1
|
Hcini N, Lambert V, Picone O, Carod JF, Carles G, Pomar L, Epelboin L, Nacher M. Arboviruses and pregnancy: are the threats visible or hidden? Trop Dis Travel Med Vaccines 2024; 10:4. [PMID: 38355934 PMCID: PMC10868105 DOI: 10.1186/s40794-023-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 02/16/2024] Open
Abstract
Mosquito-borne arboviral diseases are a global concern and can have severe consequences on maternal, neonatal, and child health. Their impact on pregnancy tends to be neglected in developing countries. Despite hundreds of millions of infections, 90% pregnancies being exposed, scientific data on pregnant women is poor and sometimes non-existent. Recently and since the 2016 Zika virus outbreak, there has been a newfound interest in these diseases. Through various neuropathogenic, visceral, placental, and teratogenic mechanisms, these arbovirus infections can lead to fetal losses, obstetrical complications, and a wide range of congenital abnormalities, resulting in long-term neurological and sensory impairments. Climate change, growing urbanization, worldwide interconnectivity, and ease of mobility allow arboviruses to spread to other territories and impact populations that had never been in contact with these emerging agents before. Pregnant travelers are also at risk of infection with potential subsequent complications. Beyond that, these pathologies show the inequalities of access to care on a global scale in a context of demographic growth and increasing urbanization. It is essential to promote research, diagnostic tools, treatments, and vaccine development to address this emerging threat.Background The vulnerability of pregnant women and fetuses to emergent and re-emergent pathogens has been notably illustrated by the outbreaks of Zika virus. Our comprehension of the complete scope and consequences of these infections during pregnancy remains limited, particularly among those involved in perinatal healthcare, such as obstetricians and midwives. This review aims to provide the latest information and recommendations regarding the various risks, management, and prevention for pregnant women exposed to arboviral infections.
Collapse
Affiliation(s)
- Najeh Hcini
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana.
- CIC Inserm 1424 and DFR Santé Université Guyane, Cayenne, French Guiana, France.
| | - Véronique Lambert
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Olivier Picone
- Department of Obstetrics and Gynecology, Hôpital Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Assistance Publique : Hôpitaux de Paris, Université Paris Diderot, CEDEX, Colombes, France
| | - Jean-Francois Carod
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Gabriel Carles
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Léo Pomar
- Materno-Fetal and Obstetrics Research Unit, Department "Woman-Mother-Child", Lausanne University Hospital, Lausanne, Switzerland
| | - Loïc Epelboin
- Department of Infectious and Tropical Diseases, Cayenne General Hospital, Cayenne, French Guiana, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles Guyane, Inserm CIC1424, Centre Hospitalier de Cayenne, 97300, Cayenne, French Guiana
| |
Collapse
|
2
|
Kwon T. Utilizing non-human primate models to combat recent COVID-19/SARS-CoV-2 and viral infectious disease outbreaks. J Med Primatol 2024; 53:e12689. [PMID: 38084001 DOI: 10.1111/jmp.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 02/13/2024]
Abstract
In recent times, global viral outbreaks and diseases, such as COVID-19 (SARS-CoV-2), Zika (ZIKV), monkeypox (MPOX), Ebola (EBOV), and Marburg (MARV), have been extensively documented. Swiftly deciphering the mechanisms underlying disease pathogenesis and devising vaccines or therapeutic interventions to curtail these outbreaks stand as paramount imperatives. Amidst these endeavors, animal models emerge as pivotal tools. Among these models, non-human primates (NHPs) hold a position of particular importance. Their proximity in evolutionary lineage and physiological resemblances to humans render them a primary model for comprehending human viral infections. This review encapsulates the pivotal role of various NHP species-such as rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), african green monkeys (Chlorocebus sabaeus/aethiops), pigtailed macaques (Macaca nemestrina/Macaca leonina), baboons (Papio hamadryas/Papio anubis), and common marmosets (Callithrix jacchus)-in investigations pertaining to the abovementioned viral outbreaks. These NHP models play a pivotal role in illuminating key aspects of disease dynamics, facilitating the development of effective countermeasures, and contributing significantly to our overall understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
3
|
Scotto G, Massa S, Spirito F, Fazio V. Congenital Zika Virus Syndrome: Microcephaly and Orofacial Anomalies. Life (Basel) 2023; 14:55. [PMID: 38255670 PMCID: PMC10820182 DOI: 10.3390/life14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The progressive reappearance of Zika virus (ZIKV) infections since October 2013 and its circulation in >70 countries and territories (from French Polynesia to Brazil and other countries in the Americas, with sporadic spread in Europe and the East) has long been reported as a global public health emergency. ZIKV is a virus transmitted by arthropods (arboviruses), mainly by Aedes mosquitoes. ZIKV can also be transmitted to humans through mechanisms other than vector infection such as sexual intercourse, blood transfusions, and mother-to-child transmission. The latter mode of transmission can give rise to a severe clinical form called congenital Zika syndrome (CZS), which can result in spontaneous abortion or serious pathological alterations in the fetus such as microcephaly or neurological and orofacial anomalies. In this study, beside a succinct overview of the etiological, microbiological, and epidemiological aspects and modes of transmission of Zika virus infections, we have focused our attention on the pathogenetic and histopathological aspects in pregnancy and the pathogenetic and molecular mechanisms that can determine microcephaly, and consequently the clinical alterations, typical of the fetus and newborns, in a subject affected by CZS.
Collapse
Affiliation(s)
- Gaetano Scotto
- Infectious Diseases Unit, University Hospital “OORR” Foggia, 71122 Foggia, Italy
| | - Salvatore Massa
- Department of Agriculture, Food, Natural Resource and Engineering, University of Foggia, 71122 Foggia, Italy;
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Vincenzina Fazio
- Clinical Chemistry Laboratory, Virology Unit, University Hospital “OORR” Foggia, 71122 Foggia, Italy;
| |
Collapse
|
4
|
Barbosa MD, Costa A, Prieto-Oliveira P, Andreata-Santos R, Peter CM, Zanotto PMA, Janini LMR. Proposal of Model for Evaluation of Viral Kinetics of African/Asian/Brazilian- Zika virus Strains (Step Growth Curve) in Trophoblastic Cell Lines. Viruses 2023; 15:1446. [PMID: 37515134 PMCID: PMC10386092 DOI: 10.3390/v15071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The Zika virus (ZIKV) epidemic brought new discoveries regarding arboviruses, especially flaviviruses, as ZIKV was described as sexually and vertically transmitted. The latter shows severe consequences for the embryo/fetus, such as congenital microcephaly and deficiency of the neural system, currently known as Congenital ZIKV Syndrome (CZS). To better understand ZIKV dynamics in trophoblastic cells present in the first trimester of pregnancy (BeWo, HTR-8, and control cell HuH-7), an experiment of viral kinetics was performed for African MR766 low passage and Asian-Brazilian IEC ZIKV lineages. The results were described independently and demonstrated that the three placental cells lines are permissive and susceptible to ZIKV. We noticed cytopathic effects that are typical in in vitro viral infection in BeWo and HTR-8. Regarding kinetics, MR766lp showed peaks of viral loads in 24 and 48 hpi for all cell types tested, as well as marked cells death after peak production. On the other hand, the HTR-8 lineage inoculated with ZIKV-IEC exhibited increased viral production in 144 hpi, with a peak between 24 and 96 hpi. Furthermore, IEC had peak variations of viral production for BeWo in 144 hpi. Considering such in vitro results, the hypothesis that maternal fetal transmission is probably a way of virus transmission between the mother and the embryo/fetus is maintained.
Collapse
Affiliation(s)
- Márcia Duarte Barbosa
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Anderson Costa
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Paula Prieto-Oliveira
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA
| | - Robert Andreata-Santos
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Cristina M Peter
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Paolo M A Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz Mario Ramos Janini
- Laboratory of Retrovirology, Department of Microbiology, Immunology and Parasitology, Discipline of Microbiology, Federal University of São Paulo, São Paulo 04039-032, Brazil
| |
Collapse
|
5
|
Olaya Contreras M, Caicedo Marmolejo BE. Actualidad en corioamnionitis. UNIVERSITAS MÉDICA 2022. [DOI: 10.11144/javeriana.umed63-4.cori] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
La corioamnionitis se ha relacionados con desenlaces desfavorables en el período prenatal y neonatal (abortos, parto pretérmino, sepsis neonatal, entre otros), además de implicaciones a largo plazo en la infancia, tales como alteraciones en el coeficiente intelectual. Por esta razón es de vital importancia el diagnóstico histopatológico oportuno. En este artículo se revisará el abordaje histopatológico de la corioamnionitis, su estadificación e implicaciones clínicas.
Collapse
|
6
|
Abstract
Chorioamnionitis or intrauterine inflammation is a frequent cause of preterm birth. Chorioamnionitis can affect almost every organ of the developing fetus. Multiple microbes have been implicated to cause chorioamnionitis, but "sterile" inflammation appears to be more common. Eradication of microorganisms has not been shown to prevent the morbidity and mortality associated with chorioamnionitis as inflammatory mediators account for continued fetal and maternal injury. Mounting evidence now supports the concept that the ensuing neonatal immune dysfunction reflects the effects of inflammation on immune programming during critical developmental windows, leading to chronic inflammatory disorders as well as vulnerability to infection after birth. A better understanding of microbiome alterations and inflammatory dysregulation may help develop better treatment strategies for infants born to mothers with chorioamnionitis.
Collapse
|
7
|
Corchuelo S, Gómez CY, Rosales AA, Santamaria G, Rivera JA, Saad EP, Torres-Fernández O, Rengifo AC. CISH and IHC for the Simultaneous Detection of ZIKV RNA and Antigens in Formalin-Fixed Paraffin-Embedded Cell Blocks and Tissues. Curr Protoc 2021; 1:e319. [PMID: 34936226 DOI: 10.1002/cpz1.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zika virus is an arthropod-borne virus that has recently emerged as a significant public health emergency due to its association with congenital malformations. Serological and molecular tests are typically used to confirm Zika virus infection. These methods, however, have limitations when the interest is in localizing the virus within the tissue and identifying the specific cell types involved in viral dissemination. Chromogenic in situ hybridization (CISH) and immunohistochemistry (IHC) are common histological techniques used for intracellular localization of RNA and protein expression, respectively. The combined use of CISH and IHC is important to obtain information about RNA replication and the location of infected target cells involved in Zika virus neuropathogenesis. There are no reports, however, of detailed procedures for the simultaneous detection of Zika virus RNA and proteins in formalin-fixed paraffin-embedded (FFPE) samples. Furthermore, the chromogenic detection methods for Zika virus RNA published thus far use expensive commercial kits, limiting their widespread use. As an alternative, we describe here a detailed and cost-effective step-by-step procedure for the simultaneous detection of Zika virus RNA and proteins in FFPE samples. First, we describe how to synthesize and purify homemade RNA probes conjugated with digoxygenin. Then, we outline the steps to perform the chromogenic detection of Zika virus RNA using these probes, and how to combine this technique with the immunodetection of viral antigens. To illustrate the entire workflow, we use FFPE samples derived from infected Vero cells as well as from human and mouse brain tissues. These methods are highly adaptable and can be used to study Zika virus or even other viruses of public health relevance, providing an optimal and economical alternative for laboratories with limited resources. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of RNA probes conjugated with digoxigenin (DIG) Basic Protocol 2: Simultaneous detection of ZIKV RNA and proteins in FFPE cell blocks and tissues.
