1
|
Wang W, Kumegawa K, Chapman OS, Shiraishi R, Xiao Z, Okonechnikov K, Sun Y, Pfister SM, Feng W, Uesaka N, Hoshino M, Takahashi S, Korshunov A, Chavez L, Maruyama R, Kawauchi D. Chromatin modification abnormalities by CHD7 and KMT2C loss promote medulloblastoma progression. Cell Rep 2025:115673. [PMID: 40393452 DOI: 10.1016/j.celrep.2025.115673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/02/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025] Open
Abstract
Medulloblastoma (MB), a common malignant pediatric brain tumor arising in the cerebellum, is characterized by mutations in chromatin modifiers, highlighting the significance of chromatin modification abnormalities in its progression. While animal models have effectively demonstrated this, a comprehensive evaluation of the oncogenic potential of these mutations remains incomplete. In this study, we use CRISPR-mediated gene editing to knock out chromatin modifier genes mutated in human SHH MB, along with the Ptch1 gene, in cerebellar granule neuron progenitors of neonatal mice. This reveals that depletion of Chd7 and Kmt2c accelerates tumor growth. Multi-layered omics analysis uncovers that inhibition of the neuronal differentiation program by chromatin dysregulation is a key signaling pathway in tumor progression. Additionally, forced expression of Neurod1, a common target of these chromatin modifiers, inhibits proliferation and promotes differentiation. These findings highlight converging chromatin modification abnormalities from distinct mutations in Sonic Hedgehog MB and suggest that epigenetic drugs activating neuronal genes have significant potential as novel treatments.
Collapse
Affiliation(s)
- Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan; Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8510, Japan; Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan
| | - Owen S Chapman
- Department of Medicine, University of California San Diego, La Jolla CA 92037, USA; Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan
| | - Zhize Xiao
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan; Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8510, Japan; Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yang Sun
- Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Naofumi Uesaka
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Lukas Chavez
- Department of Medicine, University of California San Diego, La Jolla CA 92037, USA; Rady Children's Hospital San Diego, San Diego, CA 92123, USA; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan; Division of Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), 135-8550 Tokyo, Japan.
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8052, Japan; Department of Neuro-oncology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi 467-8601, Japan.
| |
Collapse
|
2
|
Tsakoumagkos IA, Pasquer QTL, Guillod C, Rossion C, Bagka M, Torche S, Sakata‐Kato T, Chen JK, Hoogendoorn S. Evaluation of Benzo[cd]indol-2(1H)-ones as Downstream Hedgehog Pathway Inhibitors. ChemistryOpen 2025; 14:e202500119. [PMID: 40227130 PMCID: PMC12075100 DOI: 10.1002/open.202500119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Epigenetic targeting of the Hedgehog (HH) signaling pathway has emerged as a possible strategy to combat HH pathway-driven cancers. In this study, we report on benzo[cd]indol-2(1H)-ones as downstream Hedgehog pathway inhibitors. We find that benzo[cd]indol-2(1H)-one 1 has sub-micromolar potency in a variety of Hedgehog pathway cell models, including those with constitutive activity through loss of Suppressor of Fused. Compound 1 furthermore reduces cellular and ciliary GLI levels, and, like the BET bromodomain inhibitor HPI-1, increases the cellular levels of BRD2. To directly assess the ability of compound 1 to bind to BET bromodomains in cells without the need of synthetic modifications, we develop a competition assay against degrader HPP-9, the action of which was dose-dependently outcompeted by compound 1. Indeed, compound 1 reduces the viability of GLI-driven lung cancer cells and medulloblastoma spheroids, with a potency similar to its inhibitory effect on the HH pathway. Taken together, our studies highlight the potential of the benzo[cd]indol-2(1H)-one scaffold for epigenetic targeting of the HH pathway.
Collapse
Affiliation(s)
| | - Quentin T. L. Pasquer
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | | | - Charlotte Rossion
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Meropi Bagka
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Sonya Torche
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Tomoyo Sakata‐Kato
- Department of Chemical and Systems BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Present address: Department of ProtozoologyInstitute of Tropical MedicineNagasaki University1-12-4 SakamotoNagasaki852-8523Japan
| | - James K. Chen
- Department of Chemical and Systems BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Department of Developmental BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Department of ChemistryStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
| | - Sascha Hoogendoorn
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| |
Collapse
|
3
|
Pan Z, Bao J, Wei S. Advancing medulloblastoma therapy: strategies and survival insights. Clin Exp Med 2025; 25:119. [PMID: 40237916 PMCID: PMC12003599 DOI: 10.1007/s10238-025-01648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
Medulloblastoma, the most common malignant brain tumor in children, presents unique challenges due to its molecular and histological heterogeneity. Advances in molecular profiling have refined risk stratification, enabling personalized treatment strategies and improved survival outcomes. This review synthesizes recent developments in the multimodal management of medulloblastoma, encompassing surgery, craniospinal radiation therapy, and chemotherapy, tailored to patient age and risk classification. Key highlights include subgroup-specific therapies, the role of molecular-targeted treatments, and the integration of genetic testing for germline mutations to guide clinical decision-making. Special emphasis is placed on minimizing treatment-related toxicity while preserving long-term quality of life. Additionally, this manuscript discusses the implications of novel therapeutic approaches for high-risk subgroups, including intensified regimens and systemic therapies for young children. Despite significant progress, challenges remain in addressing long-term complications such as neurocognitive impairments, endocrine dysfunction, and secondary malignancies. Future directions prioritize optimizing therapeutic efficacy while reducing morbidity, underscoring the importance of translating molecular discoveries into clinical practice.
Collapse
Affiliation(s)
- Zhenjiang Pan
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Jing Bao
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Shepeng Wei
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
4
|
Yuen CA, Zheng M, Saint-Germain MA, Kamson DO. Meningioma: Novel Diagnostic and Therapeutic Approaches. Biomedicines 2025; 13:659. [PMID: 40149634 PMCID: PMC11940373 DOI: 10.3390/biomedicines13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Meningiomas are the most common intracranial tumors. Surgery and radiation therapy are the cornerstones of treatment and no standard of care therapy exists for refractory meningiomas. This manuscript aims to provide a comprehensive review of novel diagnostic and therapeutic approaches against these tumors. Methods: A search for the existing literature on systemic therapies for meningiomas was performed on PubMed and a search for presently accruing clinical trials was performed on ClinicalTrials.gov. Results: Systemic treatments, including chemotherapy, somatostatin analogs, anti-hormone therapy, and anti-angiogenic therapy, have been extensively studied with marginal success. Targeted therapies are actively being studied for the treatment of meningiomas, including focal adhesion kinase (FAK), sonic hedgehog signaling pathway, phosphoinositide-3-kinase (PI3K), and cyclin-dependent kinases (CDK) inhibitors. These driver mutations are present only in a subset of meningiomas. In stark contrast, somatostatin receptor 2 (SSTR2) is ubiquitously expressed in meningiomas and was formerly targeted with somatostatin analogs with modest success. Theranostic SSTR2-targeting via [68Ga]DOTATATE for PET imaging and β-emitting [177Lu]DOTATATE for the treatment of meningiomas are currently under active investigation. Conclusions: A nuanced approach is needed for the treatment of refractory meningiomas. Targeted therapies show promise.
Collapse
Affiliation(s)
- Carlen A. Yuen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Division of Neuro-Oncology, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Michelle Zheng
- Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Max A. Saint-Germain
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Siegel BI, Patil P, Prakash A, Klawinski DM, Hwang EI. Targeted therapy in pediatric central nervous system tumors: a review from the National Pediatric Cancer Foundation. Front Oncol 2025; 15:1504803. [PMID: 40094009 PMCID: PMC11906681 DOI: 10.3389/fonc.2025.1504803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Central nervous system tumors represent the leading cause of cancer-related mortality in children. Conventional therapies of surgery, radiation, and cytotoxic chemotherapy have insufficient efficacy for some pediatric CNS tumors and are associated with significant morbidity, prompting an ongoing need for novel treatment approaches. Identification of molecular alterations driving tumorigenesis has led to a rising interest in developing targeted therapies for these tumors. The present narrative review focuses on recent progress in targeted therapies for pediatric CNS tumors. We outline the key implicated cellular pathways, discuss candidate molecular therapies for targeting each pathway, and present an overview of the clinical trial landscape for targeted therapies in pediatric CNS tumors. We then discuss challenges and future directions for targeted therapy, including combinatorial approaches and real-time drug screening for personalized treatment planning.
