1
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Brinsfield TN, Pinson NR, Levine AD. The evolution and ongoing challenge of unproven cell-based interventions. Stem Cells Transl Med 2024; 13:851-858. [PMID: 39045646 PMCID: PMC11386208 DOI: 10.1093/stcltm/szae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
Unproven cell-based interventions (CBIs) emerged early in the 2000s as a particularly problematic form of unproven therapy and remain a vexing policy problem to this day. These unproven interventions can harm patients both physically and financially and can complicate the process of developing a rigorous evidence base to support the translation of novel stem cell or other cell therapies. In this concise review, we examine the emergence of unproven CBIs and the various policy approaches that have been pursued or proposed to address this problem. We review the evolution of this field over the last 2 decades and explore why these policy efforts have proven challenging. We conclude by highlighting potential directions that the field could evolve and urging continued attention to both current and future forms of unproven CBIs to minimize future risks to patients and the field and to promote the development of evidence-based cell therapies.
Collapse
Affiliation(s)
- Taylor N Brinsfield
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332-0345, United States
| | - Noah R Pinson
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332-0345, United States
| | - Aaron D Levine
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332-0345, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, United States
| |
Collapse
|
3
|
Zhan Y, Qian A, Gao J, Ma S, Deng P, Yang H, Zhang X, Li J. Enhancing clinical safety in bioengineered-root regeneration: The use of animal component-free medium. Heliyon 2024; 10:e34173. [PMID: 39092243 PMCID: PMC11292241 DOI: 10.1016/j.heliyon.2024.e34173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Background Most studies used animal serum-containing medium for bioengineered-root regeneration, but ethical and safety issues raised by animal serum are a potentially significant risk for clinical use. Thus, this study aimed to find a safer method for bioengineered-root regeneration. Methods The biological properties of human dental pulp stem cells (hDPSCs) cultured in animal component-free (ACF) medium or serum-containing medium (5%, 10% serum-containing medium, SCM) were compared in vitro. hDPSCs were cultured in a three-dimensional (3D) environment with human-treated dentin matrix (hTDM). The capacity for odontogenesis was compared using quantitative real-time PCR (qPCR) and Western blot. Subsequently, the hDPSCs/hTDM complexes were transplanted into nude mice subcutaneously. Histological staining was then used to verify the regeneration effect in vivo. Results ACF medium promoted the migration of hDPSCs, but slightly inhibited the proliferation of hDPSCs in the first three days of culture compared to SCM. However, it had no significant effect on cell aging and apoptosis. After 7 days of 3D culture in ACF medium with hTDM, qPCR showed that DMP1, DSPP, OCN, RUNX2, and β-tubulin III were highly expressed in hDPSCs. In addition, 3D cultured hDPSCs/hTDM complexes in ACF medium regenerated dentin, pulp, and periodontal ligament-like tissues similar to SCM groups in vivo. Conclusion ACF medium was proved to be an alternative medium for bioengineered-root regeneration. The strategy of using ACF medium to regenerate bioengineered-root can improve clinical safety for tooth tissue engineering.
Collapse
Affiliation(s)
- Yuzhen Zhan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Aizhuo Qian
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jieya Gao
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shiyong Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Lee S, Kim YH, Min J. The potential of Rhodobacter sphaeroides extract as an alternative supplement for cell culture systems. Microbiol Spectr 2024; 12:e0245623. [PMID: 38319116 PMCID: PMC10913442 DOI: 10.1128/spectrum.02456-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
It is essential to identify suitable supplements that enhance cell growth, viability, and functional development in cell culture systems. The use of fetal bovine serum (FBS) has been common, but it has limitations, such as batch-to-batch variability, ethical concerns, and risks of environmental contamination. In this study, we explore the potential of Rhodobacter sphaeroides extract, derived from a probiotic photosynthetic bacterium, as an alternative supplement. Our results demonstrate that the extract from R. sphaeroides significantly improves various aspects of cell behavior compared to serum-free conditions. It enhances cell growth and viability to a greater extent than FBS supplementation. Additionally, the extract alleviates oxidative stress by reducing intracellular levels of reactive oxygen species and stimulates lysosomal activity, contributing to cellular processes. The presence of abundant amino acids, glycine and arginine, in the extract may play a role in promoting cell growth. These findings emphasize the potential of R. sphaeroides extract as a valuable supplement for cell culture, offering advantages over the use of FBS.IMPORTANCEThe choice of supplements for cell culture is crucial in biomedical research, but the widely used fetal bovine serum (FBS) has limitations in terms of variability, ethics, and environmental risks. This study explores the potential of an extract from Rhodobacter sphaeroides, a probiotic bacterium, as an alternative supplement. The findings reveal that the R. sphaeroides extract surpasses FBS in enhancing cell growth, viability, and functionality. It also mitigates oxidative stress and stimulates lysosomal activity, critical for cellular health. The extract's abundance of glycine and arginine, amino acids with known growth-promoting effects, further highlights its potential. By providing a viable substitute for FBS, the R. sphaeroides extract addresses the need for consistent, ethical, and environmentally friendly cell culture supplements. This research paves the way for sustainable and reliable cell culture systems, revolutionizing biomedical research and applications in drug development and regenerative medicine.
Collapse
Affiliation(s)
- Subin Lee
- Department of Bioprocess Engineering, Jeonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jiho Min
- Department of Bioprocess Engineering, Jeonbuk National University, Jeonju, Jeonbuk, South Korea
| |
Collapse
|
5
|
Jabbarpour Z, Aghayan SS, Moradzadeh K, Ghaffari S, Ahmadbeigi N. The effect of serum origin on cytokines induced killer cell expansion and function. BMC Immunol 2023; 24:28. [PMID: 37658313 PMCID: PMC10474620 DOI: 10.1186/s12865-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Cytokine-induced killer (CIK) cells have shown promising results in adoptive immunotherapy. However, serum may play a determining role in the large-scale expansion of these cells for clinical applications. According to Good Manufacturing Practice (GMP) guidelines to reduce the use of animal products in cell-based therapies; therefore, this study sought to investigate the impact of serum origin and the reduced serum concentration on the pattern of cell expansion and function. METHODS Peripheral blood mononuclear cells (PBMCs) isolated from a healthy donor were expanded based on the CIK cell expansion protocol. The cell culture medium was supplemented with three types of sera comprising fetal bovine serum (FBS), human serum (HS), or human-derived platelet lysate (hPL) at different concentrations (10%, 5%, and 2.5%). The proliferation kinetics for each group were investigated for 30 days of cell culture. RESULTS Cell proliferation in 10% concentration of all sera (hPL, FBS, HS) was higher than their lower concentrations. Moreover, hPL was significantly associated with higher expansion rates than FBS and HS in all three concentrations. Furthermore, cells cultured in hPL showed higher viability, cytotoxicity effect, and CIK CD markers expression. CONCLUSION hPL at a concentration of 10% showed the best effect on CIK cell proliferation and function.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Ave, Tehran, 14117, Iran
| | - Seyed Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Ave, Tehran, 14117, Iran
| | - Kobra Moradzadeh
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Ave, Tehran, 14117, Iran
| | - Sasan Ghaffari
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Shariati Hospital, North Kargar Ave, Tehran, 14117, Iran.
| |
Collapse
|
6
|
Lynn JV, Lalchandani KB, Daniel M, Urlaub KM, Ettinger RE, Nelson NS, Donneys A, Buchman SR. Adipose-Derived Stem Cells Enhance Graft Incorporation and Mineralization in a Murine Model of Irradiated Mandibular Nonvascularized Bone Grafting. Ann Plast Surg 2023; 91:154-158. [PMID: 37450875 DOI: 10.1097/sap.0000000000003598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Nonvascularized bone grafting represents a practical method of mandibular reconstruction. However, the destructive effects of radiotherapy on native bone preclude the use of nonvascularized bone grafts in head and neck cancer patients. Adipose-derived stem cells have been shown to enhance bone healing and regeneration in numerous experimental models. The purpose of this study was to determine the impact of adipose-derived stem cells on nonvascularized bone graft incorporation in a murine model of irradiated mandibular reconstruction. METHODS Thirty isogenic rats were randomly divided into 3 groups: nonvascularized bone graft (control), radiation with nonvascularized bone graft (XRT), and radiation with nonvascularized bone graft and adipose-derived stem cells (ASC). Excluding the control group, all rats received a human-equivalent dose of radiation. All groups underwent mandibular reconstruction of a critical-sized defect with a nonvascularized bone graft from the contralateral hemimandible. After a 60-day recovery period, graft incorporation and bone mineralization were compared between groups. RESULTS Compared with the control group, the XRT group demonstrated significantly decreased graft incorporation (P = 0.011), bone mineral density (P = 0.005), and bone volume fraction (P = 0.001). Compared with the XRT group, the ASC group achieved a significantly increased graft incorporation (P = 0.006), bone mineral density (P = 0.005), and bone volume fraction (P = 0.013). No significant differences were identified between the control and ASC groups. CONCLUSIONS Adipose-derived stem cells enhance nonvascularized bone graft incorporation in the setting of human-equivalent radiation.
Collapse
Affiliation(s)
- Jeremy V Lynn
- From the Craniofacial Research Laboratory, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Aguilo-Seara G, Molair W, Shang H, Northrup S, Grosser JA, Llull R, Katz A. Extent of Tissue Washing Can Significantly Alter the Composition of Adipose-Derived Stromal Vascular Fraction Cell Preparations: Implications for Clinical Translation. Stem Cells Transl Med 2023; 12:391-399. [PMID: 37317551 DOI: 10.1093/stcltm/szad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/07/2023] [Indexed: 06/16/2023] Open
Abstract
Stromal vascular fraction (SVF) cell preparations have recently attracted much interest as a form of autologous cell therapy. These heterogenous cell populations typically include some proportion of blood-derived cells (BDCs)-including both red blood cells (RBCs) and leukocytes (WBCs). The objectives of this paper were to evaluate the effects of tissue washing and hypotonic RBC lysis-separately and together-on BDC concentrations within SVF, and further to explore whether BDCs can confer detectable and modifiable effects on adipose-derived cell activity. Using various cell culture assays, flow cytometry and ELISA analysis of human-derived SVF preparations, we show that thorough washing of adipose tissue prior to enzymatic dissociation effectively removes RBCs from SVF preparations as well as standard lysis methods and significantly alters the type and relative quantities of WBCs. In addition, these studies demonstrate that potentially toxic RBC components are detectable for up to 1 week in cultures containing RBC lysate, but not those with intact RBCs, and, that culture-expanded cells proliferate significantly more in the presence of intact RBCs versus RBC lysis products or control media. Broadly, these data exemplify how different seemingly mundane tissue processing steps can significantly influence SVF identity/composition, purity, and potency. Based on the findings of this work, we propose that translational efforts in the field would benefit by a better understanding of the impact of RBCs, WBCs, and non-viable cells on the in vivo therapeutic activity of SVF therapies.
