations predict that the key mechanistic correlate of protection following therapeutic HSV-2 vaccination would be an increase in total Trm rather than spatial reassortment of these cells. The fixed spatial structure of Trm induced by HSV-2 is sufficient for rapid elimination of infected cells but only in a portion of genital tract microregions.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195
| | - Dave A Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Pavitra Roychoudhury
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jennifer M Lund
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Jia Zhu
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Laboratory Medicine, University of Washington, Seattle, WA; and
| | - Anna Wald
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195.,Department of Laboratory Medicine, University of Washington, Seattle, WA; and.,Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195.,Department of Laboratory Medicine, University of Washington, Seattle, WA; and
| |
Collapse
|
36
|
Chaudhury A, Dendi VSR, Chaudhury M, Jain A, Kasarla MR, Panuganti K, Jain G, Ramanujam A, Rena B, Koyagura SR, Fogla S, Kumar S, Shekhawat NS, Maddur S. HSV1/2 Genital Infection in Mice Cause Reversible Delayed Gastrointestinal Transit: A Model for Enteric Myopathy. Front Med (Lausanne) 2018; 5:176. [PMID: 30065927 PMCID: PMC6056620 DOI: 10.3389/fmed.2018.00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
In an interesting investigation by Khoury-Hanold et al. (1), genital infection of mice with herpes simplex virus 1 (HSV1) were reported to cause multiple pelvic organ involvement and obstruction. A small subset of mice succumbed after the first week of HSV1 infection. The authors inferred that the mice died due to toxic megacolon. In a severe form of mechanical and/or functional obstruction involving gross dilation of the colon and profound toxemia, the presentation is called "toxic megacolon." The representative observations by Khoury-Hanold likely do not resemble toxic megacolon. The colon was only slightly dilated and benign appearing. Importantly, HSV1 infection affected the postjunctional mechanisms of smooth muscle relaxation like the sildenafil-response proteins, which may have been responsible for defective nitrergic neurotransmission and the delayed transit. Orally administered polyethylene glycol reversed the gastrointestinal "obstruction," suggesting a mild functional type of slowed luminal transit, resembling constipation, rather than toxic megacolon, which cannot be reversed by an osmotic laxative without perforating the gut. The authors suggest that the mice did not develop HSV1 encephalitis, the commonly known cause of mortality. The premature death of some of the mice could be related to the bladder outlet obstruction, whose backflow effects may alter renal function, electrolyte abnormalities and death. Muscle strip recordings of mechanical relaxation after electrical field stimulation of gastrointestinal, urinary bladder or cavernosal tissues shall help obtain objective quantitative evidence of whether HSV infection indeed cause pelvic multi-organ dysfunction and impairment of autonomic neurotransmission and postjunctional electromechanical relaxation mechanisms of these organs.
Collapse
Affiliation(s)
| | | | | | - Astha Jain
- Wanderful Media/University of Southern California, Los Angeles, CA, United States
| | | | | | - Gaurav Jain
- Berkshire Medical Center, Pittsfield, MA, United States
| | | | - Bhavin Rena
- Xenco Laboratories, Houston, TX, United States
| | | | - Sumit Fogla
- Beaumont Hospital, Grosse Pointe, MI, United States
| | - Sunil Kumar
- Neshoba County General Hospital, Philadelphia, MS, United States
| | | | - Srinivas Maddur
- All India Institute of Medical Sciences, New Delhi, India
- ESIC Medical College, Sanathnagar, India
| |
Collapse
|
37
|
Shipley MM, Renner DW, Ott M, Bloom DC, Koelle DM, Johnston C, Szpara ML. Genome-Wide Surveillance of Genital Herpes Simplex Virus Type 1 From Multiple Anatomic Sites Over Time. J Infect Dis 2018; 218:595-605. [PMID: 29920588 PMCID: PMC6047417 DOI: 10.1093/infdis/jiy216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Here we present genomic and in vitro analyses of temporally separated episodes of herpes simplex virus type 1 (HSV-1) shedding by an HSV-1-seropositive and human immunodeficiency virus (HIV)/HSV-2-seronegative individual who has frequent recurrences of genital HSV-1. Using oligonucleotide enrichment, we compared viral genomes from uncultured swab specimens collected on different days and from distinct genital sites. We found that viral genomes from 7 swab specimens and 3 cultured specimens collected over a 4-month period from the same individual were 98.5% identical. We observed a >2-fold difference in the number of minority variants between swab specimens from lesions, swab specimens from nonlesion sites, and cultured specimens. This virus appeared distinct in its phylogenetic relationship to other strains, and it contained novel coding variations in 21 viral proteins. This included a truncation in the UL11 tegument protein, which is involved in viral egress and spread. Normal immune responses were identified, suggesting that unique viral genomic features may contribute to the recurrent genital infection that this participant experiences.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| | - Mariliis Ott
- Department of Medicine, University of Washington, Seattle, Washington
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| |
Collapse
|
38
|
Hook LM, Cairns TM, Awasthi S, Brooks BD, Ditto NT, Eisenberg RJ, Cohen GH, Friedman HM. Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs. PLoS Pathog 2018; 14:e1007095. [PMID: 29791513 PMCID: PMC5988323 DOI: 10.1371/journal.ppat.1007095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/05/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to evaluate in future Phase I/II prophylactic human vaccine trials that contain gD2 antigen.