Collapse
Affiliation(s)
- Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Claudia Y Gómez
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Alicia A Rosales
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Gerardo Santamaria
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Jorge Alonso Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Edgar Parra Saad
- Grupo de Patología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
- Doctorado en Ciencias Biomédicas, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
8
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Differences in Placental Histology Between Zika Virus-infected Teenagers and Older Women. Int J Gynecol Pathol 2021; 41:389-396. [PMID: 34347668 DOI: 10.1097/pgp.0000000000000807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In pregnant women, Zika virus (ZIKV) is associated with a congenital syndrome, most frequently involving damage to embryo brain formation and the development of microcephaly. The mechanism(s) by which ZIKV enters the maternal-fetal interface and is transmitted to the fetus remains incompletely determined. We sought to evaluate histologic changes in the placenta of ZIKV-infected pregnant women and to determine if this varied by maternal age. Placental samples were obtained from 66 women, 33 of whom were positive for ZIKV. Histologic evaluations were performed on 4 areas of the placenta: fetal surface, maternal surface, umbilical cord, and membranes. Samples were analyzed by the tissue microarray technique and tested for CD4, CD8, CD20, CD68, FOXP3, and cyclooxygenase-2 expression. Data were evaluated using Fisher exact test. ZIKV infection was more frequent in women less than 18 yr of age (9/11, 81.8%) than in women above 18 yr old (24/55, 43.6%) (P=0.0440). ZIKV detection was associated with neutrophilic chorioamnionitis (P=0.0332) and with septal (P=0.0244) and villous (P=0.0534) calcification. Hofbauer cell hyperplasia (P=0.0260) and cyclooxygenase-2 expression (P=0.0346) were more prevalent in ZIKV-positive women aged 18 yr and below than in the older ZIKV-positive women. ZIKV infection during pregnancy occurs more frequently in adolescents and induces higher rates of damage at the maternal-fetal interface than in older women.
Collapse
|
10
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Early Gross Motor Development Among Brazilian Children with Microcephaly Born Right After Zika Virus Infection Outbreak. J Dev Behav Pediatr 2021; 41:134-140. [PMID: 31453893 DOI: 10.1097/dbp.0000000000000722] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the gross motor development of children with presumed congenital Zika virus (ZIKV) infection over the first 2 years of their lives. METHODS Seventy-seven children were assessed at the median ages of 11, 18, and 24 months, using the evaluative instrument Gross Motor Function Measure (GMFM-66). At the third assessment, the children with diagnoses of cerebral palsy (CP) were classified by severity through the Gross Motor Function Classification System (GMFCS) and stratified by topography indicating the predominantly affected limbs. With these instruments in combination and using the motor development curves as reference, the rate of development and functional ability were estimated. RESULTS At 2 years of age, all children had the diagnosis of CP. Seventy-four (96.1%) presented gross motor skills similar to those of children aged 4 months or younger, according to the World Health Organization's standard. The GMFM-66 median score among the 73 (94.8%) children with quadriplegia and GMFCS level V showed significant change between 11 and 18 months (p < 0.001) and between 11 and 24 months (p < 0.001). No significant difference (p = 0.076) was found between 18 and 24 months. CONCLUSION Despite showing some gross motor progress during the initial 18 months of life, these children with presumed congenital ZIKV infection and CP experienced severe motor impairment by 2 years of age. According to the motor development curves, these children with quadriplegia have probably already reached about 90% of their motor development potential.
Collapse
|
12
|
Charlier C, Lecuit M. Maternal-fetal infections: Why do they matter? Virulence 2021; 11:398-399. [PMID: 32363994 PMCID: PMC7199755 DOI: 10.1080/21505594.2020.1759288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Caroline Charlier
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France.,French National Reference Center and WHO Collaborating Center for Listeria, Institut Pasteur, Paris, France.,Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP.,Université de Paris, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France.,French National Reference Center and WHO Collaborating Center for Listeria, Institut Pasteur, Paris, France.,Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP.,Université de Paris, Paris, France
| |
Collapse
|
13
|
Lee SH, Kim EH, O'neal JT, Dale G, Holthausen DJ, Bowen JR, Quicke KM, Skountzou I, Gopal S, George S, Wrammert J, Suthar MS, Jacob J. The amphibian peptide Yodha is virucidal for Zika and dengue viruses. Sci Rep 2021; 11:602. [PMID: 33436917 PMCID: PMC7804942 DOI: 10.1038/s41598-020-80596-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) has emerged as a serious health threat in the Americas and the Caribbean. ZIKV is transmitted by the bite of an infected mosquito, sexual contact, and blood transfusion. ZIKV can also be transmitted to the developing fetus in utero, in some cases resulting in spontaneous abortion, fetal brain abnormalities, and microcephaly. In adults, ZIKV infection has been correlated with Guillain-Barre syndrome. Despite the public health threat posed by ZIKV, neither a vaccine nor antiviral drugs for use in humans are currently available. We have identified an amphibian host defense peptide, Yodha, which has potent virucidal activity against ZIKV. It acts directly on the virus and destroys Zika virus particles within 5 min of exposure. The Yodha peptide was effective against the Asian, African, and South American Zika virus strains and has the potential to be developed as an antiviral therapeutic in the fight against Zika virus. The peptide was also effective against all four dengue virus serotypes. Thus, Yodha peptide could potentially be developed as a pan-therapeutic for Zika and dengue viruses.
Collapse
Affiliation(s)
- Song Hee Lee
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Eui Ho Kim
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Justin T O'neal
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gordon Dale
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - David J Holthausen
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - James R Bowen
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kendra M Quicke
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ioanna Skountzou
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Shyla Gopal
- Rajiv Gandhi Center for Biotechnology, Poojapura, Thiruvananthapuram, Kerala, 695014, India
| | - Sanil George
- Rajiv Gandhi Center for Biotechnology, Poojapura, Thiruvananthapuram, Kerala, 695014, India
| | - Jens Wrammert
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Joshy Jacob
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
14
|
Carvalho-Sauer RDCOD, Costa MDCN, Paixão ES, de Jesus Silva N, Barreto FR, Teixeira MG. Cross-sectional study of the anthropometric characteristics of children with congenital Zika syndrome up to 12 months of life. BMC Pediatr 2020; 20:479. [PMID: 33054749 PMCID: PMC7557056 DOI: 10.1186/s12887-020-02365-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/02/2022] Open
Abstract
Background Little is known about physical development of children with Congenital Zika Syndrome (CZS). This study aims to evaluate the anthropometric characteristics of children with CZS up to 12 months. Methods This is a cross-sectional study developed with 46 children with CZS living in Bahia. We used the Public Health Events Register, Live Births Information System and Childcare Records of Primary Health Care Services. Descriptive analysis was performed by distributing absolute and relative frequencies and median and interquartile range. The Weight/Age (W/A), Length/Age (L/A), Weight/Length (W/L) and Head Circumference/Age (HC/A) indexes were calculated for each month and expressed in z-score values, and the results were evaluated individually and by group average. Values between ≥ − 2 and ≤ 2 standard deviations were used as reference. T-Student and Spearman’s Correlation Tests were applied to verify the existence of any relationship between maternal and children’s variables with the anthropometric indexes weight/age and height/age at birth and at 3, 6 and 12 months of age. Results The studied children had high proportions of low birth weight (23.9%), dysphagia (56.8%) and seizures (53.5%). The mean z-score for the HC/A index at birth was − 3.20 and remained below − 3 z-scores throughout the assessed period. The analysis of the indices equivalent to every single child’s anthropometric measurement showed a deficit in 20.4% of the W/A, 39.1% of the L/A, 9.2% of the W/L and 85.7% of the HC/A measurements. Distribution of the mean values of these anthropometric indices revealed a risk of delayed stature growth (L/A < -1 z-score). There was a statistically significant association between L/A at 12 months and dysphagia (p = 0.0148) and a positive correlation between breastfeeding time and W/A. No statistically significant correlation was found between any other tested variables. Conclusions We observed a deficit in the HC/A index, which is a common feature in CZS, but also a high proportion of W/A and L/A deficit. The average group z-score highlighted the risk of delay in stature growth for age, which calls attention to the need for health interventions, as this condition exposes them to a higher risk of morbidity and mortality.
Collapse
Affiliation(s)
- Rita de Cássia Oliveira de Carvalho-Sauer
- Bahia State Health Secretariat, Epidemiological Surveillance Service of the East Regional Health Center, Avenida Esperança, 406, Santo Antônio de Jesus, Bahia, ZC 44435-500, Brazil
| | | | - Enny S Paixão
- London School of Hygiene and Tropical Medicine, London Keppel St, Bloomsbury, London, WC1E 7HT, UK.
| | - Natanael de Jesus Silva
- Centre for Data and Knowledge Integration for Health (CIDACS), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Parque Tecnológico da Bahia. Rua Mundo, 121 - Trobogy, Salvador, Bahia, ZC 41745-715, Brazil
| | - Florisneide Rodrigues Barreto
- Institute of Collective Health, Federal University of Bahia, Rua Basílio da Gama, s / n. Canela, Salvador, Bahia, ZC-40.110.040, Brazil
| | - Maria Gloria Teixeira
- Institute of Collective Health, Federal University of Bahia, Rua Basílio da Gama, s / n. Canela, Salvador, Bahia, ZC-40.110.040, Brazil
| |
Collapse
|
15
|
Quilião ME, Venancio FA, Mareto LK, Metzker SDA, do Nascimento AI, Vitorelli-Venancio DC, Santos-Pinto CDB, de Oliveira EF. Neurological Development, Epilepsy, and the Pharmacotherapy Approach in Children with Congenital Zika Syndrome: Results from a Two-Year Follow-up Study. Viruses 2020; 12:v12101083. [PMID: 32992985 PMCID: PMC7601787 DOI: 10.3390/v12101083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical outcomes related to congenital Zika syndrome (CZS) include microcephaly accompanied by specific brain injuries. Among several CZS outcomes that have been described, epilepsy and motor impairments are present in most cases. Pharmacological treatment for seizures resulting from epilepsy is performed with anticonvulsant drugs, which in the long term are related to impairments in the child's neuropsychomotor development. Here, we describe the results from a two-year follow-up of a cohort of children diagnosed with CZS related to the growth of the head circumference and some neurological and motor outcomes, including the pharmacological approach, and its results in the treatment of epileptic seizures. This paper is part of a prospective cohort study carried out in the state of Mato Grosso Sul, Brazil, based on a Zika virus (ZIKV)-exposed child population. Our data were focused on the assessment of head circumference growth and some neurological and motor findings, including the description of seizure conditions and pharmacological management in two periods. Among the 11 children evaluated, 8 had severe microcephaly associated with motor impairment and/or epilepsy. Seven children were diagnosed with epilepsy. Of these, 3 had West syndrome. In four children with other forms of epilepsy, there was no pharmacological control.
