1
|
Xia E, Kam L, Mostaghimi A. Trends in Phototherapy Utilization, Payments, and Geographic Distribution: An Analysis of United States Medicare Part B From 2000 to 2021. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e13008. [PMID: 39455430 DOI: 10.1111/phpp.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Trends in phototherapy utilization in the context of new therapeutics have not been evaluated. OBJECTIVE This study aimed to evaluate phototherapy utilization, payments, and geographic distribution for Medicare beneficiaries from 2000 to 2021. PATIENTS/METHODS A longitudinal analysis of the Medicare Part B National Summary Data Files was conducted to obtain phototherapy utilization and payment amounts. Medicare Physician & Other Practitioners by Provider and Service datasets were used to determine provider type and geographic distribution. RESULTS Between 2000 and 2021, total Medicare phototherapy volume increased from 335,152 to 621,850, correlating with a 3.0% annual growth rate (5.0% between 2000 and 2015, -3.1% between 2016 and 2021). Ultraviolet B phototherapy represented the majority of use, rising from 68.1% in 2000 to 78.0% in 2021. Psoralens plus ultraviolet A decreased by 11.3% annually, while laser treatments increased by 17.3%. Between 2013 and 2021, the number of clinics offering phototherapy declined; facilities were available in only 9.9% of counties, mainly clustered along both coasts and east of the Mississippi. CONCLUSIONS Overall, phototherapy continues to be an important therapeutic option. Limited access in non-urban areas remains a significant challenge, and further work is necessary to both evaluate this impact and reduce disparities.
Collapse
Affiliation(s)
- Eric Xia
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Lisa Kam
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Louisiana State University Health New Orleans School of Medicine, New Orleans, Louisiana, USA
| | - Arash Mostaghimi
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Lu M, Zhang X, Li W, Li X, Li S, Yin X, Zhang Z. The effects of CYP2B6 inactivators on the metabolism of ciprofol. PLoS One 2024; 19:e0307995. [PMID: 39074104 DOI: 10.1371/journal.pone.0307995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Ciprofol is a novel short-acting intravenous anaesthetic developed in China that is mainly metabolized by cytochrome P450 2B6 (CYP2B6) and uridine diphosphate glucuronosyltransferase 1A9 (UGT1A9). Currently, insufficient evidence is available to support drug‒drug interactions between ciprofol and CYP2B6 inactivators. Here, we established a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method to assess the concentration of ciprofol and investigated the effects of psoralen and clopidogrel on the metabolism of ciprofol in liver microsomes and rats. In rat and human liver microsomes, the median inhibitory concentration (IC50) values of psoralen were 63.31 μmol·L-1 and 34.05 μmol·L-1, respectively, showing mild inhibitory effects on ciprofol metabolism, whereas the IC50 values of clopidogrel were 6.380 μmol·L-1 and 2.565 μmol·L-1, respectively, with moderate inhibitory effects. SD rats were randomly divided into three groups: psoralen (27 mg·kg-1), clopidogrel (7.5 mg·kg-1), and the same volume of 0.5% carboxy methyl cellulose. After 7 days, all rats were injected with 2.4 mg·kg-1 ciprofol. Compared with the control group, the AUC and MRT values of ciprofol in the psoralen and clopidogrel groups were significantly greater, whereas the CL values were significantly lower. In addition, the durations of loss of righting reflex (LORR) in the psoralen and clopidogrel groups were 16.1% and 23.0% longer than that in the control group, respectively. In conclusion, psoralen and clopidogrel inhibit ciprofol metabolism to different degrees and prolong the duration of LORR in rats.
Collapse
Affiliation(s)
- Ming Lu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaorui Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenli Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangchen Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Yin
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhiqing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Lee WH, Kim W. Self-assembled hyaluronic acid nanoparticles for the topical treatment of inflammatory skin diseases: Beyond drug carriers. J Control Release 2024; 366:114-127. [PMID: 38145664 DOI: 10.1016/j.jconrel.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
Inflammatory skin diseases represent a significant health concern, affecting approximately 20-25% of the global population. These conditions not only reduce an individual's quality of life but also impose a huge burden on both humanity and society. However, addressing these challenges is hindered by their chronic nature, insufficient therapeutic effectiveness, and the propensity for recurrence and adverse side effects. Hyaluronic acid (HA) has emerged as a potential solution to these barriers, owing to its excellent attributes such as biocompatibility, non-toxicity, and targeted drug delivery. However, its practical application has been limited because endogenous hyaluronidase (HYAL) rapidly degrades HA in inflamed skin thus reducing its ability to penetrate deep into the skin. Interestingly, recent research has expanded the role of self-assembled HA-nanoparticles (HA-NPs) beyond drug carriers; they are resistant to HYAL, thereby enabling deep skin penetration, and possess inherent anti-inflammatory properties. Moreover, these abilities can be fine-tuned depending on the conditions during particle synthesis. Additionally, their role as a drug delivery system holds potential for use as a multi-target drug or hybrid drug. In conclusion, this review aims to specifically introduce and highlight the emerging potential of HA-NPs as a topical treatment for inflammatory skin conditions.
Collapse
Affiliation(s)
- Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
4
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
Psoralen as a Photosensitizers for Photodynamic Therapy by Means of In Vitro Cherenkov Light. Int J Mol Sci 2022; 23:ijms232315233. [PMID: 36499568 PMCID: PMC9735954 DOI: 10.3390/ijms232315233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Possible enhancements of DNA damage with light of different wavelengths and ionizing radiation (Rhenium-188-a high energy beta emitter (Re-188)) on plasmid DNA and FaDu cells via psoralen were investigated. The biophysical experimental setup could also be used to investigate additional DNA damage due to photodynamic effects, resulting from Cherenkov light. Conformational changes of plasmid DNA due to DNA damage were detected and quantified by gel electrophoresis and fluorescent staining. The clonogene survival of the FaDu cells was analyzed with colony formation assays. Dimethyl sulfoxide was chosen as a chemical modulator, and Re-188 was used to evaluate the radiotoxicity and light (UVC: λ = 254 nm and UVA: λ = 366 nm) to determine the phototoxicity. Psoralen did not show chemotoxic effects on the plasmid DNA or FaDu cells. After additional treatment with light (only 366 nm-not seen with 254 nm), a concentration-dependent increase in single strand breaks (SSBs) was visible, resulting in a decrease in the survival fraction due to the photochemical activation of psoralen. Whilst UVC light was phototoxic, UVA light did not conclude in DNA strand breaks. Re-188 showed typical radiotoxic effects with SSBs, double strand breaks, and an overall reduced cell survival for both the plasmid DNA and FaDu cells. While psoralen and UVA light showed an increased toxicity on plasmid DNA and human cancer cells, Re-188, in combination with psoralen, did not provoke additional DNA damage via Cherenkov light.