Collapse
Affiliation(s)
- Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tina M. Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Noah T. Ditto
- Carterra, Inc., Salt Lake City, Utah, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Spicknall IH, Looker KJ, Gottlieb SL, Chesson HW, Schiffer JT, Elmes J, Boily MC. Review of mathematical models of HSV-2 vaccination: Implications for vaccine development. Vaccine 2018; 37:7396-7407. [PMID: 29625767 PMCID: PMC6892260 DOI: 10.1016/j.vaccine.2018.02.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/12/2018] [Indexed: 10/25/2022]
Abstract
Development of a vaccine against herpes simplex virus type 2 (HSV-2), a life-long sexually-transmitted infection (STI), would be a major step forward in improving global sexual and reproductive health. In this review, we identified published literature of dynamic mathematical models assessing the impact of either prophylactic or therapeutic HSV-2 vaccination at the population level. We compared each study's model structure and assumptions as well as predicted vaccination impact. We examined possible causes of heterogeneity across model predictions, key gaps, and the implications of these findings for future modelling efforts. Only eight modelling studies have assessed the potential public health impact of HSV-2 vaccination, with the majority focusing on impact of prophylactic vaccines. The studies showed that even an imperfect prophylactic HSV-2 vaccine could have an important public health impact on HSV-2 incidence, and could also impact HIV indirectly in high HIV prevalence settings. Therapeutic vaccines also may provide public health benefits, though they have been explored less extensively. However, there was substantial variation in predicted population-level impact for both types of vaccine, reflecting differences in assumptions between model scenarios. Importantly, many models did not account for heterogeneity in infection rates such as by age, sex and sexual activity. Future modelling work to inform decisions on HSV vaccine development and implementation should consider cost-effectiveness, account for additional HSV-2 sequelae such as neonatal transmission, and model greater heterogeneity in infection rates between individuals, more realistic vaccine deployment, and more thorough sensitivity and uncertainty analyses.
Collapse
Affiliation(s)
- Ian H Spicknall
- Division of STD Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Katharine J Looker
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization (WHO), Geneva, Switzerland
| | - Harrell W Chesson
- Division of STD Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Joshua T Schiffer
- University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jocelyn Elmes
- Department of Infectious Diseases Epidemiology, Imperial College London, UK
| | - Marie-Claude Boily
- Department of Infectious Diseases Epidemiology, Imperial College London, UK
| |
Collapse
|
40
|
Picone O. [Genital herpes and pregnancy: Epidemiology, clinical manifestations, prevention and screening. Guidelines for clinical practice from the French College of Gynecologists and Obstetrician (CNGOF)]. ACTA ACUST UNITED AC 2017; 45:642-654. [PMID: 29146286 DOI: 10.1016/j.gofs.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To analyze the consequences of genital herpes infections in pregnant women. METHODS The PubMed database and the recommendations from the French and foreign obstetrical societies or colleges have been consulted. RESULTS The symptomatology of herpes genital rash is often atypical (NP2) and not different during pregnancy (Professional consensus). It is most often due to HSV2 (NP2). Seventy percent of pregnant patients have a history of infection with Herpes simplex virus, without reference to genital or labial localization, and this is in