1
|
Madsen AM, Thomassen MR, Frederiksen MW, Hollund BE, Nordhammer ABO, Smedbold HT, Bang B. Airborne bacterial and fungal species in workstations of salmon processing plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175471. [PMID: 39137839 DOI: 10.1016/j.scitotenv.2024.175471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Significant quantities of salmon are processed daily in the industry's indoor facilities. Occupational exposure contributes to an individual's exposome. The aim of this study is to obtain knowledge about potential exposure to viable airborne species of bacteria and fungi as related to workstations in the salmon processing industry. The study was conducted in nine salmon plants along the Norwegian coast over one or two days with a one-year interval. The MAS100 was used for sampling and MALDI-TOF MS for species identification. The geometric mean concentrations of bacteria and fungi were 200 CFU/m3 and 50 CFU/m3, respectively, with the highest concentrations of bacteria found in slaughtering areas and fungi in trimming of fillets. In total 125 gram-negative and 90 gram-positive bacterial and 32 different fungal species were identified. Some genera were represented by several species e.g. Chryseobacterium (15 species), Flavobacterium (13 species), Microbacterium (12 species), Pseudomonas (37 species), and Psychrobacter (13 species). Risk class 2 (RC2, human pathogens) were found in all types of workstations and plants. Seventeen bacterial species belong to RC2, some were fish pathogens, food spoilage bacteria, or species causing foodborne disease. Among fungi, Aspergillus nidulans was frequently detected across different workstations and plants. In conclusion, bacterial and fungal concentrations were low. Fish and sea-related bacteria were found along the salmon processing line. Bacterial concentrations and species compositions differ between workstations. No particular bacterial or fungal species constituted a large fraction of all airborne species. Based on the presence of human pathogens, using protective gloves is important for the workers. The presence of human and fish pathogens and food spoilage bacteria reveals air as a transmission route for bacteria, potentially affecting workers, consumers, fish, and hygiene of processing equipment. To limit the spread of these bacteria an interdisciplinary cooperation with a One Health perspective may be relevant.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Marte Renate Thomassen
- Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Bjørg Eli Hollund
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anna B O Nordhammer
- Department of Occupational Medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Hans T Smedbold
- Department of Occupational Medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Berit Bang
- Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance. Int J Vet Sci Med 2024; 12:25-38. [PMID: 38751408 PMCID: PMC11095286 DOI: 10.1080/23144599.2024.2348408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
One of the main challenges in aquaculture is pathogenic bacterial control. Streptococcus iniae stands out for its ability to cause high mortality rates in populations of commercially important fish populations and its recent recognition as an emerging zoonotic pathogen. The rise in identifying over 80 strains some displaying antibiotic resistance coupled with the emerging occurrence of infections in marine mammal species and wild fish underscores the urgent need of understanding pathogenesis, virulence and drug resistance mechanisms of this bacterium. This understanding is crucial to ensure effective control strategies. In this context, the present review conducts a bibliometric analysis to examine research trends related to S. iniae, extending into the mechanisms of infection, virulence, drug resistance and control strategies, whose relevance is highlighted on vaccines and probiotics to strengthen the host immune system. Despite the advances in this field, the need for developing more efficient identification methods is evident, since they constitute the basis for accurate diagnosis and treatment.
Collapse
Affiliation(s)
| | - Luz Edith Casados Vázquez
- CONAHCYT- Universidad de Guanajuato. Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | | | | |
Collapse
|
3
|
Kirmaier A, Blackshear L, Lee MSL, Kirby JE. Cellulitis and bacteremia caused by the fish pathogen,Streptococcus iniae, in an immunocompromised patient: Case report and mini-review of zoonotic disease, lab identification, and antimicrobial susceptibility. Diagn Microbiol Infect Dis 2024; 108:116189. [PMID: 38278004 DOI: 10.1016/j.diagmicrobio.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Streptococcus iniae is a fish pathogen that can also infect mammals including dolphins and humans. Its prevalence in farmed fish, particularly tilapia, provides potential for zoonotic infections, as documented by multiple case reports. Systematic clinical data beyond cellulitis for S. iniae infection in humans, including antimicrobial susceptibility data, are unfortunately rare. Here, we present a case of cellulitis progressing to bacteremia caused by Streptococcus iniae in a functionally immunocompromised patient based on CDK4/CDK6 inhibitor and endocrine therapy, and we discuss risk factors, identification, and antimicrobial susceptibility of this rare pathogen.
Collapse
Affiliation(s)
- Andrea Kirmaier
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Leslie Blackshear
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew Shou Lun Lee
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Yang Y, Li A, Qiu J, Gao D, Yin C, Li D, Yan W, Dang H, Li P, Wu R, Han L, Wang X. Responses of the intestinal microbiota to exposure of okadaic acid in marine medaka Oryzias melastigma. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133087. [PMID: 38035524 DOI: 10.1016/j.jhazmat.2023.133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
It is still limited that how the microalgal toxin okadaic acid (OA) affects the intestinal microbiota in marine fishes. In the present study, adult marine medaka Oryzias melastigma was exposed to the environmentally relevant concentration of OA (5 μg/L) for 10 days, and then recovered in fresh seawater for 10-days depuration. Analysis of taxonomic composition and diversity of the intestinal microbiota, as well as function prediction analysis and histology observation were carried out in this study. Functional prediction analysis indicated that OA potentially affected the development of colorectal cancer, protein and carbohydrate digestion and absorption functions, and development of neurodegenerative diseases like Parkinson's disease, which may be associated with changes in Proteobacteria and Firmicutes in marine medaka. Significant increases of C-reactive protein (CRP) and inducible nitric oxide synthase (iNOS) levels, as well as the changes of histology of intestinal tissue demonstrated that an intestinal inflammation was induced by OA exposure in marine medaka. This study showed that the environmental concentrations of OA could harm to the intestinal microbiota thus threatening the health of marine medaka, which hints that the chemical ecology of microalgal toxins should be paid attention to in future studies.
Collapse
Affiliation(s)
- Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Dongmei Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hui Dang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peiyao Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ruolin Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lilin Han
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
5
|
Phasunon R, Taengphu S, Panphut W, Chatchaiphan S, Dong HT, Senapin S. Improving the diagnosis of Streptococcus iniae using a novel probe-based qPCR assay combined with an enrichment step. JOURNAL OF FISH DISEASES 2023; 46:1391-1401. [PMID: 37723600 DOI: 10.1111/jfd.13857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Streptococcus iniae is a bacterial pathogen that causes streptococcosis, leading to significant losses in fish aquaculture globally. This study reported a newly developed probe-based quantitative polymerase chain reaction (qPCR) method for the detection of S. iniae. The primers and probes were designed to target the lactate oxidase gene. The optimized method demonstrated a detection limit of 20 copies per reaction and was specific to S. iniae, as evidenced by no cross-reactivity when assayed against genetic materials extracted from 23 known aquatic animal pathogens, and fish samples infected with Streptococcus agalactiae or Streptococcus dysgalactiae. To validate the newly developed qPCR protocol with field samples, fish specimens were systematically investigated following the Food and Agriculture Organization of the United Nations & Network of Aquaculture Centres in Asia-Pacific three diagnostic levels approach, which integrated basic and advanced techniques for disease diagnosis, including observation of gross signs (level I), bacterial isolation (level II), qPCR and 16S rDNA sequencing (level III). The result showed that 7/7 affected farms (three Asian seabass farms and four tilapia farms) experiencing clinical signs of streptococcosis were diagnosed positive for S. iniae. qPCR assays using DNA extracted directly from fish tissue detected S. iniae in 11 out of 36 fish samples (30.6%), while 24 out of 36 samples (66.7%) tested positive after an enrichment step, including apparently healthy fish from affected farms. Bacterial isolation of S. iniae was only successful in a proportion of clinically diseased fish but not in healthy-looking fish from the same farm. Overall, the newly developed qPCR protocol combined with enrichment would be a useful tool for the diagnosis and surveillance of S. iniae infections in fish populations, thereby aiding in the disease control and prevention.
Collapse
Affiliation(s)
- Ramida Phasunon
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Suwimon Taengphu
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Wattana Panphut
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Ha Thanh Dong
- Department of Food, Agriculture and Bioresources, Aquaculture and Aquatic Resources Management Program, Asian Institute of Technology (AIT), School of Environment, Resources and Development, Klong Luang, Pathum Thani, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
6
|
Li X, Wang C, Guo Z, Xiao T, Ji Y, Ma Y, Li M, Xia J, Liu X. Enhancing Vibrio vulnificus infection diagnosis for negative culture patients with metagenomic next-generation sequencing. Front Cell Infect Microbiol 2023; 13:1210919. [PMID: 38035326 PMCID: PMC10687401 DOI: 10.3389/fcimb.2023.1210919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Objective To evaluate the diagnostic value of metagenomic next-generation sequencing (mNGS) in Vibrio vulnificus (V. vulnificus) infection. Methods A retrospective analysis of patients with V. vulnificus infection at the Fifth Affiliated Hospital of Sun Yat-Sen University from January 1, 2020 to April 23, 2023 was conducted. 14 enrolled patients were diagnosed by culture or mNGS. The corresponding medical records were reviewed, and the clinical data analyzed included demographics, epidemiology laboratory findings, physical examination, symptoms at presentation, antibiotic and surgical treatment, and outcome. Results In this study, 78.6% (11/14) patients had a history of marine trauma (including fish stab, shrimp stab, crab splints and fish hook wounds), 7.1% (1/14) had eaten seafood, and the remaining 14.3% (2/14) had no definite cause. Isolation of V. vulnificus from clinical samples including blood, tissue, fester and secreta. 9 cases were positive for culture, 5 cases were detected synchronously by mNGS and got positive for V. vulnificus. 85.7% (12/14) cases accepted surgical treatment, with 1 patient suffering finger amputated. 14 enrolled patients received appropriate antibiotic therapy, and all of them had recovered and discharged. 9 strains V. vulnificus isolated in this study were sensitive to most beta-lactam antibiotics, aminoglycosides, quinolones, etc. Conclusion Vibrio vulnificus infection is a common water-exposed disease in Zhuhai, which requires identification of a number of pathogens. Of severe infections with unknown pathogen, mNGS can be used simultaneously, and the potential to detect multiple pathogens is of great help in guiding treatment.