Collapse
Affiliation(s)
- Gabriela Aguilo-Seara
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - William Molair
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hulan Shang
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Scott Northrup
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joshua A Grosser
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ramon Llull
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adam Katz
- Department of Plastic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Liu M, Wang Y, Gao G, Zhao WX, Fu Q. Stem Cell Application for Stress Urinary Incontinence: From Bench to Bedside. Curr Stem Cell Res Ther 2023; 18:17-26. [PMID: 35249506 DOI: 10.2174/1574888x17666220304213057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Stress urinary incontinence (SUI) is a common urinary system disease worldwide. Nowadays, medical therapy and surgery can control the symptoms and improve the life quality of patients. However, they might also bring about complications as the standard therapy fails to address the underlying problem of urethral sphincter dysfunction. Recent advances in cell technology have aroused interest in the use of autologous stem cell therapy to restore the ability of urinary control. The present study reviewed several types of stem cells for the treatment of SUI in the experimental and clinical stages.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Guo Gao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Xin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| |
Collapse
|
9
|
Brown LL. Adipose-Derived Stromal Stem Cells. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
10
|
Johnston J, Hyun I, Neuhaus CP, Maschke KJ, Marshall P, Craig KP, Matthews MM, Drolet K, Greely HT, Hill LR, Hinterberger A, Hurley EA, Kesterson R, Kimmelman J, King NMP, Lopes MJ, O’Rourke PP, Parent B, Peckman S, Piotrowska M, Schwarz M, Sebo J, Stodgell C, Streiffer R, Wilkerson A. Clarifying the Ethics and Oversight of Chimeric Research. Hastings Cent Rep 2022; 52 Suppl 2:S2-S23. [PMID: 36484509 PMCID: PMC9911087 DOI: 10.1002/hast.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article is the lead piece in a special report that presents the results of a bioethical investigation into chimeric research, which involves the insertion of human cells into nonhuman animals and nonhuman animal embryos, including into their brains. Rapid scientific developments in this field may advance knowledge and could lead to new therapies for humans. They also reveal the conceptual, ethical, and procedural limitations of existing ethics guidance for human-nonhuman chimeric research. Led by bioethics researchers working closely with an interdisciplinary work group, the investigation focused on generating conceptual clarity and identifying improvements to governance approaches, with the goal of helping scholars, funders, scientists, institutional leaders, and oversight bodies (embryonic stem cell research oversight [ESCRO] committees and institutional animal care and use committees [IACUCs]) deliver principled and trustworthy oversight of this area of science. The article, which focuses on human-nonhuman animal chimeric research that is stem cell based, identifies key ethical issues in and offers ten recommendations regarding the ethics and oversight of this research. Turning from bioethics' previous focus on human-centered questions about the ethics of "humanization" and this research's potential impact on concepts like human dignity, this article emphasizes the importance of nonhuman animal welfare concerns in chimeric research and argues for less-siloed governance and oversight and more-comprehensive public communication.
Collapse
|
11
|
Hosseini M, Koehler KR, Shafiee A. Biofabrication of Human Skin with Its Appendages. Adv Healthc Mater 2022; 11:e2201626. [PMID: 36063498 PMCID: PMC11469047 DOI: 10.1002/adhm.202201626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Much effort has been made to generate human skin organ in the laboratory. Yet, the current models are limited due to the lack of many critical biological and structural features of the skin. Importantly, these in vitro models lack appendages and fail to recapitulate the whole human skin construction. Thus, engineering a human skin with the capacity to generate all components, including appendages, is a major challenge. This review intends to provide an update on the recent efforts underway to regenerate appendage-bearing skin organs based on scaffold-free and scaffold-based bioengineering approaches. Although the mouse skin equivalents containing hair follicles, sebaceous glands, and sweat glands have been established in vitro, there has been limited success in humans. A combination of biofabricated matrices and cell aggregates, such as organoids, can pave the way for generating skin substitutes with human-like biological, structural, and physical features. Accordingly, the formation of human skin organoids and reconstruction of vascularized skin equipped with immune cells prompt calls for more scientific research. The generation of appendage-bearing skin substitutes can be applied in practice for wound healing, hair restoration, and scar treatment.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of MechanicalMedical and Process EngineeringFaculty of EngineeringQueensland University of TechnologyBrisbaneQLD4059Australia
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D)Queensland University of TechnologyBrisbaneQLD4059Australia
| | - Karl R. Koehler
- Department of Otolaryngology‐Head and Neck SurgeryHarvard Medical SchoolBostonMA02115USA
- Department of OtolaryngologyBoston Children's HospitalBostonMA02115USA
| | - Abbas Shafiee
- Herston Biofabrication InstituteMetro North Hospital and Health ServiceBrisbaneQLD4029Australia
- Royal Brisbane and Women's HospitalMetro North Hospital and Health ServiceBrisbaneQLD4029Australia
- The University of Queensland Diamantina InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLD4102Australia
| |
Collapse
|
12
|
Towards Clinical Translation of In Situ Cartilage Engineering Strategies: Optimizing the Critical Facets of a Cell-Laden Hydrogel Therapy. Tissue Eng Regen Med 2022; 20:25-47. [PMID: 36244053 PMCID: PMC9852400 DOI: 10.1007/s13770-022-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Articular cartilage repair using implantable photocrosslinkable hydrogels laden with chondrogenic cells, represents a promising in situ cartilage engineering approach for surgical treatment. The development of a surgical procedure requires a minimal viable product optimized for the clinical scenario. In our previous work we demonstrated how gelatin based photocrosslinkable hydrogels in combination with infrapatellar derived stem cells allow the production of neocartilage in vitro. In this study, we aim to optimize the critical facets of the in situ cartilage engineering therapy: the cell source, the cell isolation methodology, the cell expansion protocol, the cell number, and the delivery approach. METHODS We evaluated the impact of the critical facets of the cell-laden hydrogel therapy in vitro to define an optimized protocol that was then used in a rabbit model of cartilage repair. We performed cells counting and immunophenotype analyses, chondrogenic potential evaluation via immunostaining and gene expression, extrusion test analysis of the photocrosslinkable hydrogel, and clinical assessment of cartilage repair using macroscopic and microscopic scores. RESULTS We identified the adipose derived stem cells as the most chondrogenic cells source within the knee joint. We then devised a minimally manipulated stem cell isolation procedure that allows a chondrogenic population to be obtained in only 85 minutes. We found that cell expansion prior to chondrogenesis can be reduced to 5 days after the isolation procedure. We characterized that at least 5 million of cells/ml is needed in the photocrosslinkable hydrogel to successfully trigger the production of neocartilage. The maximum repairable defect was calculated based on the correlation between the number of cells retrievable with the rapid isolation followed by 5-day non-passaged expansion phase, and the minimum chondrogenic concentration in photocrosslinkable hydrogel. We next optimized the delivery parameters of the cell-laden hydrogel therapy. Finally, using the optimized procedure for in situ tissue engineering, we scored superior cartilage repair when compared to the gold standard microfracture approach. CONCLUSION This study demonstrates the possibility to repair a critical size articular cartilage defect by means of a surgical streamlined procedure with optimized conditions.
Collapse
|
13
|
Kamiya D, Takenaka-Ninagawa N, Motoike S, Kajiya M, Akaboshi T, Zhao C, Shibata M, Senda S, Toyooka Y, Sakurai H, Kurihara H, Ikeya M. Induction of functional xeno-free MSCs from human iPSCs via a neural crest cell lineage. NPJ Regen Med 2022; 7:47. [PMID: 36109564 PMCID: PMC9477888 DOI: 10.1038/s41536-022-00241-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells. Here, we induced MSCs from human induced pluripotent stem cells (iPSCs) via a neural crest cell (NCC) lineage under xeno-free conditions and evaluated their in vivo functions. We modified a previous MSC induction method to work under xeno-free conditions. Bovine serum albumin-containing NCC induction medium and fetal bovine serum-containing MSC induction medium were replaced with xeno-free medium. Through our optimized method, iPSCs differentiated into MSCs with high efficiency. To evaluate their in vivo activities, we transplanted the xeno-free-induced MSCs (XF-iMSCs) into mouse models for bone and skeletal muscle regeneration and confirmed their regenerative potency. These XF-iMSCs mainly promoted the regeneration of surrounding host cells, suggesting that they secrete soluble factors into affected regions. We also found that the peroxidasin and IGF2 secreted by the XF-iMSCs partially contributed to myotube differentiation. These results suggest that XF-iMSCs are important for future applications in regenerative medicine.