Collapse
Affiliation(s)
- Maria Eulina Quilião
- Centro Especializado em Reabilitação, Associação de Pais e Amigos dos Excepcionais, Campo Grande 79050-140, Brazil;
| | - Fabio Antonio Venancio
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (F.A.V.); (D.C.V.-V.)
| | - Lisany Krug Mareto
- Instituto Integrado de Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.K.M.); (C.D.B.S.-P.)
| | - Sahra de Almeida Metzker
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ana Isabel do Nascimento
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Daniele Cristina Vitorelli-Venancio
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (F.A.V.); (D.C.V.-V.)
| | - Cláudia Du Bocage Santos-Pinto
- Instituto Integrado de Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.K.M.); (C.D.B.S.-P.)
| | - Everton Falcão de Oliveira
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (F.A.V.); (D.C.V.-V.)
- Instituto Integrado de Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.K.M.); (C.D.B.S.-P.)
- Correspondence: ; Tel.: +55-67-3345-7403
| |
Collapse
|
16
|
Liang B, Guida JP, Costa Do Nascimento ML, Mysorekar IU. Host and viral mechanisms of congenital Zika syndrome. Virulence 2020; 10:768-775. [PMID: 31451049 PMCID: PMC6735503 DOI: 10.1080/21505594.2019.1656503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In 2015–2016, in the Americas, and especially in northeast Brazil, a significant number of cases of microcephaly and other congenital brain abnormalities were linked with an outbreak of Zika virus (ZIKV) infection in pregnant women. While maternal symptoms of ZIKV are generally mild and self-limiting, clinical presentation in fetuses and newborns infected is extensive and includes microcephaly, decreased cortical development, atrophy and hypoplasia of the cerebellum and cerebellar vermis, arthrogryposis, and polyhydramnios. The term congenital ZIKV syndrome (CZS) was introduced to describe the range of findings associated with maternal-fetal ZIKV transmission. ZIKV is primarily transmitted by Aedes aegypti mosquitoes, however non-vector-dependent routes are also possible. Mechanisms of maternal-fetal transmission remain unknown, and the trans-placental route has been extensively studied in animal models and in human samples. The aim of this review was to summarize recent studies that helped to elucidate the mechanism of CZS in animal models and observational studies. There are still challenges in the diagnosis and prevention of CZS in humans, due to the large gap that remains in translating ZIKV research to clinical practice. Translational research linking governments, local health workers, scientists and industry is fundamental to improve care for mothers and children.
Collapse
Affiliation(s)
- Brooke Liang
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis , MO , USA
| | - José Paulo Guida
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas , Campinas , Brazil
| | | | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis , MO , USA.,Department of Pathology and Immunology, Washington University School of Medicine , St. Louis , MO , USA.,Center for Reproductive Health Sciences, Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
17
|
Collier ARY, Borducchi EN, Chandrashekar A, Moseley E, Peter L, Teodoro NS, Nkolola J, Abbink P, Barouch DH. Sustained maternal antibody and cellular immune responses in pregnant women infected with Zika virus and mother to infant transfer of Zika-specific antibodies. Am J Reprod Immunol 2020; 84:e13288. [PMID: 32557984 DOI: 10.1111/aji.13288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023] Open
Abstract
PROBLEM Evaluation of Zika virus (ZIKV)-specific humoral and cellular immune response in pregnant women exposed to ZIKV. METHOD OF STUDY In this observational, prospective cohort study, we recruited pregnant women presenting for prenatal ultrasound for ZIKV exposure at a single academic teaching hospital in Boston, MA from November 2016 to December 2018. We collected blood, urine, and cervicovaginal swabs antepartum, intrapartum, and postpartum; and cord blood and placenta at delivery. We used experimental assays to calculate quantitative viral loads, ZIKV-specific immunoglobulin titers, and ZIKV-specific T-cell responses. RESULTS We enrolled 22 participants, three of which had serologic-confirmed ZIKV infection. No participants demonstrated sustained ZIKV shedding. ZIKV-specific IgG/IgM antibody was sustained throughout pregnancy and postpartum. ZIKV envelope and capsid-specific T-cell responses were also observed, albeit inconsistent. No newborns in this cohort had congenital Zika syndrome. Infant cord blood of infected mothers exhibited ZIKV-specific IgG, but not IgM antibodies. CONCLUSION We detected a robust, prolonged maternal humoral immune response to ZIKV during pregnancy and postpartum. We also demonstrated evidence for efficient transplacental antibody transfer from mother to infant at birth, supporting the importance of neonatal passive immunity to ZIKV. Maternal T-cell responses were less consistent among pregnant women infected with ZIKV.
Collapse
Affiliation(s)
- Ai-Ris Y Collier
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward Moseley
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lauren Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicholas S Teodoro
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joseph Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
18
|
Cappelletti M, Presicce P, Kallapur SG. Immunobiology of Acute Chorioamnionitis. Front Immunol 2020; 11:649. [PMID: 32373122 PMCID: PMC7177011 DOI: 10.3389/fimmu.2020.00649] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation at the maternal fetal interface. It is a relatively common complication of pregnancy and can have devastating consequences including preterm labor, maternal infections, fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this review, we will discuss current understanding of the pathogenesis, immunobiology, and mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of ascending infection with relatively low-virulence organisms such as the Ureaplasma species. Furthermore, recent vaginal microbiome studies suggest that there is a link between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less common, microorganisms invading the maternal-fetal interface via hematogenous route (e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe fetal inflammation and injury. We will provide an overview of the knowledge gleaned from different animal models of acute chorioamnionitis and the role of different immune cells in different maternal-fetal compartments. Lastly, we will discuss how infectious agents can break the maternal tolerance of fetal allograft during pregnancy and highlight the novel future therapeutic approaches.
Collapse
Affiliation(s)
- Monica Cappelletti
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Suhas G Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
19
|
Zhu C, Liu C, Qiu X, Xie S, Li W, Zhu L, Zhu L. Novel nucleic acid detection strategies based on CRISPR‐Cas systems: From construction to application. Biotechnol Bioeng 2020; 117:2279-2294. [DOI: 10.1002/bit.27334] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chu‐shu Zhu
- Department of Biology and Chemistry, College of Liberal Arts and SciencesNational University of Defense TechnologyChangsha China
| | - Chuan‐yang Liu
- Department of Biology and Chemistry, College of Liberal Arts and SciencesNational University of Defense TechnologyChangsha China
| | - Xin‐yuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and SciencesNational University of Defense TechnologyChangsha China
| | - Si‐si Xie
- Department of Biology and Chemistry, College of Liberal Arts and SciencesNational University of Defense TechnologyChangsha China
| | - Wen‐ying Li
- Department of Biology and Chemistry, College of Liberal Arts and SciencesNational University of Defense TechnologyChangsha China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and SciencesNational University of Defense TechnologyChangsha China
| | - Lv‐yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and SciencesNational University of Defense TechnologyChangsha China
| |
Collapse
|
20
|
Singh S, Singh PK, Suhail H, Arumugaswami V, Pellett PE, Giri S, Kumar A. AMP-Activated Protein Kinase Restricts Zika Virus Replication in Endothelial Cells by Potentiating Innate Antiviral Responses and Inhibiting Glycolysis. THE JOURNAL OF IMMUNOLOGY 2020; 204:1810-1824. [PMID: 32086387 DOI: 10.4049/jimmunol.1901310] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
Abstract
Viruses are known to perturb host cellular metabolism to enable their replication and spread. However, little is known about the interactions between Zika virus (ZIKV) infection and host metabolism. Using primary human retinal vascular endothelial cells and an established human endothelial cell line, we investigated the role of AMP-activated protein kinase (AMPK), a master regulator of energy metabolism, in response to ZIKV challenge. ZIKV infection caused a time-dependent reduction in the active phosphorylated state of AMPK and of its downstream target acetyl-CoA carboxylase. Pharmacological activation of AMPK using 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), metformin, and a specific AMPKα activator (GSK621) attenuated ZIKV replication. This activity was reversed by an AMPK inhibitor (compound C). Lentivirus-mediated knockdown of AMPK and the use of AMPKα-/- mouse embryonic fibroblasts provided further evidence that AMPK has an antiviral effect on ZIKV replication. Consistent with its antiviral effect, AMPK activation potentiated the expression of genes with antiviral properties (e.g., IFNs, OAS2, ISG15, and MX1) and inhibited inflammatory mediators (e.g., TNF-α and CCL5). Bioenergetic analysis showed that ZIKV infection evokes a glycolytic response, as evidenced by elevated extracellular acidification rate and increased expression of key glycolytic genes (GLUT1, HK2, TPI, and MCT4); activation of AMPK by AICAR treatment reduced this response. Consistent with this, 2-deoxyglucose, an inhibitor of glycolysis, augmented AMPK activity and attenuated ZIKV replication. Thus, our study demonstrates that the anti-ZIKV effect of AMPK signaling in endothelial cells is mediated by reduction of viral-induced glycolysis and enhanced innate antiviral responses.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201
| | - Pawan Kumar Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health Systems, Detroit, MI 48202
| | | | - Philip E Pellett
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health Systems, Detroit, MI 48202
| | - Ashok Kumar
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201; .,Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
21
|
Lima DDS, Baran LCP, Hamer RD, Costa MFD, Vidal KS, Damico FM, Barboni MTS, França VDCRDM, Martins CMG, Tabares HS, Dias SL, Silva LA, Decleva D, Zatz M, Bertozzi APAP, Gazeta RE, Passos SD, Ventura DF. Longitudinal visual acuity development in ZIKV-exposed children. J AAPOS 2020; 24:23.e1-23.e6. [PMID: 31926367 DOI: 10.1016/j.jaapos.2019.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/11/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To follow the visual acuity development of children exposed to or infected with the Zika virus (ZIKV) during gestation and to relate potential visual acuity deficits to their clinical condition. METHODS In this prospective study, visual acuity was measured via Teller Acuity Cards in three groups of children: (1) those with confirmed ZIKV exposure (ZE) through the mother only, (2) those with confirmed infection (ZI), and (3) unaffected controls. Visual acuity was measured 2-4 times in each child during the first 30 months of age. RESULTS The study included 22 children in the ZE group, 11 in the ZI group, and 27 controls. Visual acuity developed normally in both patient groups, including infected patients (ZI) that did not manifest clinical symptoms. In a small subgroup of patients with characteristics consistent with congenital Zika syndrome (CZS), visual acuity was within normative values, with the exception of single child with chorioretinal atrophy. CONCLUSIONS In this southeastern Brazil study cohort, visual acuity development seemed to progress normally in infected children without CZS symptoms.