Collapse
Affiliation(s)
- Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Chengzhuo Wang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Zhaowang Guo
- Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Tongyang Xiao
- Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuxin Ji
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Yongguang Ma
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Meiyi Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yet-sun University, Zhuhai, China
| |
Collapse
|
7
|
Awate S, Mubarka S, Huber RG. Whole Genomic Characterization of Streptococcus iniae Isolates from Barramundi ( Lates calcarifer) and Preliminary Evidence of Cross-Protective Immunization. Vaccines (Basel) 2023; 11:1443. [PMID: 37766120 PMCID: PMC10537698 DOI: 10.3390/vaccines11091443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Lates calcarifer, also known as Barramundi or Asian seabass, is a highly productive and fast-growing species that is well suited to large-scale aquaculture due to its attractive harvestable yields (premium fish). This fish has been envisioned as having the potential to be the "Salmon of Tropics". Cultivating Lates calcarifer in aquaculture poses challenges, as the dense populations that make such aquaculture commercially viable facilitate the rapid spread of infectious diseases, which in turn significantly impact yield. Hence, the immunization of juveniles is necessary, and the development of new immunization agents enhances the efficiency of aquaculture and improves food security. In our study, we characterize seven novel strains of the bacterial pathogen Streptococcus iniae that were collected from commercial fish farms in Singapore and Australia. We find that the capsular operon in our strains is highly conserved and identify a number of major surface antigens previously described in Streptococcus. A genome analysis indicates that the present strains are closely related but form distinct strains within the S. iniae species. We then proceed to demonstrate that inoculation with the inactivated strain P3SAB cross-protects Lates calcarifer against S. iniae infections in vivo from a variety of strains found in both Singapore and Australia.
Collapse
Affiliation(s)
- Sunita Awate
- UVAXX Pte Ltd., 203 Henderson Industrial Road, #12-01, Singapore 159546, Singapore;
| | - Salma Mubarka
- UVAXX Pte Ltd., 203 Henderson Industrial Road, #12-01, Singapore 159546, Singapore;
| | - Roland G. Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix #07-01, 30 Biopolis Street, Singapore 138671, Singapore
| |
Collapse
|
8
|
Hu Y, Lin S, Tang J, Li Y, Wang X, Jiang Y, Zhang H, Wang B. Effects of microplastics and lead exposure on gut oxidative stress and intestinal inflammation in common carp (Cyprinus carpio L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121528. [PMID: 36997146 DOI: 10.1016/j.envpol.2023.121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Microplastics (MPs) are increasingly being detected in freshwater environments, which have the potential to cause combined toxicity with other contaminants on aquatic organisms. To reveal the ecological risks, the combined effects of lead (Pb) and polyvinyl chloride microplastics (MPs) were explored in the gut of common carp (Cyprinus carpio L.). The results confirmed that exposure of Pb alone accelerated Pb accumulation, increased oxidative stress, and activated the inflammation response of the gut. However, the aforementioned effects all decreased under the co-exposure of Pb and MPs. In addition, MPs altered intestinal microbial community of common carp, especially the abundance of immune system-related species. All measured variables were organized for partial least square path modeling, which revealed the combined effects of Pb and MPs on inflammation response. The results implied that MPs reduced inflammation response in two ways, including the reduction of intestinal Pb accumulation and the alteration of the intestinal microbial community. Overall, this study provides a novel aspect of ecological effects on aquatic animals from Pb and MPs exposure. The interesting results remind us that when exploring the ecological risks of MPs, combined effects from other toxic substances must be considered simultaneously.
Collapse
Affiliation(s)
- Yiwei Hu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Sihan Lin
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Jinglan Tang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Yuxin Li
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Xiangyi Wang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Yusha Jiang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - He Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Binliang Wang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
9
|
Differential Expression Genes of the Head Kidney and Spleen in Streptococcus iniae-Infected East Asian Fourfinger Threadfin Fish ( Eleutheronema tetradactylum). Int J Mol Sci 2023; 24:ijms24043832. [PMID: 36835242 PMCID: PMC9958670 DOI: 10.3390/ijms24043832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium and is considered a harmful aquaculture pathogen worldwide. In this study, S. iniae strains were isolated from East Asian fourfinger threadfin fish (Eleutheronema tetradactylum) reared on a farm in Taiwan. A transcriptome analysis of the head kidney and spleen was performed in the fourfinger threadfin fish 1 day after infection using the Illumina HiSeq™ 4000 platform for RNA-seq to demonstrate the host immune mechanism against S. iniae. A total of 7333 genes based on the KEGG database were obtained after the de novo assembly of transcripts and functional annotations. Differentially expressed genes (DEGs) (2-fold difference) were calculated by comparing the S. iniae infection and phosphate-buffered saline control group gene expression levels in each tissue sample. We identified 1584 and 1981 differentially expressed genes in the head kidney and spleen, respectively. Based on Venn diagrams, 769 DEGs were commonly identified in both the head kidney and spleen, and 815 and 1212 DEGs were specific to the head kidney and spleen, respectively. The head-kidney-specific DEGs were enriched in ribosome biogenesis. The spleen-specific and common DEGs were found to be significantly enriched in immune-related pathways such as phagosome, Th1, and Th2 cell differentiation; complement and coagulation cascades; hematopoietic cell lineage; antigen processing and presentation; and cytokine-cytokine receptor interactions, based on the KEGG database. These pathways contribute to immune responses against S. iniae infection. Inflammatory cytokines (IL-1β, IL-6, IL-11, IL-12, IL-35, and TNF) and chemokines (CXCL8 and CXCL13) were upregulated in the head kidney and spleen. Neutrophil-related genes, including phagosomes, were upregulated post-infection in the spleen. Our results could offer a strategy for the treatment and prevention of S. iniae infection in fourfinger threadfin fish.
Collapse
|
10
|
Ruiz A, Andree KB, Furones D, Holhorea PG, Calduch-Giner JÀ, Viñas M, Pérez-Sánchez J, Gisbert E. Modulation of gut microbiota and intestinal immune response in gilthead seabream ( Sparus aurata) by dietary bile salt supplementation. Front Microbiol 2023; 14:1123716. [PMID: 37168118 PMCID: PMC10166234 DOI: 10.3389/fmicb.2023.1123716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Given their role in lipid digestion, feed supplementation with bile salts could be an economic and sustainable solution to alterations in adiposity and intestinal inflammation generated by some strategies currently used in aquaculture. An important part of the metabolism of bile salts takes place in the intestine, where the microbiota transforms them into more toxic forms. Consequently, we aimed to evaluate the gut immune response and microbial populations in gilthead seabream (Sparus aurata) fed a diet supplemented with a blend of bile salts with proven background as a regulator of lipid metabolism and fat content. After the 90-day feeding trial, a differential modulation of the microbiota between the anterior and posterior intestine was observed. While in the anterior intestine the relative abundance of Desulfobacterota doubled, in the posterior intestine, the levels of Firmicutes increased and Proteobacteria, Actinobacteriota, and Campylobacterota were reduced when supplementing the diet with bile salts. Even so, only in the anterior intestine, there was a decrease in estimated richness (Chao1 and ACE indices) in presence of dietary bile salts. No significant differences were displayed in alpha (Shannon and Simpson indices) nor beta-diversity, showing that bile sales did not have a great impact on the intestinal microbiota. Regarding the gene expression profile in 2 h postprandial-fish, several changes were observed in the analyzed biomarkers of epithelial integrity, nutrient transport, mucus production, interleukins, cell markers, immunoglobulin production and pathogen recognition receptors. These results may indicate the development of an intestinal immune-protective status to tackle future threats. This work also suggests that this immune response is not only regulated by the presence of the dietary bile salts in the intestine, but also by the microbial populations that are in turn modulated by bile salts. After a fasting period of 2 days, the overall gene expression profile was stabilized with respect to fish fed the unsupplemented diet, indicating that the effect of bile salts was transient after short periods of fasting. On the balance, bile salts can be used as a dietary supplement to enhance S. aurata farming and production without compromising their intestinal health.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
- Ph.D. Program in Aquaculture, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Alberto Ruiz,
| | - Karl B. Andree
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Dolors Furones
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Paul G. Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Josep À. Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Marc Viñas
- Sustainability in Biosystems, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Torre Marimon, Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Castellón, Spain
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| |
Collapse
|
11
|
Varga JFA, Brunner SR, Cheng G, Min D, Aucoin MG, Doxey AC, Dixon B. Identification and characterization of a novel peptide from rainbow trout (Oncorhynchus mykiss) with antimicrobial activity against Streptococcus iniae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104518. [PMID: 36044968 DOI: 10.1016/j.dci.2022.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The overuse and misuse of antibiotics has led to the emergence of antibiotic-resistant bacterial species which remain a challenge to treat therapeutically. Novel and efficacious drugs are desperately needed to combat pathogens. One method to facilitate these discoveries is the use of in silico methods. Computational biology has the power to scan large data sets and screen for potential molecules with antibacterial function. In the current study, an in silico approach was used to identify an antimicrobial peptide (AMP) derived from rainbow trout von Willebrand Factor. The AMP was tested against a panel of aquatic bacterial pathogens and was found to possess antibacterial activity against Streptococcus iniae (S. iniae). Since S. iniae is a zoonotic pathogen, this may be useful in other species as well. The peptide was non-hemolytic and non-cytotoxic at the concentrations tested in rainbow trout cells. Pre-treatment of rainbow trout cells with the peptide did not result in an upregulation of immune genes but stimulating the rainbow trout macrophage/monocyte-like cell line, RTS11, with heat-killed S. iniae, did result in a significant upregulation of the tumor necrosis factor alpha (tnfa) gene. In this study, a new AMP has been identified but its expression, synthesis and role in vivo remains unknown. Nevertheless, the findings presented improve our understanding of fish gill and macrophage responses towards this important zoonotic pathogen.