Collapse
|
14
|
Zhang X, Wang D, Wang Z, Ling SKK, Yung PSH, Tuan RS, Ker DFE. Clinical perspectives for repairing rotator cuff injuries with multi-tissue regenerative approaches. J Orthop Translat 2022; 36:91-108. [PMID: 36090820 PMCID: PMC9428729 DOI: 10.1016/j.jot.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background In the musculoskeletal system, bone, tendon, and muscle form highly integrated multi-tissue units such as the rotator cuff complex, which facilitates functional and dynamic movement of the shoulder joint. Understanding the intricate interplay among these tissues within clinical, biological, and engineering contexts is vital for addressing challenging issues in treatment of musculoskeletal disorders and injuries. Methods A wide-ranging literature search was performed, and findings related to the socioeconomic impact of rotator cuff tears, the structure-function relationship of rotator cuff bone-tendon-muscle units, pathophysiology of injury, current clinical treatments, recent state-of-the-art advances (stem cells, growth factors, and exosomes) as well as their regulatory approval, and future strategies aimed at engineering bone-tendon-muscle musculoskeletal units are outlined. Results Rotator cuff injuries are a significant socioeconomic burden on numerous healthcare systems that may be addressed by treating the rotator cuff as a single complex, given its highly integrated structure-function relationship as well as degenerative pathophysiology and limited healing in bone-tendon-muscle musculoskeletal tissues. Current clinical practices for treating rotator cuff injuries, including the use of commercially available devices and evolving trends in surgical management have benefited patients while advances in application of stem/progenitor cells, growth factors, and exosomes hold clinical potential. However, such efforts do not emphasize targeted regeneration of bone-tendon-muscle units. Strategies aimed at regenerating bone-tendon-muscle units are thus expected to address challenging issues in rotator cuff repair. Conclusions The rotator cuff is a highly integrated complex of bone-tendon-muscle units that when injured, has severe consequences for patients and healthcare systems. State-of-the-art clinical treatment as well as recent advances have resulted in improved patient outcome and may be further enhanced by engineering bone-tendon-muscle multi-tissue grafts as a potential strategy for rotator cuff injuries. Translational Potential of this Article This review aims to bridge clinical, tissue engineering, and biological aspects of rotator cuff repair and propose a novel therapeutic strategy by targeted regeneration of multi-tissue units. The presentation of these wide-ranging and multi-disciplinary concepts are broadly applicable to regenerative medicine applications for musculoskeletal and non-musculoskeletal tissues.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Samuel Ka-kin Ling
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Patrick Shu-hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| |
Collapse
|
15
|
Jabbarpour Z, Aghayan S, Arjmand B, Fallahzadeh K, Alavi-Moghadam S, Larijani B, Aghayan HR. Xeno-free protocol for GMP-compliant manufacturing of human fetal pancreas-derived mesenchymal stem cells. Stem Cell Res Ther 2022; 13:268. [PMID: 35729640 PMCID: PMC9210668 DOI: 10.1186/s13287-022-02946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been suggested as an appropriate source for diabetes cell-based therapies. The high proliferation and differentiation capacity of fetal MSCs and the role of fetal pancreatic-derived MSCs (FPMSCs) in islet generation make them good candidates for diabetes treatment. To manufacture clinical-grade MSCs, animal-free culture protocols are preferred. The current study aimed to establish a xeno-free/GMP-compliant protocol for FPMSCs manufacturing. The focus was on the effects of fetal bovine serum (FBS) replacement with pooled human serum (HS). MATERIAL AND METHODS FPMSCs were isolated and expanded from the pancreas of legally aborted fetuses with few modifications in our previously established protocol. The cells were expanded in two different culture media, including DMEM supplemented with 10% FBS or 10% pooled HS. A side-by-side comparison was made to evaluate the effect of each serum on proliferation rate, cell cycle, senescence, multi-lineage differentiation capacity, immunophenotype, and tumorigenesis of FPMSCs. RESULTS Flow cytometry analysis and three-lineage differentiation ability demonstrated that fibroblast-like cells obtained from primary culture had MSCs' characteristics. The FPMSCs displayed similar morphology and CD markers expression in both sera. HS had a higher proliferative effect on FPMSCs than FBS. In FBS, the cells reached senescence earlier. In addition to normal karyotypes and anchorage-dependent growth, in vivo tumor formation was not seen. CONCLUSION Our results demonstrated that HS was a better serum alternative than FBS for in vitro expansion of FPMSCs. Compared with FBS, HS increased FPMSCs' proliferation rate and decreased their senescence. In conclusion, HS can effectively replace FBS for clinical-grade FPMSCs manufacturing.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Khadijeh Fallahzadeh
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, No 111, 19th Allay., North Kargar St., P.O.Box:14117-13137, Tehran, Iran.
| |
Collapse
|
16
|
Khodayari S, Khodayari H, Ebrahimi-Barough S, Khanmohammadi M, Islam MS, Vesovic M, Goodarzi A, Mahmoodzadeh H, Nayernia K, Aghdami N, Ai J. Stem Cell Therapy in Limb Ischemia: State-of-Art, Perspective, and Possible Impacts of Endometrial-Derived Stem Cells. Front Cell Dev Biol 2022; 10:834754. [PMID: 35676930 PMCID: PMC9168222 DOI: 10.3389/fcell.2022.834754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
As an evidence-based performance, the rising incidence of various ischemic disorders has been observed across many nations. As a result, there is a growing need for the development of more effective regenerative approaches that could serve as main therapeutic strategies for the treatment of these diseases. From a cellular perspective, promoted complex inflammatory mechanisms, after inhibition of organ blood flow, can lead to cell death in all tissue types. In this case, using the stem cell technology provides a safe and regenerative approach for ischemic tissue revascularization and functional cell formation. Limb ischemia (LI) is one of the most frequent ischemic disease types and has been shown to have a promising regenerative response through stem cell therapy based on several clinical trials. Bone marrow-derived mononuclear cells (BM-MNCs), peripheral blood CD34-positive mononuclear cells (CD34+ PB-MNCs), mesenchymal stem cells (MSCs), and endothelial stem/progenitor cells (ESPCs) are the main, well-examined stem cell types in these studies. Additionally, our investigations reveal that endometrial tissue can be considered a suitable candidate for isolating new safe, effective, and feasible multipotent stem cells for limb regeneration. In addition to other teams’ results, our in-depth studies on endometrial-derived stem cells (EnSCs) have shown that these cells have translational potential for limb ischemia treatment. The EnSCs are able to generate diverse types of cells which are essential for limb reconstruction, including endothelial cells, smooth muscle cells, muscle cells, and even peripheral nervous system populations. Hence, the main object of this review is to present stem cell technology and evaluate its method of regeneration in ischemic limb tissue.
Collapse
Affiliation(s)
- Saeed Khodayari
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
| | - Hamid Khodayari
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Md Shahidul Islam
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Arash Goodarzi
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | | | - Karim Nayernia
- International Center for Personalized Medicine (P7MEDICINE), Düsseldorf, Germany
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicines, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Jafar Ai, ; Nasser Aghdami,
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Jafar Ai, ; Nasser Aghdami,
| |
Collapse
|
17
|
Naeem A, Gupta N, Naeem U, Khan MJ, Elrayess MA, Cui W, Albanese C. A comparison of isolation and culture protocols for human amniotic mesenchymal stem cells. Cell Cycle 2022; 21:1543-1556. [PMID: 35412950 PMCID: PMC9291641 DOI: 10.1080/15384101.2022.2060641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The successful translation of mesenchymal stem cells (MSCs) from bench to bedside is predicated upon their regenerative capabilities and immunomodulatory potential. Many challenges still exist in making MSCs a viable and cost-effective therapeutic option, due in part to the challenges of sourcing MSCs from adult tissues and inconsistencies in the characterization of MSCs. In many cases, adult MSC collection is an invasive procedure, and ethical concerns and age-related heterogeneity further complicate obtaining adult tissue derived MSCs at the scales needed for clinical applications. Alternative adult sources, such as post-partum associated tissues, offer distinct advantages to overcome these challenges. However, successful therapeutic applications rely on the efficient ex-vivo expansion of the stem cells while avoiding any culture-related phenotypic alterations, which requires optimized and standardized isolation, culture, and cell preservation methods. In this review, we have compared the isolation and culture methods for MSCs originating from the human amniotic membrane (hAMSCs) of the placenta to identify the elements that support the extended subculture potential of hAMSCs without compromising their immune-privileged, pluripotent regenerative potential.Abbreviations:AM: Human amniotic membrane; ASCs: Adipose tissue-derived stem cells; BM-MSCs: Bone marrow-mesenchymal stem cells; DMEM: Dulbecco's modified eagle medium; DT: Doubling time; EMEM: Eagle's modified essential medium; ESCM: Embryonic stem cell markers; ESCs: Embryonic stem cells; hAECs: Human amniotic epithelial cells; hAMSCs: Human amniotic mesenchymal stem cells; HLA: Human leukocyte antigen; HM: Hematopoietic markers; IM: Immunogenicity markers; MHC: Major histocompatibility complex; MSCs: Mesenchymal stem cells; MCSM: Mesenchymal cell surface markers; Nanog: NANOG homeobox; Oct: Octamer binding transcription factor 4; P: Passage; PM: Pluripotency markers; STRO-1: Stromal precursor antigen-1; SCP: Subculture potential; Sox-2: Sry-related HMG box gene 2; SSEA-4: Stage-specific embryonic antigen; TRA: Tumor rejection antigen.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Health Research Governance Department, Ministry of Public Health, Qatar
| | - Nikita Gupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Usra Naeem
- Department of Health Professional Technology, University of Lahore, Pakistan
| | | | - Mohamed A Elrayess
- Omics, Biomedical Research Center, Qatar University, Doha, Qatar.,Research and Graduate Studies, College of Pharmacy, Qu Health, Qatar University, Doha, Qatar
| | - Wanxing Cui
- Cell Therapy Manufacturing Facility, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Radiology, Georgetown University Medical Center, Washington, DC, USA.,Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
18
|
Tang J, Cui X, Zhang Z, Xu Y, Guo J, Soliman BG, Lu Y, Qin Z, Wang Q, Zhang H, Lim KS, Woodfield TBF, Zhang J. Injection-Free Delivery of MSC-Derived Extracellular Vesicles for Myocardial Infarction Therapeutics. Adv Healthc Mater 2022; 11:e2100312. [PMID: 34310068 DOI: 10.1002/adhm.202100312] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Indexed: 12/17/2022]
Abstract
As emerging therapeutic factors, extracellular vesicles (EVs) offer significant potential for myocardial infarction (MI) treatment. Current delivery approaches for EVs involve either intra-myocardial or intravenous injection, where both have inherent limitations for downstream clinical applications such as secondary tissue injury and low delivery efficiency. Herein, an injection-free approach for delivering EVs onto the heart surface to treat MI is proposed. By spraying a mixture of EVs, gelatin methacryloyl (GelMA) precursors, and photoinitiators followed by visible light irradiation for 30 s, EVs are physically entrapped within the GelMA hydrogel network covering the surface of the heart, resulting in an enhanced retention rate. Moreover, EVs are gradually released from the hydrogel network through a combination of diffusion and/or enzymatic degradation of the hydrogel, and they are effectively taken up by the sprayed tissue area. More importantly, the released EVs further migrate deep into myocardium tissue, which exerts an improved therapeutic effect. In an MI-induced mice model, the group treated with EVs-laden GelMA hydrogels shows significant recovery in cardiac function after 4 weeks. The work demonstrates a new strategy for delivering EVs into cardiac tissues for MI treatment in a localized manner with high retention.