Collapse
Affiliation(s)
- Diego da Silva Lima
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil.
| | - Luiz Claudio Portnoi Baran
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Russell David Hamer
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil; Department of Psychology, Florida Atlantic University, Boca Raton, Florida
| | - Marcelo Fernandes da Costa
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Kallene Summer Vidal
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Francisco Max Damico
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil; Department of Ophthalmology, São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Mirella Telles Salgueiro Barboni
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | | | - Heydi Segundo Tabares
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Sarah Leonardo Dias
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Leonardo Aparecido Silva
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Diego Decleva
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Stem Cell and Human Genome Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Abstract
Congenital infections are infections transmitted from mother to child during pregnancy (transplacentally) or delivery (peripartum). They have the potential to adversely affect fetal development and long-term neurodevelopmental outcome through inflammatory, destructive, developmental, or teratogenic lesions of the brain. Because the fetal/neonatal brain has a limited capacity to respond to injury, early inflammatory changes may be difficult to visualize and only manifest as neurocognitive disability later in life. Teratogenic effects, which may include aberrations of neuronal proliferation and migration, are more easily visible on imaging, but may be equally difficult to use to predict long-term neurocognitive outcomes. This chapter reviews the general pathophysiology of congenital infection and describes the epidemiology, the antenatal and postnatal diagnosis, and the treatment of congenital infections as well as the long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Isabelle Boucoiran
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Departments of Obstetrics and Gynecology and Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada.
| | - Fatima Kakkar
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Christian Renaud
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
23
|
Morris JK, Wellesley DG, Barisic I, Addor MC, Bergman JEH, Braz P, Cavero-Carbonell C, Draper ES, Gatt M, Haeusler M, Klungsoyr K, Kurinczuk JJ, Lelong N, Luyt K, Lynch C, O'Mahony MT, Mokoroa O, Nelen V, Neville AJ, Pierini A, Randrianaivo H, Rankin J, Rissmann A, Rouget F, Schaub B, Tucker DF, Verellen-Dumoulin C, Wiesel A, Zymak-Zakutnia N, Lanzoni M, Garne E. Epidemiology of congenital cerebral anomalies in Europe: a multicentre, population-based EUROCAT study. Arch Dis Child 2019; 104:1181-1187. [PMID: 31243007 DOI: 10.1136/archdischild-2018-316733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/09/2019] [Accepted: 05/31/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To describe the epidemiology and geographical differences in prevalence of congenital cerebral anomalies in Europe. DESIGN AND SETTING Congenital cerebral anomalies (International Classification of Diseases, 10th Revision code Q04) recorded in 29 population-based EUROCAT registries conducting surveillance of 1.7 million births per annum (29% of all European births). PARTICIPANTS All birth outcomes (live births, fetal deaths from 20 weeks gestation and terminations of pregnancy after prenatal diagnosis of a fetal anomaly (TOPFA)) from 2005 to 2014. MAIN OUTCOME MEASURES Prevalence, proportion of associated non-cerebral anomalies, prenatal detection rate. RESULTS 4927 cases with congenital cerebral anomalies were identified; a prevalence (adjusted for under-reporting) of 9.8 (95% CI: 8.5 to 11.2) per 10 000 births. There was a sixfold difference in prevalence across the registries. Registries with higher proportions of prenatal diagnoses had higher prevalence. Overall, 55% of all cases were liveborn, 3% were fetal deaths and 41% resulted in TOPFA. Forty-eight per cent of all cases were an isolated cerebral anomaly, 25% had associated non-cerebral anomalies and 27% were chromosomal or part of a syndrome (genetic or teratogenic). The prevalence excluding genetic or chromosomal conditions increased by 2.4% per annum (95% CI: 1.3% to 3.5%), with the increases occurring only for congenital malformations of the corpus callosum (3.0% per annum) and 'other reduction deformities of the brain' (2.8% per annum). CONCLUSIONS Only half of the cases were isolated cerebral anomalies. Improved prenatal and postnatal diagnosis may account for the increase in prevalence of congenital cerebral anomalies from 2005 to 2014. However, major differences in prevalence remain between regions.
Collapse
Affiliation(s)
- Joan K Morris
- Population Health Research Institute, St George's, University of London, London, UK
| | - Diana G Wellesley
- Department Clinical Genetics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ingeborg Barisic
- Children's Hospital Zagreb, Centre of Excellence for Reproductive and Regenerative Medicine, Medical School University of Zagreb, Zagreb, Croatia
| | - Marie-Claude Addor
- Department of Mother-Woman-Child, University Hospital Center, Lausanne, Switzerland
| | - Jorieke E H Bergman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paula Braz
- Department of Epidemiology, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Clara Cavero-Carbonell
- Rare Diseases Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, Valencia, Spain
| | | | - Miriam Gatt
- Department of Health Information and Research, National Obstetric Information Systems, Valletta, Malta
| | - Martin Haeusler
- Department of Obstetrics, Medical University of Graz, Graz, Austria
| | - Kari Klungsoyr
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen and Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Natalie Lelong
- Paris Registry of Congenital Malformations, Obstetrical, Perinatal and Pediatric Epidemiology Research Team, Center for Biostatistics and Epidemiology, INSERM, Paris, France
| | - Karen Luyt
- Translational Health Sciences, University of Bristol Medical School, Bristol, Bristol, UK
| | - Catherine Lynch
- Department of Public Health, Health Service Executive-South, Kilkenny, Ireland
| | - Mary T O'Mahony
- Department of Public Health, Health Service Executive-South, Cork, Ireland
| | - Olatz Mokoroa
- Public Health Department of Gipuzkoa, Biodonostia Instituto de Investigacion Sanitaria, Donostia-San Sebastian, Spain
| | - Vera Nelen
- Provinciaal Instituut voor Hygiene, Antwerpen, Belgium
| | - Amanda J Neville
- IMER Registry, University of Ferrara and St Anna University Hospital, Ferrara, Italy
| | - Anna Pierini
- Tuscany Registry of Congenital Defects, National Research Council Institute of Clinical Physiology/Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Hanitra Randrianaivo
- Registre des Malformations Congenitales de la Reunion, Saint Pierre, Réunion, France
| | - Judith Rankin
- Institute of Health & Society, Newcastle University, Newcastle, UK
| | - Anke Rissmann
- Malformation Monitoring Centre Saxony-Anhalt, Medical Faculty Otto-von-Guericke University, Magdeburg, Germany
| | - Florence Rouget
- Brittany Registry of Congenital Anomalies, Univ Rennes, CHU Rennes,Inserm, EHESP, Rennes, France
| | - Bruno Schaub
- Maison de la Femme de la Mère et de l'Enfant, University Hospital of Martinique, Fort-de-France, Martinique
| | - David F Tucker
- Congenital Anomaly Register and Information Service for Wales, Public Health Wales, Swansea, UK
| | | | - Awi Wiesel
- Mainz Model Birth Registry, Center of Child and Adolescence Medicine, University Medical Center, Mainz, Germany
| | | | - Monica Lanzoni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ester Garne
- Paediatric Department, Hospital Lillebaelt, Kolding, Denmark
| |
Collapse
|
24
|
Osuna CE, Whitney JB. Nonhuman Primate Models of Zika Virus Infection, Immunity, and Therapeutic Development. J Infect Dis 2019; 216:S928-S934. [PMID: 29267926 DOI: 10.1093/infdis/jix540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Zika virus is a re-emerging flavivirus transmitted primarily by arthropod vectors. The recent devastating outbreak of Zika virus in Brazil was preceded by the slow global encroachment of this virus over many decades. To date, significant research efforts are underway to understand the spread and the unique pathogenesis of this virus; with the intent to rapidly develop vaccines and therapeutics. Several model systems have emerged to study Zika. This review will focus on the use of nonhuman primates to model Zika infection.
Collapse
Affiliation(s)
- Christa E Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts
| |
Collapse
|
25
|
Ventura CV, Ventura Filho MC, Ventura LO. Ocular Manifestations and Visual Outcome in Children With Congenital Zika Syndrome. Top Magn Reson Imaging 2019; 28:23-27. [PMID: 30817677 DOI: 10.1097/rmr.0000000000000192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recent Zika virus (ZIKV) outbreak and the link to birth defects in newborns exposed in utero, caught international attention. Due to its rapid spread throughout the Americas, authorities declared ZIKV a Public Health Emergency of International Concern that lasted from February to November 2016."Congenital Zika Syndrome" (CZS) is a new entity that reflects a broad spectrum of symptoms and signs observed in newborns infected by the ZIKV in utero. A recent review concluded that CZS differs from other congenital infections for its five distinct features: "(1) severe microcephaly with partially collapsed skull; (2) thin cerebral cortices with subcortical calcifications; (3) macular scarring and focal pigmentary retinal mottling; (4) congenital contractures; and (5) marked early hypertonia and symptoms of extrapyramidal involvement."Diagnosing and managing CZS has become a challenge for health professionals including ophthalmologists. The ocular manifestations of CZS are unique and have important consequences on vision. This article reviews the ocular manifestations of the CZS, addresses the visual outcomes of affected infants, and elucidates the early intervention protocols for visual improvement.
Collapse
Affiliation(s)
- Camila V Ventura
- Department of Ophthalmology, Altino Ventura Foundation, Recife, Brazil
- Department of Ophthalmology, HOPE Eye Hospital, Recife, Brazil
| | | | - Liana O Ventura
- Department of Ophthalmology, Altino Ventura Foundation, Recife, Brazil
- Department of Ophthalmology, HOPE Eye Hospital, Recife, Brazil
| |
Collapse
|
26
|
Vaccines. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Mohr EL. Modeling Zika Virus-Associated Birth Defects in Nonhuman Primates. J Pediatric Infect Dis Soc 2018; 7:S60-S66. [PMID: 30590626 PMCID: PMC8506225 DOI: 10.1093/jpids/piy120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
In utero infection with Zika virus (ZIKV) during pregnancy can lead to the development of birth defects and postnatal deficits. A nonhuman primate (NHP) model of congenital ZIKV infection can help fill the gaps in knowledge where tissue studies are required to define viral pathogenesis and identify targets for therapeutic intervention. This model system has already identified critical features of ZIKV pathogenesis in congenital infection. Before translating these NHP studies to human clinical trials, we must understand the similarities and differences between human and NHP fetal immune system development, neural development, and infant assessment tools. Because of the overall similarity between fetal and infant development in humans and NHPs, this NHP model can complement human clinical trials by defining immune correlates of protection and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Emma L Mohr
- Department of Pediatrics, University of Wisconsin-Madison
| |
Collapse
|
28
|
Argüelles-Nava VG, Alvarez-Bañuelos MT, Córdoba-Suárez D, Sampieri CL, Ortiz-León MC, Riande-Juárez G, Montero H. Knowledge, Attitudes, and Practices about Zika among a University Community Located in an Endemic Zone in Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2548. [PMID: 30441747 PMCID: PMC6267223 DOI: 10.3390/ijerph15112548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022]
Abstract
To assess the knowledge, attitudes, and practices about the Zika virus in both students and workers at the University of Veracruz, an online survey was conducted. The participants were divided into two groups: one according to sex, the other according to whether they were workers or students. Their answers were classified into knowledge, attitudes, and practices and they were rated as low, medium, and high. The results showed that knowledge about Zika prevailing among the university population is considered as medium in 79.4% of the study population. Most respondents know that the mosquito spreads the Zika virus (98.8%) and the clinical characteristics, while sexual transmission by the virus is little known (36.85%). Both the univariate analysis (OR (CI5) 0.227 (0.070⁻0.735), p = 0.013] and multivariate analysis (OR (CI95) 0.234 (0.071⁻778), p = 0.018] showed that belonging to the health sciences area is related to having a greater knowledge about Zika. Despite the existing knowledge, a low level of prevention practices prevails in the whole community (55%). A medium level of knowledge about Zika prevailed, while proper implementation of preventive measures for Zika is low, despite the fact that the state of Veracruz-the place where the University is located-is an endemic area.