Collapse
|
6
|
Makuch S, Dróżdż M, Makarec A, Ziółkowski P, Woźniak M. An Update on Photodynamic Therapy of Psoriasis—Current Strategies and Nanotechnology as a Future Perspective. Int J Mol Sci 2022; 23:ijms23179845. [PMID: 36077239 PMCID: PMC9456335 DOI: 10.3390/ijms23179845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis (PS) is an immune-mediated skin disease with substantial negative effects on patient quality of life. Despite significant progress in the development of novel treatment options over the past few decades, a high percentage of patients with psoriasis remain undertreated and require new medications with superior long-term efficacy and safety. One of the most promising treatment options against psoriatic lesions is a form of phototherapy known as photodynamic therapy (PDT), which involves either the systemic or local application of a cell-targeting photosensitizing compound, followed by selective illumination of the lesion with visible light. However, the effectiveness of clinically incorporated photosensitizers in psoriasis treatment is limited, and adverse effects such as pain or burning sensations are frequently reported. In this study, we performed a literature review and attempted to provide a pooled estimate of the efficacy and short-term safety of targeted PDT in the treatment of psoriasis. Despite some encouraging results, PDT remains clinically underutilized. This highlights the need for further studies that will aim to evaluate the efficacy of a wider spectrum of photosensitizers and the potential of nanotechnology in psoriasis treatment.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Mateusz Dróżdż
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Alicja Makarec
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
7
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
8
|
Umar SA, Tasduq SA. Ozone Layer Depletion and Emerging Public Health Concerns - An Update on Epidemiological Perspective of the Ambivalent Effects of Ultraviolet Radiation Exposure. Front Oncol 2022; 12:866733. [PMID: 35359420 PMCID: PMC8960955 DOI: 10.3389/fonc.2022.866733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Solar ultraviolet (UV) radiation exposure is the primary etiological agent responsible for developing cutaneous malignancies. Avoiding excessive radiation exposure, especially by high-risk groups, is recommended to prevent UV-induced photo-pathologies. However, optimal sun exposure is essential for the healthy synthesis of about 90% of vitamin D levels in the body. Insufficient exposure to UV-B is linked to vitamin D deficiency in humans. Therefore, optimal sun exposure is necessary for maintaining a normal state of homeostasis in the skin. Humans worldwide face a major existential threat because of climate change which has already shown its effects in several ways. Over the last 4 to 5 decades, increased incidences in skin cancer cases have led international health organizations to develop strong sun protection measures. However, at the same time, a growing concern about vitamin D deficiency is creating a kind of exposure dilemma. Current knowledge of UV exposure to skin outweighs the adverse effects than the beneficial roles it offers to the body, necessitating a correct public health recommendation on optimal sun exposure. Following an appropriate recommendation on optimal sun exposure will lead to positive outcomes in protecting humans against the adverse effects of strict recommendations on sun protection measures. In this short review, we spotlight the ambivalent health effects of UV exposure and how ozone layer depletion has influenced these effects of UVR. Further, our aim remains to explore how to lead towards a balanced recommendation on sun protection measures to prevent the spurt of diseases due to inadequate exposure to UV-B.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific and Industrial Research-Indian (CSIR) Institute of Integrative Medicine, Jammu, India
| | - Sheikh Abdullah Tasduq
- Department of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacokinetics-Pharmacodynamics (PK-PD) and Toxicology Division, Council of Scientific and Industrial Research-Indian (CSIR) Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
9
|
Repurposing approved therapeutics for new indication: Addressing unmet needs in psoriasis treatment. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100041. [PMID: 34909670 PMCID: PMC8663928 DOI: 10.1016/j.crphar.2021.100041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune condition manifested by the hyperproliferation of keratinocytes with buildup of inflammatory red patches and scales on skin surfaces. The available treatment options for the management of psoriasis have various drawbacks, and the clinical need for effective therapeutics for this disease remain unmet; therefore, the approaches of drug repurposing or drug repositioning could potentially be used for treating indications of psoriasis. The undiscovered potential of drug repurposing or repositioning compensates for the limitations and hurdles in drug discovery and drug development processes. Drugs initially approved for other indications, including anticancer, antidiabetic, antihypertensive, and anti-arthritic activities, are being investigated for their potential in psoriasis management as a new therapeutic indication by using repurposing strategies. This article envisages the potential of various therapeutics for the management of psoriasis. Psoriasis is an autoimmune inflammatory skin disorder with complex physiology. Conventional treatments for psoriasis cause severe adverse effects; therefore an unmet need remains for safer and more effective therapies for psoriasis. Various drugs that effectively decrease the inflammation and proliferation of skin cells can be repurposed for the management of psoriasis. Repurposed drugs provide various incentives to the pharmaceutical industry.
Collapse
|
10
|
Kim HJ, Jin Y, Achavananthadith S, Lin R, Ho JS. A wireless optoelectronic skin patch for light delivery and thermal monitoring. iScience 2021; 24:103284. [PMID: 34765913 PMCID: PMC8571508 DOI: 10.1016/j.isci.2021.103284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022] Open
Abstract
Wearable optoelectronic devices can interface with the skin for applications in continuous health monitoring and light-based therapy. Measurement of the thermal effect of light on skin is often critical to track physiological parameters and control light delivery. However, accurate measurement of light-induced thermal effects is challenging because conventional sensors cannot be placed on the skin without obstructing light delivery. Here, we report a wearable optoelectronic patch integrated with a transparent nanowire sensor that provides light delivery and thermal monitoring at the same location. We achieve fabrication of a transparent silver nanowire network with >92% optical transmission that provides thermoresistive sensing of skin temperature. By integrating the sensor in a wireless optoelectronic patch, we demonstrate closed-loop regulation of light delivery as well as thermal characterization of blood flow. This light delivery and thermal monitoring approach may open opportunities for wearable devices in light-based diagnostics and therapies.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yunxia Jin
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Sippanat Achavananthadith
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Rongzhou Lin
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - John S. Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
11
|
Laughter MR, Anderson JB, Aguilera MN, Sadeghpour M, Pugliano-Mauro M. Indoor tanning: Evidence surrounding advertised health claims. Clin Dermatol 2021; 39:865-872. [PMID: 34785014 DOI: 10.1016/j.clindermatol.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Indoor tanning continues to remain common, despite evidence of an increased risk of skin cancer from artificial ultraviolet (UV) radiation. In the hopes of gaining customers, the tanning bed industry has marketed health benefits of indoor tanning such as increased vitamin D production, development of a base tan, enhanced mood, and treatment of certain dermatologic conditions. To better educate their patients, providers need a comprehensive reference reviewing the evidence that support or oppose these claims. In this work, we conducted an evidence-based review of the literature to identify and grade studies that investigate health claims related to UV exposure. Results indicate that there is little evidence to support each of these proposed health benefits. Tanning beds emit primarily UVA radiation, which is relatively ineffective at activating vitamin D or mood enhancing pathways, and the effects are minimal in regard to tanning beds generating a protective base tan or treating dermatologic conditions compared with the increased risk of skin cancer. Health care providers must continue to warn and educate patients about the misleading information propagated by the tanning bed industry as well as about the dangers of artificial UV radiation.
Collapse
Affiliation(s)
| | - Jaclyn B Anderson
- University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Megan N Aguilera
- University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | | | - Melissa Pugliano-Mauro
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Mehanna S, Mansour N, Daher CF, Elias MG, Dagher C, Khnayzer RS. Drug-free phototherapy of superficial tumors: White light at the end of the tunnel. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112324. [PMID: 34619435 DOI: 10.1016/j.jphotobiol.2021.112324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Visible light has long been recognized as a treatment for many diseases and an essential component of photo-induced chemotherapy. While previous data proved its inherent cytotoxicity, this study is the first to explore the use of a commercially available, high-intensity white LED light (24.5 mW.cm-2) as a treatment for skin tumors. After a 9-h exposure in vitro, the viability of Human Malignant Melanoma cells (A375) decreased by around 70%. Western blot analysis suggested an apoptotic cell death confirmed by the upregulation of Bax, cleaved PARP/caspase-3/8, cytochrome c, and t-bid. Additionally, cellular ROS accumulation and DNA damage were induced upon irradiation with blue light. When tested on a DMBA/TPA skin carcinogenesis model, a 90-min exposure to white light thrice weekly resulted in a significant decrease in tumor volumes/incidence compared to control and cisplatin groups, and restored normal morphological features, as confirmed by histopathology. Toxicological evaluation of ight-treated animals indicated a 100% survival rate, no skin irritation, no signs of discomfort or changes in body weight/behavior, and no toxicities to vital organs. Although these results must be confirmed by further studies, this research showed that short-exposure by commercially available high-intensity white LED light irradiation may be a promising approach for the treatment of superficial malignancies.