Collapse
Affiliation(s)
- Junnan Tang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group Department of Orthopaedic Surgery & Musculoskeletal Medicine University of Otago Christchurch 8011 New Zealand
| | - Zenglei Zhang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Yanyan Xu
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Jiacheng Guo
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Bram G Soliman
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group Department of Orthopaedic Surgery & Musculoskeletal Medicine University of Otago Christchurch 8011 New Zealand
| | - Yongzheng Lu
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Zhen Qin
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu Sichuan 61004 China
| | - Hu Zhang
- Henry E. Riggs School of Applied Life Sciences Keck Graduate Institute Claremont CA 91711 USA
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group Department of Orthopaedic Surgery & Musculoskeletal Medicine University of Otago Christchurch 8011 New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group Department of Orthopaedic Surgery & Musculoskeletal Medicine University of Otago Christchurch 8011 New Zealand
| | - Jinying Zhang
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Henan Province Key Laboratory of Cardiac Injury and Repair Zhengzhou Henan 450052 China
| |
Collapse
|
19
|
Canosa S, Mareschi K, Marini E, Carosso AR, Castiglia S, Rustichelli D, Ferrero I, Gennarelli G, Bussolati B, Nocifora A, Asnaghi V, Bergallo M, Isidoro C, Benedetto C, Revelli A, Fagioli F. A Novel Xeno-Free Method to Isolate Human Endometrial Mesenchymal Stromal Cells (E-MSCs) in Good Manufacturing Practice (GMP) Conditions. Int J Mol Sci 2022; 23:ijms23041931. [PMID: 35216052 PMCID: PMC8876308 DOI: 10.3390/ijms23041931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
The cyclic regeneration of human endometrium is guaranteed by the proliferative capacity of endometrial mesenchymal stromal cells (E-MSCs). Due to this, the autologous infusion of E-MSCs has been proposed to support endometrial growth in a wide range of gynecological diseases. We aimed to compare two different endometrial sampling methods, surgical curettage and vacuum aspiration biopsy random assay (VABRA), and to validate a novel xeno-free method to culture human E-MSCs. Six E-MSCs cell samples were isolated after mechanical tissue homogenization and cultured using human platelet lysate. E-MSCs were characterized for the colony formation capacity, proliferative potential, and multilineage differentiation. The expression of mesenchymal and stemness markers were tested by FACS analysis and real-time PCR, respectively. Chromosomal alterations were evaluated by karyotype analysis, whereas tumorigenic capacity and invasiveness were tested by soft agar assay. Both endometrial sampling techniques allowed efficient isolation and expansion of E-MSCs using a xeno-free method, preserving their mesenchymal and stemness phenotype, proliferative potential, and limited multi-lineage differentiation ability during the culture. No chromosomal alterations and invasive/tumorigenic capacity were observed. Herein, we report the first evidence of efficient E-MSCs isolation and culture in Good Manufacturing Practice compliance conditions, suggesting VABRA endometrial sampling as alternative to surgical curettage.
Collapse
Affiliation(s)
- Stefano Canosa
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, Department of Surgical Sciences, University of Torino, 10126 Torino, Italy; (S.C.); (A.R.C.); (G.G.); (C.B.); (A.R.)
| | - Katia Mareschi
- Department of Public Health and Paediatrics, University of Torino, 10126 Torino, Italy; (E.M.); (M.B.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy; (S.C.); (D.R.); (I.F.)
- Correspondence: ; Tel.: +39-(011)-313-5420
| | - Elena Marini
- Department of Public Health and Paediatrics, University of Torino, 10126 Torino, Italy; (E.M.); (M.B.); (F.F.)
| | - Andrea Roberto Carosso
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, Department of Surgical Sciences, University of Torino, 10126 Torino, Italy; (S.C.); (A.R.C.); (G.G.); (C.B.); (A.R.)
| | - Sara Castiglia
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy; (S.C.); (D.R.); (I.F.)
| | - Deborah Rustichelli
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy; (S.C.); (D.R.); (I.F.)
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy; (S.C.); (D.R.); (I.F.)
| | - Gianluca Gennarelli
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, Department of Surgical Sciences, University of Torino, 10126 Torino, Italy; (S.C.); (A.R.C.); (G.G.); (C.B.); (A.R.)
| | - Benedetta Bussolati
- Molecular Biotechnology Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Alberto Nocifora
- Department of Oncology, Pathology Unit, University of Torino, 10126 Torino, Italy;
| | - Valentina Asnaghi
- Department of Laboratory Medicine, Medical Genetics Division, City of Health and Science of Torino, 10124 Torino, Italy;
| | - Massimiliano Bergallo
- Department of Public Health and Paediatrics, University of Torino, 10126 Torino, Italy; (E.M.); (M.B.); (F.F.)
- Paediatric Laboratory Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Ciro Isidoro
- Department of Health Sciences, University of Piemonte Orientale, 13100 Novara, Italy;
| | - Chiara Benedetto
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, Department of Surgical Sciences, University of Torino, 10126 Torino, Italy; (S.C.); (A.R.C.); (G.G.); (C.B.); (A.R.)
| | - Alberto Revelli
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, Department of Surgical Sciences, University of Torino, 10126 Torino, Italy; (S.C.); (A.R.C.); (G.G.); (C.B.); (A.R.)
| | - Franca Fagioli
- Department of Public Health and Paediatrics, University of Torino, 10126 Torino, Italy; (E.M.); (M.B.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy; (S.C.); (D.R.); (I.F.)
| |
Collapse
|
20
|
Zeng L, Zhou S, Chen C, Zhou LH, Shi X, Wu Z, Luo SK. Experimental study of fat derived pellets promoting wound healing in rats. Bioengineered 2021; 12:12323-12331. [PMID: 34787072 PMCID: PMC8810055 DOI: 10.1080/21655979.2021.2000257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To observe the effect of fat-derived pellets (FDP) on wound healing in rats, the inguinal fat of rats was obtained, and the FDP were obtained after centrifugation. The cell activity and growth factor secretion of FDP were measured. The wounds in rats were created, and FDP was used to treat the wounds of rats. The phenotype of macrophages and the expression of angiogenic factors expression in wounds were measured. The cell viability in FDP remains in high level after centrifugation and the expression of vascular endothelial growth factor (VEGF) and Basic Fibroblast Growth Factor (bFGF) from FDP was observed in vitro. The FDP significantly promoted the wound healing of rats compared with that in control groups. Moreover, the expression of M2 macrophages and VEGF in FDP group were significantly higher than that in the control group. FDP is a kind of stem cell product, which can be obtained from adipose tissue by physical centrifugation. The cytotherapeutic effect of FDP makes it a promising product for wound healing in clinics.
Collapse
Affiliation(s)
- Li Zeng
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou City, 510317
| | - Shaolong Zhou
- Yichun University, No. 576, Xuefu Road, Yichun, Jiangxi, China
| | - Chen Chen
- Yichun University, No. 576, Xuefu Road, Yichun, Jiangxi, China
| | - Lin-Hua Zhou
- Yichun University, No. 576, Xuefu Road, Yichun, Jiangxi, China
| | - Xiujiang Shi
- Yichun University, No. 576, Xuefu Road, Yichun, Jiangxi, China
| | - Zongjian Wu
- Yichun University, No. 576, Xuefu Road, Yichun, Jiangxi, China
| | - Sheng-Kang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou City, 510317
| |
Collapse
|
21
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
22
|
Clumps of Mesenchymal Stem Cells/Extracellular Matrix Complexes Generated with Xeno-Free Chondro-Inductive Medium Induce Bone Regeneration via Endochondral Ossification. Biomedicines 2021; 9:biomedicines9101408. [PMID: 34680525 PMCID: PMC8533314 DOI: 10.3390/biomedicines9101408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023] Open
Abstract
Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.
Collapse
|
23
|
Intraoperative Stromal Vascular Fraction Therapy Improves Histomorphometric and Vascular Outcomes in Irradiated Mandibular Fracture Repair. Plast Reconstr Surg 2021; 147:865-874. [PMID: 33760575 DOI: 10.1097/prs.0000000000007781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cell-based treatments have demonstrated the capacity to enhance reconstructive outcomes in recent decades but are hindered in clinical utility by regulatory hurdles surrounding cell culture. This investigation examines the ability of a noncultured stromal vascular fraction derived from lipoaspirate to enhance bone healing during fracture repair to further the development of translatable cell therapies that may improve outcomes in irradiated reconstruction. METHODS Isogenic male Lewis rats were divided into three groups: fracture, irradiated fracture, and irradiated fracture with stromal vascular fraction treatment. Irradiated groups received a fractioned dose of 35 Gy before mandibular osteotomy. Stromal vascular fraction was harvested from the inguinal fat of isogenic donors, centrifuged, and placed intraoperatively into the osteotomy site. All mandibles were evaluated for bony union and vascularity using micro-computed tomography before histologic analysis. RESULTS Union rates were significantly improved in the irradiated fracture with stromal vascular fraction treatment group (82 percent) compared to the irradiated fracture group (25 percent) and were not statistically different from the fracture group (100 percent). Stromal vascular fraction therapy significantly improved all metrics of bone vascularization compared to the irradiated fracture group and was not statistically different from fracture. Osteocyte proliferation and mature bone formation were significantly reduced in the irradiated fracture group. Bone cellularity and maturity were restored to nonirradiated levels in the irradiated fracture with stromal vascular fraction treatment group despite preoperative irradiation. CONCLUSIONS Vascular and cellular depletion represent principal obstacles in the reconstruction of irradiated bone. This study demonstrates the efficacy of stromal vascular fraction therapy in remediating these damaging effects and provides a promising foundation for future studies aimed at developing noncultured, cell-based therapies for clinical implementation.