Collapse
Affiliation(s)
| | | | - Daniel Córdoba-Suárez
- Licenciatura en Ciencias y Técnicas Estadísticas, Universidad Veracruzana, Xalapa 91000, Veracruz, Mexico.
| | - Clara L Sampieri
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico.
| | - María C Ortiz-León
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico.
| | - Gabriel Riande-Juárez
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico.
| | - Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico.
| |
Collapse
|
29
|
Alves MP, Vielle NJ, Thiel V, Pfaender S. Research Models and Tools for the Identification of Antivirals and Therapeutics against Zika Virus Infection. Viruses 2018; 10:v10110593. [PMID: 30380760 PMCID: PMC6265910 DOI: 10.3390/v10110593] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus recently re-emerged and caused global outbreaks mainly in Central Africa, Southeast Asia, the Pacific Islands and in Central and South America. Even though there is a declining trend, the virus continues to spread throughout different geographical regions of the world. Since its re-emergence in 2015, massive advances have been made regarding our understanding of clinical manifestations, epidemiology, genetic diversity, genomic structure and potential therapeutic intervention strategies. Nevertheless, treatment remains a challenge as there is no licensed effective therapy available. This review focuses on the recent advances regarding research models, as well as available experimental tools that can be used for the identification and characterization of potential antiviral targets and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Marco P Alves
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Nathalie J Vielle
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Stephanie Pfaender
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
30
|
Abstract
The recent epidemic of Zika virus (ZIKV) in the Americas has revealed the devastating consequences of ZIKV infection, particularly in pregnant women. Congenital Zika syndrome, characterized by malformations and microcephaly in neonates as well as developmental challenges in children, highlights the need for the development of a safe and effective vaccine. Multiple vaccine candidates have been developed and have shown promising results in both animal models and phase I clinical trials. However, important challenges remain for the clinical development of these vaccines. In this Progress article, we discuss recent preclinical studies and lessons learned from first-in-human clinical trials with ZIKV vaccines.
Collapse
|
31
|
de Oliveira Dias JR, Ventura CV, de Paula Freitas B, Prazeres J, Ventura LO, Bravo-Filho V, Aleman T, Ko AI, Zin A, Belfort R, Maia M. Zika and the Eye: Pieces of a Puzzle. Prog Retin Eye Res 2018; 66:85-106. [PMID: 29698814 DOI: 10.1016/j.preteyeres.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) is an arbovirus mainly transmitted to humans by mosquitoes from Aedes genus. Other ways of transmission include the perinatal and sexual routes, blood transfusion, and laboratory exposure. Although the first human cases were registered in 1952 in African countries, outbreaks were only reported since 2007, when entire Pacific islands were affected. In March 2015, the first cases of ZIKV acute infection were notified in Brazil and, to date, 48 countries and territories in the Americas have confirmed local mosquito-borne transmission of ZIKV. Until 2015, ZIKV infection was thought to only cause asymptomatic or mild exanthematous febrile infections. However, after explosive ZIKV outbreaks in Polynesia and Latin American countries, it was confirmed that ZIKV could also lead to Guillain-Barré syndrome and congenital birth abnormalities. These abnormalities, which can include neurologic, ophthalmologic, audiologic, and skeletal findings, are now considered congenital Zika syndrome (CZS). Brain abnormalities in CZS include cerebral calcifications, malformations of cortical development, ventriculomegaly, lissencephaly, hypoplasia of the cerebellum and brainstem. The ocular findings, which are present in up to 70% of infants with CZS, include iris coloboma, lens subluxation, cataract, congenital glaucoma, and especially posterior segment findings. Loss of retinal pigment epithelium, the presence of a thin choroid, a perivascular choroidal inflammatory infiltrate, and atrophic changes within the optic nerve were seen in histologic analyses of eyes from deceased fetuses. To date, there is no ZIKV licensed vaccines or antiviral therapies are available for treatment. Preventive measures include individual protection from mosquito bites, control of mosquito populations and the use of barriers measures such as condoms during sexual intercourse or sexual abstinence for couples either at risk or after confirmed infection. A literature review based on studies that analyzed ocular findings in mothers and infants with CZS, with or without microcephaly, was conducted and a theoretical pathophysiologic explanation for ZIKV-ocular abnormalities was formulated.
Collapse
Affiliation(s)
- João Rafael de Oliveira Dias
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Camila V Ventura
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil; Altino Ventura Foundation, Recife, Pernambuco, Brazil; HOPE Eye Hospital, Recife, Pernambuco, Brazil
| | - Bruno de Paula Freitas
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil; Department of Ophthalmology, Roberto Santos General Hospital, Salvador, Brazil
| | - Juliana Prazeres
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Liana O Ventura
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil; Altino Ventura Foundation, Recife, Pernambuco, Brazil; HOPE Eye Hospital, Recife, Pernambuco, Brazil
| | - Vasco Bravo-Filho
- Altino Ventura Foundation, Recife, Pernambuco, Brazil; HOPE Eye Hospital, Recife, Pernambuco, Brazil
| | - Tomas Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Perelman School of Medicine, Department of Ophthalmology, University of Pennsylvania, Philadelphia, United States
| | - Albert Icksang Ko
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Andréa Zin
- Clinical Research Unit, Fernandes Figueira Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rubens Belfort
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Mauricio Maia
- Vision Institute, Department of Ophthalmology, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil; Brazilian Institute of Fight Against Blindness, Assis and Presidente Prudente, São Paulo, Brazil.
| |
Collapse
|
32
|
Cross-reactive Dengue virus-specific CD8 + T cells protect against Zika virus during pregnancy. Nat Commun 2018; 9:3042. [PMID: 30072692 PMCID: PMC6072705 DOI: 10.1038/s41467-018-05458-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/04/2018] [Indexed: 01/30/2023] Open
Abstract
As Zika virus (ZIKV) emerges into Dengue virus (DENV)-endemic areas, cases of ZIKV infection in DENV-immune pregnant women may rise. Here we show that prior DENV immunity affects maternal and fetal ZIKV infection in pregnancy using sequential DENV and ZIKV infection models. Fetuses in ZIKV-infected DENV-immune dams were normal sized, whereas fetal demise occurred in non-immune dams. Moreover, reduced ZIKV RNA is present in the placenta and fetuses of ZIKV-infected DENV-immune dams. DENV cross-reactive CD8+ T cells expand in the maternal spleen and decidua of ZIKV-infected dams, their depletion increases ZIKV infection in the placenta and fetus, and results in fetal demise. The inducement of cross-reactive CD8+ T cells via peptide immunization or adoptive transfer results in decreased ZIKV infection in the placenta. Prior DENV immunity can protect against ZIKV infection during pregnancy in mice, and CD8+ T cells are sufficient for this cross-protection. This has implications for understanding the natural history of ZIKV in DENV-endemic areas and the development of optimal ZIKV vaccines.
Collapse
|
33
|
Walker CL, Merriam AA, Ohuma EO, Dighe MK, Gale M, Rajagopal L, Papageorghiou AT, Gyamfi-Bannerman C, Adams Waldorf KM. Femur-sparing pattern of abnormal fetal growth in pregnant women from New York City after maternal Zika virus infection. Am J Obstet Gynecol 2018; 219:187.e1-187.e20. [PMID: 29738748 DOI: 10.1016/j.ajog.2018.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/06/2018] [Accepted: 04/26/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Zika virus is a mosquito-transmitted flavivirus, which can induce fetal brain injury and growth restriction following maternal infection during pregnancy. Prenatal diagnosis of Zika virus-associated fetal injury in the absence of microcephaly is challenging due to an incomplete understanding of how maternal Zika virus infection affects fetal growth and the use of different sonographic reference standards around the world. We hypothesized that skeletal growth is unaffected by Zika virus infection and that the femur length can represent an internal standard to detect growth deceleration of the fetal head and/or abdomen by ultrasound. OBJECTIVE We sought to determine if maternal Zika virus infection is associated with a femur-sparing pattern of intrauterine growth restriction through analysis of fetal biometric measures and/or body ratios using the 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project and World Health Organization Fetal Growth Chart sonographic references. STUDY DESIGN Pregnant women diagnosed with a possible recent Zika virus infection at Columbia University Medical Center after traveling to an endemic area were retrospectively identified and included if a fetal ultrasound was performed. Data were collected regarding Zika virus testing, fetal biometry, pregnancy, and neonatal outcomes. The 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project and World Health Organization Fetal Growth Chart sonographic standards were applied to obtain Z-scores and/or percentiles for fetal head circumference, abdominal circumference, and femur length specific for each gestational week. A novel 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project standard was also developed to generate Z-scores for fetal body ratios with respect to femur length (head circumference:femur length, abdominal circumference:femur length). Data were then grouped within clinically relevant gestational age strata (<24, 24-27 6/7, 28-33 6/7, >34 weeks) to analyze time-dependent effects of Zika virus infection on fetal size. Statistical analysis was performed using Wilcoxon signed-rank test on paired data, comparing either abdominal circumference or head circumference to femur length. RESULTS A total of 56 pregnant women were included in the study with laboratory evidence of a confirmed or possible recent Zika virus infection. Based on the Centers for Disease Control and Prevention definition for microcephaly after congenital Zika virus exposure, microcephaly was diagnosed in 5% (3/56) by both the 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project and World Health Organization Fetal Growth Chart standards (head circumference Z-score ≤-2 or ≤2.3%). Using 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project, intrauterine fetal growth restriction was diagnosed in 18% of pregnancies (10/56; abdominal circumference Z-score ≤-1.3, <10%). Analysis of fetal size using the last ultrasound scan for all subjects revealed a significantly abnormal skewing of fetal biometrics with a smaller abdominal circumference vs femur length by either 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project or World Health Organization Fetal Growth Chart (P < .001 for both). A difference in distribution of fetal abdominal circumference compared to femur length was first apparent in the 24-27 6/7 week strata (2014 International Fetal and Newborn Growth Consortium for the 21st Century Project, P = .002; World Health Organization Fetal Growth Chart, P = .001). A significantly smaller head circumference compared to femur length was also observed by 2014 International Fetal and Newborn Growth Consortium for the 21st Century Project as early as the 28-33 6/7 week strata (2014 International Fetal and Newborn Growth Consortium for the 21st Century Project, P = .007). Overall, a femur-sparing pattern of growth restriction was detected in 52% of pregnancies with either head circumference:femur length or abdominal circumference:femur length fetal body ratio <10th percentile (2014 International Fetal and Newborn Growth Consortium for the 21st Century Project Z-score ≤-1.3). CONCLUSION An unusual femur-sparing pattern of fetal growth restriction was detected in the majority of fetuses with congenital Zika virus exposure. Fetal body ratios may represent a more sensitive ultrasound biomarker to detect viral injury in nonmicrocephalic fetuses that could impart long-term risk for complications of congenital Zika virus infection.