Collapse
Affiliation(s)
- Stephanie Mehanna
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Najwa Mansour
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Costantine F Daher
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Maria George Elias
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Carole Dagher
- School of Medicine, Lebanese American University, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon.
| |
Collapse
|
13
|
Kalave S, Chatterjee B, Shah P, Misra A. Transdermal Delivery of Macromolecules Using Nano Lipid Carriers. Curr Pharm Des 2021; 27:4330-4340. [PMID: 34414868 DOI: 10.2174/1381612827666210820095330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
Skin being the largest external organ, offers an appealing procedure for transdermal drug delivery, so the drug needs to reach above the outermost layer of the skin, i.e., stratum corneum. Small molecular drug entities obeying the Lipinski rule, i.e., drugs having a molecular weight less than 500 Da, high lipophilicity, and optimum polarity, are favored enough to be used on the skin as therapeutics. Skin's barrier properties prevent the transport of macromolecules at pre-determined therapeutic rates. Notable advancements in macromolecules' transdermal delivery have occurred in recent years. Scientists have opted for liposomes, the use of electroporation, low-frequency ultrasound techniques, etc. Some of these have shown better delivery of macromolecules at clinically beneficial rates. These physical technologies involve complex mechanisms, which may irreversibly incur skin damage. Majorly, two types of lipid-based formulations, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), are widely investigated as transdermal delivery systems. In this review, the concepts, mechanisms, and applications of nanostructured lipid carriers used to transport macromolecules via transdermal routes are thoroughly reviewed and presented along with their clinical perspective.
Collapse
Affiliation(s)
- Sana Kalave
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Parth Shah
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Ambikanandan Misra
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| |
Collapse
|
14
|
Adil MT, Henry JJ. Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems. Genesis 2021; 59:e23411. [PMID: 33576188 DOI: 10.1002/dvg.23411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Animal models have contributed greatly to our understanding of human diseases. Here, we focus on cornea epithelial stem cell (CESC) deficiency (commonly called limbal stem cell deficiency, LSCD). Corneal development, homeostasis and wound healing are supported by specific stem cells, that include the CESCs. Damage to or loss of these cells results in blindness and other debilitating ocular conditions. Here we describe the contributions from several vertebrate models toward understanding CESCs and LSCD treatments. These include both mammalian models, as well as two aquatic models, Zebrafish and the amphibian, Xenopus. Pioneering developments have been made using stem cell transplants to restore normal vision in patients with LSCD, but questions still remain about the basic biology of CESCs, including their precise cell lineages and behavior in the cornea. We describe various cell lineage tracing studies to follow their patterns of division, and the fates of their progeny during development, homeostasis, and wound healing. In addition, we present some preliminary results using the Xenopus model system. Ultimately, a more thorough understanding of these cornea cells will advance our knowledge of stem cell biology and lead to better cornea disease therapeutics.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Phototherapy for Psoriasis: New Research and Insights. CURRENT DERMATOLOGY REPORTS 2021. [DOI: 10.1007/s13671-020-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
A validated high-performance thin-layer chromatography method for quantification of bavachin, bakuchiol, and psoralen from Psoralea corylifolia seeds. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Gao J, Guo J, Nong Y, Mo W, Fang H, Mi J, Qi Q, Yang M. 18β-Glycyrrhetinic acid induces human HaCaT keratinocytes apoptosis through ROS-mediated PI3K-Akt signaling pathway and ameliorates IMQ-induced psoriasis-like skin lesions in mice. BMC Pharmacol Toxicol 2020; 21:41. [PMID: 32493482 PMCID: PMC7271483 DOI: 10.1186/s40360-020-00419-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Psoriasis is a chronic inflammatory skin disease affecting 2–3% of the population worldwide. Hyperproliferative keratinocytes were thought to be an amplifier of inflammatory response, thereby sustaining persistence of psoriasis lesions. Agents with the ability to inhibit keratinocyte proliferation or induce apoptosis are potentially useful for psoriasis treatment. 18β-Glycyrrhetinic acid (GA), an active metabolite of glycyrrhizin, exhibits diverse pharmacological activities, including anti-inflammatory, anti-bacteria and anti-proliferation. The current study aims to evaluate the effects of GA on the proliferation and apoptosis of human HaCaT keratinocytes in vitro and investigate the effects of GA on the skin lesions of imiquimod (IMQ)-induced psoriasis-like mouse model in vivo. Methods Cell viability was assayed by CCK-8. Flow cytometry was performed to measure apoptosis and reactive oxygen species (ROS), with Annexin V-FITC/PI detection kit and DCFH-DA probe respectively. Caspase 9/3 activities were measured using caspase activity assay kits. The protein levels of Akt and p-Akt were determined using Western blotting. IMQ was applied to induce psoriasis-like skin lesions in mice. The histological change in mouse skin lesions was detected using hematoxylin and eosin (H&E) staining. The severity of skin lesions was scored based on Psoriasis Area Severity Index (PASI). RT-PCR was employed to examine the relative expression of TNF-α, IL-22 and IL-17A in mouse skin lesions. Results GA decreased HaCaT keratinocytes viability and induced cell apoptosis in a dose-dependent manner. In the presence of GA, intracellular ROS levels were significantly elevated. NAC, a ROS inhibitor, attenuated GA-mediated HaCaT keratinocytes growth inhibition and apoptosis. In addition, GA treatment remarkably decreased p-Akt protein level, which could be restored partially when cells were co-treated with GA and NAC. LY294002 (a PI3K inhibitor) treatment significantly enhanced GA-mediated cytotoxicity. Moreover, GA ameliorated IMQ-induced psoriasis-like skin lesions in mice. Conclusions GA inhibits proliferation and induces apoptosis in HaCaT keratinocytes through ROS-mediated inhibition of PI3K-Akt signaling pathway, and ameliorates IMQ-induced psoriasis-like skin lesions in mice.