Collapse
|
24
|
Zhu D, Fang H, Kusuma GD, Schwab R, Barabadi M, Chan ST, McDonald H, Leong CM, Wallace EM, Greening DW, Lim R. Impact of chemically defined culture media formulations on extracellular vesicle production by amniotic epithelial cells. Proteomics 2021; 21:e2000080. [PMID: 34081834 DOI: 10.1002/pmic.202000080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic properties of cell derived extracellular vesicles (EVs) make them promising cell-free alternative to regenerative medicine. However, clinical translation of this technology relies on the ability to manufacture EVs in a scalable, reproducible, and cGMP-compliant manner. To generate EVs in sufficient quantity, a critical step is the selection and development of culture media, where differences in formulation may influence the EV manufacturing process. In this study, we used human amniotic epithelial cells (hAECs) as a model system to explore the effect of different formulations of chemically defined, commercially sourced media on EV production. Here, we determined that cell viability and proliferation rate are not reliable quality indicators for EV manufacturing. The levels of tetraspanins and epitope makers of EVs were significantly impacted by culture media formulations. Mass spectrometry-based proteomic profiling revealed proteome composition of hAEC-EVs and the influence of media formulations on composition of EV proteome. This study has revealed critical aspects including cell viability and proliferation rate, EV yield, and tetraspanins, surface epitopes and proteome composition of EVs influenced by media formulations, and further insight into standardised EV production culture media that should be considered in clinical-grade scalable EV manufacture for generation of therapeutic EVs.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gina D Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Renate Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Siow Teng Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Hannah McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Cheng Mee Leong
- Thermo Fisher Scientific Australia Pty Ltd, Scoresby, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.,Central Clinical School, Monash University, Clayton, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Noncultured Minimally Processed Adipose-Derived Stem Cells Improve Radiated Fracture Healing. Ann Plast Surg 2021; 85:83-88. [PMID: 32187072 DOI: 10.1097/sap.0000000000002354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adipose-derived stem cells mitigate deleterious effects of radiation on bone and enhance radiated fracture healing by replacing damaged cells and stimulating angiogenesis. However, adipose-derived stem cell harvest and delivery techniques must be refined to comply with the US Food and Drug Administration restrictions on implantation of cultured cells into human subjects prior to clinical translation. The purpose of this study is to demonstrate the preservation of efficacy of adipose-derived stem cells to remediate the injurious effects of radiation on fracture healing utilizing a novel harvest and delivery technique that avoids the need for cell culture. Forty-four Lewis rats were divided into 4 groups: fracture control (Fx), radiated fracture control (XFx), radiated fracture treated with cultured adipose-derived stem cells (ASC), and radiated fracture treated with noncultured minimally processed adipose-derived stem cells (MP-ASC). Excluding the Fx group, all rats received a fractionated human-equivalent dose of radiation. All groups underwent mandibular osteotomy with external fixation. Following sacrifice on postoperative day 40, union rate, mineralization, and biomechanical strength were compared between groups at P < 0.05 significance. Compared with Fx controls, the XFx group demonstrated decreased union rate (100% vs 20%), bone volume fraction (P = 0.003), and ultimate load (P < 0.001). Compared with XFx controls, the MP-ASC group tripled the union rate (20% vs 60%) and demonstrated statistically significant increases in both bone volume fraction (P = 0.005) and ultimate load (P = 0.025). Compared with the MP-ASC group, the ASC group showed increased union rate (60% vs 100%) and no significant difference in bone volume fraction (P = 0.936) and ultimate load (P = 0.202). Noncultured minimally processed adipose-derived stem cells demonstrate the capacity to improve irradiated fracture healing without the need for cell proliferation in culture. Further refinement of the cell harvest and delivery techniques demonstrated in this report will enhance the ability of noncultured minimally processed adipose-derived stem cells to improve union rate and bone quality, thereby optimizing clinical translation.
Collapse
|
26
|
Orthobiologics in Hand Surgery. J Hand Surg Am 2021; 46:409-415. [PMID: 33958102 DOI: 10.1016/j.jhsa.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023]
Abstract
Orthobiologic agents are used as innovative adjuvant therapy to treat common upper-extremity pathology, including carpal tunnel syndrome, de Quervain tenosynovitis, and distal radius fractures. In this article, we perform a narrative review and evaluate current literature on orthobiologics in the upper extremity. Orthobiologics evaluated include bone morphogenetic proteins, platelet-rich plasma, bone marrow aspirate concentrate, mesenchymal stem cells, and amniotic membrane. Studies selected include randomized control trials, case studies, and animal studies. Although there is some clinical evidence regarding the use of orthobiologic agents in the treatment of shoulder, elbow, and sports injuries, there is a paucity of literature regarding their use to treat pathology of the hand and wrist. Further investigation is necessary to determine their effectiveness and therapeutic value in treatment of upper extremity injuries.
Collapse
|
27
|
Cavagnaro JA. It's All About the Dose. Hum Gene Ther 2021; 32:335-340. [PMID: 33891505 DOI: 10.1089/hum.2021.29154.jac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
29
|
Yan M, Sun S, Xu K, Huang X, Dou L, Pang J, Tang W, Shen T, Li J. Cardiac Aging: From Basic Research to Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9570325. [PMID: 33777324 PMCID: PMC7969106 DOI: 10.1155/2021/9570325] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
With research progress on longevity, we have gradually recognized that cardiac aging causes changes in heart structure and function, including progressive myocardial remodeling, left ventricular hypertrophy, and decreases in systolic and diastolic function. Elucidating the regulatory mechanisms of cardiac aging is a great challenge for biologists and physicians worldwide. In this review, we discuss several key molecular mechanisms of cardiac aging and possible prevention and treatment methods developed in recent years. Insights into the process and mechanism of cardiac aging are necessary to protect against age-related diseases, extend lifespan, and reduce the increasing burden of cardiovascular disease in elderly individuals. We believe that research on cardiac aging is entering a new era of unique significance for the progress of clinical medicine and social welfare.
Collapse
Affiliation(s)
- Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
| |
Collapse
|
30
|
Bano R, Ahmad F, Mohsin M. A perspective on the isolation and characterization of extracellular vesicles from different biofluids. RSC Adv 2021; 11:19598-19615. [PMID: 35479207 PMCID: PMC9033677 DOI: 10.1039/d1ra01576a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
Isolation and detection methods for the different types of EVs (e.g., exosomes, microvesicles, apoptotic bodies, oncosomes) from biofluids.
Collapse
Affiliation(s)
- Reshma Bano
- Metabolic Engineering Laboratory
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| | - Farhan Ahmad
- Department of Animal Biology
- University of Hyderabad
- Hyderabad
- India
| | - Mohd Mohsin
- Metabolic Engineering Laboratory
- Department of Biosciences
- Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| |
Collapse
|
31
|
A Xeno-Free Strategy for Derivation of Human Umbilical Vein Endothelial Cells and Wharton's Jelly Derived Mesenchymal Stromal Cells: A Feasibility Study toward Personal Cell and Vascular Based Therapy. Stem Cells Int 2020; 2020:8832052. [PMID: 32963549 PMCID: PMC7492901 DOI: 10.1155/2020/8832052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
Coimplantation of endothelial cells (ECs) and mesenchymal stromal cells (MSCs) into the transplantation site could be a feasible option to achieve a sufficient level of graft-host vascularization. To find a suitable source of tissue that provides a large number of high-quality ECs and MSCs suited for future clinical application, we developed a simplified xeno-free strategy for isolation of human umbilical vein endothelial cells (HUVECs) and Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs) from the same umbilical cord. We also assessed whether the coculture of HUVECs and WJ-MSCs derived from the same umbilical cord (autogenic cell source) or from different umbilical cords (allogenic cell sources) had an impact on in vitro angiogenic capacity. We found that HUVECs grown in 5 ng/ml epidermal growth factor (EGF) supplemented xeno-free condition showed higher proliferation potential compared to other conditions. HUVECs and WJ-MSCs obtained from this technic show an endothelial lineage (CD31 and von Willebrand factor) and MSC (CD73, CD90, and CD105) immunophenotype characteristic with high purity, respectively. It was also found that only the coculture of HUVEC/WJ-MSC, but not HUVEC or WJ-MSC mono-culture, provides a positive effect on vessel-like structure (VLS) formation, in vitro. Further investigations are needed to clarify the pros and cons of using autogenic or allogenic source of EC/MSC in tissue engineering applications. To the best of our knowledge, this study offers a simple, but reliable, xeno-free strategy to establish ECs and MSCs from the same umbilical cord, a new opportunity to facilitate the development of personal cell-based therapy.
Collapse
|
32
|
Sugai H, Tomita S, Kurita R. Pattern-recognition-based Sensor Arrays for Cell Characterization: From Materials and Data Analyses to Biomedical Applications. ANAL SCI 2020; 36:923-934. [PMID: 32249248 DOI: 10.2116/analsci.20r002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To capture a broader scope of complex biological phenomena, alternatives to conventional sensing based on specificity for cell detection and characterization are needed. Pattern-recognition-based sensing is an analytical method designed to mimic mammalian sensory systems for analyte identification based on the pattern recognition of multivariate data, which are generated using an array of multiple probes that cross-reactively interact with analytes. This sensing approach is significantly different from conventional specific cell sensing based on highly specific probes, including antibodies against biomarkers. Encouraged by the advantages of this technique, such as the simplicity, rapidity, and tunability of the systems without requiring a priori knowledge of biomarkers, numerous sensor arrays have been developed over the past decade and used in a variety of cell sensing applications; these include disease diagnosis, drug discovery, and fundamental research. This review summarizes recent progress in pattern-recognition-based cell sensing, with a particular focus on guidelines for designing materials and arrays, techniques for analyzing response patterns, and applications of sensor systems that are focused primarily for the biomedical field.