Collapse
|
34
|
Muffat J, Li Y, Omer A, Durbin A, Bosch I, Bakiasi G, Richards E, Meyer A, Gehrke L, Jaenisch R. Human induced pluripotent stem cell-derived glial cells and neural progenitors display divergent responses to Zika and dengue infections. Proc Natl Acad Sci U S A 2018; 115:7117-7122. [PMID: 29915057 PMCID: PMC6142255 DOI: 10.1073/pnas.1719266115] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maternal Zika virus (ZIKV) infection during pregnancy is recognized as the cause of an epidemic of microcephaly and other neurological anomalies in human fetuses. It remains unclear how ZIKV accesses the highly vulnerable population of neural progenitors of the fetal central nervous system (CNS), and which cell types of the CNS may be viral reservoirs. In contrast, the related dengue virus (DENV) does not elicit teratogenicity. To model viral interaction with cells of the fetal CNS in vitro, we investigated the tropism of ZIKV and DENV for different induced pluripotent stem cell-derived human cells, with a particular focus on microglia-like cells. We show that ZIKV infected isogenic neural progenitors, astrocytes, and microglia-like cells (pMGLs), but was only cytotoxic to neural progenitors. Infected glial cells propagated ZIKV and maintained ZIKV load over time, leading to viral spread to susceptible cells. DENV triggered stronger immune responses and could be cleared by neural and glial cells more efficiently. pMGLs, when cocultured with neural spheroids, invaded the tissue and, when infected with ZIKV, initiated neural infection. Since microglia derive from primitive macrophages originating in proximity to the maternal vasculature, they may act as a viral reservoir for ZIKV and establish infection of the fetal brain. Infection of immature neural stem cells by invading microglia may occur in the early stages of pregnancy, before angiogenesis in the brain rudiments. Our data are also consistent with ZIKV and DENV affecting the integrity of the blood-brain barrier, thus allowing infection of the brain later in life.
Collapse
Affiliation(s)
- Julien Muffat
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Yun Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Attya Omer
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Ann Durbin
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139
| | | | - Edward Richards
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | - Aaron Meyer
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
35
|
Affiliation(s)
- Daniel S. Chertow
- Critical Care Medicine Department, NIH Clinical Center, and the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
36
|
Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog 2018; 14:e1006994. [PMID: 29634758 PMCID: PMC5909921 DOI: 10.1371/journal.ppat.1006994] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis. Zika virus (ZIKV) infection during human pregnancy may cause severe congenital abnormalities and fetal death. There is currently no licensed vaccine or anti-ZIKV therapeutic to prevent or treat infection and/or disease. To generate an animal model that mimics human ZIKV infections, others have manipulated mice to impair their innate immunity, which allows ZIKV to develop high levels of infection. Here, we present an experimental model using immunologically unmanipulated pregnant mice and show that even limited maternal ZIKV infection nonetheless resulted in profound placental pathology and high frequency of fetal demise. However, neither viral RNA level in the dam, placenta or embryo reliably predicted fetal abnormalities. Our studies suggest that, in this model, placental pathology including trophoblast hyperplasia, focal regions of necrosis, and loss of embryonic blood vessels in the placenta likely promote adverse fetal outcomes. This immunocompetent pregnant mouse model provides clear in vivo phenotypic readouts (e.g. embryonic viability and gross uterine and embryonic morphology) to assess the potential for clinical benefit of candidate vaccines and therapeutics in a model not dependent on vertical transmission of virus.
Collapse
|
37
|
Morris JK, Springett AL, Greenlees R, Loane M, Addor MC, Arriola L, Barisic I, Bergman JEH, Csaky-Szunyogh M, Dias C, Draper ES, Garne E, Gatt M, Khoshnood B, Klungsoyr K, Lynch C, McDonnell R, Nelen V, Neville AJ, O'Mahony M, Pierini A, Queisser-Luft A, Randrianaivo H, Rankin J, Rissmann A, Kurinczuk J, Tucker D, Verellen-Dumoulin C, Wellesley D, Dolk H. Trends in congenital anomalies in Europe from 1980 to 2012. PLoS One 2018; 13:e0194986. [PMID: 29621304 PMCID: PMC5886482 DOI: 10.1371/journal.pone.0194986] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Surveillance of congenital anomalies is important to identify potential teratogens. METHODS This study analysed the prevalence of 61 congenital anomaly subgroups (excluding chromosomal) in 25 population-based EUROCAT registries (1980-2012). Live births, fetal deaths and terminations of pregnancy for fetal anomaly were analysed with multilevel random-effects Poisson regression models. RESULTS Seventeen anomaly subgroups had statistically significant trends from 2003-2012; 12 increasing and 5 decreasing. CONCLUSIONS The annual increasing prevalence of severe congenital heart defects, single ventricle, atrioventricular septal defects and tetralogy of Fallot of 1.4% (95% CI: 0.7% to 2.0%), 4.6% (1.0% to 8.2%), 3.4% (1.3% to 5.5%) and 4.1% (2.4% to 5.7%) respectively may reflect increases in maternal obesity and diabetes (known risk factors). The increased prevalence of cystic adenomatous malformation of the lung [6.5% (3.5% to 9.4%)] and decreased prevalence of limb reduction defects [-2.8% (-4.2% to -1.5%)] are unexplained. For renal dysplasia and maternal infections, increasing trends may be explained by increased screening, and deceases in patent ductus arteriosus at term and increases in craniosynostosis, by improved follow up period after birth and improved diagnosis. For oesophageal atresia, duodenal atresia/stenosis and ano-rectal atresia/stenosis recent changes in prevalence appeared incidental when compared with larger long term fluctuations. For microcephaly and congenital hydronephrosis trends could not be interpreted due to discrepancies in diagnostic criteria. The trends for club foot and syndactyly disappeared once registries with disparate results were excluded. No decrease in neural tube defects was detected, despite efforts at prevention through folic acid supplementation.
Collapse
Affiliation(s)
- Joan K Morris
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Anna L Springett
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Ruth Greenlees
- Faculty Life & Health Sciences, University of Ulster, Newtownabbey, United Kingdom
| | - Maria Loane
- Faculty Life & Health Sciences, University of Ulster, Newtownabbey, United Kingdom
| | - Marie-Claude Addor
- Department of Woman-Mother-Child, University Hospital Center CHUV, Lausanne, Switzerland
| | - Larraitz Arriola
- Public Health Division of, Biodonostia Research Institute, San Sebastián, Spain
| | - Ingeborg Barisic
- Department of Medical Genetics and Reproductive Health,Children's Hospital Zagreb, Medical School University of Zagreb, Zagreb, Croatia
| | - Jorieke E H Bergman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Melinda Csaky-Szunyogh
- National Public Health and Medical Officer Service, Hungarian Congenital Abnormality Registry, Budapest, Hungary
| | - Carlos Dias
- Centro de Estudos e registo de A C, Lisbon, Portugal
| | - Elizabeth S Draper
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Ester Garne
- Paediatric department, Hospital Lillebaelt, Kolding, Denmark
| | - Miriam Gatt
- Directorate for Health Information and Research, Guardamangia, Malta
| | - Babak Khoshnood
- Paris Registry of Congenital Anomalies, Inserm UMR 1153, Obstetrical, Perinatal and Pediatric Epidemiology Research Team, Center for Epidemiology and Statistics Sorbonne Paris Cité, Paris Descartes University, Paris, France
| | - Kari Klungsoyr
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Division for mental and physical health, Norwegian Institute of Public Health, Bergen, Norway
| | - Catherine Lynch
- Department of Public Health, Health Service Executive, Kilkenny, Ireland
| | - Robert McDonnell
- Department of Public Health, Health Service Executive, Dublin, Ireland
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Amanda J Neville
- IMER Registry, Center for Clinical and Epidemiological Research, University of Ferrara, Ferrara, Italy.,Azienda Ospedaliero- Universitaria di Ferrara, Ferrara, Italy
| | - Mary O'Mahony
- Department of Public Health, Health Service Executive, Cork, Ireland
| | - Anna Pierini
- CNR Institute of Clinical Physiology, Pisa, Italy
| | - Annette Queisser-Luft
- Center for child and adolescence medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hanitra Randrianaivo
- Registre des Malformations Congenitales de la Reunion, St Pierre, Ile de la Reunion, France
| | - Judith Rankin
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anke Rissmann
- Malformation Monitoring Centre Saxony-Anhalt, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jennifer Kurinczuk
- National Perinatal and Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | | | | | - Diana Wellesley
- University of Southampton and Wessex Clinical Genetics Service, Southampton, United Kingdom
| | - Helen Dolk
- Faculty Life & Health Sciences, University of Ulster, Newtownabbey, United Kingdom
| |
Collapse
|
38
|
Cosano-Quero A, Velasco-Tirado V, Seco MS, Manzanedo-Bueno L, Belhassen-García M. Zika Virus: Cutaneous Manifestations in 3 Patients. ACTAS DERMO-SIFILIOGRAFICAS 2018. [DOI: 10.1016/j.adengl.2018.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
39
|
Soriano-Arandes A, Rivero-Calle I, Nastouli E, Espiau M, Frick MA, Alarcon A, Martinón-Torres F. What we know and what we don't know about perinatal Zika virus infection: a systematic review. Expert Rev Anti Infect Ther 2018; 16:243-254. [PMID: 29415586 DOI: 10.1080/14787210.2018.1438265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Zika virus (ZIKV) infection has caused the most challenging worldwide infectious epidemic outbreak in recent months. ZIKV causes microcephaly and other congenital malformations. There is a need to perform updated systematic reviews on ZIKV infection periodically because this epidemic is bringing up new evidence with extraordinary speed. Areas covered: Evidence related to ZIKV infection in the gestational, perinatal, and early infant periods covering epidemiology, virology, pathogenesis, risk factors, time of infection during pregnancy, newborn symptoms, treatment, and vaccines. To this end, a search was performed using terms ['Zika'] AND ['Perinatal Infection'] OR ['Congenital Infection'] in the PubMed® international electronic database. Out of a total of 1,538 articles published until 30 November 2017, we finally assessed 106 articles articles that were relevant to the research areas included in this study. Expert commentary: ZIKV is a new teratogenic/neurotropic virus affecting fetuses. Many challenges are still far from being solved regarding the epidemiology, case definition, clinical and laboratory diagnosis, and preventive measures. An approach using 'omics' and new biomarkers for diagnosis, and a ZIKV-vaccine for treatment, might finally give us the tools to solve these challenges.