Collapse
Affiliation(s)
- Jintao Gao
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China.
| | - Junfan Guo
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Yuejuan Nong
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Wenfei Mo
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Huanan Fang
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Jing Mi
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Qi Qi
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Mengjuan Yang
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| |
Collapse
|
18
|
Sun W, Rice MS, Park MK, Chun OK, Melough MM, Nan H, Willett WC, Li WQ, Qureshi AA, Cho E. Intake of Furocoumarins and Risk of Skin Cancer in 2 Prospective US Cohort Studies. J Nutr 2020; 150:1535-1544. [PMID: 32221600 PMCID: PMC7269730 DOI: 10.1093/jn/nxaa062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In prior studies, higher citrus consumption was associated with higher risk of cutaneous malignant melanoma, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC). Furocoumarins, compounds with phototoxicity and photocarcinogenicity in citrus, may be responsible for the association. OBJECTIVES The objective of the study was to investigate the association between furocoumarin intake and skin cancer risk. METHODS A total of 47,453 men from the Health Professionals Follow-Up Study (HPFS) and 75,291 women from the Nurses' Health Study (NHS) with diet data collected every 2-4 y in the 2 prospective cohort studies were included. A furocoumarin food composition database for 7 common furocoumarins [bergaptol, psoralen, 8-methoxypsoralen, bergapten, 6',7'-dihydroxybergamottin (6'7'-DHB), epoxybergamottin, and bergamottin] was developed and used to calculate participants' cumulative average and energy-adjusted furocoumarin intake. Multivariate HRs and 95% CIs of the associations between furocoumarin intake and skin cancer risk were estimated using Cox proportional hazards models. Analyses were performed separately in each cohort as well as pooled using a fixed-effects model. RESULTS Throughout follow-up (1984-2012 in the NHS and 1986-2012 in the HPFS), we identified 1593 melanoma, 4066 SCC, and 28,630 BCC cases. Higher intake of total furocoumarins was associated with an increased risk of BCC; the pooled HR comparing the top with the bottom quintile was 1.16 (95% CI: 1.11, 1.21; P-trend = 0.002). Higher intakes of bergaptol, bergapten, 6'7'-DHB, and bergamottin were also significantly associated with increased BCC risk. No significant associations were found between intake of total furocoumarins and the risks of SCC or melanoma. CONCLUSIONS Intakes of total furocoumarins as well as some individual furocoumarins were associated with an increased risk of skin cancer, especially BCC, in 2 cohorts of US health professionals.
Collapse
Affiliation(s)
- Weiyi Sun
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Megan S Rice
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA,Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Min K Park
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Melissa M Melough
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hongmei Nan
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA,IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Walter C Willett
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Wen-Qing Li
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA,Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abrar A Qureshi
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA,Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Eunyoung Cho
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA,Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA,Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, USA,Address correspondence to EC (e-mail: )
| |
Collapse
|
19
|
Abstract
Phototherapeutic modalities induce apoptosis of keratinocytes and immune cells, impact cytokine production, downregulate the IL-23/Th17 axis, and induce regulatory T cells. As in anti-IL-17 or anti-IL-23 antibody treatment, the dual action of phototherapy on skin and the immune system is likely responsible for sustained resolution of lesions in diseases such as psoriasis. In cutaneous T cell lymphoma, phototherapy may function by causing tumor cell apoptosis and eliminating the neoplastic and inflammatory infiltrate. Further research on phototherapeutic mechanisms will help advance, optimize, and refine dermatologic treatments and may open up novel avenues for treatment strategies in dermatology and beyond.
Collapse
Affiliation(s)
- Zizi Yu
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Peter Wolf
- Department of Dermatology, Research Unit for Photodermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
20
|
Suh S, Choi EH, Atanaskova Mesinkovska N. The expression of opsins in the human skin and its implications for photobiomodulation: A Systematic Review. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:329-338. [PMID: 32431001 DOI: 10.1111/phpp.12578] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Skin is the organ most extensively exposed to light of a broad range of wavelengths. Several studies have reported that skin expresses photoreceptive molecules called opsins. However, the identity and functional role of opsins in the human skin remain elusive. We aim to summarize current scientific evidence on the types of opsins expressed in the skin and their biological functions. METHODS A primary literature search was conducted using PubMed to identify articles on dermal opsins found in nonhuman animals and humans. RESULTS Twenty-two articles, representing, however, a non-exhaustive selection of the scientific papers published in this specific field, met the inclusion criteria. In nonhuman animals, opsins and opsin-like structures have been detected in the skin of fruit fly, zebrafish, frog, octopus, sea urchin, hogfish, and mouse, and they mediate skin color change, light avoidance, shadow reflex, and circadian photoentrainment. In humans, opsins are present in various skin cell types, including keratinocytes, melanocytes, dermal fibroblasts, and hair follicle cells. They have been shown to mediate wound healing, melanogenesis, hair growth, and skin photoaging. CONCLUSION Dermal opsins have been identified across many nonhuman animals and humans. Current evidence suggests that opsins have biological significance beyond light reception. In nonhuman animals, opsins are involved in behaviors that are critical for survival. In humans, opsins are involved in various functions of the skin although the underlying molecular mechanisms remain unclear. Future investigation on elucidating the mechanism of dermal opsins will be crucial to expand the therapeutic benefits of photobiomodulation for various skin disorders.
Collapse
Affiliation(s)
- Susie Suh
- Department of Dermatology, University of California, Irvine, Irvine, CA, USA.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
21
|
Geenen SR, Presser L, Hölzel T, Ganter C, Müller TJJ. Electronic Finetuning of 8-Methoxy Psoralens by Palladium-Catalyzed Coupling: Acidochromicity and Solvatochromicity. Chemistry 2020; 26:8064-8075. [PMID: 32048795 PMCID: PMC7383860 DOI: 10.1002/chem.201905676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Differently 5‐substituted 8‐methoxypsoralens can be synthesized by an efficient synthetic route with various cross‐coupling methodologies, such as Suzuki, Sonogashira and Heck reaction. Compared to previously synthesized psoralens, thereby promising daylight absorbing compounds as potentially active agents against certain skin diseases can be readily accessed. Extensive investigations of all synthesized psoralen derivatives reveal fluorescence in the solid state as well as several distinctly emissive derivatives in solution. Donor‐substituted psoralens exhibit remarkable photophysical properties, such as high fluorescence quantum yields and pronounced emission solvatochromicity and acidochromicity, which were scrutinized by Lippert–Mataga and Stern–Volmer plots. The results indicate that the compounds exceed the limit of visible light, a significant factor for potential applications as an active agent. In addition, (TD)DFT calculations were performed to elucidate the underlying electronic structure and to assign experimentally obtained data.
Collapse
Affiliation(s)
- Sarah R Geenen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Lysander Presser
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Torsten Hölzel
- Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christian Ganter
- Institut für Anorganische Chemie und Strukturchemie I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
22
|
Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics 2020; 12:pharmaceutics12030288. [PMID: 32210127 PMCID: PMC7151211 DOI: 10.3390/pharmaceutics12030288] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/07/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.
Collapse
|
23
|
|
24
|
Li X, Garamus VM, Li N, Zhe Z, Willumeit-Römer R, Zou A. Loading Psoralen into liposomes to enhance its stimulatory effect on the proliferation and differentiation of mouse calvarias osteoblasts. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1462196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xiaoran Li
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Vasil M. Garamus
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coastal Research, Institute of Materials Research, Geesthacht, Germany
| | - Na Li
- National Center for Protein Science Shanghai and Shanghai Institute of Biochemistry and Cell Biology, Shanghai, P. R. China
| | - Zhe Zhe
- Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Regine Willumeit-Römer
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coastal Research, Institute of Materials Research, Geesthacht, Germany
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
| |
Collapse
|
25
|
Abstract
Ultraviolet (UV) radiation contributes to the development of skin cancer through direct and indirect DNA damage, production of reactive oxygen species, and local immunomodulation. The association between UV radiation and skin cancer has raised concern for the risk of carcinogenesis following phototherapy. The photocarcinogenic impact of psoralen and UVA radiation (PUVA) has been extensively studied, whereas limited safety studies exist for other phototherapy modalities, such as broadband and narrowband UVB and UVA1. Because of the as of yet unclear risk, patients who have undergone any type of phototherapy should be followed for age-appropriate skin cancer screening.