Collapse
Affiliation(s)
- Hiroka Sugai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shunsuke Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST)
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST).,Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
33
|
Dessie G, Derbew Molla M, Shibabaw T, Ayelign B. Role of Stem-Cell Transplantation in Leukemia Treatment. Stem Cells Cloning 2020; 13:67-77. [PMID: 32982314 PMCID: PMC7493021 DOI: 10.2147/sccaa.s262880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cells (SCs) play a major role in advanced fields of regenerative medicine and other research areas. They are involved in the regeneration of damaged tissue or cells, due to their self-renewal characteristics. Tissue or cells can be damaged through a variety of diseases, including hematologic and nonhematologic malignancies. In regard to this, stem-cell transplantation is a cellular therapeutic approach to restore those impaired cells, tissue, or organs. SCs have a therapeutic potential in the application of stem-cell transplantation. Research has been focused mainly on the application of hematopoietic SCs for transplantation. Cord blood cells and human leukocyte antigen-haploidentical donors are considered optional sources of hematopoietic stem-cell transplantation. On the other hand, pluripotent embryonic SCs and induced pluripotent SCs hold promise for advancement of stem-cell transplantation. In addition, nonhematopoietic mesenchymal SCs play their own significant role as a functional bone-marrow niche and in the management of graft-vs-host disease effects during the posttransplantation process. In this review, the role of different types of SCs is presented with regard to their application in SC transplantation. In addition to this, the therapeutic value of autologous and allogeneic hematopoietic stem-cell transplantation is assessed with respect to different types of leukemia. Highly advanced and progressive scientific research has focused on the application of stem-cell transplantation on specific leukemia types. We evaluated and compared the therapeutic potential of SC transplantation with various forms of leukemia. This review aimed to focus on the application of SCs in the treatment of leukemia.
Collapse
Affiliation(s)
- Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
34
|
Li Q, Zhao F, Li Z, Duan X, Cheng J, Zhang J, Fu X, Zhang J, Shao Z, Guo Q, Hu X, Ao Y. Autologous Fractionated Adipose Tissue as a Natural Biomaterial and Novel One-Step Stem Cell Therapy for Repairing Articular Cartilage Defects. Front Cell Dev Biol 2020; 8:694. [PMID: 32903809 PMCID: PMC7438948 DOI: 10.3389/fcell.2020.00694] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Articular cartilage damage remains a tough challenge for clinicians. Stem cells have emerged promising biologics in regenerative medicine. Previous research has widely demonstrated that adipose-derived mesenchymal stem cells (ADSCs) can promote cartilage repair due to their multipotency. However, enzymatic isolation and monolayer expansion of ADSCs decrease their differentiation potential and limit their clinical application. Here, a novel adipose tissue-derived product, extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel), was obtained by simple mechanical shifting and centrifugation to separate the fat oil and concentrate the effective constituents. This study aimed to evaluate the therapeutic effect of this natural biomaterial on the repair of articular cartilage defects. Scanning electron microscopy showed that the fibrous structure in the ECM/SVF-gel was preserved. ADSCs sprouted from the ECM/SVF-gel were characterized by their ability of differentiation into chondrocytes, osteoblasts, and adipocytes. In a rabbit model, critical-sized cartilage defects (diameter, 4 mm; depth, 1.5 mm) were created and treated with microfracture (MF) or a combination of autologous ECM/SVF-gel injection. The knee joints were evaluated at 6 and 12 weeks through magnetic resonance imaging, macroscopic observation, histology, and immunohistochemistry. The International Cartilage Repair Society score and histological score were significantly higher in the ECM/SVF-gel group than those in the MF-treated group. The ECM/SVF-gel distinctly improved cartilage regeneration, integration with surrounding normal cartilage, and the expression of hyaline cartilage marker, type II collagen, in comparison with the MF treatment alone. Overall, the ready-to-use ECM/SVF-gel is a promising therapeutic strategy to facilitate articular cartilage regeneration. Moreover, due to the simple, time-sparing, cost-effective, enzyme-free, and minimally invasive preparation process, this gel provides a valuable alternative to stem cell-based therapy for clinical translation.
Collapse
Affiliation(s)
- Qi Li
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Fengyuan Zhao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zong Li
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Xiaoning Duan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jin Cheng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jiahao Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Xin Fu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jiying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zhenxing Shao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Qinwei Guo
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| |
Collapse
|
35
|
Francis SL, Yao A, Choong PFM. Culture Time Needed to Scale up Infrapatellar Fat Pad Derived Stem Cells for Cartilage Regeneration: A Systematic Review. Bioengineering (Basel) 2020; 7:bioengineering7030069. [PMID: 32635513 PMCID: PMC7552776 DOI: 10.3390/bioengineering7030069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is a rich source of stem cells, which are reported to represent 2% of the stromal vascular fraction (SVF). The infrapatellar fat pad (IFP) is a unique source of tissue, from which human adipose-derived stem cells (hADSCs) have been shown to harbour high chondrogenic potential. This review aims to calculate, based on the literature, the culture time needed before an average knee articular cartilage defect can be treated using stem cells obtained from arthroscopically or openly harvested IFP. Firstly, a systematic literature review was performed to search for studies that included the number of stem cells isolated from the IFP. Subsequent analysis was conducted to identify the amount of IFP tissue harvestable, stem cell count and the overall yield based on the harvesting method. We then determined the minimum time required before treating an average-sized knee articular cartilage defect with IFP-derived hADSCs by using our newly devised equation. The amount of fat tissue, the SVF cell count and the stem cell yield are all lower in arthroscopically harvested IFP tissue compared to that collected using arthrotomy. As an extrapolation, we show that an average knee defect can be treated in 20 or 17 days using arthroscopically or openly harvested IFP-derived hADSCs, respectively. In summary, the systematic review conducted in this study reveals that there is a higher amount of fat tissue, SVF cell count and overall yield (cells/volume or cells/gram) associated with open (arthrotomy) compared to arthroscopic IFP harvest. In addition to these review findings, we demonstrate that our novel framework can give an indication about the culture time needed to scale up IFP-derived stem cells for the treatment of articular cartilage defects based on harvesting method.
Collapse
Affiliation(s)
- Sam L. Francis
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3065, Australia;
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
- Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC 3065, Australia
- Correspondence: ; Tel.: +61-466-640-801
| | - Angela Yao
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
| | - Peter F. M. Choong
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3065, Australia;
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
- Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC 3065, Australia
| |
Collapse
|
36
|
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. NATURE REVIEWS. MATERIALS 2020; 5:539-551. [PMID: 32953138 PMCID: PMC7500703 DOI: 10.1038/s41578-020-0199-8] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
Matrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility. Moreover, Matrigel is not conducive to physical or biochemical manipulation, making it difficult to fine-tune the matrix to promote intended cell behaviours and achieve specific biological outcomes. Recent advances in synthetic scaffolds have led to the development of xenogenic-free, chemically defined, highly tunable and reproducible alternatives. In this Review, we assess the applications of Matrigel in cell culture, regenerative medicine and organoid assembly, detailing the limitations of Matrigel and highlighting synthetic scaffold alternatives that have shown equivalent or superior results. Additionally, we discuss the hurdles that are limiting a full transition from Matrigel to synthetic scaffolds and provide a brief perspective on the future directions of synthetic scaffolds for cell culture applications.
Collapse
Affiliation(s)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin–Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
37
|
Cruz R, Pesce G, Calasans-Maia J, Moraschini V, Calasans-Maia MD, Granjeiro JM. Calcium Phosphate Carrying Simvastatin Enhances Bone Regeneration: A Systematic Review. Braz Dent J 2020; 31:93-102. [PMID: 32556021 DOI: 10.1590/0103-6440202002971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Several studies have aimed to develop alternative therapeutic biomaterials for bone repair. The purpose of this systematic review was to evaluate how statins carried by calcium phosphate affect the formation and regeneration of bone tissue in animal models when compared to other biomaterials or spontaneous healing. This systematic review followed the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions, the PRISMA guidelines, and the Preclinical Systematic Review & Meta-analysis Facility (SyRF). The protocol of this systematic review was registered in PROSPERO (CRD42018091112) and in CAMARADES. In addition, ARRIVE checklists were followed in order to increase the quality and transparency of the search. An electronic search was performed using the MEDLINE/PubMed, Scopus, SciELO, and PROSPERO library databases. The authors used a specific search strategy for each database, and they also conducted a search in the grey literature and cross-references. The eligibility criteria were animal studies, which evaluated bone repair treated with calcium phosphate as a simvastatin carrier. The selection process yielded 8 studies from the 657 retrieved. All manuscripts concluded that locally applied simvastatin carried by calcium phosphate is biocompatible, enhanced bone repair and induced statistically greater bone formation than cloth or calcium phosphate alone. In conclusion, the pertinent pre-clinical studies evidenced the calcium phosphate biocompatibility and its effectiveness in delivering SIM to improve the repair of bone defects. So, clinical trials are encouraged to investigate the impact of SIM associated with calcium phosphate bone graft in repairing bone defect in humans.
Collapse
Affiliation(s)
- Rebecca Cruz
- Laboratory of Dental Clinical Research, Dentistry school, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Giovanna Pesce
- Laboratory of Dental Clinical Research, Dentistry school, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - José Calasans-Maia
- Department of Orthodontics, Dentistry School, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Vittorio Moraschini
- Laboratory of Dental Clinical Research, Dentistry school, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Monica Diuana Calasans-Maia
- Laboratory of Dental Clinical Research, Dentistry school, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - José Mauro Granjeiro
- Laboratory of Dental Clinical Research, Dentistry school, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil.,Bioengineering Laboratory, INMETRO - Instituto Nacional de Metrologia, Qualidade e Tecnologia, Duque de Caxias, RJ, Brazil
| |
Collapse
|
38
|
Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Idrus RBH, Yazid MD. Three dimensional microcarrier system in mesenchymal stem cell culture: a systematic review. Cell Biosci 2020; 10:75. [PMID: 32518618 PMCID: PMC7271456 DOI: 10.1186/s13578-020-00438-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/27/2020] [Indexed: 01/09/2023] Open
Abstract
Stem cell-based regenerative medicine is a promising approach for tissue reconstruction. However, a large number of cells are needed in a typical clinical study, where conventional monolayer cultures might pose a limitation for scale-up. The purpose of this review was to systematically assess the application of microcarriers in Mesenchymal Stem Cell cultures. A comprehensive search was conducted in Medline via Ebscohost, Pubmed, and Scopus, and relevant studies published between 2015 and 2019 were selected. The literature search identified 53 related studies, but only 14 articles met the inclusion criteria. These include 7 utilised commercially available microcarriers, while the rest were formulated based on different surface characteristics, all of which are discussed in this review. Current applications of microcarriers were focused on MSC expansion and induction of MSCs into different lineages. These studies demonstrated that MSCs could proliferate in a microcarrier culture system in-fold compared to monolayer cultures, and the culture system could simulate a three-dimensional environment which induces cell differentiation. However, detailed studies are still required before this system were to be adapted into the scale of GMP manufacturing.