most cases type 1 (NP2). The prevalence of clinical herpes lesions at birth in the event of recurrence is about 16% compared with 36% in the case of initial infection (NP4). In HSV+ patients, asymptomatic herpetic excretion is 4 to 10%. The rate of excretion increases in HIV+ patients (20 to 30%) (NP2). The risk of HSV seroconversion during pregnancy is 1 to 5% (NP2), but can reach 20% in case of sero-discordant couple (NP2). Questioning is not always sufficient to determine the history of herpes infection of a patient and her partner (NP2) and the clinical examination is not always reliable (NP2). Herpetic hepatitis and encephalitis are rare and potentially severe (NP4). These diagnoses should be discussed during pregnancy and antiviral therapy should be started as soon as possible (Professional consensus). There is no established link between herpes infection and miscarriages (NP3). There appears to be an association between untreated herpes infection and premature delivery (NP3) but not in the case of treated infections (NP4). Herpetic fetopathies are exceptional (NP4). There is no argument for recommending specific prenatal diagnosis for herpes infection during pregnancy (Professional consensus). Condom use reduces the risk of initial infection in women who are not pregnant (NP3). There is no evidence to justify routine screening during pregnancy (Professional consensus). CONCLUSION There is a strong discrepancy between the prevalence of herpetic excretion at the time of delivery and the scarcity of neonatal infections. There is a lack of data on the impact of herpes infections during pregnancy in France. Fetal and maternal consequences are potentially serious but rare.
Collapse
Affiliation(s)
- O Picone
- Department of Gynaecology and Obstetrics, hôpital Louis-Mourier, hôpitaux universitaires Paris Nord, 147, rue des Renouillets, 92700 Colombes, France.
| |
Collapse
|
41
|
Sananès N. [Management of pregnant women with first episode of genital herpes. Guidelines for clinical practice from the French college of gynecologists and obstetricians (CNGOF)]. ACTA ACUST UNITED AC 2017; 45:664-676. [PMID: 29132767 DOI: 10.1016/j.gofs.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To provide guidelines for the management of first episode genital herpes during pregnancy and in the immediate postpartum period. METHODS MedLine and Cochrane Library databases search and review of the main foreign guidelines. RESULTS In case of first episode genital herpes during pregnancy, antiviral treatment with acyclovir (200mg 5 times daily) or valacyclovir (1000mg twice daily) for 5 to 10 days is recommended (grade C). The patient should be tested for HIV if not previously done (grade B). Daily suppressive antiviral treatment with acyclovir (400mg 3 times daily) or valacyclovir (500mg twice daily) is recommended from 36 weeks for women who have had a first episode genital herpes during pregnancy (grade B). A cesarean section should be performed in case of suspicion of first episode genital herpes at the onset of labor (grade B) or premature rupture of the membranes at term (professional consensus), or in case of first episode genital herpes less than 6 weeks before delivery (professional consensus). In the event of first episode genital herpes highlighted in the postpartum period, the neonatologist should be informed (professional consensus). The patient may be treated according the scheme described above. CONCLUSION A cesarean section should be performed in case of first episode genital herpes less than 6 weeks before delivery.
Collapse
Affiliation(s)
- N Sananès
- Service de gynécologie obstétrique, hôpitaux universitaires de Strasbourg, avenue Molière, BP 426, 67091 Strasbourg cedex, France; Unité Inserm UMR-S 1121 « Biomatériaux et Bioingénierie », 11, rue Humann, 67000 Strasbourg, France.