Collapse
Affiliation(s)
- Benjamin I. Siegel
- Brain Tumor Institute and Gilbert Family Neurofibromatosis Institute, Children’s National Hospital, Washington, DC, United States
- Division of Oncology, Children’s National Hospital, Washington, DC, United States
| | - Prabhumallikarjun Patil
- Children’s Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Akul Prakash
- New York University, New York, NY, United States
| | - Darren M. Klawinski
- Division of Hematology/Oncology, Nemours Children’s Health Jacksonville, Jacksonville, FL, United States
| | - Eugene I. Hwang
- Brain Tumor Institute and Gilbert Family Neurofibromatosis Institute, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
6
|
Lim-Fat MJ, Bennett J, Ostrom Q, Touat M, Franceschi E, Schulte J, Bindra RS, Fangusaro J, Dhall G, Nicholson J, Jackson S, Davidson TB, Calaminus G, Robinson G, Whittle JR, Hau P, Ramaswamy V, Pajtler KW, Rudà R, Foreman NK, Hervey-Jumper SL, Das S, Dirks P, Bi WL, Huang A, Merchant TE, Fouladi M, Aldape K, Van den Bent MJ, Packer RJ, Miller JJ, Reardon DA, Chang SM, Haas-Kogan D, Tabori U, Hawkins C, Monje M, Wen PY, Bouffet E, Yeo KK. Central nervous system tumors in adolescents and young adults: A Society for Neuro-Oncology Consensus Review on diagnosis, management, and future directions. Neuro Oncol 2025; 27:13-32. [PMID: 39441704 PMCID: PMC11726256 DOI: 10.1093/neuonc/noae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Adolescents and young adults (AYAs; ages 15-39 years) are a vulnerable population facing challenges in oncological care, including access to specialized care, transition of care, unique tumor biology, and poor representation in clinical trials. Brain tumors are the second most common tumor type in AYA, with malignant brain tumors being the most common cause of cancer-related death. The 2021 WHO Classification for central nervous system (CNS) Tumors highlights the importance of integrated molecular characterization with histologic diagnosis in several tumors relevant to the AYA population. In this position paper from the Society for Neuro-Oncology (SNO), the diagnosis and management of CNS tumors in AYA is reviewed, focusing on the most common tumor types in this population, namely glioma, medulloblastoma, ependymoma, and CNS germ cell tumor. Current challenges and future directions specific to AYA are also highlighted. Finally, possible solutions to address barriers in the care of AYA patients are discussed, emphasizing the need for multidisciplinary and collaborative approaches that span the pediatric and adult paradigms of care, and incorporating advanced molecular testing, targeted therapy, and AYA-centered care.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Quinn Ostrom
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-oncologie, Paris, France
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna / AUSL di Bologna, Bologna, Italy
| | - Jessica Schulte
- Neurosciences Department, University of California San Diego, La Jolla, California, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jason Fangusaro
- Children’s Healthcare of Atlanta, Emory University, and the Aflac Cancer Center, Atlanta, Georgia, USA
| | - Girish Dhall
- Department of Hematology and Oncology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - James Nicholson
- Paediatric Oncology, Cambridge University Hospitals and Department of Paediatrics, Cambridge University, UK
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Tom Belle Davidson
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gabriele Calaminus
- Paediatric Haematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Giles Robinson
- Department of Oncology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - James R Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, WEHI, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristian W Pajtler
- Hopp Children’s Cancer Center Heidelberg (KiTZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Roberta Rudà
- Division of Neuro-Oncology, Department Neuroscience Rita Levi Montalcini, University of Turin and City of Health and Science University Hospital, Turin, Italy
| | - Nicholas K Foreman
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Sunit Das
- Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Peter Dirks
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Annie Huang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Maryam Fouladi
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Roger J Packer
- Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, District of Columbia, USA
| | - Julie J Miller
- Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Daphne Haas-Kogan
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Bouffet
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kee Kiat Yeo
- Department of Pediatric Oncology, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Wireko AA, Ben-Jaafar A, Kong JSH, Mannan KM, Sanker V, Rosenke SL, Boye ANA, Nkrumah-Boateng PA, Poornaselvan J, Shah MH, Abdul-Rahman T, Atallah O. Sonic hedgehog signalling pathway in CNS tumours: its role and therapeutic implications. Mol Brain 2024; 17:83. [PMID: 39568072 PMCID: PMC11580395 DOI: 10.1186/s13041-024-01155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
CNS tumours encompass a diverse group of neoplasms with significant morbidity and mortality. The SHH signalling pathway plays a critical role in the pathogenesis of several CNS tumours, including gliomas, medulloblastomas and others. By influencing cellular proliferation, differentiation and migration in CNS tumours, the SHH pathway has emerged as a promising target for therapeutic intervention. Current strategies such as vismodegib and sonidegib have shown efficacy in targeting SHH pathway activation. However, challenges such as resistance mechanisms and paradoxical effects observed in clinical settings underscore the complexity of effectively targeting this pathway. Advances in gene editing technologies, particularly CRISPR/Cas9, have provided valuable tools for studying SHH pathway biology, validating therapeutic targets and exploring novel treatment modalities. These innovations have paved the way for a better understanding of pathway dynamics and the development of more precise therapeutic interventions. In addition, the identification and validation of biomarkers of SHH pathway activation are critical to guide clinical decision making and improve patient outcomes. Molecular profiling and biomarker discovery efforts are critical steps towards personalised medicine approaches in the treatment of SHH pathway-associated CNS tumours. While significant progress has been made in understanding the role of the SHH pathway in CNS tumorigenesis, ongoing research is essential to overcome current therapeutic challenges and refine treatment strategies. The integration of molecular insights with advanced technologies and clinical expertise holds great promise for developing more effective and personalised therapies for patients with SHH pathway-driven CNS tumours.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Vivek Sanker
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
8
|
Sönksen M, Obrecht-Sturm D, Hernáiz Driever P, Sauerbrey A, Graf N, Kontny U, Reimann C, Langhein M, Kordes UR, Schwarz R, Obser T, Boschann F, Schüller U, Altendorf L, Goschzik T, Pietsch T, Mynarek M, Rutkowski S. Medulloblastoma in children with Fanconi anemia: Association with FA-D1/FA-N, SHH type and poor survival independent of treatment strategies. Neuro Oncol 2024; 26:2125-2139. [PMID: 38919026 PMCID: PMC11534319 DOI: 10.1093/neuonc/noae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The outcome of children with medulloblastoma (MB) and Fanconi Anemia (FA), an inherited DNA repair deficiency, has not been described systematically. Treatment is complicated by high vulnerability to treatment-associated side effects, yet structured data are lacking. This study aims to give a comprehensive overview of clinical and molecular characteristics of pediatric FA MB patients. METHODS Clinical data including detailed information on the treatment and toxicities of 6 previously unreported FA MB patients were supplemented with data of 16 published cases. RESULTS We identified 22 cases of children with FA and MB with clinical data available. All MBs with subgroup reporting were SHH-activated (n = 9), confirmed by methylation profiling in 5 patients. FA MB patients exclusively belonged to complementation groups FA-D1 (n = 16) or FA-N (n = 3). Patients were treated with postoperative chemotherapy only (50%) or radiotherapy (RT) ± chemotherapy (27%). Of 23% did not receive adjuvant therapy. Excessive treatment-related toxicities were frequent. Severe hematological toxicity occurred in 91% of patients treated with alkylating chemotherapy, while non-alkylating agents and RT were less toxic. Median overall survival (OS) was 1 year (95%CI: 0.3-1.8). 1-year-progression-free-survival (PFS) was 26.3% ± 10.1% and 1-year-OS was 42.1% ± 11.3%. Adjuvant therapy prolonged survival (1y-OS/1y-PFS 0%/0% without adjuvant therapy vs. 53.3% ± 12.9%/33.3 ± 12.2% with adjuvant therapy, P = .006/P = .086). CONCLUSIONS MB in FA patients is strongly associated with SHH activation and FA-D1/FA-N. Despite the dismal prognosis, adjuvant therapy may prolong survival. Non-alkylating chemotherapy and RT are feasible in selected patients with careful monitoring of toxicities and dose adjustments. Curative therapy for FA MB-SHH remains an unmet medical need.