Collapse
Affiliation(s)
- Antoni Soriano-Arandes
- a Pediatric Infectious Diseases and Immunodeficiencies Unit , Hospital Universitari Vall d'Hebron , Barcelona , Spain
| | - Irene Rivero-Calle
- b Translational Pediatrics and Infectious Diseases, Department of Pediatrics , Complejo Hospitalario Universitario de Santiago de Compostela , Santiago de Compostela , Spain
| | - Eleni Nastouli
- c Department of Virology , University College of London Hospitals NHS Foundation Trust , London , UK
| | - Maria Espiau
- a Pediatric Infectious Diseases and Immunodeficiencies Unit , Hospital Universitari Vall d'Hebron , Barcelona , Spain
| | - M A Frick
- a Pediatric Infectious Diseases and Immunodeficiencies Unit , Hospital Universitari Vall d'Hebron , Barcelona , Spain
| | - Ana Alarcon
- d Department of Neonatology , Hospital Universitari Sant Joan de Déu , Barcelona , Spain
| | - Federico Martinón-Torres
- b Translational Pediatrics and Infectious Diseases, Department of Pediatrics , Complejo Hospitalario Universitario de Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|
40
|
Dogan Z, Cetin A, Elibol E, Vardi N, Turkoz Y. Effects of ciprofloxacin and quercetin on fetal brain development: a biochemical and histopathological study. J Matern Fetal Neonatal Med 2018; 32:1783-1791. [PMID: 29241384 DOI: 10.1080/14767058.2017.1418222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Teratogens cause birth defects and malformations while human development is being completed. In pregnancy, urinary tract infection (UTI) is a common health problem caused by bacteria. The fluoroquinolones such as ciprofloxacin, levofloxacin, moxifloxacin, and gemifloxacin can treat various types of bacterial infections successfully. The aim of this study is to determine whether the use of ciprofloxacin during pregnancy causes oxidative stress on brain tissues of the fetus, and whether quercetin contributes to prevent this damage if stress has already occurred. MATERIALS AND METHODS In our study, 22 young female Wistar albino rats weighing 250 g were used. Rats were mated overnight in separate plastic cages. Female rats were regarded as pregnant when a vaginal plug was observed, and these were divided into four groups of control, ciprofloxacin, quercetin, and cipro + quercetin. Two daily i.p. 20 mg/kg doses of ciprofloxacin were administered to ciprofloxacin group between 7 and 17 d of pregnancy. Throughout the study, daily (20 d) 20 mg/kg quercetin was dissolved in corn oil and administered to the quercetin group by oral gavage. Rats were fed ad libitum throughout the study. Fetuses were taken by C-section on the 20th day of pregnancy. Thereafter, the brain tissues were subjected to histological assessments and biochemical analyzes. RESULTS The experimental groups were compared with the control group; ciprofloxacin affected fetal development, especially caused damage to neurons in brain tissue and cause hemorrhagic defects. And also, it was determined that many parameters were affected such as antioxidant parameters, enzyme levels and levels of malondialdehyde (MDA) (a marker of lipid peroxidation). Quercetin is a member of flavonoid with strong antioxidant properties, and our results indicate that the use of ciprofloxacin in pregnancy can result damage to fetal brain tissue. CONCLUSIONS Unlike these results when some parameters are evaluated it is understood that this harmful effects suppressed by quercetin.
Collapse
Affiliation(s)
- Zumrut Dogan
- a Department of Anatomy, Faculty of Medicine , Adiyaman University , Adiyaman , Turkey
| | - Aymelek Cetin
- b Department of Anatomy, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Ebru Elibol
- c Department of Histology and Embryology, Faculty of Medicine , Adiyaman University , Adiyaman , Turkey
| | - Nigar Vardi
- d Department of Histology and Embryology, Faculty of Medicine , Inonu University , Malatya , Turkey
| | - Yusuf Turkoz
- e Department of Biochemistry, Faculty of Medicine , Inonu University , Malatya , Turkey
| |
Collapse
|
41
|
Cao B, Sheth MN, Mysorekar IU. To Zika and destroy: an antimalarial drug protects fetuses from Zika infection. Future Microbiol 2018; 13:137-139. [PMID: 29302996 DOI: 10.2217/fmb-2017-0213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Bin Cao
- Department of Obstetrics & Gynecology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.,Center for Reproductive Health Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Meghal N Sheth
- Department of Obstetrics & Gynecology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.,Center for Reproductive Health Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Indira U Mysorekar
- Department of Obstetrics & Gynecology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.,Center for Reproductive Health Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.,Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| |
Collapse
|
42
|
Zorrilla CD, García García I, García Fragoso L, De La Vega A. Zika Virus Infection in Pregnancy: Maternal, Fetal, and Neonatal Considerations. J Infect Dis 2017; 216:S891-S896. [PMID: 29267916 PMCID: PMC5853951 DOI: 10.1093/infdis/jix448] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An infection with the Zika virus (ZIKV) is usually mild, with nonspecific symptoms and most often asymptomatic. However, because of its causal relationship with severe congenital malformations, the ZIKV epidemic became an imperative for mobilization, renewed strategies for vector control, and biomedical research. A congenital Zika syndrome (CZS) has been characterized with 5 distinctive features that focus on brain development abnormalities (including microcephaly and brain calcifications), retinal manifestations, and defects on extremities including congenital contractures and hypertonia. The CZS could be just "the tip of the iceberg", pending the documentation of a spectrum of disease that could manifest later in life, from mild dysfunction to severe disease. It will be a matter of time for neurodevelopmental abnormalities, learning disabilities, and other unknown but yet-to-be-described outcomes to be associated with intrauterine ZIKV infection. In addition, ZIKV infection during pregnancy has been associated with other adverse outcomes. Reports mostly include ZIKV-affected pregnancies, and it will be difficult to clearly establish causality without appropriate control groups. We are summarizing some of the known or reported consequences of such infection during pregnancy. Women of reproductive age and particularly pregnant women are the most vulnerable to the adverse consequences of the ZIKV epidemic. Vector control programs need to be expanded to curtail new infections. Research is needed to develop safe and effective treatments, a preventive or therapeutic vaccine, and specific and sensitive tests and to diagnose and identify correlates of long-term immunity. Vaccines and treatments should be safe to be used in pregnancy. To do nothing would allow thousands of pregnant women to expose their fetuses to an infection that causes birth defects and other problems. Prenatal diagnosis technology development is necessary to be able to predict or diagnose adverse fetal outcomes related to ZIKV. Moreover, these tests should be used in a manner similar to the testing/screening method for neural tube defects and common chromosomal anomalies during prenatal care.
Collapse
Affiliation(s)
- Carmen D Zorrilla
- Department of Obstetrics and Gynecology, University of Puerto Rico School of Medicine, San Juan
| | - Inés García García
- Department of Pediatrics, University of Puerto Rico School of Medicine, San Juan
| | | | - Alberto De La Vega
- Department of Obstetrics and Gynecology, University of Puerto Rico School of Medicine, San Juan
| |
Collapse
|
43
|
Retraction. Br Med Bull 2017; 124:e1. [PMID: 29096005 DOI: 10.1093/brimed/ldx038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Musso D, Bossin H, Mallet HP, Besnard M, Broult J, Baudouin L, Levi JE, Sabino EC, Ghawche F, Lanteri MC, Baud D. Zika virus in French Polynesia 2013-14: anatomy of a completed outbreak. THE LANCET. INFECTIOUS DISEASES 2017; 18:e172-e182. [PMID: 29150310 DOI: 10.1016/s1473-3099(17)30446-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 10/18/2022]
Abstract
The Zika virus crisis exemplified the risk associated with emerging pathogens and was a reminder that preparedness for the worst-case scenario, although challenging, is needed. Herein, we review all data reported during the unexpected emergence of Zika virus in French Polynesia in late 2013. We focus on the new findings reported during this outbreak, especially the first description of severe neurological complications in adults and the retrospective description of CNS malformations in neonates, the isolation of Zika virus in semen, the potential for blood-transfusion transmission, mother-to-child transmission, and the development of new diagnostic assays. We describe the effect of this outbreak on health systems, the implementation of vector-borne control strategies, and the line of communication used to alert the international community of the new risk associated with Zika virus. This outbreak highlighted the need for careful monitoring of all unexpected events that occur during an emergence, to implement surveillance and research programmes in parallel to management of cases, and to be prepared to the worst-case scenario.
Collapse
Affiliation(s)
- Didier Musso
- Pôle de Recherche et de Veille sur les Maladies Infectieuses Émergentes, Institut Louis Malardé, Paea, Tahiti, French Polynesia.
| | - Hervé Bossin
- Unité d'Entomologie Médicale, Institut Louis Malardé, Paea, Tahiti, French Polynesia
| | - Henri Pierre Mallet
- Bureau de Veille Sanitaire, Direction de la Santé, Papeete, Tahiti, French Polynesia
| | - Marianne Besnard
- Service de Réanimation néonatale, Centre Hospitalier du Taaone, Pirae, Tahiti, French Polynesia
| | - Julien Broult
- Centre de Transfusion Sanguine, Centre Hospitalier du Taaone, Pirae, Tahiti, French Polynesia
| | - Laure Baudouin
- Réanimation, Centre Hospitalier du Taaone, Pirae, Tahiti, French Polynesia
| | - José Eduardo Levi
- Tropical Medicine Institute, University of São Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ester C Sabino
- Tropical Medicine Institute, University of São Paulo, São Paulo, Brazil; Department of Infectious Diseases, Medical School, University of São Paulo, São Paulo, Brazil
| | - Frederic Ghawche
- Service de Neurologie, Centre Hospitalier du Taaone, Pirae, Tahiti, French Polynesia
| | - Marion C Lanteri
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA; Cerus Corporation, Concord, CA, USA
| | - David Baud
- Materno-Fetal and Obstetrics Research Unit, Department Femme-Mère-Enfant, University Hospital, Lausanne, Switzerland
| |
Collapse
|
45
|
Zare Mehrjardi M, Shobeirian F. The role of the placenta in prenatally acquired Zika virus infection. Virusdisease 2017; 28:247-249. [PMID: 29291210 DOI: 10.1007/s13337-017-0399-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/29/2017] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne arbovirus from the family Flaviviridae, which has been recently confirmed to cause severe neurological abnormalities (such as microcephaly, brain parenchymal calcification, hydrocephalus, and malformations of cortical development) in the infected fetuses. The Placenta plays a multifold role in prenatally acquired ZIKV infection. It serves as a port of virus transmission to the fetus, and also can be directly affected by ZIKV leading to a diminished fetal blood supply or a disrupted/changed biological mediators' synthesis. It is crucial to have a detailed knowledge about these pathomechanisms for preventing virus transmission in the infected pregnant women, as well as for prohibiting or reversing placental changes.