| |
Collapse
|
42
|
Vauloup-Fellous C. [Genital herpes and pregnancy: Serological and molecular diagnostic tools. Guidelines for clinical practice from the French College of Gynecologists and Obstetricians (CNGOF)]. ACTA ACUST UNITED AC 2017; 45:655-663. [PMID: 29132769 DOI: 10.1016/j.gofs.2017.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To describe serological and molecular tools available for genital and neonatal herpes, and their use in different clinical situations. METHODS Bibliographic investigations from MedLine database and consultation of international clinical practice guidelines. RESULTS Virological confirmation of genital herpes during pregnancy or neonatal herpes must rely on PCR (Professional consensus). HSV type-specific serology (IgG) will allow determining the immune status of a patient (in the absence of clinical lesions). However, there is currently no evidence to justify universal HSV serological testing during pregnancy (Professional consensus). In case of genital lesions in a pregnant woman that do not report any genital herpes before, it is recommended to perform a virological confirmation by PCR and HSV type-specific IgG in order to distinguish a true primary infection, a non-primary infection associated with first genital manifestation, from a recurrence (Grade C). HSV IgM is useless for diagnosis of genital herpes (Grade C). If a pregnant woman has personal history of genital herpes but no lesions, whatever the gestational age, it is not recommended to perform genital sampling nor serology (Professional consensus). In case of recurrence, if the lesion is characteristic of herpes, virological confirmation is not necessary (Professional Agreement). However, if the lesion is not characteristic, virological confirmation by PCR should be performed (Professional consensus). At birth, HSV PCR samples should be collected as soon as neonatal herpes is suspected (symptomatic neonate) (best before beginning antiviral treatment but must not delay the treatment), or after 24hours of life in case of asymptomatic neonate born to a mother with herpes lesions at delivery (Professional consensus). Clinical samples for virological confirmation should include at least blood and a peripheral location. In case of clinical manifestations of herpes in the neonate, first samples PCR positive, preterm birth, or maternal primary infection or non-primary infection associated with first genital manifestation at delivery, CSF should also be collected as well as samples of lesions in the neonate if present (Professional consensus). Sampling should be repeated in case of PCR negative but strong evidence of neonatal herpes (Professional consensus). HSV serology is useless for diagnosis of neonatal herpes (Grade C). CONCLUSIONS Virological confirmation for diagnosis of genital herpes during pregnancy or neonatal herpes must rely on PCR. PCR assays available in France are very reliable. Specific IgG are dedicated to restricted indications.
Collapse
Affiliation(s)
- C Vauloup-Fellous
- Laboratoire de virologie, hôpital Paul-Brousse, groupe hospitalier universitaire Paris-Sud, 12, rue Paul-Vaillant-Couturier, 94800 Villejuif, France.
| |
Collapse
|
43
|
Anselem O. [Management of pregnant women with recurrent herpes. Guidelines for clinical practice from the French College of Gynecologists, Obstetricians (CNGOF)]. ACTA ACUST UNITED AC 2017; 45:677-690. [PMID: 29132770 DOI: 10.1016/j.gofs.2017.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To provide guidelines for the management of woman with genital herpes during pregnancy or labor and with known history of genital herpes. METHODS MedLine and Cochrane Library databases search and review of the main foreign guidelines. RESULTS Genital herpes ulceration during pregnancy in a woman with history of genital herpes correspond to a recurrence. In this situation, there is no need for virologic confirmation (Grade B). In case of recurrent herpes during pregnancy, antiviral therapy with acyclovir or valacyclovir can be administered but provide low efficiency on duration and severity of symptoms (Grade C). Antiviral treatment proposed is acyclovir (200mg 5 times daily) or valacyclovir (500mg twice daily) for 5 to 10 days (Grade C). Recurrent herpes is associated with a risk of neonatal herpes around 1% (LE3). Antiviral prophylaxis should be offered for women with recurrent genital herpes during pregnancy from 36 weeks of gestation and until delivery (Grade B). There is no evidence of the benefit of prophylaxis in case or recurrence only before the pregnancy. There is no recommendation for systematic prophylaxis for women with history of recurrent genital herpes and no recurrence during the pregnancy. At the onset of labor, virologic testing is indicated only in case of genital ulceration (Professional consensus). In case of recurrent genital herpes at the onset of labor, cesarean delivery will be all the more considered if the membranes are intact and/or in case of prematurity and/or in case of HIV positive woman and vaginal delivery will be all the more considered in case of prolonged rupture of membranes after 37 weeks of gestation in an HIV negative woman (Professional consensus). CONCLUSION In case of recurrent genital herpes at the onset of labor and intact membranes, cesarean delivery should be considered. In case of recurrent genital herpes and prolonged rupture of membranes at term, the benefit of cesarean delivery is more questionable and vaginal delivery should be considered.