Collapse
Affiliation(s)
- Marthe Sönksen
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht-Sturm
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pablo Hernáiz Driever
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | | | - Norbert Graf
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Reimann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mina Langhein
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe R Kordes
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Schwarz
- Department for Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Obser
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Boschann
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lea Altendorf
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Goschzik
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society for Neuropathology and Neuroanatomy (DGNN), University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society for Neuropathology and Neuroanatomy (DGNN), University of Bonn Medical Center, Bonn, Germany
| | - Martin Mynarek
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
10
|
Espinosa-Bustos C, Bertrand J, Villegas-Menares A, Guerrero S, Di Marcotullio L, Navacci S, Schulte G, Kozielewicz P, Bloch N, Villela V, Paulino M, Kogan MJ, Cantero J, Salas CO. New Smoothened ligands based on the purine scaffold as potential agents for treating pancreatic cancer. Bioorg Chem 2024; 151:107681. [PMID: 39106711 DOI: 10.1016/j.bioorg.2024.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 μM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 μM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Alondra Villegas-Menares
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Simón Guerrero
- Facultad de Medicina, Universidad de Atacama, 153601 Copiapó, Chile
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Faculty Pharmacy and Medicine, Sapienza University, 00161 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, 00161 Rome, Italy
| | - Shirin Navacci
- Department of Molecular Medicine, Faculty Pharmacy and Medicine, Sapienza University, 00161 Rome, Italy
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Solna, Stockholm, Sweden
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Solna, Stockholm, Sweden
| | - Nicolas Bloch
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Valentina Villela
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Margot Paulino
- Departamento DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380492 Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, 8380492 Santiago, Chile
| | - Jorge Cantero
- Departamento DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile.
| |
Collapse
|
11
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
12
|
Shiraishi R, Cancila G, Kumegawa K, Torrejon J, Basili I, Bernardi F, Silva PBGD, Wang W, Chapman O, Yang L, Jami M, Nishitani K, Arai Y, Xiao Z, Yu H, Lo Re V, Marsaud V, Talbot J, Lombard B, Loew D, Jingu M, Okonechnikov K, Sone M, Motohashi N, Aoki Y, Pfister SM, Chavez L, Hoshino M, Maruyama R, Ayrault O, Kawauchi D. Cancer-specific epigenome identifies oncogenic hijacking by nuclear factor I family proteins for medulloblastoma progression. Dev Cell 2024; 59:2302-2319.e12. [PMID: 38834071 DOI: 10.1016/j.devcel.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Gabriele Cancila
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Jacob Torrejon
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Irene Basili
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Owen Chapman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Maki Jami
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Kayo Nishitani
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Yukimi Arai
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Zhize Xiao
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Valentina Lo Re
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Véronique Marsaud
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Julie Talbot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Bérangère Lombard
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris 75005, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris 75005, France
| | - Maho Jingu
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan; Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Masaki Sone
- Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Lukas Chavez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France.
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.
| |
Collapse
|
13
|
Zhou L, van Bree N, Boutin L, Ryu J, Moussaud S, Liu M, Otrocka M, Olsson M, Falk A, Wilhelm M. High-throughput neural stem cell-based drug screening identifies S6K1 inhibition as a selective vulnerability in sonic hedgehog-medulloblastoma. Neuro Oncol 2024; 26:1685-1699. [PMID: 38860311 PMCID: PMC11376459 DOI: 10.1093/neuonc/noae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most common malignant brain tumors in children. Current treatments have increased overall survival but can lead to devastating side effects and late complications in survivors, emphasizing the need for new, improved targeted therapies that specifically eliminate tumor cells while sparing the normally developing brain. METHODS Here, we used a sonic hedgehog (SHH)-MB model based on a patient-derived neuroepithelial stem cell system for an unbiased high-throughput screen with a library of 172 compounds with known targets. Compounds were evaluated in both healthy neural stem cells (NSCs) and tumor cells derived from the same patient. Based on the difference of cell viability and drug sensitivity score between normal cells and tumor cells, hit compounds were selected and further validated in vitro and in vivo. RESULTS We identified PF4708671 (S6K1 inhibitor) as a potential agent that selectively targets SHH-driven MB tumor cells while sparing NSCs and differentiated neurons. Subsequent validation studies confirmed that PF4708671 inhibited the growth of SHH-MB tumor cells both in vitro and in vivo, and that knockdown of S6K1 resulted in reduced tumor formation. CONCLUSIONS Overall, our results suggest that inhibition of S6K1 specifically affects tumor growth, whereas it has less effect on non-tumor cells. Our data also show that the NES cell platform can be used to identify potentially effective new therapies and targets for SHH-MB.
Collapse
Affiliation(s)
- Leilei Zhou
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Niek van Bree
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Lola Boutin
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jinhye Ryu
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Simon Moussaud
- Chemical Biology Consortium Sweden (CBCS), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mingzhi Liu
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden (CBCS), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Olsson
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Margareta Wilhelm
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Tsiami F, Lago C, Pozza N, Piccioni F, Zhao X, Lülsberg F, Root DE, Tiberi L, Kool M, Schittenhelm J, Bandopadhayay P, Segal RA, Tabatabai G, Merk DJ. Genome-wide CRISPR-Cas9 knockout screens identify DNMT1 as a druggable dependency in sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2024; 12:125. [PMID: 39107797 PMCID: PMC11304869 DOI: 10.1186/s40478-024-01831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.
Collapse
Affiliation(s)
- Foteini Tsiami
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Chiara Lago
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Noemi Pozza
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Merck Research Laboratories, Cambridge, MA, USA
| | - Xuesong Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Lülsberg
- Institute for Anatomy, Anatomy and Cell Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Marcel Kool
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jens Schittenhelm
- Department of Pathology and Neuropathology, Institute of Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children´S Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, Heidelberg, Germany
| | - Daniel J Merk
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
15
|
Peterson K, Turos-Cabal M, Salvador AD, Palomo-Caturla I, Howell AJ, Vieira ME, Greiner SM, Barnoud T, Rodriguez-Blanco J. Mechanistic insights into medulloblastoma relapse. Pharmacol Ther 2024; 260:108673. [PMID: 38857789 PMCID: PMC11270902 DOI: 10.1016/j.pharmthera.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Pediatric brain tumors are the leading cause of cancer-related deaths in children, with medulloblastoma (MB) being the most common type. A better understanding of these malignancies has led to their classification into four major molecular subgroups. This classification not only facilitates the stratification of clinical trials, but also the development of more effective therapies. Despite recent progress, approximately 30% of children diagnosed with MB experience tumor relapse. Recurrent disease in MB is often metastatic and responds poorly to current therapies. As a result, only a small subset of patients with recurrent MB survive beyond one year. Due to its dismal prognosis, novel therapeutic strategies aimed at preventing or managing recurrent disease are urgently needed. In this review, we summarize recent advances in our understanding of the molecular mechanisms behind treatment failure in MB, as well as those characterizing recurrent cases. We also propose avenues for how these findings can be used to better inform personalized medicine approaches for the treatment of newly diagnosed and recurrent MB. Lastly, we discuss the treatments currently being evaluated for MB patients, with special emphasis on those targeting MB by subgroup at diagnosis and relapse.
Collapse
Affiliation(s)
- Kendell Peterson
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Turos-Cabal
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - April D Salvador
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | - Ashley J Howell
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Megan E Vieira
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Sean M Greiner
- Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
16
|
Liu YB, He LM, Sun M, Luo WJ, Lin ZC, Qiu ZP, Zhang YL, Hu A, Luo J, Qiu WW, Song BL. A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened. Cell Chem Biol 2024; 31:1264-1276.e7. [PMID: 38442710 DOI: 10.1016/j.chembiol.2024.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.