Collapse
Affiliation(s)
- Joseph F A Varga
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Sascha R Brunner
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Grant Cheng
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Daniel Min
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada; Department of Chemical Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Canada.
| |
Collapse
|
12
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
13
|
Varela K, Brown JA, Lipton B, Dunn J, Stanek D, Behravesh CB, Chapman H, Conger TH, Vanover T, Edling T, Holzbauer S, Lennox AM, Lindquist S, Loerzel S, Mehlenbacher S, Mitchell M, Murphy M, Olsen CW, Yager CM. A Review of Zoonotic Disease Threats to Pet Owners: A Compendium of Measures to Prevent Zoonotic Diseases Associated with Non-Traditional Pets: Rodents and Other Small Mammals, Reptiles, Amphibians, Backyard Poultry, and Other Selected Animals. Vector Borne Zoonotic Dis 2022; 22:303-360. [PMID: 35724316 PMCID: PMC9248330 DOI: 10.1089/vbz.2022.0022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Kate Varela
- One Health Office, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer A. Brown
- National Association of State Public Health Veterinarians
- Indiana Department of Health
| | - Beth Lipton
- National Association of State Public Health Veterinarians
- Seattle & King County Public Health
| | - John Dunn
- National Association of State Public Health Veterinarians
- Tennessee Department of Health
| | - Danielle Stanek
- National Association of State Public Health Veterinarians
- Florida Department of Health
| | | | - Helena Chapman
- Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine
- American Association for the Advancement of Science at NASA Applied Sciences
| | - Terry H. Conger
- U.S. Department of Agriculture Animal (USDA) and Plant Health Inspection Service (APHIS) Veterinary Services
| | | | | | - Stacy Holzbauer
- Minnesota Department of Health
- CDC Preparedness and Response Career Epidemiology Field Officer Program
| | | | | | | | | | - Mark Mitchell
- Louisiana State University School of Veterinary Medicine, Veterinary Clinical Sciences
| | - Michael Murphy
- Food and Drug Administration Center for Veterinary Medicine
| | - Christopher W. Olsen
- AVMA Council on Public Health
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine
| | | |
Collapse
|
14
|
Whole-Genome Sequence of Streptococcus iniae Strain AH1, Isolated from Hybrid Tilapia (Oreochromis niloticus × Oreochromis aureus). Microbiol Resour Announc 2022; 11:e0008722. [PMID: 35616379 PMCID: PMC9202401 DOI: 10.1128/mra.00087-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Here, we describe the whole-genome sequence of Streptococcus iniae strain AH1, which was isolated from moribund farmed hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) in Saudi Arabia. The genome is composed of a single linear chromosome of 2,068,661 bp, with a G+C content of 36.8%.
Collapse
|
15
|
Lim JW, Jo YH, Choi JS, Lee MK, Lee KY, Kang SY. Antibacterial Activities of Prenylated Isoflavones from Maclura tricuspidata against Fish Pathogenic Streptococcus: Their Structure-Activity Relationships and Extraction Optimization. Molecules 2021; 26:molecules26247451. [PMID: 34946533 PMCID: PMC8704674 DOI: 10.3390/molecules26247451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus zoonotic bacteria cause serious problems in aquaculture with clinical effects on humans. A structure-antibacterial activity relationships analysis of 22 isoflavones isolated from M. tricuspidata (leaves, ripe fruits, and unripe fruits) against S. iniae revealed that prenylation of the isoflavone skeleton was an important key for their antibacterial activities (minimum inhibitory concentrations: 1.95–500 μg/mL). Through principal component analysis, characteristic prenylated isoflavones such as 6,8-diprenlygenistein (4) were identified as pivotal compounds that largely determine each part’s antibacterial activities. M. tiricuspidata ripe fruits (MTF), which showed the highest antibacterial activity among the parts tested, were optimized for high antibacterial activity and low cytotoxicity on fathead minnow cells using Box–Behnken design. Optimized extraction conditions were deduced to be 50%/80 °C/7.5 h for ethanol concentration/extraction temperature/time, and OE-MTF showed contents of 6,8-diprenlygenistein (4), 2.09% with a MIC of 40 µg/mL. These results suggest that OE-MTF and its active isoflavones have promising potential as eco-friendly antibacterial agents against streptococcosis in aquaculture.
Collapse
Affiliation(s)
- Jae-Woong Lim
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Korea; (J.-W.L.); (J.-S.C.)
| | - Yang Hee Jo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (Y.H.J.); (M.K.L.)
| | - Ji-Seok Choi
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Korea; (J.-W.L.); (J.-S.C.)
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (Y.H.J.); (M.K.L.)
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong 30019, Korea;
| | - So Young Kang
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Korea; (J.-W.L.); (J.-S.C.)
- Correspondence: ; Tel./Fax: +82-61-659-7176
| |
Collapse
|
16
|
Feng Y, Bai M, Geng Y, Chen D, Huang X, Ouyang P, Guo H, Zuo Z, Huang C, Lai W. The potential risk of antibiotic resistance of Streptococcus iniae in sturgeon cultivation in Sichuan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69171-69180. [PMID: 34291412 DOI: 10.1007/s11356-021-15501-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Sichuan, located in the upper reaches of the Yangtze River, is the gathering place of many rivers and plays an important role in sturgeon aquaculture and wild sturgeon protection in China, where it suffered the severe influence of Streptococcus iniae infection in sturgeon. However, the annual thousands of tons of antibiotic usage in Sichuan may accumulate in water and cause obstacles to the prevention of S. iniae infection. In contrast, the regional antibiotic resistance characteristics have been rarely unknown. Seventeen S. iniae strains were collected from the major sturgeon culture areas in Sichuan, and the genotyping and the distribution of antibiotic resistance profiles (ARPs) and genes (ARGs) of S. iniae were established in this study. The results showed that the isolates could be divided into four subtypes by pulsed-field gel electrophoresis analysis. Besides, most isolates showed multiple resistance to the antibiotic such as amikacin, neomycin, enrofloxacin, lincomycin, and sulfamethoxazole. Also, sturgeon-derived S. iniae has a relatively low similarity with other fish-derived S. iniae in the world but high similarity with three animal-derived pathogens from Sichuan in previous studies. Moreover, a total of 37 ARGs were detected positively based on 95 ARGs detection, in which aac(6')-Ib(aka aacA4)-01, aac(6')-Ib(aka aacA4)-02, aadA1, floR, blaTEM, sulA/folP-03, and tetA-02 were most prevalent. Our study indicated that the ARGs of sturgeon-derived S. iniae were significantly enhanced compared with the ATCC29178 strains and have a risk of accessing more ARGs from other bacteria in water in Sichuan. This study claimed that sturgeon has a potential risk in the prevention and control of Streptococcosis in Sichuan, the upper reaches of Yangtze River, based on the antibiotic resistance analysis of S. iniae, and it may also increase the risk of highly resistant S. iniae transmission into the middle and lower reaches.
Collapse
Affiliation(s)
- Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Minghuan Bai
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
17
|
Irion S, Silayeva O, Sweet M, Chabanet P, Barnes AC, Tortosa P, Séré MG. Molecular Investigation of Recurrent Streptococcus iniae Epizootics Affecting Coral Reef Fish on an Oceanic Island Suggests at Least Two Distinct Emergence Events. Front Microbiol 2021; 12:749734. [PMID: 34803969 PMCID: PMC8600329 DOI: 10.3389/fmicb.2021.749734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Streptococcus iniae is an emerging zoonotic pathogen of increasing concern for aquaculture and has caused several epizootics in reef fishes from the Caribbean, the Red Sea and the Indian Ocean. To study the population structure, introduction pathways and evolution of S. iniae over recurring epizootics on Reunion Island, we developed and validated a Multi Locus Sequence Typing (MLST) panel using genomic data obtained from 89 isolates sampled during epizootics occurring over the past 40years in Australia, Asia, the United States, Israel and Reunion Island. We selected eight housekeeping loci, which resulted in the greatest variation across the main S. iniae phylogenetic clades highlighted by the whole genomic dataset. We then applied the developed MLST to investigate the origin of S. iniae responsible for four epizootics on Reunion Island, first in inland aquaculture and then on the reefs from 1996 to 2014. Results suggest at least two independent S. iniae emergence events occurred on the island. Molecular data support that the first epizootic resulted from an introduction, with inland freshwater aquaculture facilities acting as a stepping-stone. Such an event may have been facilitated by the ecological flexibility of S. iniae, able to survive in both fresh and marine waters and the ability of the pathogen to infect multiple host species. By contrast, the second epizootic was associated with a distinct ST of cosmopolitan distribution that may have emerged as a result of environment disturbance. This novel tool will be effective at investigating recurrent epizootics occurring within a given environment or country that is despite the fact that S. iniae appears to have low genetic diversity within its lineage.
Collapse
Affiliation(s)
- Solène Irion
- Université de La Réunion, Unité Mixte de Recherche, Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Inserm1187, CNRS9192, IRD249, Plateforme de Recherche CYROI, Saint Denis, France.,Université de La Réunion, Unité Mixte de Recherche, Ecologie marine tropicale des océans Pacifique et Indien (UMR ENTROPIE), CNRS, IRD, Saint Denis, France
| | - Oleksandra Silayeva
- School of Biological Sciences, Centre for Marine Science, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Pascale Chabanet
- Université de La Réunion, Unité Mixte de Recherche, Ecologie marine tropicale des océans Pacifique et Indien (UMR ENTROPIE), CNRS, IRD, Saint Denis, France
| | - Andrew C Barnes
- School of Biological Sciences, Centre for Marine Science, The University of Queensland, Brisbane, QLD, Australia
| | - Pablo Tortosa
- Université de La Réunion, Unité Mixte de Recherche, Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Inserm1187, CNRS9192, IRD249, Plateforme de Recherche CYROI, Saint Denis, France
| | - Mathieu G Séré
- Université de La Réunion, Unité Mixte de Recherche, Ecologie marine tropicale des océans Pacifique et Indien (UMR ENTROPIE), CNRS, IRD, Saint Denis, France.,Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| |
Collapse
|
18
|
Souter R, Chaber AL, Lee K, Machado A, Lam J, Woolford L. Fatal Streptococcus iniae Infection in a Juvenile Free-Ranging Short-Beaked Common Dolphin ( Delphinus delphis). Animals (Basel) 2021; 11:ani11113123. [PMID: 34827856 PMCID: PMC8614271 DOI: 10.3390/ani11113123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Streptococcus iniae (S. iniae) is a significant aquatic bacterial pathogen that has caused devastating losses to wild and cultured fish populations worldwide and is an important zoonotic pathogen in humans. Previously reported in captive dolphins only, this case report describes S. iniae associated infection and mortality in a free-ranging short-beaked common dolphin (Delphinus delphis). Unreported previously in wild marine mammals, its detection highlights a need for further investigation into the epidemiology of S. iniae to better understand the risks for wild marine mammal populations and potential transmission cycles between marine mammals, humans and wild and intensive fish populations. Abstract Streptococcus iniae (S. iniae) is a significant aquatic pathogen of farmed fish species, important zoonotic pathogen, and reported cause of disease in captive Amazon River dolphins (Inia geoffrensis) and a bottlenose dolphin (Tursiops truncatus). Here we report S. iniae as the cause of subcutaneous abscesses, sepsis and mortality in a juvenile free-ranging short-beaked common dolphin (Delphinus delphis) found deceased on a metropolitan Australian beach. Body surfaces were covered by multifocal, depressed, deep, irregular cutaneous ulcerations, which microscopically were characterised by ruptured subcutaneous abscesses with intralesional cocci. Routine microbiological investigations revealed a heavy growth of beta-haemolytic Streptococcus sp. identified as Streptococcus iniae in skin lesions as well as from heart blood, the latter supportive of sepsis. Tissues were negative for cetacean morbillivirus and no other disease processes were identified. S. iniae has not been reported in free-ranging marine mammals, nor in Australian delphinids, previously. More notably a pathogen of captive animals, this case report identifies S. iniae as a pathogen of wild dolphins also. In addition to expanding the host reservoir of a significant zoonotic pathogen, determining the source of infection as well as possible consequences for other marine mammals and wild and intensive fish stocks warrants further investigations.