Collapse
Affiliation(s)
- Benson Koh
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia.,Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14:136-153. [PMID: 32110683 PMCID: PMC7033303 DOI: 10.1016/j.reth.2020.01.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and perinatal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.
Collapse
Affiliation(s)
- Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Hiroshi Sunami
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
40
|
Cherian DS, Bhuvan T, Meagher L, Heng TSP. Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. Front Pharmacol 2020; 11:654. [PMID: 32528277 PMCID: PMC7247829 DOI: 10.3389/fphar.2020.00654] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cell therapeutics - using cells as living drugs - have made advances in many areas of medicine. One of the most clinically studied cell-based therapy products is mesenchymal stromal cells (MSCs), which have shown promising results in promoting tissue regeneration and modulating inflammation. However, MSC therapy requires large numbers of cells, the generation of which is not feasible via conventional planar tissue culture methods. Scale-up manufacturing methods (e.g., propagation on microcarriers in stirred-tank bioreactors), however, are not specifically tailored for MSC expansion. These processes may, in principle, alter the cell secretome, a vital component underlying the immunosuppressive properties and clinical effectiveness of MSCs. This review outlines our current understanding of MSC properties and immunomodulatory function, expansion in commercial manufacturing systems, and gaps in our knowledge that need to be addressed for effective up-scaling commercialization of MSC therapy.
Collapse
Affiliation(s)
- Darshana S Cherian
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
41
|
Kim K, Thorp H, Bou-Ghannam S, Grainger DW, Okano T. Stable cell adhesion affects mesenchymal stem cell sheet fabrication: Effects of fetal bovine serum and human platelet lysate. J Tissue Eng Regen Med 2020; 14:741-753. [PMID: 32212212 DOI: 10.1002/term.3037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
Cell sheet technology exploits temperature responsive cell culture dishes (TRCDs) as versatile cell harvesting methods to yield contiguous cell monolayers robustly held together by cell-cell junctions, receptors, and endogenous extracellular matrix. More than 15 years of clinical data using autologous-sourced cell sheets demonstrate enhanced therapeutic properties through increased cell retention at target tissue sites. Recently, several preclinical studies have also been reported using mesenchymal stem cell (MSC) sheets in wound healing, cardiac ischemia therapies, and pancreatic regeneration. However, optimized MSC sheet fabrication conditions have not yet been reported. In this study, we identified specific conditions for reliable human MSC sheet fabrication by comparing cell growth media supplements (fetal bovine serum [FBS] and human platelet lysate [hPL]). Human umbilical cord-derived MSCs cultured in FBS and hPL exhibit different actin cytoskeletal structures related to their cell morphologies and adhesion. MSCs cultured in FBS media showed stable cell adhesion on TRCDs with flattened cell shapes and aligned actin cytoskeletal structure. This stable cell adhesion enables production of consistent MSC cell sheets, with controlled cell sheet detachment. Conversely, cell sheet fabrication in hPL media exhibits poor reproducibility being more sensitive to temperature- and culture time-induced release due to weak cell adhesion. These findings suggest that stable MSC adhesion to TRCDs is important to reliable MSC sheet fabrication methods and that MSC growth media supplementation directly affects cell adhesion during culture.
Collapse
Affiliation(s)
- Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hallie Thorp
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Sophia Bou-Ghannam
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT, USA.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
42
|
Horie S, Gaynard S, Murphy M, Barry F, Scully M, O'Toole D, Laffey JG. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Med Exp 2020; 8:8. [PMID: 32025852 PMCID: PMC7002627 DOI: 10.1186/s40635-020-0295-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (hMSCs) represent a promising therapeutic strategy for ventilator-induced lung injury (VILI) and acute respiratory distress syndrome. Translational challenges include restoring hMSC efficacy following cryopreservation, developing effective xenogeneic-free (XF) hMSCs and establishing true therapeutic potential at a clinically relevant time point of administration. We wished to determine whether cytokine pre-activation of cryopreserved, bone marrow-derived XF-hMSCs would enhance their capacity to facilitate injury resolution following VILI and elucidate mechanisms of action. METHODS Initially, in vitro studies examined the potential for the secretome from cytokine pre-activated XF-hMSCs to attenuate pulmonary epithelial injury induced by cyclic mechanical stretch. Later, anaesthetised rats underwent VILI and, 6 h following injury, were randomized to receive 1 × 107 XF-hMSC/kg that were (i) naive fresh, (ii) naive cryopreserved, (iii) cytokine pre-activated fresh or (iv) cytokine pre-activated cryopreserved, while control animals received (v) vehicle. The extent of injury resolution was measured at 24 h after injury. Finally, the role of keratinocyte growth factor (KGF) in mediating the effect of pre-activated XF-hMSCs was determined in a pulmonary epithelial wound repair model. RESULTS Pre-activation enhanced the capacity of the XF-hMSC secretome to decrease stretch-induced pulmonary epithelial inflammation and injury. Both pre-activated fresh and cryopreserved XF-hMSCs enhanced resolution of injury following VILI, restoring oxygenation, improving lung compliance, reducing lung leak and improving resolution of lung structural injury. Finally, the secretome of pre-activated XF-hMSCs enhanced epithelial wound repair, in part via a KGF-dependent mechanism. CONCLUSIONS Cytokine pre-activation enhanced the capacity of cryopreserved, XF-hMSCs to promote injury resolution following VILI, potentially via a KGF-dependent mechanism.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Sean Gaynard
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Medicine, School of Medicine, National University of Ireland, Galway, Ireland
| | - Michael Scully
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
- Department of Anaesthesia, Galway University Hospitals, Saolta University Health Group, Galway, Ireland.
| |
Collapse
|
43
|
Stine SJ, Popowski KD, Su T, Cheng K. Exosome and Biomimetic Nanoparticle Therapies for Cardiac Regenerative Medicine. Curr Stem Cell Res Ther 2020; 15:674-684. [PMID: 32148200 PMCID: PMC7805022 DOI: 10.2174/1574888x15666200309143924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Exosomes and biomimetic nanoparticles have great potential to develop into a wide-scale therapeutic platform within the regenerative medicine industry. Exosomes, a subgroup of EVs with diameter ranging from 30-100 nm, have recently gained attention as an innovative approach for the treatment of various diseases, including heart disease. Their beneficial factors and regenerative properties can be contrasted with various cell types. Various biomimetic nanoparticles have also emerged as a unique platform in regenerative medicine. Biomimetic nanoparticles are a drug delivery platform, which have the ability to contain both biological and fabricated components to improve therapeutic efficiency and targeting. The novelty of these platforms holds promise for future clinical translation upon further investigation. In order for both exosome therapeutics and biomimetic nanoparticles to translate into large-scale clinical treatment, numerous factors must first be considered and improved. Standardization of different protocols, from exosome isolation to storage conditions, must be optimized to ensure batches are pure. Standardization is also important to ensure no variability in this process across studies, thus making it easier to interpret data across different disease models and treatments. Expansion of clinical trials incorporating both biomimetic nanoparticles and exosomes will require a standardization of fabrication and isolation techniques, as well as stricter regulations to ensure reproducibility across various studies and disease models. This review will summarize current research on exosome therapeutics and the application of biomimetic nanoparticles in cardiac regenerative medicine, as well as applications for exosome expansion and delivery on a large clinical scale.
Collapse
Affiliation(s)
- Sydney J. Stine
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
44
|
Human mesenchymal stem cell sheets in xeno-free media for possible allogenic applications. Sci Rep 2019; 9:14415. [PMID: 31595012 PMCID: PMC6783458 DOI: 10.1038/s41598-019-50430-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-based therapies are increasingly focused on allogeneic stem cell sources because of several advantages in eliminating donor variability (e.g., aging and disease pathophysiology) affecting stem cell quality and in cell-banked sourcing of healthy donors to enable “off-the-shelf” products. However, allogeneic cell therapy is limited by host patient immunologic competence and inconsistent performance due to cell delivery methods. To address allogeneic cell therapy limitations, this study developed a new allogeneic stem cell sheet using human umbilical cord mesenchymal stem cells (hUC-MSC) that present low antigenicity (i.e., major histocompatibility complex, MHC). Optimal conditions including cell density, passage number, and culture time were examined to fabricate reliable hUC-MSC sheets. MHC II antigens correlated to alloimmune rejection were barely expressed in hUC-MSC sheets compared to other comparator MSC sheets (hBMSC and hADSC). hUC-MSC sheets easily graft spontaneously onto subcutaneous tissue in immune-deficient mice within 10 minutes of placement. No sutures are required to secure sheets to tissue because sheet extracellular matrix (ECM) actively facilitates cell-target tissue adhesion. At 10 days post-transplantation, hUC-MSC sheets remain on ectopic target tissue sites and exhibit new blood vessel formation. Furthermore, implanted hUC-MSC sheets secrete human HGF continuously to the murine target tissue. hUC-MSC sheets described here should provide new insights for improving allogenic cell-based therapies.