Collapse
|
26
|
do Nascimento JS, Conceição JCS, de Oliveira Silva E. Biotransformation of Coumarins by Filamentous Fungi: An Alternative Way for Achievement of Bioactive Analogs. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180803094216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Coumarins are natural 1,2-benzopyrones, present in remarkable amounts as secondary metabolites in edible and medicinal plants. The low yield in the coumarins isolation from natural sources, along with the difficulties faced by the total synthesis, make them attractive for biotechnological studies. The current literature contains several reports on the biotransformation of coumarins by fungi, which can generate chemical analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological interest in the coumarin-related compounds, their alimentary and chemical applications, this review covers the biotransformation of coumarins by filamentous fungi. The chemical structures of the analogs were presented and compared with those from the pattern structures. The main chemical reactions catalyzed the insertion of functional groups, and the impact on the biological activities caused by the chemical transformations were discussed. Several chemical reactions can be catalyzed by filamentous fungi in the coumarin scores, mainly lactone ring opening, C3-C4 reduction and hydroxylation. Chunninghamella sp. and Aspergillus sp. are the most common fungi used in these transformations. Concerning the substrates, the biotransformation of pyranocoumarins is a rarer process. Sometimes, the bioactivities were improved by the chemical modifications and coincidences with the mammalian metabolism were pointed out.
Collapse
Affiliation(s)
| | - João Carlos Silva Conceição
- Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Eliane de Oliveira Silva
- Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
27
|
Adil MT, Simons CM, Sonam S, Henry JJ. Understanding cornea homeostasis and wound healing using a novel model of stem cell deficiency in Xenopus. Exp Eye Res 2019; 187:107767. [PMID: 31437439 DOI: 10.1016/j.exer.2019.107767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Limbal Stem Cell Deficiency (LSCD) is a painful and debilitating disease that results from damage or loss of the Corneal Epithelial Stem Cells (CESCs). Therapies have been developed to treat LSCD by utilizing epithelial stem cell transplants. However, effective repair and recovery depends on many factors, such as the source and concentration of donor stem cells, and the proper conditions to support these transplanted cells. We do not yet fully understand how CESCs heal wounds or how transplanted CESCs are able to restore transparency in LSCD patients. A major hurdle has been the lack of vertebrate models to study CESCs. Here we utilized a short treatment with Psoralen AMT (a DNA cross-linker), immediately followed by UV treatment (PUV treatment), to establish a novel frog model that recapitulates the characteristics of cornea stem cell deficiency, such as pigment cell invasion from the periphery, corneal opacity, and neovascularization. These PUV treated whole corneas do not regain transparency. Moreover, PUV treatment leads to appearance of the Tcf7l2 labeled subset of apical skin cells in the cornea region. PUV treatment also results in increased cell death, immediately following treatment, with pyknosis as a primary mechanism. Furthermore, we show that PUV treatment causes depletion of p63 expressing basal epithelial cells, and can stimulate mitosis in the remaining cells in the cornea region. To study the response of CESCs, we created localized PUV damage by focusing the UV radiation on one half of the cornea. These cases initially develop localized stem cell deficiency characteristics on the treated side. The localized PUV treatment is also capable of stimulating some mitosis in the untreated (control) half of those corneas. Unlike the whole treated corneas, the treated half is ultimately able to recover and corneal transparency is restored. Our study provides insight into the response of cornea cells following stem cell depletion, and establishes Xenopus as a suitable model for studying CESCs, stem cell deficiency, and other cornea diseases. This model will also be valuable for understanding the nature of transplanted CESCs, which will lead to progress in the development of therapeutics for LSCD.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Claire M Simons
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Surabhi Sonam
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave. Urbana, IL, 61801, USA.
| |
Collapse
|
28
|
Apoptotic or Antiproliferative Activity of Natural Products against Keratinocytes for the Treatment of Psoriasis. Int J Mol Sci 2019; 20:ijms20102558. [PMID: 31137673 PMCID: PMC6566887 DOI: 10.3390/ijms20102558] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Natural products or herbs can be used as an effective therapy for treating psoriasis, an autoimmune skin disease that involves keratinocyte overproliferation. It has been demonstrated that phytomedicine, which is used for psoriasis patients, provides some advantages, including natural sources, a lower risk of adverse effects, and the avoidance of dissatisfaction with conventional therapy. The herbal products’ structural diversity and multiple mechanisms of action have enabled the synergistic activity to mitigate psoriasis. In recent years, the concept of using natural products as antiproliferative agents in psoriasis treatment has attracted increasing attention in basic and clinical investigations. This review highlights the development of an apoptotic or antiproliferatic strategy for natural-product management in the treatment of psoriasis. We systematically introduce the concepts and molecular mechanisms of keratinocyte-proliferation inhibition by crude extracts or natural compounds that were isolated from natural resources, especially plants. Most of these studies focus on evaluation through an in vitro keratinocyte model and an in vivo psoriasis-like animal model. Topical delivery is the major route for the in vivo or clinical administration of these natural products. The potential use of antiproliferative phytomedicine on hyperproliferative keratinocytes suggests a way forward for generating advances in the field of psoriasis therapy.
Collapse
|
29
|
Shi M, Zhang J, Liu C, Cui Y, Li C, Liu Z, Kang W. Ionic Liquid-Based Ultrasonic-Assisted Extraction to Analyze Seven Compounds in Psoralea Fructus Coupled with HPLC. Molecules 2019; 24:molecules24091699. [PMID: 31052330 PMCID: PMC6540167 DOI: 10.3390/molecules24091699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 01/04/2023] Open
Abstract
Psoralea Fructus is widely used in traditional Chinese medicine (TCM), and the content of psoralen, isopsoralen, neobavaisoflavone, bavachin, psoralidin, isobavachalcone, and bavachinin A is the main quality control index of Psoralea Fructus because of its clinical effects. Thus, a fast and environmentally-benign extraction method of seven compounds in Psoralea Fructus is necessary. In this work, an ionic liquid-based ultrasonic-assisted method (ILUAE) for the extraction of seven compounds from Psoralea Fructus was proposed. Several ILs of different types and parameters, including the concentration of ILs, concentration of ethanol (EtOH), solid–liquid ratio, particle size, ultrasonic time, centrifugal speed, and ultrasonic power, were optimized by the Placket–Burman (PB) design and Box–Behnken response surface analysis. Under this optimal condition, the total extraction yield of the seven compounds in Psoralea Fructus was 18.90 mg/g, and significantly greater than the conventional 75% EtOH solvent extraction.
Collapse
Affiliation(s)
- Mengjun Shi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Juanjuan Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Cunyu Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Yiping Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Changqin Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China.
| |
Collapse
|
30
|
Perin G, Soares LK, Hellwig PS, Silva MS, Neto JSS, Roehrs JA, Barcellos T, Lenardão EJ. Synthesis of 2,3-bis-organochalcogenyl-benzo[b]chalcogenophenes promoted by Oxone®. NEW J CHEM 2019. [DOI: 10.1039/c9nj00526a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report here an alternative and tunable metal-free synthesis of benzo[b]chalcogenophenes via the electrophilic cyclization of 2-functionalized chalcogenoalkynes promoted by Oxone®.