Collapse
Affiliation(s)
- Rebecca Souter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (R.S.); (A.-L.C.); (K.L.); (J.L.)
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (R.S.); (A.-L.C.); (K.L.); (J.L.)
| | - Ken Lee
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (R.S.); (A.-L.C.); (K.L.); (J.L.)
| | - Aaron Machado
- Australian Marine Wildlife Research and Rescue Organization, Torrens Island via Grand Trunk Way, Torrens Island, SA 5960, Australia;
| | - Jia Lam
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (R.S.); (A.-L.C.); (K.L.); (J.L.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (R.S.); (A.-L.C.); (K.L.); (J.L.)
- Correspondence: ; Tel.: +61-8-8313-7632
| |
Collapse
|
19
|
THREE CASES OF ACUTE BACTERIAL SEPSIS IN PYGMY HIPPOPOTAMUS ( CHOEROPSIS LIBERIENSIS) CALVE SIBLINGS. J Zoo Wildl Med 2021; 52:755-762. [PMID: 34130423 DOI: 10.1638/2020-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 11/21/2022] Open
Abstract
A multiparous pygmy hippopotamus (Choeropsis liberiensis) dam produced three consecutive calves that died acutely at 13-15 wk of age from bacterial sepsis, for which diagnostic and therapeutic intervention was not possible. Streptococcus iniae (Cases 1 and 3), Escherichia coli (Case 2), and an unidentified member of the family Pasteurellaceae (Case 1) were identified in postmortem tissues through bacterial culture followed by standard and molecular identification methods. After the loss of two calves, a series of vaccinations were administered to the dam during the third pregnancy to enhance transplacental and colostral transfer of antibodies to the calf. The third calf did not survive, and the source of the bacterial infection in these three calves was undetermined. Prior to and after the birth of the fourth calf, nutritional and nutraceutical supplements were provided to the dam and calf. Additionally, pest control around the barn was enhanced. The fourth calf survived. Pygmy hippopotamus calves at the age of 13-15 wk may have increased susceptibility to bacterial infection, possibly due to waning maternally derived immunity. The findings in these cases, combined with a previous association of S. iniae in pygmy hippopotamus deaths, suggest that this bacterium is an especially important pathogen of the endangered pygmy hippopotamus.
Collapse
|
20
|
Shakir SM, Gill R, Salberg J, Slechta ES, Feldman M, Fritsche T, Clarridge J, Sharp SE, Fisher MA. Clinical Laboratory Perspective on Streptococcus halichoeri, an Unusual Nonhemolytic, Lancefield Group B Streptococcus Causing Human Infections. Emerg Infect Dis 2021; 27:1309-1316. [PMID: 33900169 PMCID: PMC8084511 DOI: 10.3201/eid2705.203428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptococcus halichoeri is a relatively newly identified species of pyogenic streptococci that causes zoonotic infection in humans. S. halichoeri was first described in 2004 as indigenous to seals, and only 8 reports of human S. halichoeri infection have been published. S. halichoeri grows as small, white, nonhemolytic colonies and may be strongly catalase-positive on routine blood agar media, which can lead to isolates being misidentified as coagulase-negative staphylococci. S. halichoeri tests positive for Lancefield group B antigen, like S. agalactiae, but can be identified with matrix-assisted laser desorption/ionization time of flight mass spectrometry or partial 16S rRNA sequencing. We describe 3 cases of S. halichoeri bone and joint infections in patients in the United States with underlying health conditions. In addition, we examine the microbiologic characteristics of S. halichoeri and discuss the importance of fully identifying this organism that might otherwise be disregarded as a skin commensal.
Collapse
|
21
|
Shakir SM, Gill R, Salberg J, Slechta ES, Feldman M, Fritsche T, Clarridge J, Sharp SE, Fisher MA. Clinical Laboratory Perspective on Streptococcus halichoeri, an Unusual Nonhemolytic, Lancefield Group B Streptococcus Causing Human Infections. Emerg Infect Dis 2021. [DOI: 10.3201/eid2705/203428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Streptococcal Infections in Marine Mammals. Microorganisms 2021; 9:microorganisms9020350. [PMID: 33578962 PMCID: PMC7916692 DOI: 10.3390/microorganisms9020350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 01/28/2023] Open
Abstract
Marine mammals are sentinels for the marine ecosystem and threatened by numerous factors including infectious diseases. One of the most frequently isolated bacteria are beta-hemolytic streptococci. However, knowledge on ecology and epidemiology of streptococcal species in marine mammals is very limited. This review summarizes published reports on streptococcal species, which have been detected in marine mammals. Furthermore, we discuss streptococcal transmission between and adaptation to their marine mammalian hosts. We conclude that streptococci colonize and/or infect marine mammals very frequently, but in many cases, streptococci isolated from marine mammals have not been further identified. How these bacteria disseminate and adapt to their specific niches can only be speculated due to the lack of respective research. Considering the relevance of pathogenic streptococci for marine mammals as part of the marine ecosystem, it seems that they have been neglected and should receive scientific interest in the future.
Collapse
|
23
|
Young EJ, Bannister J, Buller NB, Vaughan-Higgins RJ, Stephens NS, Whiting SD, Yeap L, Miller TL, Warren KS. Streptococcus iniae associated mass marine fish kill off Western Australia. DISEASES OF AQUATIC ORGANISMS 2020; 142:197-201. [PMID: 33331287 DOI: 10.3354/dao03545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Streptococcus iniae causes high mortality in cultured and wild fish stocks globally. Since the first report in captive Amazon river dolphins Inia geoffrensis in 1976, it has emerged in finfish across all continents except Antarctica. In March 2016, an estimated 17000 fish were observed dead and dying along a remote 70 km stretch of the Kimberley coastline north of Broome, Western Australia. Affected species included finfish (lionfish Pterois volitans, angelfish Pomacanthus sp., stripey snapper Lutjanus carponotatus, sand bass Psammoperca waigiensis, yellowtail grunter Amniataba caudavittata, damselfish Pomacentridae sp.), flatback sea turtles Natator depressus, and olive (Aipysurus laevis) and black-ringed (Hydrelaps darwiniensis) sea snakes. Moribund fish collected during the event exhibited exophthalmia and abnormal behaviour, such as spiralling on the surface or within the water column. Subsequent histopathological examination of 2 fish species revealed bacterial septicaemia with chains of Gram-positive cocci seen in multiple organs and within brain tissue. S. iniae was isolated and identified by bacterial culture, species-specific PCR, Matrix-Assisted Laser Desorption Ionisation Time-Of-Flight (MALDI-TOF) and biochemical testing. This is the first report of S. iniae associated with a major multi-species wild marine fish kill in Australia. Extreme weather events in the region including a marked decrease in water temperatures, followed by an extended period of above-average coastal water temperatures, were implicated as stressors potentially contributing to this outbreak.
Collapse
Affiliation(s)
- Erina J Young
- Conservation Medicine Program, School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu Y, Li L, Yu F, Luo Y, Liang W, Yang Q, Wang R, Li M, Tang J, Gu Q, Luo Z, Chen M. Genome-wide analysis revealed the virulence attenuation mechanism of the fish-derived oral attenuated Streptococcus iniae vaccine strain YM011. FISH & SHELLFISH IMMUNOLOGY 2020; 106:546-554. [PMID: 32781206 DOI: 10.1016/j.fsi.2020.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Streptococcus iniae has become one the most serious aquatic pathogens causing invasive diseases in farmed marine and freshwater fish worldwide, and orally attenuated vaccine is still the best option in protecting these invasive diseases. In this study, the safety, stability, immunogenicity of the S. iniae attenuated strain YM011 were evaluated, and comprehensively analyzed its virulence weakening mechanism at whole genome level. The results shown that attenuated S. iniae strain YM011 completely lost its pathogenicity to tilapia and had good immunogenicity with relative percent survival being 93.25% at 15 days and 90.31% at 30 days via IP injection, respectively, and 76.81% at 15 days and 56.69% at 30 days via oral gavage, respectively. Back-passage safety assay indicated that YM011 did not cause diseases or death in tilapia after 100 generations of serial passaging. Comparative genome-wide sequencing shown that YM011 had a 0.4 M large inversion fragment compared with its parental strain virulent strain GX005, which encoded 372 genes including drug resistance genes pbp2A and tet, as well as known virulence factors including hemolysin transport system gene, recA, and mutator family transposase. The attenuated S. iniae strain YM011 is an ideal attenuated oral vaccine candidate with good immunogenicity, safety and stability. Abnormal expression of important drug resistance genes as well as known virulence factors due to inversion of a 0.4 M large fragment is the leading mechanism underlying its attenuated virulence.