Collapse
Affiliation(s)
- Yuan-Bin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Li-Ming He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Jun Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Zi-Cun Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Zhi-Ping Qiu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Yu-Liang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
17
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
18
|
Hwang GH, Pazyra-Murphy MF, Seo HS, Dhe-Paganon S, Stopka SA, DiPiazza M, Sutter N, Gero TW, Volkert A, Ombelets L, Dittemore G, Rees MG, Ronan MM, Roth JA, Agar NYR, Scott DA, Segal RA. A Benzarone Derivative Inhibits EYA to Suppress Tumor Growth in SHH Medulloblastoma. Cancer Res 2024; 84:872-886. [PMID: 38486486 PMCID: PMC10948029 DOI: 10.1158/0008-5472.can-22-3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/07/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
Medulloblastoma is one of the most common malignant brain tumors of children, and 30% of medulloblastomas are driven by gain-of-function genetic lesions in the Sonic Hedgehog (SHH) signaling pathway. EYA1, a haloacid dehalogenase phosphatase and transcription factor, is critical for tumorigenesis and proliferation of SHH medulloblastoma (SHH-MB). Benzarone and benzbromarone have been identified as allosteric inhibitors of EYA proteins. Using benzarone as a point of departure, we developed a panel of 35 derivatives and tested them in SHH-MB. Among these compounds, DS-1-38 functioned as an EYA antagonist and opposed SHH signaling. DS-1-38 inhibited SHH-MB growth in vitro and in vivo, showed excellent brain penetrance, and increased the lifespan of genetically engineered mice predisposed to fatal SHH-MB. These data suggest that EYA inhibitors represent promising therapies for pediatric SHH-MB. SIGNIFICANCE Development of a benzarone derivative that inhibits EYA1 and impedes the growth of SHH medulloblastoma provides an avenue for improving treatment of this malignant pediatric brain cancer.
Collapse
Affiliation(s)
- Grace H. Hwang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Maria F. Pazyra-Murphy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Marina DiPiazza
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nizhoni Sutter
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Brigham Young University-Hawaii, Kulanui St, HI, USA
| | - Thomas W. Gero
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison Volkert
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lincoln Ombelets
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Georgia Dittemore
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Nathalie Y. R. Agar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - David A. Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Rosalind A. Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Ritzefeld M, Zhang L, Xiao Z, Andrei SA, Boyd O, Masumoto N, Rodgers UR, Artelsmair M, Sefer L, Hayes A, Gavriil ES, Raynaud FI, Burke R, Blagg J, Rzepa HS, Siebold C, Magee AI, Lanyon-Hogg T, Tate EW. Design, Synthesis, and Evaluation of Inhibitors of Hedgehog Acyltransferase. J Med Chem 2024; 67:1061-1078. [PMID: 38198226 PMCID: PMC10823475 DOI: 10.1021/acs.jmedchem.3c01363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hedgehog signaling is involved in embryonic development and cancer growth. Functional activity of secreted Hedgehog signaling proteins is dependent on N-terminal palmitoylation, making the palmitoyl transferase Hedgehog acyltransferase (HHAT), a potential drug target and a series of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines have been identified as HHAT inhibitors. Based on structural data, we designed and synthesized 37 new analogues which we profiled alongside 13 previously reported analogues in enzymatic and cellular assays. Our results show that a central amide linkage, a secondary amine, and (R)-configuration at the 4-position of the core are three key factors for inhibitory potency. Several potent analogues with low- or sub-μM IC50 against purified HHAT also inhibit Sonic Hedgehog (SHH) palmitoylation in cells and suppress the SHH signaling pathway. This work identifies IMP-1575 as the most potent cell-active chemical probe for HHAT function, alongside an inactive control enantiomer, providing tool compounds for validation of HHAT as a target in cellular assays.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Leran Zhang
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Zhangping Xiao
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | | | - Olivia Boyd
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Naoko Masumoto
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Ursula R. Rodgers
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
| | - Markus Artelsmair
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Lea Sefer
- Division
of Structural Biology, University of Oxford, Oxford OX3 7BN, U.K.
| | - Angela Hayes
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | | | - Florence I. Raynaud
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Julian Blagg
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Henry S. Rzepa
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Christian Siebold
- Division
of Structural Biology, University of Oxford, Oxford OX3 7BN, U.K.
| | - Anthony I. Magee
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
| | | | - Edward W. Tate
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
20
|
Mushtaq N, Ul Ain R, Hamid SA, Bouffet E. Evolution of Systemic Therapy in Medulloblastoma Including Irradiation-Sparing Approaches. Diagnostics (Basel) 2023; 13:3680. [PMID: 38132264 PMCID: PMC10743079 DOI: 10.3390/diagnostics13243680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The management of medulloblastoma in children has dramatically changed over the past four decades, with the development of chemotherapy protocols aiming at improving survival and reducing long-term toxicities of high-dose craniospinal radiotherapy. While the staging and treatment of medulloblastoma were until recently based on the modified Chang's system, recent advances in the molecular biology of medulloblastoma have revolutionized approaches in the management of this increasingly complex disease. The evolution of systemic therapies is described in this review.
Collapse
Affiliation(s)
- Naureen Mushtaq
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi 74800, Pakistan;
| | - Rahat Ul Ain
- Department of Pediatric Hematology/Oncology & Bone Marrow Transplant, University of Child Health Sciences, Children’s Hospital, Lahore 54600, Pakistan;
| | - Syed Ahmer Hamid
- Department of Pediatric Hematology and Oncology, Indus Hospital & Health Network, Karachi 74800, Pakistan;
| | - Eric Bouffet
- Global Neuro-Oncology Program, Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, St. Jude Global, Memphis, TN 38105, USA
| |
Collapse
|
21
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
22
|
Zhang Q, Zou W, He L, Zhang C, Wang Y. The Sonic hedgehog pathway inhibitor GDC0449 induces autophagic death in human Medulloblastoma Daoy cells. Ultrastruct Pathol 2023; 47:529-539. [PMID: 37953603 DOI: 10.1080/01913123.2023.2270676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023]
Abstract
Medulloblastoma (MB) is a frequently occurring malignant brain tumor in children, and many of these tumors are identified by the abnormal activation of the Sonic Hedgehog (SHH) pathway. Although the Shh inhibitor GDC0449 initially shows some effectiveness in certain tumors, they eventually recur due to drug resistance mechanisms, highlighting the need for new treatment options. In this study, we explore whether GDC0449 induces autophagy in the human MB cell lines. To investigate the ultrastructural pathology changes of GDC0449-treated Daoy and D283 cells, we employed Transmission Electron Microscopy (TEM) technology to identify the expression of autophagic vacuoles. Our results indicate that GDC0449 only increases autophagy in Daoy cells by increasing the LC3-II/LC3-I ratio and autophagosome formation.We also analyzed Beclin1, LC3, Bax, and Cleaved-caspase3 protein and mRNA expression levels of autophagic and apoptotic markers using fluorescence confocal microscopy, RT-PCR, and Western blot. We found that cell autophagy and apoptosis increased in a dose-dependent manner with GDC0449 treatment. Additionally, we observed increased mammalian target of rapamycin (mTOR) phosphorylation and decreased protein kinase B (AKT/PKB), Ribosomal Protein S6, eIF4E-binding protein (4EBP1) phosphorylation in GDC0449-treated Daoy cells. It was observed that inhibiting autophagy using Beclin1 siRNA significantly blocked the apoptosis-inducing effects of GDC0449, suggesting that GDC0449 mediates its apoptotic effects by inducing autophagy.Our data suggests that GDC0449 inhibits the growth of human MB Daoy cells by autophagy-mediated apoptosis. The mechanism of GDC0449-induced autophagy in Daoy cells may be related to the inhibition of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Wanjing Zou
- Neuropathology, Beijing Neurosurgical Institute, Beijing, China
| | - Longtao He
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Cuiping Zhang
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Ying Wang
- Neural Reconstructional Department, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Zhao H, Wei Y, Zhang J, Zhang K, Tian L, Liu Y, Zhang S, Zhou Y, Wang Z, Shi S, Fu Z, Fu J, Zhao J, Li X, Zhang L, Zhao L, Liu K. HPV16 infection promotes the malignant transformation of the esophagus and progression of esophageal squamous cell carcinoma. J Med Virol 2023; 95:e29132. [PMID: 37792307 DOI: 10.1002/jmv.29132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) may be correlated with HPV infection, and the mechanism underlying the ESCC formation induced by HPV16 infection remains elusive. Here, we overexpressed HPV16 E6 and E7 and coordinated the overexpression of these two genes in EPC2 and ESCC cells. We found that E7 and coordinated expression of E6 and E7 promoted the proliferation of EPC2 cells, and upregulation of shh was responsible for cell proliferation since the use of vismodegib led to the failure of organoid formation. Meanwhile, overexpression of E6 and E7 in ESCC cells promoted cell proliferation, migration, and invasion in vitro. Importantly, E6 and E7 coordinately increased the capability of tumor growth in nude mice, while vismodegib slowed the growth of tumors in NCG mice. Moreover, a series of genes and proteins changed in cell lines after overexpression of the E6 and E7 genes, the potential biological processes and pathways were systematically analyzed using a bioinformatics assay. Together, these findings suggest that the activation of the hedgehog pathway induced by HPV16 infection may initially transform basal cells in the esophagus and promote following malignant processes in ESCC cells. The application of hedgehog inhibitors may represent a therapeutic avenue for ESCC treatment.