Collapse
Affiliation(s)
- Gelson Perin
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Liane K. Soares
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Paola S. Hellwig
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Marcio S. Silva
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - José S. S. Neto
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| | - Juliano A. Roehrs
- Instituto Federal Sul-Rio-Grandense
- Campus Pelotas – Praça Vinte de Setembro
- Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products – Universidade de Caxias do Sul – UCS
- Caxias do Sul
- Brazil
| | - Eder J. Lenardão
- LASOL-CCQFA
- Universidade Federal de Pelotas – UFPel
- 96010-900, Pelotas
- Brazil
| |
Collapse
|
31
|
Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018; 10:jfb10010002. [PMID: 30586923 PMCID: PMC6463085 DOI: 10.3390/jfb10010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Collapse
Affiliation(s)
- Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
32
|
Tan SY, Buzney E, Mostaghimi A. Trends in phototherapy utilization among Medicare beneficiaries in the United States, 2000 to 2015. J Am Acad Dermatol 2018; 79:672-679. [PMID: 29574089 DOI: 10.1016/j.jaad.2018.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Phototherapy is a cost-effective treatment for many dermatoses, yet the emergence of alternative therapies such as biologics led many to think that phototherapy utilization was declining. OBJECTIVE To characterize national, historical phototherapy utilization and costs among Medicare beneficiaries. METHODS Longitudinal analysis of the Medicare Part B National Summary Data File from 2000 to 2015 for phototherapy billing codes. Geographic distribution of clinics and provider type obtained from the Medicare Provider Utilization and Payment Data for 2012 to 2015. RESULTS The overall volume of phototherapy services billed to Medicare from 2000 to 2015 increased by 5% annually, from 334,670 to 692,093. Ultraviolet B therapy comprised 77% of phototherapy volume, utilization of psoralen plus ultraviolet A therapy declined by 9% annually, and excimer laser services grew by 29% annually. The number of phototherapy clinics is increasing but remains concentrated in only 11% of US counties. Between 2012 and 2015, dermatologists accounted for 92% of phototherapy volume. LIMITATIONS Commercial payers and institutional claims (hospital-based physicians) are excluded. Clinical indications for phototherapy use are not reported in this database. CONCLUSION Phototherapy utilization has grown, though the service mix has shifted toward ultraviolet B and laser excimer therapy and away from psoralen plus ultraviolet A therapy. Dermatologists manage most phototherapy. Uneven geographic distribution of phototherapy clinics limits access in nonurban areas, and further evaluation is needed to determine its impact on rural communities.
Collapse
Affiliation(s)
- Sally Y Tan
- Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Buzney
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Arash Mostaghimi
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
33
|
Ashwood B, Pollum M, Crespo-Hernández CE. Photochemical and Photodynamical Properties of Sulfur-Substituted Nucleic Acid Bases. Photochem Photobiol 2018; 95:33-58. [PMID: 29978490 DOI: 10.1111/php.12975] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Sulfur-substituted nucleobases (a.k.a., thiobases) are among the world's leading prescriptions for chemotherapy and immunosuppression. Long-term treatment with azathioprine, 6-mercaptopurine and 6-thioguanine has been correlated with the photoinduced formation of carcinomas. Establishing an in-depth understanding of the photochemical properties of these prodrugs may provide a route to overcoming these carcinogenic side effects, or, alternatively, a basis for developing effective compounds for targeted phototherapy. In this review, a broad examination is undertaken, surveying the basic photochemical properties and excited-state dynamics of sulfur-substituted analogs of the canonical DNA and RNA nucleobases. A molecular-level understanding of how sulfur substitution so remarkably perturbs the photochemical properties of the nucleobases is presented by combining experimental results with quantum-chemical calculations. Structure-property relationships demonstrate the impact of site-specific sulfur substitution on the photochemical properties, particularly on the population of the reactive triplet state. The value of fundamental photochemical investigations for driving the development of ultraviolet-A chemotherapeutics is showcased. The most promising photodynamic agents identified thus far have been investigated in various carcinoma cell lines and shown to decrease cell proliferation upon exposure to ultraviolet-A radiation. Overarching principles have been elucidated for the impact that sulfur substitution of the carbonyl oxygen has on the photochemical properties of the nucleobases.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | - Marvin Pollum
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
34
|
Alalaiwe A, Hung CF, Leu YL, Tahara K, Chen HH, Hu KY, Fang JY. The active compounds derived from Psoralea corylifolia for photochemotherapy against psoriasis-like lesions: The relationship between structure and percutaneous absorption. Eur J Pharm Sci 2018; 124:114-126. [PMID: 30153523 DOI: 10.1016/j.ejps.2018.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022]
Abstract
8‑Methoxypsoralen (8-MOP) in combination with ultraviolet A (PUVA) is a photochemotherapy for management of psoriasis. 8-MOP is a natural compound from Psoralea corylifolia. The present work was undertaken to evaluate the percutaneous absorption of five compounds derived from P. corylifolia, and to further explore the inhibitory effect on psoriasis-like lesions generated by imiquimod stimulation in a mouse model. 8-MOP, psoralen, isopsoralen, psoralidin, and bakuchiol were comparatively tested for in vitro skin permeation, keratinocyte apoptosis, and in vivo antipsoriatic potency. The pig ear skin deposition of 8-MOP, isopsoralen, and bakuchiol at an equimolar dose was 0.47, 0.58, and 0.50 nmol/mg, respectively, which was comparable and higher than that of psoralen (0.25 nmol/mg) and psoralidin (0.14 nmol/mg). Psoralidin and bakuchiol were absorbed into the skin without further penetration across the skin. Besides experimental data of physicochemical properties, the hydrogen bond number, total polarity surface, and stratum corneum lipid docking calculated could explain the correlation of the penetrant structure with the skin permeability. The antiproliferative activity against keratinocytes was stronger for 8-MOP and isopsoralen than the others. Topical application of PUVA by using 8-MOP and isopsoralen on imiquimod-induced plaque significantly reduced transepidermal water loss from 55 to 33 and 38 g/m2/h, respectively. The epidermal thickening elicited by imiquimod (117 μm) was decreased to 62 and 26 μm by 8-MOP and isopsoralen application. IL-6 expression in psoriasiform skin was downregulated by isopsoralen but not 8-MOP. Isopsoralen may be a potential candidate for PUVA therapy.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| | - Hi-Han Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Yin Hu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
35
|
Laskin JD, Jan YH, Jetter MM, Guillon CD, Mariano TM, Heck DE, Heindel ND. Identification of a Pyranocoumarin Photosensitizer that is a Potent Inhibitor of Keratinocyte Growth. Photochem Photobiol 2018; 94:577-582. [DOI: 10.1111/php.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey D. Laskin
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | - Yi-Hua Jan
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | | | | | - Thomas M. Mariano
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | - Diane E. Heck
- Department of Environmental Health Science; New York Medical College; Valhalla NY USA
| | - Ned D. Heindel
- Department of Chemistry; Lehigh University; Bethlehem PA USA
| |
Collapse
|
36
|
Lynnyk A, Lunova M, Jirsa M, Egorova D, Kulikov A, Kubinová Š, Lunov O, Dejneka A. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation. BIOMEDICAL OPTICS EXPRESS 2018; 9. [PMID: 29541521 PMCID: PMC5846531 DOI: 10.1364/boe.9.001283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses.