Collapse
Affiliation(s)
- O Anselem
- Maternité Port-Royal, université Paris Descartes, groupe hospitalier Cochin-Broca-Hôtel-Dieu, Assistance publique-Hôpitaux de Paris, 53, avenue de l'Observatoire, 75014 Paris, France; DHU risques et grossesse, PRES Sorbonne Paris Cité, 53, avenue de l'Observatoire, 75014 Paris, France.
| |
Collapse
|
44
|
Janier M, Lassau F, Bloch J, Spindler E, Morel P, Gérard P, Aufrère A. Seroprevalence of herpes simplex virus type 2 antibodies in an STD clinic in Paris. Int J STD AIDS 2017. [DOI: 10.1177/095646249901000805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our objective was to evaluate the seroprevalence of herpes simplex virus (HSV)-2 and HSV-1 in a population of men and women attending the STD clinic of Hôpital St-Louis (Paris, France). Four hundred and eighty-seven patients (264 men and 223 women) were tested for HSV-2 and HSV-1 antibodies by specific enzyme immunoassay (EIA) (Smithkline-Beecham Biologicals). Univariate and multivariate analyses were carried out for correlations with clinical, socio-epidemiological and behavioural data. HSV-2 seroprevalence was 55% (44.7% in men, 67.3% in women). HSV-1 seroprevalence was 93% (94.7% in men, 91% in women). The predictive factors of HSV-2 seropositivity being female (OR: 3.37), age (OR: 1.04), country of origin (Central Africa OR: 3.52, North Africa OR: 1.36), history of genital herpes (OR: 10.97), hepatitis B virus (HBV) markers (OR: 1.92) and hepatitis C virus (HCV) markers (OR: 3.96). The only protective factor was HSV-1 seropositivity (OR: 0.25). The predictive factors of HSV-1 seropositivity were only the country of origin (Central Africa OR: 2.95, North Africa OR: 1.83) and the absence of genital herpes (OR: 11.01). Only 23 (8.6%) HSV-2 seropositive patients had a history of genital herpes. This study underlines the very high HSV-2 seroprevalence of patients with STDs, only a few of whom have a history of genital herpes. Detection and counselling is urgently needed for these patients.
Collapse
Affiliation(s)
- M Janier
- STD Clinic, Hâpital Saint-Louis, Paris
| | - F Lassau
- STD Clinic, Hâpital Saint-Louis, Paris
| | | | | | - P Morel
- STD Clinic, Hâpital Saint-Louis, Paris
| | - P Gérard
- Smithkline-Beecham Laboratories, Nanterre, France
| | - A Aufrère
- Smithkline-Beecham Laboratories, Nanterre, France
| |
Collapse
|
45
|
Money DM, Steben M. N o 208-Directive clinique sur la prise en charge du virus de l’herpès simplex pendant la grossesse. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2017; 39:e192-e198. [DOI: 10.1016/j.jogc.2017.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Awasthi S, Hook LM, Shaw CE, Friedman HM. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model. Hum Vaccin Immunother 2017; 13:2785-2793. [PMID: 28481687 PMCID: PMC5718817 DOI: 10.1080/21645515.2017.1323604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An estimated 417 million people worldwide ages 15 to 49 are infected with herpes simplex virus type 2 (HSV-2), the most common cause of genital ulcer disease. Some individuals experience frequent recurrences of genital lesions, while others only have subclinical infection, yet all risk transmitting infection to their intimate partners. A vaccine was developed that prevents shingles, which is a recurrent infection caused by varicella-zoster virus (VZV), a closely related member of the Herpesviridae family. The success of the VZV vaccine has stimulated renewed interest in a therapeutic vaccine for genital herpes. We have been evaluating a trivalent subunit antigen vaccine for prevention of genital herpes. Here, we assess the trivalent vaccine as immunotherapy in guinea pigs that were previously infected intravaginally with HSV-2. The trivalent vaccine contains HSV-2 glycoproteins C, D, and E (gC2, gD2, gE2) subunit antigens administered with CpG and alum as adjuvants. We previously demonstrated that antibodies to gD2 neutralize the virus while antibodies to gC2 and gE2 block their immune evasion activities, including evading complement attack and inhibiting activities mediated by the IgG Fc domain, respectively. Here, we demonstrate that the trivalent vaccine significantly boosts ELISA titers and neutralizing antibody titers. The trivalent vaccine reduces the frequency of recurrent genital lesions and vaginal shedding of HSV-2 DNA by approximately 50% and almost totally eliminates vaginal shedding of replication-competent virus, suggesting that the trivalent vaccine is a worthy candidate for immunotherapy of genital herpes.