Collapse
Affiliation(s)
- Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jiaying Zhang
- School of Life Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kun Zhang
- Department of General Surgery, The First Hospital of Fuzhou, Fuzhou, Fujian, People's Republic of China
| | - Liming Tian
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yongpan Liu
- School of Life Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhichao Fu
- Department of Radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, Fujian, People's Republic of China
| | - Jianqian Fu
- Department of Medical Oncology, The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China
| | - Jing Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xinxin Li
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Lijia Zhang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Liran Zhao
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Life Science, Nanchang Normal University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
24
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Paradise BD, Gainullin VG, Almada LL, Sigafoos AN, Sen S, Vera RE, Arul GLR, Toruner M, Pease DR, Gonzalez AL, Mentucci FM, Grasso DH, Fernandez-Zapico ME. SUFU promotes GLI activity in a Hedgehog-independent manner in pancreatic cancer. Biochem J 2023; 480:1199-1216. [PMID: 37477952 PMCID: PMC11973541 DOI: 10.1042/bcj20220439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.
Collapse
Affiliation(s)
- Brooke D. Paradise
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905
| | | | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - Ashley N. Sigafoos
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - Renzo E. Vera
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - Glancis Luzeena Raja Arul
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905
| | - Murat Toruner
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - David R. Pease
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905
| | - Alina L. Gonzalez
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa – Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), La Pampa, Argentina, 6300
| | | | - Daniel H. Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Escuela de Farmacia y Bioquimica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina, 1113
| | | |
Collapse
|
26
|
Liu J, Zhang R, Mallick S, Patil S, Wientjens C, Flegel J, Krupp A, Strohmann C, Grassin C, Merten C, Pahl A, Grigalunas M, Waldmann H. A highly enantioselective intramolecular 1,3-dipolar cycloaddition yields novel pseudo-natural product inhibitors of the Hedgehog signalling pathway. Chem Sci 2023; 14:7936-7943. [PMID: 37502335 PMCID: PMC10370549 DOI: 10.1039/d3sc01240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
De novo combination of natural product (NP) fragments by means of efficient, complexity- and stereogenic character-generating transformations to yield pseudo-natural products (PNPs) may explore novel biologically relevant chemical space. Pyrrolidine- and tetrahydroquinoline fragments rarely occur in combination in nature, such that PNPs that embody both fragments might represent novel NP-inspired chemical matter endowed with bioactivity. We describe the synthesis of pyrrolo[3,2-c]quinolines by means of a highly enantioselective intramolecular exo-1,3-dipolar cycloaddition catalysed by the AgOAc/(S)-DMBiphep complex. The cycloadditions proceeded in excellent yields (up to 98%) and with very high enantioselectivity (up to 99% ee). Investigation of the resulting PNP collection in cell-based assays monitoring different biological programmes led to the discovery of a structurally novel and potent inhibitor of the Hedgehog signalling pathway that targets the Smoothened protein.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Ruirui Zhang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Shubhadip Mallick
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Sohan Patil
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Chantal Wientjens
- Faculty of Chemistry, Chemical Biology, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Jana Flegel
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Anna Krupp
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Corentin Grassin
- Faculty of Chemistry and Biochemistry, Organic Chemistry II, Ruhr University Bochum University-Street 150 44801 Bochum Germany
| | - Christian Merten
- Faculty of Chemistry and Biochemistry, Organic Chemistry II, Ruhr University Bochum University-Street 150 44801 Bochum Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
- Compound Management and Screening Center Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Michael Grigalunas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
- Faculty of Chemistry, Chemical Biology, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| |
Collapse
|
27
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
28
|
Bagka M, Choi H, Héritier M, Schwaemmle H, Pasquer QTL, Braun SMG, Scapozza L, Wu Y, Hoogendoorn S. Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1. Nat Commun 2023; 14:3893. [PMID: 37393376 PMCID: PMC10314895 DOI: 10.1038/s41467-023-39657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Target deconvolution of small molecule hits from phenotypic screens presents a major challenge. Many screens have been conducted to find inhibitors for the Hedgehog signaling pathway - a developmental pathway with many implications in health and disease - yielding many hits but only few identified cellular targets. We here present a strategy for target identification based on Proteolysis-Targeting Chimeras (PROTACs), combined with label-free quantitative proteomics. We develop a PROTAC based on Hedgehog Pathway Inhibitor-1 (HPI-1), a phenotypic screen hit with unknown cellular target. Using this Hedgehog Pathway PROTAC (HPP) we identify and validate BET bromodomains as the cellular targets of HPI-1. Furthermore, we find that HPP-9 is a long-acting Hedgehog pathway inhibitor through prolonged BET bromodomain degradation. Collectively, we provide a powerful PROTAC-based approach for target deconvolution, that answers the longstanding question of the cellular target of HPI-1 and yields a PROTAC that acts on the Hedgehog pathway.
Collapse
Affiliation(s)
- Meropi Bagka
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hyeonyi Choi
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Hanna Schwaemmle
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Quentin T L Pasquer
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Simon M G Braun
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Yibo Wu
- Chemical Biology Mass Spectrometry Platform (CHEMBIOMS), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sascha Hoogendoorn
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
29
|
Zhang J, Yang Y, Li X, Li G, Mizukami T, Liu Y, Wang Y, Xu G, Roder H, Zhang L, Yang ZJ. PDLIM3 supports hedgehog signaling in medulloblastoma by facilitating cilia formation. Cell Death Differ 2023; 30:1198-1210. [PMID: 36813922 PMCID: PMC10154305 DOI: 10.1038/s41418-023-01131-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Elevated levels of PDLIM3 expression are frequently detected in sonic hedgehog (SHH) group of medulloblastoma (MB). However, the possible role of PDLIM3 in MB tumorigenesis is still unknown. Here, we found that PDLIM3 expression is necessary for hedgehog (Hh) pathway activation in MB cells. PDLIM3 is present in primary cilia of MB cells and fibroblasts, and such cilia localization is mediated by the PDZ domain of PDLIM3 protein. Deletion of PDLIM3 significantly compromised cilia formation and interfered the Hh signaling transduction in MB cells, suggesting that PDLIM3 promotes the Hh signaling through supporting the ciliogenesis. PDLIM3 protein physically interacts with cholesterol, a critical molecule for cilia formation and hedgehog signaling. The disruption of cilia formation and Hh signaling in PDLIM3 null MB cells or fibroblasts, was significantly rescued by treatment with exogenous cholesterol, demonstrating that PDLIM3 facilitates the ciliogenesis through cholesterol provision. Finally, deletion of PDLIM3 in MB cells significantly inhibited their proliferation and repressed tumor growth, suggesting that PDLIM3 is necessary for MB tumorigenesis. Our studies elucidate the critical functions of PDLIM3 in the ciliogenesis and Hh signaling transduction in SHH-MB cells, supporting to utilize PDLIM3 as a molecular marker for defining SHH group of MB in clinics.
Collapse
Affiliation(s)
- Jie Zhang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yijun Yang
- Cell Signaling and Epigenetics Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Xinhua Li
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Gen Li
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Takuya Mizukami
- Molecular Therapeutic Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Heinrich Roder
- Molecular Therapeutic Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Li Zhang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Zeng-Jie Yang
- Cell Signaling and Epigenetics Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA.