Collapse
Affiliation(s)
- Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | | | | | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| |
Collapse
|
37
|
Abstract
Psoriasis is an autoimmune inflammatory skin disease. In the past several decades, phototherapy has been widely used to treat stable psoriatic lesions, including trunk, scalp, arms and legs, and partial nail psoriasis. A variety of light/lasers with different mechanisms of action have been developed for psoriasis including ultraviolet B (UVB), psoralen ultraviolet A (PUVA), pulsed dye laser (PDL), photodynamic therapy (PDT), intense pulsed light (IPL), light-emitting diodes (LED), and so on. Because light/laser each has specific therapeutic and adverse effects, it is important to adequately choose the sources and parameters in management of psoriasis with different pathogenic sites, severities, and duration of the disorder. This review aims at providing most updated clinic information to physicians about how to select light/laser sources and individual therapeutic regimens. To date, UV light is primarily for stable plaque psoriasis and PDL for topical psoriatic lesions with small area, both of which are safe and effective. On the other hand, PUVA has better curative effects than UVB for managing refractory psoriasis plaques, if its side effects can be better controlled. PDL provides optimal outcomes on nail psoriasis compared with other lasers. Although the trails of low-level light/laser therapy (LLLT) are still small, the near infrared (NIR) and visible red light with low energy show promise for treating psoriasis due to its strong penetration and encouraging photobiomodulation. IPL is rarely reported for psoriasis treatment, but PDT-IPL has been found to offer a moderate effect on nail psoriasis. In brief, various phototherapies have been used either in different combinations or as monotherapy. The modality has become a mainstay in the treatment of mild-to-moderate psoriasis without systemic adverse events in today's clinical practice.
Collapse
|
38
|
Bhattacharjee S, Nandi S. DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Commun Signal 2017; 15:41. [PMID: 29017571 PMCID: PMC5635482 DOI: 10.1186/s12964-017-0195-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.
Collapse
|
39
|
Abstract
Light and optical techniques have made profound impacts on modern
medicine, with numerous lasers and optical devices being currently used in
clinical practice to assess health and treat disease. Recent advances in
biomedical optics have enabled increasingly sophisticated technologies —
in particular those that integrate photonics with nanotechnology, biomaterials
and genetic engineering. In this Review, we revisit the fundamentals of
light–matter interactions, describe the applications of light in
imaging, diagnosis, therapy and surgery, overview their clinical use, and
discuss the promise of emerging light-based technologies.
Collapse
Affiliation(s)
- Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA.,Department of Dermatology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115.,Harvard-MIT Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sheldon J J Kwok
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Phototherapy of Psoriasis, a Chronic Inflammatory Skin Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 996:287-294. [PMID: 29124709 DOI: 10.1007/978-3-319-56017-5_24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phototherapy is an effective treatment modality for several skin diseases which has been in use from the era of the Egyptians. Insight into its mode of action has gradually accumulated over the past decades. A crucial biological effect of ultraviolet radiation is the induction of apoptosis in T lymphocytes and in keratinocytes in the epidermis. Via this mechanism inflammation-induced pathological changes characteristic of psoriasis are counteracted.Phototherapy remains the only therapeutic option for certain patient groups where modification of the systemic immune reactions is contraindicated, such as by HIV, internal malignancy or pregnancy. UVB treatment is highly cost-effective, which is important in this age of increasing health care costs.
Collapse
|
41
|
Feldreich N, Ringden O, Emtestam L, Omazic B. Photochemotherapy of Cutaneous Graft-versus-Host Disease May Reduce Concomitant Visceral Disease. Dermatology 2016; 232:453-63. [PMID: 27433980 DOI: 10.1159/000447058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/13/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Photochemotherapy may be used to treat cutaneous graft-versus-host disease (GvHD). Animal models show that in the days after photochemotherapy and antigen provocation, cells with an antigen-specific suppressive phenotype are elicited in the lymphoid organs. In GvHD, host antigens are present not only in the skin treated by photochemotherapy but also in the visceral tissues. OBJECTIVE The aim of this paper was to evaluate the effect on visceral acute GvHD (aGvHD) of photochemotherapy of the skin. METHODS We retrospectively evaluated 33 patients with aGvHD of the skin, the liver, and/or the gastrointestinal tract treated with photochemotherapy for their aGvHD of the skin and did a long-term follow-up of 10 years on survival. RESULTS The complete response (CR) to photochemotherapy was 39%, the complete and partial response was 64% and the 6-month survival was 64%. Total body irradiation (TBI) before hematopoietic stem cell transplantation predisposed for CR of aGvHD of the liver and the gastrointestinal tract (p = 0.045). In the TBI group, the accumulated dose (numbers of treatments) for CR of visceral aGvHD increased with the body surface area affected by disease, from 8 (min-max: 5-14) for skin disease stage 1 to 10.5 (6-33) for stage 2 and 13 (11-21) for stage 3 (p = 0.04). Skin disease stage 1 showed a trend to be associated with CR in visceral disease at 28, 56, and 100 days (p = 0.07). Overall CR in visceral disease predicted a better 10-year overall survival (p = 0.0036). Finally, after TBI aGvHD of the gastrointestinal tract without anti-thymocyte globulin (ATG), clearance of T cells and dendritic cells responded better than aGvHD of the liver and aGvHD of the gastrointestinal tract with ATG (p = 0.01). CONCLUSION Photochemotherapy after ionizing irradiation regulates the cell-mediated immunity in the viscera, and the systemic efficacy increases when the skin itself is less affected by disease. ATG modulates the regulatory effect of the gastrointestinal tract.
Collapse
Affiliation(s)
- Nicolas Feldreich
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
42
|
Mignon C, Botchkareva NV, Uzunbajakava NE, Tobin DJ. Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion. Exp Dermatol 2016; 25:745-9. [PMID: 27095546 DOI: 10.1111/exd.13035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 01/09/2023]
Abstract
Photobiomodulation is reported to positively influence hair regrowth, wound healing, skin rejuvenation and psoriasis. Despite rapid translation of this science to commercial therapeutic solutions, significant gaps in our understanding of the underlying processes remain. The aim of this review was to seek greater clarity and rationality specifically for the selection of optical parameters for studies on hair regrowth and wound healing. Our investigation of 90 reports published between 1985 and 2015 revealed major inconsistencies in optical parameters selected for clinical applications. Moreover, poorly understood photoreceptors expressed in skin such as cytochrome c oxidase, cryptochromes, opsins etc. may trigger different molecular mechanisms. All this could explain the plethora of reported physiological effects of light. To derive parameters for optimal clinical efficacy of photobiomodulation, we recommend a more rational approach to underpin clinical studies, with research on molecular targets and pathways using well-defined biological model systems to enable translation of optical parameters from in vitro to in vivo. Furthermore, special attention needs to be paid when conducting studies for hair regrowth, aiming for double-blind, placebo-controlled randomized clinical trials as the gold standard for quantifying hair growth.
Collapse
Affiliation(s)
- Charles Mignon
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK.,Philips Research, Eindhoven, the Netherlands
| | - Natalia V Botchkareva
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Desmond J Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
43
|
Abstract
Phototherapy involves repeated exposure of the skin to ultraviolet light to treat various inflammatory skin conditions such as psoriasis. Recent studies have identified specific immunologic effects of phototherapy that may underlie phototherapy efficacy. Furthermore, recent advancements have been made in developing safe and effective targeted phototherapy modalities for difficult-to-treat areas such as scalp psoriasis. Targeted phototherapy in the form of the excimer laser holds potential for more aggressive, effective treatment and long-lasting remission of psoriasis. Phototherapy is now also used successfully with biologic agents as combination therapy to treat recalcitrant psoriasis. Therefore, though one of the oldest therapeutic modalities for psoriasis, phototherapy remains a mainstay treatment with promise for further advancement.