Collapse
Affiliation(s)
- Sita Awasthi
- a Infectious Disease Division, Department of Medicine , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Lauren M Hook
- a Infectious Disease Division, Department of Medicine , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Carolyn E Shaw
- a Infectious Disease Division, Department of Medicine , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Harvey M Friedman
- a Infectious Disease Division, Department of Medicine , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
47
|
Polymorphism in KISS1 receptor gene was correlated with idiopathic male infertility in Guilan province, Iran. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
|
49
|
Elfering L, van der Sluis WB, Mermans JF, Buncamper ME. Herpes neolabialis: herpes simplex virus type 1 infection of the neolabia in a transgender woman. Int J STD AIDS 2016. [DOI: 10.1177/0956462416685658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A 24-year-old transgender woman consulted our outpatient clinic with a painful, itchy and red left labia. She underwent a penile inversion vaginoplasty 18 months before presentation. At physical examination of the left labia, erythema, edema and herpetic vesicles with ulceration were observed. A vesicle fluid swab was obtained and the presence of herpes simplex virus type 1 (HSV-1) was detected by PCR assay. Treatment consisted of oral valaciclovir (500 mg twice daily) for a total of five days.Topically-applied lidocaine cream (3%) was used for pain management. Treatment gave symptom relief in five days. At physical examination 14 days after symptom onset, there were no signs of active infection. To our knowledge, this is the first case report of HSV-1 infection of the neolabia in a transgender woman.
Collapse
Affiliation(s)
- Lian Elfering
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, the Netherlands
- Center of Expertise on Gender Dysphoria, VU University Medical Center, Amsterdam, The Netherlands
- EMGO + Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Wouter B van der Sluis
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, the Netherlands
- EMGO + Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Joline F Mermans
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Marlon E Buncamper
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, the Netherlands
- Center of Expertise on Gender Dysphoria, VU University Medical Center, Amsterdam, The Netherlands
- EMGO + Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Schiffer JT, Swan DA, Magaret A, Corey L, Wald A, Ossig J, Ruebsamen-Schaeff H, Stoelben S, Timmler B, Zimmermann H, Melhem MR, Van Wart SA, Rubino CM, Birkmann A. Mathematical modeling of herpes simplex virus-2 suppression with pritelivir predicts trial outcomes. Sci Transl Med 2016; 8:324ra15. [PMID: 26843190 DOI: 10.1126/scitranslmed.aad6654] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pharmacokinetic and pharmacodynamic models estimate the potency of antiviral agents but do not capture viral and immunologic factors that drive the natural dynamics of infection. We designed a mathematical model that synthesizes pharmacokinetics, pharmacodynamics, and viral pathogenesis concepts to simulate the activity of pritelivir, a DNA helicase-primase inhibitor that targets herpes simplex virus. Our simulations recapitulate detailed viral kinetic shedding features in five dosage arms of a phase 2 clinical trial. We identify that in vitro estimates of median effective concentration (EC50) are lower than in vivo values for the drug. Nevertheless, pritelivir potently decreases shedding at appropriate doses based on its mode of action and long half-life. Although pritelivir directly inhibits replication in epithelial cells, our model indicates that pritelivir also indirectly limits downstream viral spread from neurons to genital keratinocytes, within genital ulcers, and from ulcer to new mucosal sites of infection. We validate our model based on its ability to predict outcomes in a subsequent trial with a higher dose. The model can therefore be used to optimize dose selection in clinical practice.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Department of Medicine, University of Washington, Seattle, WA 98105, USA. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - David A Swan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Amalia Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Laboratory Medicine, University of Washington, Seattle, WA 98105, USA
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA 98105, USA. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Laboratory Medicine, University of Washington, Seattle, WA 98105, USA
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA 98105, USA. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Laboratory Medicine, University of Washington, Seattle, WA 98105, USA. Department of Epidemiology, University of Washington, Seattle, WA 98105, USA
| | | | | | | | | | | | - Murad R Melhem
- Institute for Clinical Pharmacodynamics, Latham, NY 12307, USA
| | - Scott A Van Wart
- Institute for Clinical Pharmacodynamics, Latham, NY 12307, USA. School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Christopher M Rubino
- Institute for Clinical Pharmacodynamics, Latham, NY 12307, USA. School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|