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Sherwood M, Climans S, Ramos R, Laperriere NJ, Gao AF, Millar BA, Shultz DB, Tsang DS, Mason WP. Review of 20 years of adult medulloblastoma treatment: Chemotherapy prescription trends and survival. Neurooncol Pract 2023; 10:186-194. [PMID: 36970168 PMCID: PMC10037945 DOI: 10.1093/nop/npac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background The historic standard of care for adult medulloblastoma has been considered surgery and radiation, while chemotherapy is increasingly being prescribed. This study reviewed 20-year chemotherapy trends at a high-volume center, as well as overall and progression free-survival. Methods Adults with medulloblastoma treated at an academic center from January 1, 1999 to -December 31, 2020 were reviewed. Patient baseline data were summarized and Kaplan-Meier estimators were used for survival. Results Forty-nine patients were included; median age was 30 years and male: female ratio was 2:1. Desmoplastic and classical histologies were most common. Of all patients, 23 (47%) were high risk and 7 (14%) metastatic at diagnosis. Only 10 (20%) received initial chemotherapy, of which 70% were high risk and 30% metastatic, with most treated from 2010 to 2020. Forty percent of initial chemotherapy patients received salvage chemotherapy for recurrence or metastases (of all patients, 49% required salvage). Initial chemotherapy regimens were mainly cisplatin/lomustine/vincristine, and at recurrence cisplatin/etoposide. Median overall survival was 8.6 years (95% CI 7.5-∞), with 1-, 5-, and 10-year survival at 95.8%, 72%, and 46.7%. Median overall survival for those who did not receive initial chemotherapy was 12.4 years and 7.4 years for those who did (P-value .2). Conclusions Twenty years of adult medulloblastoma treatment was reviewed. Initial chemotherapy patients, most of whom were high risk, trended towards worse survival, but this was nonsignificant. The ideal timing and choice of chemotherapy for adult medulloblastoma is unknown-challenges of administering chemotherapy following photon craniospinal irradiation may have prevented it from becoming routine.
Collapse
Affiliation(s)
- Marissa Sherwood
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada
| | - Seth Climans
- Department of Medicine, Divisions of Neurology and Department of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Ronald Ramos
- Department of Medicine, Divisions of Neurology and Department of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Normand J Laperriere
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada
| | - Andrew F Gao
- Laboratory Medicine Program, University Health Network (UHN), Toronto, Ontario M5G 2C4, Canada
| | - Barbara-Ann Millar
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada
| | - David B Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada
| | - Derek S Tsang
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario M5G 2M9, Canada
| | - Warren P Mason
- Department of Medicine, Divisions of Neurology and Department of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
31
|
Zarzosa P, Garcia-Gilabert L, Hladun R, Guillén G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Targeting the Hedgehog Pathway in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:727. [PMID: 36765685 PMCID: PMC9913695 DOI: 10.3390/cancers15030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours-among them sarcomas-mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.
Collapse
Affiliation(s)
- Patricia Zarzosa
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lia Garcia-Gilabert
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriela Guillén
- Pediatric Surgery Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriel Gallo-Oller
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guillem Pons
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Julia Sansa-Girona
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Soledad Gallego
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Roma
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
32
|
Lee D, Gimple RC, Wu X, Prager BC, Qiu Z, Wu Q, Daggubati V, Mariappan A, Gopalakrishnan J, Sarkisian MR, Raleigh DR, Rich JN. Superenhancer activation of KLHDC8A drives glioma ciliation and hedgehog signaling. J Clin Invest 2023; 133:e163592. [PMID: 36394953 PMCID: PMC9843063 DOI: 10.1172/jci163592] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain-containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound chaperonin-containing TCP1 (CCT) to promote the assembly of primary cilia to activate hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and hedgehog signaling. Combinatorial targeting of Aurora B/C kinase and hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as what we believe to be a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment.
Collapse
Affiliation(s)
- Derrick Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Ryan C. Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xujia Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Briana C. Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Qiulian Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Vikas Daggubati
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Matthew R. Sarkisian
- Department of Neuroscience, McKnight Brain Institute and
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
| | - David R. Raleigh
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Jeremy N. Rich
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Sloan AE, Nock CJ, Ye X, Buerki R, Chang S, Lesser G, Norden A, Cloughesy T, Olson J, Kerstetter-Fogle A, Rich J, Fisher J, Desideri S, Takebe N, Timmer W, Grossman S, Prados M. ABTC-0904: targeting glioma stem cells in GBM: a phase 0/II study of hedgehog pathway inhibitor GDC-0449. J Neurooncol 2023; 161:33-43. [PMID: 36581779 PMCID: PMC11197851 DOI: 10.1007/s11060-022-04193-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Gliomagenesis and resistance of glioblastoma (GBM) are believed to be mediated by glioma stem cells (GSC). Evidence suggests that SHH signaling promotes GSC proliferation and self-renewal. METHODS ABTC-0904 was a two-arm, multicenter phase 0/II study of GDC-0449, an oral inhibitor of Smoothened (SMO) in patients undergoing resection for recurrent GBM. All patients (Arms I and II) had surgery and received drug post-operatively. Only patients in Arm I received drug prior to surgery. The primary objective was to determine 6-month progression free survival (PFS-6). Secondary endpoints include median PFS (mPFS) and overall survival (mOS), response rate, and toxicity. Correlative studies included bioanalysis of GDC-0449, and inhibition of SHH signaling, GSC proliferation and self-renewal. RESULTS Forty-one patients were enrolled. Pharmacokinetics of GDC-0449 in plasma demonstrated levels within expected therapeutic range in 75% of patients. The proportion of tumorcells producing CD133+ neurospheres, neurosphere proliferation, self-renewal, and expression of the SHh downstream signaling was significantly decreased in Arm I following GDC-0449 treatment (p < 0.005; p < 0.001 respectively) compared to Arm II (no drug pre-op). Treatment was well tolerated. There were no objective responders in either arm. Overall PFS-6 was 2.4% (95% CI 0.9-11.1%). Median PFS was 2.3 months (95% CI 1.9-2.6) and mOS was 7.8 months (95% CI 5.4-10.1). CONCLUSIONS GDC-0449 was well tolerated, reached tumor, and inhibited CD133+ neurosphere formation, but had little clinical efficacy as a single agent in rGBM. This suggests growth and maintenance of rGBM is not solely dependent on the SHH pathway thus targeting SMO may require combined approaches.
Collapse
Affiliation(s)
- Andrew E Sloan
- Chief of Neuroscience, Piedmont Healthcare, Atlanta, USA.
| | - Charles J Nock
- Department of Medicine, UH-Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Xiaobu Ye
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert Buerki
- Department of Neurology, UH-Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Susan Chang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Glenn Lesser
- Department of Radiation Oncology, Wake Forest University, Wake Forest, NC, USA
| | - Andrew Norden
- Department of Medicine, Dana Farber Cancer Institute, Boston, MA, USA
| | - Timothy Cloughesy
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | | | - Jeremy Rich
- Department of Neurology and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joy Fisher
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Serena Desideri
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Naoko Takebe
- National Cancer Institute, Clinical Investigations Branch, National Institutes of Health, Bethesda, MD, USA
| | - William Timmer
- National Cancer Institute, Clinical Investigations Branch, National Institutes of Health, Bethesda, MD, USA
| | - Stuart Grossman
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Prados
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
35
|
Sharma P, Mondal H, Mondal S, Majumder R. Recent updates on the role of phytochemicals in the treatment of glioblastoma multiforme. J Cancer Res Ther 2023; 19:S513-S522. [PMID: 38384013 DOI: 10.4103/jcrt.jcrt_1241_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/07/2022] [Indexed: 02/23/2024]
Abstract
ABSTRACTS Glioblastoma multiforme (GBM) is a malignant type of glioma. This malignant brain tumor is a devastating disease and is often fatal. The spectrum of illness and poor prognosis associated with brain tumors extract a terrible toll on patients and their families. The inoperability of these tumors and resistance to radiation and chemotherapy contribute to the fatal outcome of this disease. Thus, scientists are hunting for the new drug candidate and safer chemoprevention, especially the phytochemicals that possess potent anti-tumor properties. We have summarized the cellular and biochemical impacts of different phytochemicals that can successfully encounter GBM via induction of apoptosis and active interference in different cell and molecular pathways associated with GBM in brain tumors. The in silico predictive model determining the blood-brain barrier permeability of the compound and their potential druggability are discussed in the review.