Collapse
|
45
|
Vakharia RM, Roche MW, Alcerro JC, Lavernia CJ. The Current Status of Cell-Based Therapies for Primary Knee Osteoarthritis. Orthop Clin North Am 2019; 50:415-423. [PMID: 31466658 DOI: 10.1016/j.ocl.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is a growing interest in cell therapy for knee osteoarthritis. This study systematically reviews the current status of cell-based therapies. The authors review treatment modalities, clinical outcomes, and the economics of cell therapy. Inclusion criteria were articles containing cellular therapy, platelet-rich plasma, and knee osteoarthritis in the title. Letters, editorial material, abstracts not published, and manuscripts with incomplete data were excluded. Forty-two articles met these inclusion criteria and were critically reviewed. Cell-based therapy holds promise as a means of restoring deficient local cartilage cell populations. There is no evidence-based information for the use of cell-based therapies in knee osteoarthritis.
Collapse
Affiliation(s)
- Rushabh M Vakharia
- Holy Cross Hospital, Orthopedic Research Institute, 5597 North Dixie Highway, Fort Lauderdale, FL 33308, USA
| | - Martin W Roche
- Holy Cross Hospital, Orthopedic Research Institute, 5597 North Dixie Highway, Fort Lauderdale, FL 33308, USA
| | - Jose Carlos Alcerro
- Orthopedic Surgery, Adult Joint Reconstruction, Instituto Hondureño de Seguridad Social, Tegucigalpa, Honduras
| | - Carlos Jesus Lavernia
- Orthopedic Surgery, Adult Joint Reconstruction, Arthritis Surgery Research Foundation, Coral Gables, FL, USA.
| |
Collapse
|
46
|
Bowers DT, Song W, Wang LH, Ma M. Engineering the vasculature for islet transplantation. Acta Biomater 2019; 95:131-151. [PMID: 31128322 PMCID: PMC6824722 DOI: 10.1016/j.actbio.2019.05.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
The microvasculature in the pancreatic islet is highly specialized for glucose sensing and insulin secretion. Although pancreatic islet transplantation is a potentially life-changing treatment for patients with insulin-dependent diabetes, a lack of blood perfusion reduces viability and function of newly transplanted tissues. Functional vasculature around an implant is not only necessary for the supply of oxygen and nutrients but also required for rapid insulin release kinetics and removal of metabolic waste. Inadequate vascularization is particularly a challenge in islet encapsulation. Selectively permeable membranes increase the barrier to diffusion and often elicit a foreign body reaction including a fibrotic capsule that is not well vascularized. Therefore, approaches that aid in the rapid formation of a mature and robust vasculature in close proximity to the transplanted cells are crucial for successful islet transplantation or other cellular therapies. In this paper, we review various strategies to engineer vasculature for islet transplantation. We consider properties of materials (both synthetic and naturally derived), prevascularization, local release of proangiogenic factors, and co-transplantation of vascular cells that have all been harnessed to increase vasculature. We then discuss the various other challenges in engineering mature, long-term functional and clinically viable vasculature as well as some emerging technologies developed to address them. The benefits of physiological glucose control for patients and the healthcare system demand vigorous pursuit of solutions to cell transplant challenges. STATEMENT OF SIGNIFICANCE: Insulin-dependent diabetes affects more than 1.25 million people in the United States alone. Pancreatic islets secrete insulin and other endocrine hormones that control glucose to normal levels. During preparation for transplantation, the specialized islet blood vessel supply is lost. Furthermore, in the case of cell encapsulation, cells are protected within a device, further limiting delivery of nutrients and absorption of hormones. To overcome these issues, this review considers methods to rapidly vascularize sites and implants through material properties, pre-vascularization, delivery of growth factors, or co-transplantation of vessel supporting cells. Other challenges and emerging technologies are also discussed. Proper vascular growth is a significant component of successful islet transplantation, a treatment that can provide life-changing benefits to patients.
Collapse
Affiliation(s)
- Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Clumps of Mesenchymal Stem Cell/Extracellular Matrix Complexes Generated with Xeno-Free Conditions Facilitate Bone Regeneration via Direct and Indirect Osteogenesis. Int J Mol Sci 2019; 20:ijms20163970. [PMID: 31443173 PMCID: PMC6720767 DOI: 10.3390/ijms20163970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis.
Collapse
|
48
|
Human adipose liquid extract induces angiogenesis and adipogenesis: a novel cell-free therapeutic agent. Stem Cell Res Ther 2019; 10:252. [PMID: 31412933 DOI: 10.1186/s13287-019-1356-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Taking advantage of cellular paracrine mechanisms, the secretome of adipose-derived stem cells (ADSCs) and adipose tissue has been demonstrated to induce tissue repair and regeneration in various ischemic and impaired conditions. However, these cell-based therapies have been hindered by issues, such as inherent safety and cost-efficiency for clinical applications. In this study, we prepared a liquid cell-free extract from human adipose tissue [adipose liquid extract (ALE)] and evaluated its potential therapeutic efficacy. METHODS ALE was prepared from human subcutaneous adipose tissue using a rapid and physical approach, and the protein components in ALE were identified using mass spectrometry analysis. In vivo, the therapeutic effect of this agent was investigated on wound healing in C57BL/6 mice, and wound healing rate, vessel density, and neo-adipocyte formation in wounded skins were measured at days 3, 7, 11, and 14. In vitro, the effect of ALE on the viability of human ADSCs, tube formation of human umbilical vein endothelial cells (HUVECs), and adipogenic differentiation of ADSCs were tested. RESULTS The results demonstrated that ALE contained a variety of growth factors and did not affect cell viability. ALE-treated wounds exhibited accelerated wound healing with increased vessel density and formation of neo-adipocytes compared to that of control wounds. Moreover, when added as a cell culture supplement, ALE effectively induced tube formation of HUVECs and lipid accumulation in ADSCs. ALE-treated ADSCs also exhibited elevated levels of adipogenic gene expression. CONCLUSIONS ALE is a novel growth-rich therapeutic agent that is cell-free and easy to produce. Besides, it is also able to induce angiogenesis and adipogenesis both in vitro and in vivo, thus indicating that it could be used for wound repair and soft tissue regeneration.
Collapse
|
49
|
Abuarqoub DA, Aslam N, Barham RB, Ababneh NA, Shahin DA, Al-Oweidi AA, Jafar HD, Al-Salihi MA, Awidi AS. The effect of platelet lysate in culture of PDLSCs: an in vitro comparative study. PeerJ 2019; 7:e7465. [PMID: 31410313 PMCID: PMC6689390 DOI: 10.7717/peerj.7465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/12/2019] [Indexed: 01/04/2023] Open
Abstract
Background Cellular therapy clinical applications require large-scale production of stem cells. Therefore, abundance, ease of isolation, and proliferative potential are the most important factors in choosing the appropriate source of cells for transplantation studies. Multipotent stem cells obtained from periodontal ligament (PDL) can be used in periodontal tissue regeneration. In this study, we aimed to evaluate and compare the characteristics of periodontal ligament stem cells (PDLSCs), extracted by either enzymatic digestion or explant methods, and expanded using two different serum types: fetal bovine serum (FBS) and xeno-free platelet lysate (PL). Methods Expanded PDLSCs were assessed for their proliferation capacity, surface markers expression, colony formation, differentiation potential and ability to self-renewal. Most importantly, PDLSCs were evaluated for their ability to produce osteoblasts in vitro. Results PDLSCs isolated by explant method and expanded in PL serve as a promising source of stem cells for osteoblasts regeneration. These cells showed higher proliferation capacity, they retained their stemness characteristics throughout the passages and they revealed an increase in the expression level of osteogenic markers, without showing any karyotypic abnormalities after cell expansion. Conclusions PDLSCs produced using explant extraction method and expanded in cell culture media supplemented with PL provide an excellent source of xeno-free cells for the generation of functional osteoblasts.
Collapse
Affiliation(s)
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Raghda B Barham
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Diana A Shahin
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Hanan D Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,School of Medicine, The University of Jordan, Amman, Jordan
| | | | - Abdalla S Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
50
|
Fujisawa R, Mizuno M, Katano H, Otabe K, Ozeki N, Tsuji K, Koga H, Sekiya I. Cryopreservation in 95% serum with 5% DMSO maintains colony formation and chondrogenic abilities in human synovial mesenchymal stem cells. BMC Musculoskelet Disord 2019; 20:316. [PMID: 31279341 PMCID: PMC6612159 DOI: 10.1186/s12891-019-2700-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background Synovial mesenchymal stem cells (MSCs) are an attractive cell source for cartilage and meniscus regeneration. The optimum cryopreservation medium has not been determined, but dimethylsulfoxide (DMSO) should be excluded, if possible, because of its toxicity. The purposes of our study were to examine the possible benefits of higher concentrations of serum and the effectiveness of 100% serum (without DMSO) for the cryopreservation of synovial MSCs. Methods Human synovium was harvested from the knees of four donors with osteoarthritis during total knee arthroplasty. Synovial MSCs (8 × 105 cells) were suspended in 400 μL medium and used as a Time 0 control. The same number of synovial MSCs was also suspended in 400 μL α-MEM medium containing 10% fetal bovine serum (FBS) (5% DMSO, and 1% antibiotic), 95% FBS (and 5% DMSO), or 100% FBS (no DMSO) and cryopreserved at − 80 °C for 7 days. After thawing, the cell suspensions (1.5 μL; 3 × 103 cells) were cultured in 60 cm2 dishes for 14 days for colony formation assays. Additional 62.5 μL samples of cell suspensions (1.25 × 105 cells) were added to tubes and cultured for 21 days for chondrogenesis assays. Results Colony numbers were significantly higher in the Time 0 and 95% FBS groups than in the 10% FBS group (n = 24). Colony numbers were much lower in the 100% FBS group than in the other three groups. The cell numbers per dish reflected the colony numbers. Cartilage pellet weights were significantly heavier in the 95% FBS group than in the 10% FBS group, whereas no difference was observed between the Time 0 and the 95% FBS groups (n = 24). No cartilage pellets formed at all in the 100% FBS group. Conclusion Synovial MSCs cryopreserved in 95% FBS with 5% DMSO maintained their colony formation and chondrogenic abilities to the same levels as observed in the cells before cryopreservation. Synovial MSCs cryopreserved in 100% FBS lost their colony formation and chondrogenic abilities. Electronic supplementary material The online version of this article (10.1186/s12891-019-2700-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryota Fujisawa
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Koji Otabe
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|