Collapse
Affiliation(s)
- Mohammad Zare Mehrjardi
- Department of Radiology, Shohada Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Section of Fetal Imaging, Division of Clinical Research, Climax Radiology Education Foundation, Tehran, Iran
| | - Farzaneh Shobeirian
- Department of Radiology, Shohada Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Shankar A, Patil AA, Skariyachan S. Recent Perspectives on Genome, Transmission, Clinical Manifestation, Diagnosis, Therapeutic Strategies, Vaccine Developments, and Challenges of Zika Virus Research. Front Microbiol 2017; 8:1761. [PMID: 28959246 PMCID: PMC5603822 DOI: 10.3389/fmicb.2017.01761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
One of the potential threats to public health microbiology in 21st century is the increased mortality rate caused by Zika virus (ZIKV), a mosquito-borne flavivirus. The severity of ZIKV infection urged World Health Organization (WHO) to declare this virus as a global concern. The limited knowledge on the structure, virulent factors, and replication mechanism of the virus posed as hindrance for vaccine development. Several vector and non-vector-borne mode of transmission are observed for spreading the disease. The similarities of the virus with other flaviviruses such as dengue and West Nile virus are worrisome; hence, there is high scope to undertake ZIKV research that probably provide insight for novel therapeutic intervention. Thus, this review focuses on the recent aspect of ZIKV research which includes the outbreak, genome structure, multiplication and propagation of the virus, current animal models, clinical manifestations, available treatment options (probable vaccines and therapeutics), and the recent advancements in computational drug discovery pipelines, challenges and limitation to undertake ZIKV research. The review suggests that the infection due to ZIKV became one of the universal concerns and an interdisciplinary environment of in vitro cellular assays, genomics, proteomics, and computational biology approaches probably contribute insights for screening of novel molecular targets for drug design. The review tried to provide cutting edge knowledge in ZIKV research with future insights required for the development of novel therapeutic remedies to curtail ZIKV infection.
Collapse
Affiliation(s)
- Apoorva Shankar
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar InstitutionsBengaluru, India
| | - Amulya A Patil
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar InstitutionsBengaluru, India
| | - Sinosh Skariyachan
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar InstitutionsBengaluru, India.,Visvesvaraya Technological UniversityBelagavi, India
| |
Collapse
|
47
|
Doughty CT, Yawetz S, Lyons J. Emerging Causes of Arbovirus Encephalitis in North America: Powassan, Chikungunya, and Zika Viruses. Curr Neurol Neurosci Rep 2017; 17:12. [PMID: 28229397 DOI: 10.1007/s11910-017-0724-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arboviruses are arthropod-borne viruses transmitted by the bite of mosquitoes, ticks, or other arthropods. Arboviruses are a common and an increasing cause of human illness in North America. Powassan virus, Chikungunya virus, and Zika virus are arboviruses that have all recently emerged as increasing causes of neurologic illness. Powassan virus almost exclusively causes encephalitis, but cases are rare, sporadic, and restricted to portions of North America and Russia. Chikungunya virus has spread widely across the world, causing millions of infections. Encephalitis is a rare manifestation of illness but is more common and severe in neonates and older adults. Zika virus has recently spread through much of the Americas and has been associated mostly with microcephaly and other congenital neurologic complications. Encephalitis occurring in infected adults has also been recently reported. This review will discuss the neuropathogenesis of these viruses, their transmission and geographic distribution, the spectrum of their neurologic manifestations, and the appropriate method of diagnosis.
Collapse
Affiliation(s)
- Christopher T Doughty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Division of Neurological Infections and Inflammatory Diseases, Department of Neurology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Sigal Yawetz
- Harvard Medical School, Boston, MA, USA.,Division of Infectious Disease, Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer Lyons
- Division of Neurological Infections and Inflammatory Diseases, Department of Neurology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Millet JP, Montalvo T, Bueno-Marí R, Romero-Tamarit A, Prats-Uribe A, Fernández L, Camprubí E, Del Baño L, Peracho V, Figuerola J, Sulleiro E, Martínez MJ, Caylà JA. Imported Zika Virus in a European City: How to Prevent Local Transmission? Front Microbiol 2017; 8:1319. [PMID: 28769893 PMCID: PMC5513902 DOI: 10.3389/fmicb.2017.01319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022] Open
Abstract
Background: On February 1st 2016 the WHO declared the Zika Virus (ZIKV) infection a worldwide public health emergency because of its rapid expansion and severe complications, such as Guillain-Barré Syndrome or microcephaly in newborn. The huge amount of people traveling to endemic areas and the presence of Aedes albopictus in Barcelona increase the risk of autochtonous transmission. The objective of this study was to describe the first ZIKV cases diagnosed in our city and to analyze the surveillance, prevention, and control measures implemented to avoid autochthonous transmission. Methods: An observational cross-sectional population-based study in Barcelona, Spain was performed.An analysis of the socio-demographic, epidemiological, clinical characteristics, and mosquito control activities of the ZIKV cases detected between January 1st and December 2016 was carried out using a specific ZIKV epidemiological survey of the Barcelona Public Health Agency. Results: A total of 118 notifications of possible ZIKV infections were received, and 44 corresponded to confirmed cases in Barcelona residents.Amongst these, the median age was 35 years and 57% were women. All cases were imported, 48% were Spanish-born and 52% foreign-born. Dominican Republic was the most visited country amongst foreign-born patients and Nicaragua amongst Spanish-born. The most frequent symptoms were exanthema, fever, and arthralgia. Among the 24 diagnosed women, 6 (25%) were pregnant. There was one case of microcephaly outside Barcelona city. Entomological inspections were done at the homes of 19 cases (43.2% of the total) and in 34 (77.3%) public spaces. Vector activity was found in one case of the 44 confirmed cases, and 134 surveillance and vector control were carried out associated to imported ZIKV cases. In all cases prevention measures were recommended to avoid mosquito bites on infected cases. Conclusion: Epidemiological and entomological surveillance are essential for the prevention of autochthonous transmission of arbovirosis that may have a great impact on Public Health.The good coordination between epidemiologists, entomologists, microbiologists, and clinicians is a priority in a touristic city with an intense relationship with endemic countries to minimize the risk of local transmission by competent vectors.
Collapse
Affiliation(s)
- Joan-Pau Millet
- Servicio de Epidemiología, Agència de Salut Publica de BarcelonaBarcelona, Spain.,CIBER de Epidemiología y Salud PúblicaBarcelona, Spain
| | - Tomàs Montalvo
- CIBER de Epidemiología y Salud PúblicaBarcelona, Spain.,Servicio de Vigilancia y Control de Plagas Urbanas, Agencia de Salud Pública de BarcelonaBarcelona, Spain
| | - Ruben Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D)Valencia, Spain
| | | | - Albert Prats-Uribe
- Servicio de Epidemiología, Agència de Salut Publica de BarcelonaBarcelona, Spain.,Unitat Docent de Medicina Preventiva i Salut Pública Parc Salut Mar-Universitat Pompeu Fabra-Agència de Salut Pública de BarcelonaBarcelona, Spain
| | - Lidia Fernández
- Servicio de Vigilancia y Control de Plagas Urbanas, Agencia de Salud Pública de BarcelonaBarcelona, Spain
| | - Esteve Camprubí
- Servicio de Epidemiología, Agència de Salut Publica de BarcelonaBarcelona, Spain
| | - Lucía Del Baño
- Servicio de Epidemiología, Agència de Salut Publica de BarcelonaBarcelona, Spain
| | - Victor Peracho
- Servicio de Vigilancia y Control de Plagas Urbanas, Agencia de Salud Pública de BarcelonaBarcelona, Spain
| | - Jordi Figuerola
- CIBER de Epidemiología y Salud PúblicaBarcelona, Spain.,Estación Biológica de Doñana, Consejo Superior de Investigaciones CientíficasSevilla, Spain
| | - Elena Sulleiro
- Microbiology Department, Hospital Vall d' Hebron, PROSICS Barcelona, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Miguel J Martínez
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de BarcelonaBarcelona, Spain.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic of Barcelona, Universitat de BarcelonaBarcelona, Spain
| | - Joan A Caylà
- Servicio de Epidemiología, Agència de Salut Publica de BarcelonaBarcelona, Spain.,CIBER de Epidemiología y Salud PúblicaBarcelona, Spain
| | | |
Collapse
|
49
|
Achieving safe, effective, and durable Zika virus vaccines: lessons from dengue. THE LANCET. INFECTIOUS DISEASES 2017; 17:e378-e382. [PMID: 28711586 DOI: 10.1016/s1473-3099(17)30362-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/29/2022]
Abstract
Newly proposed candidate Zika virus vaccines might or might not succeed in raising safe, effective, and durable protection against human Zika virus infections or syndromes. Analyses of a clinically tested and licensed dengue vaccine that failed to protect seronegative individuals from breakthrough or enhanced dengue infections suggest that poor T-cell immunity might have contributed to protection failure. Because of the similarity of Zika and dengue viruses, an analogous unwanted outcome might occur with some Zika virus vaccine designs. A successful Zika virus vaccine requires challenge experiments that are done at long intervals after immunisation and that identify protection as the absence of viraemia and the absence of an anamnestic antibody response. T-cell immunity might be an essential component of safe, efficacious, and durable Zika virus vaccines.
Collapse
|
50
|
Abstract
Sporadic Zika virus infections had only occurred in Africa and Asia until an outbreak in Micronesia (Oceania) in 2007. In 2013 to 2014, several outer Pacific Islands reported local outbreaks. Soon thereafter, the virus was likely introduced in Brazil from competing athletes from French Polynesia and other countries that participated in a competition there. Transmission is thought to have occurred through mosquito bites and spread to the immunologically naive population. Being also a flavivirus, the Zika virus is transmitted by the Aedes mosquito that is endemic in South and Central America that is also the vector of West Nile virus, dengue, and chikungunya. In less than a year, physicians in Brazil reported a many-fold increase in the number of babies born with microcephaly. Despite initial skepticism regarding the causal association of the Zika virus epidemic and birth defects, extensive basic and clinical research evidence has now confirmed this relationship. In the United States, more than 4000 travel-associated infections have been reported by the middle of 2016 to the Centers for Disease Control and Prevention. Furthermore, many local mosquito-borne infections have occurred in Puerto Rico and Florida. Considering that the virus causes a viremia in which 80% of infected individuals have no symptoms, the potential for transfusion transmission from an asymptomatic blood donor is high if utilizing donor screening alone without testing. Platelet units have been shown to infect 2 patients via transfusion in Brazil. Although there was an investigational nucleic acid test available for testing donors, not all blood centers were initially required to participate. Subsequently, the US Food and Drug Administration issued a guidance in August 2016 that recommended universal nucleic acid testing for the Zika virus on blood donors.In this report, we review the potentially devastating effects of Zika virus infection during pregnancy and its implication in cases of Guillain-Barre syndrome in adults. Furthermore, we urge hospital-based clinicians and transfusion medicine specialists to implement perisurgical patient blood management strategies to avoid blood component transfusions with their potential risks of emerging pathogens, illustrated here by the Zika virus. Ultimately, this current global threat, as described by the World Health Organization, will inevitably be followed by future outbreaks of other bloodborne pathogens; the principles and practices of perioperative patient blood management will reduce the risks from not only known, but also unknown risks of blood transfusion for our patients.
Collapse
Affiliation(s)
- Lawrence T Goodnough
- From Departments of *Pathology and †Medicine, Stanford University, Stanford, California; and ‡Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|