Collapse
Affiliation(s)
- Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Shaikat Mondal
- Department of Physiology, Raiganj Government Medical College, Raiganj, West Bengal, India
| | - Rabindranath Majumder
- Centre of Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
36
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
37
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
38
|
Fahmy SA, Dawoud A, Zeinelabdeen YA, Kiriacos CJ, Daniel KA, Eltahtawy O, Abdelhalim MM, Braoudaki M, Youness RA. Molecular Engines, Therapeutic Targets, and Challenges in Pediatric Brain Tumors: A Special Emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery. Cancers (Basel) 2022; 14:5244. [PMID: 36358663 PMCID: PMC9657918 DOI: 10.3390/cancers14215244] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 09/11/2023] Open
Abstract
Pediatric primary brain tumors represent a real challenge in the oncology arena. Besides the psychosocial burden, brain tumors are considered one of the most difficult-to-treat malignancies due to their sophisticated cellular and molecular pathophysiology. Notwithstanding the advances in research and the substantial efforts to develop a suitable therapy, a full understanding of the molecular pathways involved in primary brain tumors is still demanded. On the other hand, the physiological nature of the blood-brain barrier (BBB) limits the efficiency of many available treatments, including molecular therapeutic approaches. Hydrogen Sulfide (H2S), as a member of the gasotransmitters family, and its synthesizing machinery have represented promising molecular targets for plentiful cancer types. However, its role in primary brain tumors, generally, and pediatric types, particularly, is barely investigated. In this review, the authors shed the light on the novel role of hydrogen sulfide (H2S) as a prominent player in pediatric brain tumor pathophysiology and its potential as a therapeutic avenue for brain tumors. In addition, the review also focuses on the challenges and opportunities of several molecular targeting approaches and proposes promising brain-delivery strategies for the sake of achieving better therapeutic results for brain tumor patients.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Capital City, Cairo 11835, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Yousra Ahmed Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Miriam Mokhtar Abdelhalim
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| |
Collapse
|
39
|
Zhang ZW, Teng X, Zhao F, Ma C, Zhang J, Xiao LF, Wang Y, Chang M, Tian Y, Li C, Zhang Z, Song S, Tong WM, Liu P, Niu Y. METTL3 regulates m6A methylation of PTCH1 and GLI2 in Sonic hedgehog signaling to promote tumor progression in SHH-medulloblastoma. Cell Rep 2022; 41:111530. [DOI: 10.1016/j.celrep.2022.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
|
40
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
41
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
42
|
Franceschi E, Giannini C, Furtner J, Pajtler KW, Asioli S, Guzman R, Seidel C, Gatto L, Hau P. Adult Medulloblastoma: Updates on Current Management and Future Perspectives. Cancers (Basel) 2022; 14:cancers14153708. [PMID: 35954372 PMCID: PMC9367316 DOI: 10.3390/cancers14153708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma (MB) is a malignant embryonal tumor of the posterior fossa belonging to the family of primitive neuro-ectodermic tumors (PNET). MB generally occurs in pediatric age, but in 14–30% of cases, it affects the adults, mostly below the age of 40, with an incidence of 0.6 per million per year, representing about 0.4–1% of tumors of the nervous system in adults. Unlike pediatric MB, robust prospective trials are scarce for the post-puberal population, due to the low incidence of MB in adolescent and young adults. Thus, current MB treatments for older patients are largely extrapolated from the pediatric experience, but the transferability and applicability of these paradigms to adults remain an open question. Adult MB is distinct from MB in children from a molecular and clinical perspective. Here, we review the management of adult MB, reporting the recent published literature focusing on the effectiveness of upfront chemotherapy, the development of targeted therapies, and the potential role of a reduced dose of radiotherapy in treating this disease.
Collapse
Affiliation(s)
- Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy
- Correspondence:
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 59005, USA;
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kristian W. Pajtler
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
- Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland;
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Lidia Gatto
- Department of Oncology, AUSL of Bologna, 40139 Bologna, Italy;
| | - Peter Hau
- Wilhelm Sander NeuroOncology Unit & Department of Neurology, University Hospital Regensburg, 93055 Regensburg, Germany;
| |
Collapse
|
43
|
Swiderska-Syn M, Mir-Pedrol J, Oles A, Schleuger O, Salvador AD, Greiner SM, Seward C, Yang F, Babcock BR, Shen C, Wynn DT, Sanchez-Mejias A, Gershon TR, Martin V, McCrea HJ, Lindsey KG, Krieg C, Rodriguez-Blanco J. Noncanonical activation of GLI signaling in SOX2 + cells drives medulloblastoma relapse. SCIENCE ADVANCES 2022; 8:eabj9138. [PMID: 35857834 PMCID: PMC9299538 DOI: 10.1126/sciadv.abj9138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic Sox2+ cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like Sox2+ cells. Using SOX2-enriched MB cultures, we observed that SOX2+ cells required SHH signaling to propagate, and unlike in the proliferative tumor bulk, the SHH pathway was activated in these cells downstream of Smo in an MYC-dependent manner. Functionally different GLI inhibitors depleted vismodegib-resistant SOX2+ cells from MB tissues, reduced their ability to further engraft in vivo, and increased symptom-free survival. Our results emphasize the promise of therapies targeting GLI to deplete SOX2+ cells and provide stable tumor remission.
Collapse
Affiliation(s)
- Marzena Swiderska-Syn
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Júlia Mir-Pedrol
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Alexander Oles
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Olga Schleuger
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - April D. Salvador
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sean M. Greiner
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Cara Seward
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Fan Yang
- Molecular Oncology Program, The Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Benjamin R. Babcock
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Daniel T. Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Avencia Sanchez-Mejias
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vanesa Martin
- Department of Anatomy and Cell Biology, University of Oviedo, Oviedo, Asturias 33006, Spain
| | - Heather J. McCrea
- Department of Clinical Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Kathryn G. Lindsey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
44
|
Bartl J, Zanini M, Bernardi F, Forget A, Blümel L, Talbot J, Picard D, Qin N, Cancila G, Gao Q, Nath S, Koumba IM, Wolter M, Kuonen F, Langini M, Beez T, Munoz C, Pauck D, Marquardt V, Yu H, Souphron J, Korsch M, Mölders C, Berger D, Göbbels S, Meyer FD, Scheffler B, Rotblat B, Diederichs S, Ramaswamy V, Suzuki H, Oro A, Stühler K, Stefanski A, Fischer U, Leprivier G, Willbold D, Steger G, Buell A, Kool M, Lichter P, Pfister SM, Northcott PA, Taylor MD, Borkhardt A, Reifenberger G, Ayrault O, Remke M. The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nat Commun 2022; 13:4061. [PMID: 35831316 PMCID: PMC9279496 DOI: 10.1038/s41467-022-31574-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Most lncRNAs display species-specific expression patterns suggesting that animal models of cancer may only incompletely recapitulate the regulatory crosstalk between lncRNAs and oncogenic pathways in humans. Among these pathways, Sonic Hedgehog (SHH) signaling is aberrantly activated in several human cancer entities. We unravel that aberrant expression of the primate-specific lncRNA HedgeHog Interacting Protein-AntiSense 1 (HHIP-AS1) is a hallmark of SHH-driven tumors including medulloblastoma and atypical teratoid/rhabdoid tumors. HHIP-AS1 is actively transcribed from a bidirectional promoter shared with SHH regulator HHIP. Knockdown of HHIP-AS1 induces mitotic spindle deregulation impairing tumorigenicity in vitro and in vivo. Mechanistically, HHIP-AS1 binds directly to the mRNA of cytoplasmic dynein 1 intermediate chain 2 (DYNC1I2) and attenuates its degradation by hsa-miR-425-5p. We uncover that neither HHIP-AS1 nor the corresponding regulatory element in DYNC1I2 are evolutionary conserved in mice. Taken together, we discover an lncRNA-mediated mechanism that enables the pro-mitotic effects of SHH pathway activation in human tumors. Long non-coding RNAs (lncRNAs) can contribute to cancers that are driven by Sonic hedgehog (SHH) signaling. Here the authors report that lncRNA HHIP-AS1 stabilises the mRNA of dynein complex 1, thereby, promoting the pro-mitotic effects of SHH-driven tumors.