Collapse
Affiliation(s)
- Yu Liu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Fangzhao Yu
- Zhuhai Modern Agriculture Development Center, Zhuhai, 519000, China
| | - Yongju Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wanwen Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiong Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Jiayou Tang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qunhong Gu
- Zhuhai Modern Agriculture Development Center, Zhuhai, 519000, China
| | - Zhiping Luo
- Zhuhai Modern Agriculture Development Center, Zhuhai, 519000, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
25
|
Heckman TI, Griffin MJ, Camus AC, LaFrentz BR, Morick D, Smirnov R, Ofek T, Soto E. Multilocus sequence analysis of diverse Streptococcus iniae isolates indicates an underlying genetic basis for phenotypic heterogeneity. DISEASES OF AQUATIC ORGANISMS 2020; 141:53-69. [PMID: 32940251 DOI: 10.3354/dao03521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streptococcus iniae is a Gram-positive, opportunistically zoonotic bacterium infective to a wide variety of farmed and wild fish species worldwide. Outbreaks in wild fish can have detrimental environmental and cultural impacts, and mortality events in aquaculture can result in significant economic losses. As an emerging or re-emerging pathogen of global significance, understanding the coalescing factors contributing to piscine streptococcosis is crucial for developing strategies to control infections. Intraspecific antigenic and genetic variability of S. iniae has made development of autogenous vaccines a challenge, particularly where the diversity of locally endemic S. iniae strains is unknown. This study genetically and phenotypically characterized 11 S. iniae isolates from diseased wild and farmed fish from North America, Central America, and the Caribbean. A multilocus sequence analysis (MLSA) scheme was developed to phylogenetically compare these isolates to 84 other strains of Streptococcus spp. relevant to aquaculture. MLSA generated phylogenies comparable to established genotyping methods, and isolates formed distinct clades related to phenotype and host species. The endothelial Oreochromis mossambicus bulbus arteriosus cell line and whole blood from rainbow trout Oncorhynchus mykiss, Nile tilapia Oreochromis niloticus, and white sturgeon Acipenser transmontanus were used to investigate the persistence and virulence of the 11 isolates using in vitro assays. In vivo challenges using an O. niloticus model were used to evaluate virulence by the intragastric route of infection. Isolates showed significant differences (p < 0.05) in virulence and persistence, with some correlation to genogroup, establishing a basis for further work uncovering genetic factors leading to increased pathogenicity.
Collapse
Affiliation(s)
- Taylor I Heckman
- Aquatic Animal Health Laboratory, Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Meron D, Davidovich N, Ofek‐Lalzar M, Berzak R, Scheinin A, Regev Y, Diga R, Tchernov D, Morick D. Specific pathogens and microbial abundance within liver and kidney tissues of wild marine fish from the Eastern Mediterranean Sea. Microb Biotechnol 2020; 13:770-780. [PMID: 32059079 PMCID: PMC7111072 DOI: 10.1111/1751-7915.13537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022] Open
Abstract
This study is an initial description and discussion of the kidney and liver microbial communities of five common fish species sampled from four sites along the Eastern Mediterranean Sea shoreline. The goals of the present study were to establish a baseline dataset of microbial communities associated with the tissues of wild marine fish, in order to examine species-specific microbial characteristics and to screen for candidate pathogens. This issue is especially relevant due to the development of mariculture farms and the possible transmission of pathogens from wild to farmed fish and vice versa. Although fish were apparently healthy, 16S rRNA NGS screening identified three potential fish bacterial pathogens: Photobacterium damselae, Vibrio harveyi and Streptococcus iniae. Based on the distribution patterns and relative abundance, 16 samples were classified as potential pathogenic bacteria-infected samples (PPBIS). Hence, PPBIS prevalence was significantly higher in kidneys than in liver samples and variation was found between the fish species. Significant differences were observed between fish species, organs and sites, indicating the importance of the environmental conditions on the fish microbiome. We applied a consistent sampling and analytical method for monitoring in long-term surveys which may be incorporated within other marine fish pathogens surveys around the world.
Collapse
Affiliation(s)
- Dalit Meron
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | | | | | - Ran Berzak
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Aviad Scheinin
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Yael Regev
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Rei Diga
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Dan Tchernov
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| | - Danny Morick
- Morris Kahn Marine Research StationDepartment of Marine BiologyLeon H. Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
| |
Collapse
|
27
|
Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, Rao Z, Du L, Zhao R, Yi M, Wan Q, Zhou Y. Fish consumption and multiple health outcomes: Umbrella review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Shanaka KASN, Tharuka MDN, Sellaththurai S, Yang H, Priyathilaka TT, Lee J. Characterization and expression analysis of rockfish (Sebastes schlegelii) myeloid differentiation factor-88 (SsMyD88) and evaluation of its ability to induce inflammatory cytokines through NF-ĸB. FISH & SHELLFISH IMMUNOLOGY 2020; 99:59-72. [PMID: 32006686 DOI: 10.1016/j.fsi.2020.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Innate immunity is characterized by nonspecific, prompt reactions toward armada of antigens. Animals funnel down a repertoire of immune stimulants to activate non-selective defense mechanisms rapidly. This study was conducted to characterize the rockfish (Sebastes schlegelii) adaptor protein MyD88 (SsMyD88), which interacts with both toll-like receptors and interleukin receptors. The tissue expression of unchallenged SsMyD88 was evaluated by quantitative real time PCR (qPCR). Fish were intraperitoneally injected with immune stimulants including poly I:C, lipopolysaccharides, and Streptococcus iniae. Then, the temporal expression of SsMyD88 was analyzed. Finally, the inflammatory gene expression and downstream promoter activation were analyzed. Strongest expressions were reported in the liver, gills and spleen in unchallenged conditions. All diverse immune stimulants were found to be capable of significantly altering SsMyD88 transcription during the challenge experiment. Evaluation of downstream promoter biases by SsMyD88 found a predominant activation of NF-ĸB transcription factors when compared with the AP-1, revealing significant and substantial upregulation of major inflammatory mediators such as IL-1-β, IL-6, iNOS, COX-2 and TNF-α. Fluorescent detection confirmed an intense production of NO and the predominant differentiation of macrophages into M1 lineage with the overexpression of SsMyD88 in vitro. These results further corroborate the role of SsMyD88 as a mediatory molecule that bridges distinct immune stimulants to induce drastic immune responses in fish.
Collapse
Affiliation(s)
- K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
29
|
Gazal LEDS, Brito KCTD, Kobayashi RKT, Nakazato G, Cavalli LS, Otutumi LK, Brito BGD. Antimicrobials and resistant bacteria in global fish farming and the possible risk for public health. ARQUIVOS DO INSTITUTO BIOLÓGICO 2020. [DOI: 10.1590/1808-1657000362019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ABSTRACT: The use of antimicrobials in fish farming is a reflection of the fast aquaculture development worldwide. The intensification of aquaculture to achieve market demands could lead to an increase in infectious diseases by pathogenic bacteria. Consequently, antimicrobials act as controls for emerging infectious diseases, but their use must follow the rules and regulations of the country where the activity is performed. Although the regulations impose limits to the use of antimicrobials in fish farming, many studies show that resistant bacteria are isolated from this system. The selection of resistant bacteria is not limited only to the use of antimicrobials, but also to co-selection of resistance genes or even with cross-resistance processes. Resistant bacteria from fish farming are a serious concern because they can be acquired by humans with handling or food chain, which may represent a public health problem. In the present review, we present an overview of antimicrobials use in aquaculture, the antimicrobial resistance and the impact of antimicrobial and bacterial resistance from a public health perspective.
Collapse
|
30
|
O'Rourke DP, Baccanale CL, Stoskopf MK. Nontraditional Laboratory Animal Species (Cephalopods, Fish, Amphibians, Reptiles, and Birds). ILAR J 2019; 59:168-176. [PMID: 30462255 DOI: 10.1093/ilar/ily003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Aquatic vertebrates and cephalopods, amphibians, reptiles, and birds offer unique safety and occupational health challenges for laboratory animal personnel. This paper discusses environmental, handling, and zoonotic concerns associated with these species.
Collapse
Affiliation(s)
- Dorcas P O'Rourke
- Dorcas P. O'Rourke, DVM, MS, DACLAM, is Professor and Chair of the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Cecile L. Baccanale, DVM, is Associate Professor in the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Michael K. Stoskopf, DVM, PhD, DACZM, is Professor in the Department of Clinical Sciences, at the College of Veterinary Medicine as well as the Colleges of Natural Resources, Science, and Engineering at North Carolina State University in Raleigh, North Carolina
| | - Cecile L Baccanale
- Dorcas P. O'Rourke, DVM, MS, DACLAM, is Professor and Chair of the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Cecile L. Baccanale, DVM, is Associate Professor in the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Michael K. Stoskopf, DVM, PhD, DACZM, is Professor in the Department of Clinical Sciences, at the College of Veterinary Medicine as well as the Colleges of Natural Resources, Science, and Engineering at North Carolina State University in Raleigh, North Carolina
| | - Michael K Stoskopf
- Dorcas P. O'Rourke, DVM, MS, DACLAM, is Professor and Chair of the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Cecile L. Baccanale, DVM, is Associate Professor in the Department of Comparative Medicine at the Brody School of Medicine, East Carolina University in Greenville, North Carolina. Michael K. Stoskopf, DVM, PhD, DACZM, is Professor in the Department of Clinical Sciences, at the College of Veterinary Medicine as well as the Colleges of Natural Resources, Science, and Engineering at North Carolina State University in Raleigh, North Carolina
| |
Collapse
|
31
|
Shanaka KASN, Tharuka MDN, Priyathilaka TT, Lee J. Molecular characterization and expression analysis of rockfish (Sebastes schlegelii) viperin, and its ability to enervate RNA virus transcription and replication in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 92:655-666. [PMID: 31252045 DOI: 10.1016/j.fsi.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Viperin, also known as RSAD2 (Radical S-adenosyl methionine domain containing 2), is an interferon-induced endoplasmic reticulum-associated antiviral protein. Previous studies have shown that viperin levels are elevated in the presence of viral RNA, but it has rarely been characterized in marine organisms. This study was designed to functionally characterize rockfish viperin (SsVip), to examine the effects of different immune stimulants on its expression, and to determine its subcellular localization. SsVip is a 349 amino acid protein with a predicted molecular mass of 40.24 kDa. It contains an S-adenosyl l-methionine binding conserved domain with a CNYKCGFC sequence. Unchallenged tissue expression analysis using quantitative real time PCR (qPCR) revealed SsVip expression to be the highest in the blood, followed by the spleen. When challenged with poly I:C, SsVip was upregulated by approximately 60-fold in the blood after 24 h, and approximately 50-fold in the spleen after 12 h. Notable upregulation was detected throughout the poly I:C challenge experiment in both tissues. Significant expression of SsVip was detected in the blood following Streptococcus iniae and lipopolysaccharide challenge, and viral hemorrhagic septicemia virus (VHSV) gene transcription was significantly downregulated during SsVip overexpression. Furthermore, cell viability assay and virus titer quantification with the presence of SsVip revealed a significant reduction in virus replication. As with previously identified viperin counterparts, SsVip was localized in the endoplasmic reticulum. Our findings show that SsVip is an antiviral protein crucial to innate immune defense.