Collapse
Affiliation(s)
- Mio Nakamura
- Department of Dermatology, University of California San Francisco Psoriasis and Skin Treatment Center, San Francisco, California, USA
| | | | - Tina Bhutani
- Department of Dermatology, University of California San Francisco Psoriasis and Skin Treatment Center, San Francisco, California, USA
| |
Collapse
|
44
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging Targets in Photopharmacology. Angew Chem Int Ed Engl 2016; 55:10978-99. [DOI: 10.1002/anie.201601931] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| |
Collapse
|
45
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Neue Ziele für die Photopharmakologie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601931] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| |
Collapse
|
46
|
Hashimoto S, Anai H, Hanada K. Mechanisms of interstrand DNA crosslink repair and human disorders. Genes Environ 2016; 38:9. [PMID: 27350828 PMCID: PMC4918140 DOI: 10.1186/s41021-016-0037-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Interstrand DNA crosslinks (ICLs) are the link between Watson-Crick strands of DNAs with the covalent bond and prevent separation of DNA strands. Since the ICL lesion affects both strands of the DNA, the ICL repair is not simple. So far, nucleotide excision repair (NER), structure-specific endonucleases, translesion DNA synthesis (TLS), homologous recombination (HR), and factors responsible for Fanconi anemia (FA) are identified to be involved in ICL repair. Since the presence of ICL lesions causes severe defects in transcription and DNA replication, mutations in these DNA repair pathways give rise to a various hereditary disorders. NER plays an important role for the ICL recognition and removal in quiescent cells, and defects of NER causes congential progeria syndrome, such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. On the other hand, the ICL repair in S phase requires more complicated orchestration of multiple factors, including structure-specific endonucleases, and TLS, and HR. Disturbed this ICL repair orchestration in S phase causes genome instability resulting a cancer prone disease, Fanconi anemia. So far more than 30 factors in ICL repair have already identified. Recently, a new factor, UHRF1, was discovered as a sensor of ICLs. In addition to this, numbers of nucleases that are involved in the first incision, also called unhooking, of ICL lesions have also been identified. Here we summarize the recent studies of ICL associated disorders and repair mechanism, with emphasis in the first incision of ICLs.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Hirofumi Anai
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| |
Collapse
|
47
|
Pierroz V, Rubbiani R, Gentili C, Patra M, Mari C, Gasser G, Ferrari S. Dual mode of cell death upon the photo-irradiation of a Ru II polypyridyl complex in interphase or mitosis. Chem Sci 2016; 7:6115-6124. [PMID: 27708751 PMCID: PMC5032677 DOI: 10.1039/c6sc00387g] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is an attractive, complementary medical technique to chemotherapy. Among the different photosensitizers (PSs) employed, Ru(ii) polypyridyl complexes were found to be valid substitutes to porphyrin-based or phthalocyanine-based PSs. Here, we confirm that one such complex, namely [Ru(bipy)2-dppz-7-methoxy][PF6]2 (Ru65), which localizes in the nucleus of various cancer and normal cells, displays cytotoxicity only upon UV-A irradiation. Importantly, we disclose the molecular mechanism of the UV-A mediated cytotoxic action of Ru65. We demonstrate that Ru65 intercalates in DNA and, upon light irradiation, promotes guanine oxidation, resulting in nicks in the double helix. We confirm this mechanism of action in living cells, showing that the UV-A irradiation of cells loaded with Ru65 results in a transient DNA damage response and cell death. Strikingly, the photo-irradiation of Ru65 triggered distinct mechanisms of cell death in interphase or mitotic cells. The former underwent cell cycle arrest at the G2/M phase and massive cytoplasmic vacuolation, which was paralleled by an unfolded-protein stress response, resulting in a reduction of viability and cell death through a paraptosis-like mechanism. On the other hand, the UV-A irradiation of Ru65 in cells synchronized by G2/M block-release with a selective CDK1 inhibitor led to blocking mitotic entry and rapid cell death through classic apoptotic pathways. Importantly, targeting mitotic cells with Ru65 allowed increasing its photo-toxicity by a factor of 3.6. Overall, our findings show that the use of a combination of a cell cycle inhibitor and a PS targeting the nucleus could open up new avenues in PDT.
Collapse
Affiliation(s)
- Vanessa Pierroz
- Institute of Molecular Cancer Research , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.imcr.uzh.ch/research/Ferrari.html ; ; Tel: +41 44 635 3471 ; Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.gassergroup.com ; Fax: +41 44 635 6803 ; Tel: +41 44 635 4630
| | - Riccardo Rubbiani
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.gassergroup.com ; ; Tel: +41 44 635 4630
| | - Christian Gentili
- Institute of Molecular Cancer Research , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.imcr.uzh.ch/research/Ferrari.html ; ; Tel: +41 44 635 3471
| | - Malay Patra
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.gassergroup.com ; ; Tel: +41 44 635 4630
| | - Cristina Mari
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.gassergroup.com ; ; Tel: +41 44 635 4630
| | - Gilles Gasser
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.gassergroup.com ; ; Tel: +41 44 635 4630
| | - Stefano Ferrari
- Institute of Molecular Cancer Research , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.imcr.uzh.ch/research/Ferrari.html ; ; Tel: +41 44 635 3471
| |
Collapse
|
48
|
Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev 2015; 44:7829-54. [PMID: 26204249 PMCID: PMC4787602 DOI: 10.1039/c5cs00316d] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2-3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography- or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed.
Collapse
Affiliation(s)
- Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA and Department of Chemistry, University of California, Riverside, CA 92521-0403, USA.
| |
Collapse
|
49
|
Ayil-Gutiérrez BA, Villegas-Mendoza JM, Santes-Hernández Z, Paz-González AD, Mireles-Martínez M, Rosas-García NM, Rivera G. Ruta graveolens Extracts and Metabolites against Spodoptera frugiperda. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The biological activity of Ruta graveolens leaf tissue extracts obtained with different solvents (ethyl acetate, ethanol, and water) and metabolites (psoralen, 2-undecanone and rutin) against Spodoptera frugiperda was evaluated. Metabolites levels in extracts were quantified by HPLC and GC. Ethyl acetate and ethanol extracts showed 94% and 78% mortality, respectively. Additionally, psoralen metabolite showed a high mortality as cypermethrin. Metabolite quantification in extracts shows the presence of 2-undecanone (87.9 μmoles mg−1 DW), psoralen (3.6 μmoles mg−1 DW) and rutin (0.001 μmoles mg−1 DW). We suggest that these concentrations of 2-undecanone and psoralen in R. graveolens leaf tissue extracts could be responsible for S. frugiperda mortality.
Collapse
Affiliation(s)
- Benjamín A. Ayil-Gutiérrez
- Laboratorio de Biotecnología Ambiental, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, 88710, México
| | - Jesús M. Villegas-Mendoza
- Laboratorio de Biotecnología Ambiental, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, 88710, México
| | - Zuridai Santes-Hernández
- Laboratorio de Biotecnología Ambiental, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, 88710, México
| | - Alma D. Paz-González
- Laboratorio de Biotecnología Ambiental, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, 88710, México
| | - Maribel Mireles-Martínez
- Laboratorio de Biotecnología Ambiental, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, 88710, México
| | - Ninfa M. Rosas-García
- Laboratorio de Biotecnología Ambiental, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, 88710, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Ambiental, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, 88710, México
| |
Collapse
|
50
|
Ji L, Lu D, Cao J, Zheng L, Peng Y, Zheng J. Psoralen, a mechanism-based inactivator of CYP2B6. Chem Biol Interact 2015; 240:346-52. [DOI: 10.1016/j.cbi.2015.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/15/2015] [Accepted: 08/28/2015] [Indexed: 12/26/2022]
|