Collapse
Affiliation(s)
- K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
32
|
Teixeira P, Brandão J, Silva S, Babič MN, Gunde‐Cimerman N, Pires J, Costa S, Valério E. Microbiological and chemical quality of ice used to preserve fish in Lisbon marketplaces. J Food Saf 2019. [DOI: 10.1111/jfs.12641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pedro Teixeira
- Bromatology and Water LaboratoryEnergy, Environment and Green Structure Department Lisbon Municipality, Lisbon Portugal
- CESAM—Centre for Environmental and Marine StudiesUniversity of Aveiro Aveiro Portugal
| | - João Brandão
- Department of Environmental HealthNational Institute of Health Doutor Ricardo Jorge Lisbon Portugal
| | - Susana Silva
- Department of EpidemiologyNational Institute of Health Doutor Ricardo Jorge Lisbon Portugal
| | - Monika Novak Babič
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana Ljubljana Slovenia
| | - Nina Gunde‐Cimerman
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana Ljubljana Slovenia
| | - Joana Pires
- FCUL—Faculty of SciencesUniversity of Lisbon Lisbon Portugal
| | - Sílvia Costa
- Bromatology and Water LaboratoryEnergy, Environment and Green Structure Department Lisbon Municipality, Lisbon Portugal
| | - Elisabete Valério
- Department of Environmental HealthNational Institute of Health Doutor Ricardo Jorge Lisbon Portugal
| |
Collapse
|
33
|
Halimi M, Alishahi M, Abbaspour MR, Ghorbanpoor M, Tabandeh MR. Valuable method for production of oral vaccine by using alginate and chitosan against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 90:431-439. [PMID: 31082516 DOI: 10.1016/j.fsi.2019.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
The effectiveness of ionotropic gelation method (by combining alginate and chitosan) vaccine against Lactococcus garvieae and Streptococcus iniae was examined in rainbow trout. Fish were separated into four groups and fed the distinctive examined feeds. Our groups were included: A) fish immunized by chitosan-alginate coated vaccine, B) fish immunized by non-coated vaccine, C) fish feed by chitosan-alginate coated pellets without vaccine and D) fish feed by basic diet (non-coated and without vaccine). In groups A and B, the vaccination was carried out for 14 days. Fish of group C, like groups A and B were fed 14 days with pellets covered with chitosan-alginate without vaccine and a short time later they were fed with control diet. On day 0, 20, 40 and 60 of the trial, serum samples were extracted. Fish were challenged with L. garvieae and S. iniae after 60 days of research. Innate immunity components containing complement activity, total protein and IgM appeared no significant changes nearly in all groups during the 60 days that the examination finished. Although, bactericidal activity and lysozyme activity demonstrated a significant increase on days 20, 40 and 60 in group A compared to control groups (C and D) (P < 0.05) and similar results about the blood respiratory burst activity just on days 20 and 40 were obtained. Also, the relative expression of IL-6 of group A, was significantly higher compared to all of other groups (B, C and D) on days 20 and 60 of experiment (P < 0.05). The same results were obtained about the relative expression of IgM. The serum ELISA antibody titer against L. garvieae, increased significantly on days 20 and 40 of experiment in fish immunized by chitosan-alginate coated vaccine (Group A) compared to control groups (C and D)(P < 0.05) while the result of ELISA test against S. iniae was significantly higher on days 40 and 60 of experiment in group A compared to groups B, C and D (P < 0.05). After challenge with these two live bacteria (S. iniae and L. garvieae), a survival rates of 76.67 ± 5.77% (challenged with S. iniae) and 66.67 ± 5.77% (challenged with L. garvieae) were seen in group immunized with chitosan-alginate coated vaccine (Group A), which were higher than survival rates gotten in other trial groups (P < 0.05). The consequences of the present experiment show that the oral vaccination of rainbow trout with improved chitosan-alginate (via ionotropic procedure) (group A) properly secures this important fish against Lactococcus garvieae and Streptococcus iniae.
Collapse
Affiliation(s)
- Mostafa Halimi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Alishahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Ghorbanpoor
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine,Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
34
|
Liyanage D, Omeka W, Lee J. Molecular characterization, host defense mechanisms, and functional analysis of ERp44 from big-belly seahorse: A novel member of the teleost thioredoxin family present in the endoplasmic reticulum. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:31-41. [DOI: 10.1016/j.cbpb.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
|
35
|
Abu-Elala NM, Samir A, Wasfy M, Elsayed M. Efficacy of Injectable and Immersion Polyvalent Vaccine against Streptococcal Infections in Broodstock and Offspring of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2019; 88:293-300. [PMID: 30807857 DOI: 10.1016/j.fsi.2019.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 05/19/2023]
Abstract
A vaccine against streptococcosis, lactococcosis and enterococcosis in tilapia was formulated, ME-VAC Aqua Strept, as a polyvalent inactivated vaccine containing Streptococcus agalactiae, S. iniae, Lactococcus garvieae and Enterococcus faecalis along with a nano-particulate adjuvant. Use of ME-VAC Aqua Strept by injection or immersion resulted in an improved non-specific and adaptive immunity of broodstock and offspring. Intra-peritoneal vaccination of tilapia broodstock increased the total leukocyte count, phagocytosis, lysozyme activity, antibody titer, number of seeds/vaccinated broodstock, seeds quality and survival rates. Also, immersion mass vaccination of tilapia larvae provided a long period of protection up to three months, with a relative percent of survivability (RPS) not less than 60% at this time. To our knowledge, this vaccine may be the first to offer a combined protection against streptococcosis, lactococcosis and enterococcosis in tilapia. The results support the use of this vaccine as an effective tool for disease control and well-being of fish.
Collapse
Affiliation(s)
- Nermeen M Abu-Elala
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Momtaz Wasfy
- Middle East for Veterinary Vaccines Company, Second Industrial Area, ElSalihya El-Gededa, El-Sharkia, 44671, Egypt.
| | - Magdy Elsayed
- Department of Infectious Disease, Faculty of Veterinary Medicine, Cairo University, Egypt. Middle East for Veterinary Vaccines Company, Second Industrial Area, ElSalihya El-Gededa, El-Sharkia, 44671, Egypt.
| |
Collapse
|
36
|
Liyanage DS, Omeka WKM, Yang H, Godahewa GI, Kwon H, Nam BH, Lee J. Identification of thioredoxin domain-containing protein 17 from big-belly seahorse Hippocampus abdominalis: Molecular insights, immune responses, and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2019; 86:301-310. [PMID: 30453048 DOI: 10.1016/j.fsi.2018.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Thioredoxin domain-containing protein 17 (TXNDC17) is a small protein (∼14 kDa) involved in maintaining cellular redox homeostasis via a thiol-disulfide reductase activity. In this study, TXNDC17 was identified and characterized from Hippocampus abdominalis. The open reading frame (ORF) consisted of 369 bp and 123 amino acids. Similar to the other thioredoxins, TXNDC17 contained a conserved WCXXC functional motif. The highest spatial mRNA expressions of HaTXNDC17 were observed in the muscle, brain, and intestine. Interestingly, the mRNA expression of HaTXNDC17 in blood showed significant upregulation at 48 h against all the pathogen associated molecular patterns (PAMPs) and bacteria. Further, HaTXNDC17 transcripts in the trunk kidney were significantly upregulated at 24-48 h by bacterial endotoxin lipopolysaccharides (LPS), viral mimic polyinosinic: polycytidylic acid (poly I:C), and gram-negative bacteria (Edwardsiella tarda). The DPPH assay showed that the radical scavenging activity varies in a concentration-dependent manner. The insulin reduction assay demonstrated a significant logarithmic relationship with the concentration of rHaTXNDC17. Moreover, FHM cells treated with recombinant HaTXNDC17 significantly enhanced cellular viability under oxidative stress. Together, these results show that HaTXNDC17 function is important for maintaining cellular redox homeostasis and that it is also involved in the immune mechanism in seahorses.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
37
|
Berzak R, Scheinin A, Davidovich N, Regev Y, Diga R, Tchernov D, Morick D. Prevalence of nervous necrosis virus (NNV) and Streptococcus species in wild marine fish and crustaceans from the Levantine Basin, Mediterranean Sea. DISEASES OF AQUATIC ORGANISMS 2019; 133:7-17. [PMID: 30997880 DOI: 10.3354/dao03339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Infectious diseases in marine animals have ecological, socio-economic and environmental impacts. Nervous necrosis virus (NNV) and Streptococcus iniae have become major threats to marine aquaculture and have been detected in morbid marine organisms worldwide. However, despite their importance, there is a lack of knowledge regarding the prevalence of these pathogens in wild fish species. Here we sampled indigenous and Lessepsian species from different trophic levels and different biological niches in the eastern Mediterranean. A total of 174 fish and 32 crustaceans were tested for S. iniae and a total of 195 fish and 33 crustaceans were tested for NNV. We found an overall prevalence of 9.71% Streptococcus spp. and 21.49% NNV in selected marine fish and crustaceans by PCR and qPCR. In fish, the zoonotic agent S. iniae was detected at a higher prevalence in kidney compared to liver tissue. Co-infection by both pathogens was detected only in 5 specimens. We also examined gilthead sea bream Sparus aurata from an Israeli offshore marine farm during the grow-out period, in order to assess the possibility of horizontal pathogen transmission from wild to maricultured fish. Three out of 15 (20%) fish were found to be NNV positive after 120 d in the sea, suggesting spontaneous transmission from wild to farmed fish. Our findings suggest that more surveys should be conducted, especially in areas were mariculture farms are planned to be established.
Collapse
Affiliation(s)
- Ran Berzak
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynski M. Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Curr Drug Deliv 2019; 16:430-443. [PMID: 30760185 PMCID: PMC6637094 DOI: 10.2174/1567201816666190123120915] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
Abstract
Subunit vaccines are composed of pathogen fragments that, on their own, are generally poorly immunogenic. Therefore, the incorporation of an immunostimulating agent, e.g. adjuvant, into vaccine formulation is required. However, there are only a limited number of licenced adjuvants and their immunostimulating ability is often limited, while their toxicity can be substantial. To overcome these problems, a variety of vaccine delivery systems have been proposed. Most of them are designed to improve the stability of antigen in vivo and its delivery into immune cells. Cell-penetrating peptides (CPPs) are especially attractive component of antigen delivery systems as they have been widely used to enhance drug transport into the cells. Fusing or co-delivery of antigen with CPPs can enhance antigen uptake, processing and presentation by antigen presenting cells (APCs), which are the fundamental steps in initiating an immune response. This review describes the different mechanisms of CPP intercellular uptake and various CPP-based vaccine delivery strategies.
Collapse
Affiliation(s)
| | | | | | - Istvan Toth
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| | - Mariusz Skwarczynski
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| |
Collapse
|
39
|
Abstract
The genus Streptococcus includes Gram-positive organisms shaped in cocci and organized in chains. They are commensals, pathogens, and opportunistic pathogens for humans and animals. Most Streptococcus species of veterinary relevance have a specific ecological niche, such as S. uberis, which is almost exclusively an environmental pathogen causing bovine mastitis. In contrast, S. suis can be considered as a true zoonotic pathogen, causing specific diseases in humans after contact with infected animals or derived food products. Finally, Streptococcus species such as S. agalactiae can be sporadically zoonotic, even though they are pathogens of both humans and animals independently. For clarification, a short taxonomical overview will be given here to highlight the diversity of streptococci that infect animals. Several families of antibiotics are used to treat animals for streptococcal infections. First-line treatments are penicillins (alone or in combination with aminoglycosides), macrolides and lincosamides, fluoroquinolones, and tetracyclines. Because of the selecting role of antibiotics, resistance phenotypes have been reported in streptococci isolated from animals worldwide. Globally, the dynamic of resistance acquisition in streptococci is slower than what is experienced in Enterobacteriaceae, probably due to the much more limited horizontal spread of resistance genes. Nonetheless, transposons or integrative and conjugative elements can disseminate resistance determinants among streptococci. Besides providing key elements on the prevalence of resistance in streptococci from animals, this article will also largely consider the mechanisms and molecular epidemiology of the major types of resistance to antimicrobials encountered in the most important streptococcal species in veterinary medicine.
Collapse
|
40
|
Ting CH, Chen YC, Chen JY. Nile tilapia fry fed on antimicrobial peptide Epinecidin-1-expressing Artemia cyst exhibit enhanced immunity against acute bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2018; 81:37-48. [PMID: 29981882 DOI: 10.1016/j.fsi.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Artemia are often used as a live feed for fry in aquaculture. We have previously demonstrated that supplementing adult zebrafish feed with Artemia, which express an Epinephelus coioides-derived antimicrobial peptide, Epinecidin-1 (Epi-1), protects against bacterial infection. Thus, Artemia may serve as a bioreactor for producing biofunctional molecules. However, the application of Epi-1 transgenic Artemia in larval aquaculture of commercial fish species has not been investigated. Here we used a Tol2-transposon system to generate stable Epi-1 expressing Artemia. Nile tilapia (Oreochromis niloticus) fry were then fed with decapsulated transgenic cysts and acutely challenged with Gram-positive Streptococcus iniae or Gram-negative Vibrio vulnificus (204). Survival analysis revealed that tilapia fry fed with Epi-1 transgenic cysts were resistant to acute bacterial infection. Immune-related gene expression profiling showed that S. iniae and V. vulnificus inoculations produced distinct immunomodulatory effects in the tilapia fry. Upon S. iniae infection, tilapia fry fed on control diet exhibited an immune response dominated by Tlr-7/MyD88, wherein Tnf-α, Il-8 and Cxcl-10 expression were all induced; conversely, the tilapia fry fed with Epi-1 transgenic cysts showed a Tlr-2/Tlr-5-dominant immune response, marked by the induction of Il-1β, Il-8 and Il-12 expression. However, after V. vulnificus (204) infection control fry exhibited a Tlr-2/MyD88/Traf-6-dominant response with activation of Tnf-α and Il-8 expression; meanwhile tilapia fry fed on Epi-1 transgenic cyst showed a dominant Tlr-2/Tlr-5-mediated immune response, including induction of Il-1β, Il-8, Il-12, and Cxcl-10 expression. These findings suggest that feeding larval fish fry with Epi-1 transgenic Artemia cysts confers enhanced immunity toward bacterial challenge. Epi-1 transgenic cysts should therefore be considered as a potential functional feed for larval aquaculture.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Yi-Chun Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dahuen Road, Jiaushi, Ilan, 262, Taiwan.
| |
Collapse
|
41
|
Halimi M, Alishahi M, Abbaspour MR, Ghorbanpoor M, Tabandeh MR. Efficacy of a Eudragit L30D-55 encapsulated oral vaccine containing inactivated bacteria (Lactococcus garvieae/Streptococcus iniae) in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2018; 81:430-437. [PMID: 30056210 DOI: 10.1016/j.fsi.2018.07.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
The efficacy of a Eudragit L30D-55 encapsulated vaccine against Lactococcus garvieae and Streptococcus iniae was investigated in rainbow trout. Fish were divided into four groups and fed the different experimental feeds. Groups were: A) fish immunized by Eudragit-coated pellets containing vaccine, B) fish immunized by vaccine-coated pellets without Eudragit, C) fish fed Eudragit-coated pellets without vaccine and D) fish fed pellets without vaccine orEudragit (control group). In groups A and B, the vaccination was conducted for 14 days. Similar to groups A and B, fish of group C were fed 14 days with pellets coated with Eudragit and afterwards they were fed control diet. Serum samples were taken on day 0, 20, 40 and 60 of the experiment. After 60 days, fish were challenged with L. garvieae and S. iniae. In almost all groups, innate immunity components including alternative complement activity, lysozyme activity, bactericidal activity, IgM and total protein showed no significant changes during the 60 days that the experiment lasted. However, the blood respiratory burst activity and lysozyme activity showed a significant increase on day 20 of experiment in groups B and D respectively (P < 0.05). The relative expression of immune-related genes including IL-6 and IgM genes was higher in vaccinated fish, with the highest expression in those immunized by Eudragit-coated pellets (Group A). In addition, the relative expression of IL-6 and IgM peaked on day 20 but decreased on day 60 in vaccinated groups. The ELISA antibody titer against L. garvieae increased from day 20 and peaked on day 60 of experiment (P < 0.05). Also, the antibody titer against L. garvieae was higher in fish immunized by Eudragit-coated pellets (Group A) compared to fish of group C and control. After bacterial challenge, a survival percentages of % 85 ± 7.07% (challenged with S. iniae) and % 72.21 ± 7.8% (challenged with L. garvieae) were observed respectively in groups immunized with pellets coated with Eudragit L30D-55 (Group A), which were higher than survival percentages obtained in other experimental groups (P < 0.05). The results of the present study demonstrate that the oral administration of Eudragit L30D-55-encapsulated vaccine appropriately protects rainbow trout against Lactococcus garvieae and Streptococcus iniae.
Collapse
Affiliation(s)
- Mostafa Halimi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Alishahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Ghorbanpoor
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
42
|
Soh KY, Loh JMS, Proft T. Orthologues of Streptococcus pyogenes nuclease A (SpnA) and Streptococcal 5'-nucleotidase A (S5nA) found in Streptococcus iniae. J Biochem 2018; 164:165-171. [PMID: 29659850 DOI: 10.1093/jb/mvy039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pyogenes nuclease A (SpnA) and streptococcal 5' nucleosidase A (S5nA) are two recently described virulence factors from the human pathogen S. pyogenes. In vitro studies have shown that SpnA is a nuclease that cleaves ssDNA and dsDNA, including the DNA backbone of neutrophil extracellular traps. S5nA was shown to hydrolyse AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. S5nA also generates the macrophage-toxic deoxyadenosine from dAMP. However, detailed in vivo studies of the two enzymes have been hampered by difficulties with using current animal models for this exclusive human pathogen. Here we report the identification of two novel enzymes from the fish pathogen Streptococcus iniae that show similarities to SpnA and S5nA in amino acid sequence, protein domain structure and biochemical properties. We propose that SpnAi and S5nAi are orthologues of the S. pyogenes enzymes, providing a rationale to analyse the in vivo function of the two enzymes using a S. iniae-zebrafish infection model.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
43
|
Lundgren SN, Madan JC, Emond JA, Morrison HG, Christensen BC, Karagas MR, Hoen AG. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. MICROBIOME 2018; 6:109. [PMID: 29973274 PMCID: PMC6033232 DOI: 10.1186/s40168-018-0490-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The gut microbiome has an important role in infant health and immune development and may be affected by early-life exposures. Maternal diet may influence the infant gut microbiome through vertical transfer of maternal microbes to infants during vaginal delivery and breastfeeding. We aimed to examine the association of maternal diet during pregnancy with the infant gut microbiome 6 weeks post-delivery in mother-infant dyads enrolled in the New Hampshire Birth Cohort Study. Infant stool samples were collected from 145 infants, and maternal prenatal diet was assessed using a food frequency questionnaire. We used targeted sequencing of the 16S rRNA V4-V5 hypervariable region to characterize infant gut microbiota. To account for differences in baseline and trajectories of infant gut microbial profiles, we stratified analyses by delivery mode. RESULTS We identified three infant gut microbiome clusters, characterized by increased abundance of Bifidobacterium, Streptococcus and Clostridium, and Bacteroides, respectively, overall and in the vaginally delivered infant stratum. In the analyses stratified to infants born vaginally and adjusted for other potential confounders, maternal fruit intake was associated with infant gut microbial community structure (PERMANOVA, p < 0.05). In multinomial logistic regression analyses, increased fruit intake was associated with an increased odds of belonging to the high Streptococcus/Clostridium group among infants born vaginally (OR (95% CI) = 2.73 (1.36, 5.46)). In infants delivered by Cesarean section, we identified three clusters that differed slightly from vaginally delivered infants, which were characterized by a high abundance of Bifidobacterium, high Clostridium and low Streptococcus and Ruminococcus genera, and high abundance of the family Enterobacteriaceae. Maternal dairy intake was associated with an increased odds of infants belonging to the high Clostridium cluster in infants born by Cesarean section (OR (95% CI) = 2.36 (1.05, 5.30)). Linear models suggested additional associations between maternal diet and infant intestinal microbes in both delivery mode strata. CONCLUSIONS Our data indicate that maternal diet influences the infant gut microbiome and that these effects differ by delivery mode.
Collapse
Affiliation(s)
- Sara N. Lundgren
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Juliette C. Madan
- Division of Neonatology, Department of Pediatrics, Children’s Hospital at Dartmouth, Hanover, NH USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Lebanon, NH USA
| | - Jennifer A. Emond
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Hilary G. Morrison
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- Center for Molecular Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Lebanon, NH USA
- Center for Molecular Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Lebanon, NH USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH USA
- Center for Molecular Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
44
|
Mishra A, Nam GH, Gim JA, Lee HE, Jo A, Kim HS. Current Challenges of Streptococcus Infection and Effective Molecular, Cellular, and Environmental Control Methods in Aquaculture. Mol Cells 2018; 41:495-505. [PMID: 29754470 PMCID: PMC6030242 DOI: 10.14348/molcells.2018.2154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/02/2022] Open
Abstract
Several bacterial etiological agents of streptococcal disease have been associated with fish mortality and serious global economic loss. Bacterial identification based on biochemical, molecular, and phenotypic methods has been routinely used, along with assessment of morphological analyses. Among these, the molecular method of 16S rRNA sequencing is reliable, but presently, advanced genomics are preferred over other traditional identification methodologies. This review highlights the geographical variation in strains, their relatedness, as well as the complexity of diagnosis, pathogenesis, and various control methods of streptococcal infections. Several limitations, from diagnosis to control, have been reported, which make prevention and containment of streptococcal disease difficult. In this review, we discuss the challenges in diagnosis, pathogenesis, and control methods and suggest appropriate molecular (comparative genomics), cellular, and environmental solutions from among the best available possibilities.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
| | - Gyu-Hwi Nam
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
| | - Jeong-An Gim
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
- The Genomics Institute, Life Sciences Department, UNIST, Ulsan 44919,
Korea
| | - Hee-Eun Lee
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
| | - Ara Jo
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241,
Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
45
|
Ortega C, García I, Irgang R, Fajardo R, Tapia-Cammas D, Acosta J, Avendaño-Herrera R. First identification and characterization of Streptococcus iniae obtained from tilapia (Oreochromis aureus) farmed in Mexico. JOURNAL OF FISH DISEASES 2018; 41:773-782. [PMID: 29315698 DOI: 10.1111/jfd.12775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
This is the first study to isolate, identify and characterize Streptococcus iniae as the causative disease agent in two tilapia (Oreochromis aureus) populations. The populations were geographically isolated, of distinct origins, and did not share water sources. Affected fish showed various external (e.g., exophthalmia and cachexia, among others) and internal (e.g., granulomatous septicaemia and interstitial nephritis, among others) signs. All internal organ samples produced pure cultures, two of which (one from each farm, termed S-1 and S-2) were subjected to biochemical, PCR and 16S rRNA sequencing (99.5% similarity) analyses, confirming S. iniae identification. The two isolates presented genetic homogeneity regardless of technique (i.e., RAPD, REP-PCR and ERIC-PCR analyses). Pathogenic potentials were assessed through intraperitoneal injection challenges in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). Rainbow trout mortalities were respectively 40% and 70% at 104 and 106 CFU per fish with the S-1 isolate, while 100% mortality rates were recorded in zebrafish at 102 and 104 CFU per fish with the S-2 isolate. The obtained data clearly indicate a relationship between intensified aquaculture activities in Mexico and new disease appearances. Future studies should establish clinical significances for the tilapia industry.
Collapse
Affiliation(s)
- C Ortega
- Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM), Toluca, México
| | - I García
- Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM), Toluca, México
| | - R Irgang
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - R Fajardo
- Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM), Toluca, México
| | - D Tapia-Cammas
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - J Acosta
- Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM), Toluca, México
| | - R Avendaño-Herrera
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
46
|
Nilojan J, Bathige SDNK, Thulasitha WS, Kwon H, Jung S, Kim MJ, Nam BH, Lee J. Transcriptional profiling, molecular cloning, and functional analysis of C1 inhibitor, the main regulator of the complement system in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2018; 75:263-273. [PMID: 29444464 DOI: 10.1016/j.fsi.2018.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
C1-inhibitor (C1inh) plays a crucial role in assuring homeostasis and is the central regulator of the complement activation involved in immunity and inflammation. A C1-inhibitor gene from Sebastes schlegelii was identified and designated as SsC1inh. The identified genomic DNA and cDNA sequences were 6837 bp and 2161 bp, respectively. The genomic DNA possessed 11 exons, interrupted by 10 introns. The amino acid sequence possessed two immunoglobulin-like domains and a serpin domain. Multiple sequence alignment revealed that the serpin domain of SsC1inh was highly conserved among analyzed species where the two immunoglobulin-like domains showed divergence. The distinctiveness of teleost C1inh from other homologs was indicated by the phylogenetic analysis, genomic DNA organization, and their extended N-terminal amino acid sequences. Under normal physiological conditions, SsC1inh mRNA was most expressed in the liver, followed by the gills. The involvement of SsC1inh in homeostasis was demonstrated by modulated transcription profiles in the liver and spleen upon pathogenic stress by different immune stimulants. The protease inhibitory potential of recombinant SsC1inh (rSsC1inh) and the potentiation effect of heparin on rSsC1inh was demonstrated against C1esterase and thrombin. For the first time, the anti-protease activity of the teleost C1inh against its natural substrates C1r and C1s was proved in this study. The protease assay conducted with recombinant black rockfish C1r and C1s proteins in the presence or absence of rSsC1inh showed that the activities of both proteases were significantly diminished by rSsC1inh. Taken together, results from the present study indicate that SsC1inh actively plays a significant role in maintaining homeostasis in the immune system of black rock fish.
Collapse
Affiliation(s)
- Jehanathan Nilojan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S D N K Bathige
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - W S Thulasitha
- Department of Zoology, University of Jaffna, Jaffna, 40000, Sri Lanka
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
47
|
Nilojan J, Bathige SDNK, Kugapreethan R, Yang H, Kim MJ, Nam BH, Lee J. Molecular features and the transcriptional and functional delineation of complement system activators C1r and C1s from Sebastes schlegelii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:279-290. [PMID: 29247723 DOI: 10.1016/j.dci.2017.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
C1r and C1s are serine proteases responsible for activating the classical complement pathway to initiate the complement cascade, which plays a crucial role in eliminating invading pathogenic microbes. In this study, cDNA sequences of C1r and C1s were identified from black rockfish and designated as SsC1r and SsC1s, respectively. In both sequences, two CUB domains, an EGF-like domain, two CCP domains, and a trypsin-like serine protease domain were identified. Multiple sequence alignments with known vertebrate homologs demonstrated that both sequences were highly conserved and, especially, the catalytic and substrate binding residues were completely conserved. In the constructed phylogenetic tree, C1r and C1s formed two separate clusters, which further branched into groups of related organisms. SsC1r and SsC1s joined with their respective teleostean clusters. Transcriptional analysis showed that the highest mRNA expression level was in the liver under normal physiological conditions. Significantly upregulated expression of both mRNAs in spleen and liver after pathologic stress, by intraperitoneal injection with different stimuli, suggested their vital role in immunity. The serine protease domains of SsC1r and SsC1s were cloned and the recombinant proteins were expressed and purified. A protease assay, conducted to confirm their functionality, indicated that both recombinant proteins had proteolytic activity. Taken together, these results indicate that SsC1r and SsC1s have significant properties to aid in the immunity of black rockfish by activating the complement system by proteolytic cleavage.
Collapse
Affiliation(s)
- Jehanathan Nilojan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Roopasingam Kugapreethan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
48
|
Li L, Wang R, Huang Y, Huang T, Luo F, Huang W, Yang X, Lei A, Chen M, Gan X. High Incidence of Pathogenic Streptococcus agalactiae ST485 Strain in Pregnant/Puerperal Women and Isolation of Hyper-Virulent Human CC67 Strain. Front Microbiol 2018; 9:50. [PMID: 29467722 PMCID: PMC5808242 DOI: 10.3389/fmicb.2018.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/10/2018] [Indexed: 01/02/2023] Open
Abstract
Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia.
Collapse
Affiliation(s)
- Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China.,Bacteria Laboratory, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China.,Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yan Huang
- Bacteria Laboratory, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Fuguang Luo
- Liuzhou's Aquaculture Technology Extending Station, Liuzhou, China
| | - Weiyi Huang
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiuying Yang
- School of Public Health, National Medical College of Right Rivers, Baise, China
| | - Aiying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China.,Bacteria Laboratory, Guangxi Center for Disease Control and Prevention, Nanning, China.,Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xi Gan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, China
| |
Collapse
|
49
|
Osman KM, Al-Maary KS, Mubarak AS, Dawoud TM, Moussa IMI, Ibrahim MDS, Hessain AM, Orabi A, Fawzy NM. Characterization and susceptibility of streptococci and enterococci isolated from Nile tilapia (Oreochromis niloticus) showing septicaemia in aquaculture and wild sites in Egypt. BMC Vet Res 2017; 13:357. [PMID: 29178882 PMCID: PMC5702248 DOI: 10.1186/s12917-017-1289-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background The present investigation was an endeavor into the elucidation of the disease-causing pathogen of streptococcosis in Nile tilapia (Oreochromis niloticus) in Egypt affecting adult fish cultured and wild fish in the Nile river. Fish were obtained from commercial fishermen, collected as part of their routine fishing activities. The researchers observed the routine fishing process and selected fish for use in the study, at the point of purchase from the fisherman. Results Diseased fish showed exophthalmia with accumulation of purulent and haemorrhagic fluid around eyes, and ventral petechial haemorrhages. The Post mortem examination revealed, abdominal fat haemorrhage, pericarditis and enlargement of the liver, spleen and kidney. Gram-stained smears revealed the presence of Gram-positive cocci, β-hemolytic, oxidase and catalase negative. Analysis of the 16S rRNA gene confirmed that the 17 tilapia isolates studied were 6/17 Enterococcus faecalis, 2/17 Enterococcus gallinarum, 3/17 Streptococcus pluranimalium, 2/17 Aerococcus viridans, 1/17 isolate of each Streptococcus dysgalactiae, Streptococcus anginosus, Lactococcus garvieae and Granulicetella elegans/Leuconostoc mesenteroides cremoris. It should be noted that there was no mixed infection. Multiple resistance was observed and the most frequent antibiotic combination was penicillin, ampicillin, vancomycin, chloramphenicol, rifampicin, ofloxacin, clindamycin, erythromycin and tetracycline representing eight classes. Conclusions Consequently, we concluded that Streptococcus species are an emerging pathogen for Nile tilapia aquaculture in Egypt and to be considered as a new candidate in the warm water fish diseases in Egypt with special reference to L. garvieae, S. dysgalactiae in addition to L. mesenteroides cremoris which was not reported before from tilapia and taking into consideration their zoonotic implications for public health.
Collapse
Affiliation(s)
- Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Khalid S Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Aymen S Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ihab M I Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mai D S Ibrahim
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ashgan M Hessain
- Department of Health Science, College of Applied Studies and Community Service, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nehal M Fawzy
- Department of Fish Diseases and Management, Animal Health Research Institute, Dokki, Giza, Egypt
| |
Collapse
|
50
|
Cimolai N. Fish processing and human infection. CMAJ 2017; 189:E1400. [PMID: 29133543 DOI: 10.1503/cmaj.733359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Nevio Cimolai
- Professor, Department of Pathology and Laboratory Medicine, Children's and Women's Health Centre of British Columbia, Vancouver BC
| |
Collapse
|