Collapse
Affiliation(s)
- Jasmin Bartl
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Group for Interdisciplinary Neurobiology and Immunology-INI-research, Institute of Zoology University of Hamburg, Hamburg, Germany.
| | - Marco Zanini
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Antoine Forget
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Lena Blümel
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Julie Talbot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Nan Qin
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gabriele Cancila
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Qingsong Gao
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Soumav Nath
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany.,IBI- (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, Jülich, Germany
| | - Idriss Mahoungou Koumba
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - François Kuonen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, CH- Lausanne, Lausanne, Switzerland
| | - Maike Langini
- Institute for Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Beez
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christopher Munoz
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Pauck
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Viktoria Marquardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Judith Souphron
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France
| | - Mascha Korsch
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Christina Mölders
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Daniel Berger
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sarah Göbbels
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Frauke-Dorothee Meyer
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Björn Scheffler
- DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), DKTK, partner site University Hospital Essen, Düsseldorf, Germany
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, DKTK, partner site Freiburg, Freiburg i.Br, Germany.,Division of RNA Biology & Cancer, DKFZ, Heidelberg, Germany
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hiromishi Suzuki
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anthony Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Dermatology, Stanford University, Stanford, CA, USA
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany.,IBI- (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, Jülich, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie and Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marcel Kool
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children´s Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, Orsay, France.
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, and DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany. .,Institute of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany, DKTK, partner site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
45
|
HAUS Augmin-Like Complex Subunit 1 Influences Tumour Microenvironment and Prognostic Outcomes in Glioma. JOURNAL OF ONCOLOGY 2022; 2022:8027686. [PMID: 35865089 PMCID: PMC9296284 DOI: 10.1155/2022/8027686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Background. The expression of HAUS Augmin-like complex subunit 1 (HAUS1), a protein-coding gene, is low in normal samples among various cancers with pan-cancer analysis. The depletion of HAUS1 in cells decreases the G2/M cell compartment and induces apoptosis. However, the detailed expression pattern of HAUS1 and its correlation with immune infiltration in glioma (LGG and GBM) (LGG: low-grade glioma; GBM: glioblastoma) remain unknown. Therefore, in this study, we examined the role and prognostic value of HAUS1 in glioma. Methods. Transcriptional expression data of HAUS1 were collected from the CGGA and TCGA databases. The Kaplan–Meier analysis, univariate and multivariate Cox analyses, and receiver operating characteristic (ROC) curves were used to analyse the clinical significance of HAUS1 in glioma. The STRING database was used to analyse protein-protein interactions (PPI), and the “ClusterProfiler” package was used for functional enrichment analysis to examine the possible biological roles of HAUS1. In addition, the HAUS1 promoter methylation modification was analysed using MEXPRESS, and the association between HAUS1 expression and tumour-infiltrating immune cells was investigated using CIBERSORT. Results. Based on the data retrieved from TCGA (703 samples) and CGGA (1018 samples), an elevated expression of HAUS1 was observed in glioma samples, which was associated with poorer survival of patients, unfavourable clinical characteristics, 1p/19q codeletion status, WHO grade, and IDH mutation status. Furthermore, multivariate and univariate Cox analyses revealed that HAUS1 was an independent predictor of glioma. HAUS1 expression level was associated with several tumour-infiltrating immune cells, such as Th2 cells, macrophages, and activated dendritic cells. The outcomes of ROC curve analysis showed that HAUS1 was good to prognosticate immune infiltrating levels in glioma with a higher area under the curve (AUC) value (AUC = 0.974). Conclusions. HAUS1 was upregulated and served as a biomarker for poor prognosis in patients with glioma. High HAUS1 expression was associated with several tumour-infiltrating immune cells such as Th2 cells, macrophages, and activated dendritic cells, which had high infiltration levels. Therefore, these findings suggest that HAUS1 is a potential biomarker for predicting the prognosis of patients with glioma and plays a pivotal role in immune infiltration in glioma.
Collapse
|
46
|
Gong B, Guo D, Zheng C, Ma Z, Zhang J, Qu Y, Li X, Li G, Zhang L, Wang Y. Complement C3a activates astrocytes to promote medulloblastoma progression through TNF-α. J Neuroinflammation 2022; 19:159. [PMID: 35725556 PMCID: PMC9208237 DOI: 10.1186/s12974-022-02516-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant brain tumor in children. Approximately one-third of MB patients remain incurable. Understanding the molecular mechanism of MB tumorigenesis is, therefore, critical for developing specific and effective treatment strategies. Our previous work demonstrated that astrocytes constitute the tumor microenvironment (TME) of MB and play an indispensable role in MB progression. However, the underlying mechanisms by which astrocytes are regulated and activated to promote MB remain elusive. Methods By taking advantage of Math1-Cre/Ptch1loxp/loxp mice, which spontaneously develop MB, primary MB cells and astrocytes were isolated and then subjected to administration and coculture in vitro. Immunohistochemistry was utilized to determine the presence of C3a in MB sections. MB cell proliferation was evaluated by immunofluorescent staining. GFAP and cytokine expression levels in C3a-stimulated astrocytes were assessed by immunofluorescent staining, western blotting, q-PCR and ELISA. C3a receptor and TNF-α receptor expression was determined by PCR and immunofluorescent staining. p38 MAPK pathway activation was detected by western blotting. Transplanted MB mice were treated with a C3a receptor antagonist or TNF-α receptor antagonist to investigate their role in MB progression in vivo. Results We found that complement C3a, a fragment released from intact complement C3 following complement activation, was enriched in both human and murine MB tumor tissue, and its receptor was highly expressed on tumor-associated astrocytes (TAAs). We demonstrated that C3a activated astrocytes and promoted MB cell proliferation via the p38 MAPK pathway. Moreover, we discovered that C3a upregulated the production of proinflammatory cytokines, such as IL-6 and TNF-α in astrocytes. Application of the conditioned medium of C3a-stimulated astrocytes promoted MB cell proliferation, which was abolished by preincubation with a TNF-α receptor antagonist, indicating a TNF-α-dependent event. Indeed, we further demonstrated that administration of a selective C3a receptor or TNF-α receptor antagonist to mice subcutaneously transplanted with MB suppressed tumor progression in vivo. Conclusions C3a was released during MB development. C3a triggered astrocyte activation and TNF-α production via the p38 pathway, which promoted MB cell proliferation. Our findings revealed the novel role of C3a-mediated TNF-α production by astrocytes in MB progression. These findings imply that targeting C3a and TNF-α may represent a potential novel therapeutic approach for human MB. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02516-9.
Collapse
Affiliation(s)
- Biao Gong
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Duancheng Guo
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhen Ma
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yanghui Qu
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinhua Li
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Gen Li
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
47
|
George J, Chen Y, Abdelfattah N, Yamamoto K, Gallup TD, Adamson SI, Rybinski B, Srivastava A, Kumar P, Lee MG, Baskin DS, Jiang W, Choi JM, Flavahan W, Chuang JH, Kim BY, Xu J, Jung SY, Yun K. Cancer stem cells, not bulk tumor cells, determine mechanisms of resistance to SMO inhibitors. CANCER RESEARCH COMMUNICATIONS 2022; 2:402-416. [PMID: 36688010 PMCID: PMC9853917 DOI: 10.1158/2767-9764.crc-22-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023]
Abstract
The emergence of treatment resistance significantly reduces the clinical utility of many effective targeted therapies. Although both genetic and epigenetic mechanisms of drug resistance have been reported, whether these mechanisms are stochastically selected in individual tumors or governed by a predictable underlying principle is unknown. Here, we report that the dependence of cancer stem cells (CSCs), not bulk tumor cells, on the targeted pathway determines the molecular mechanism of resistance in individual tumors. Using both spontaneous and transplantable mouse models of sonic hedgehog (SHH) medulloblastoma (MB) treated with an SHH/Smoothened inhibitor, sonidegib/LDE225, we show that genetic-based resistance occurs only in tumors that contain SHH-dependent CSCs (SD-CSCs). In contrast, SHH MBs containing SHH-dependent bulk tumor cells but SHH-independent CSCs (SI-CSCs) acquire resistance through epigenetic reprogramming. Mechanistically, elevated proteasome activity in SMOi-resistant SI-CSC MBs alters the tumor cell maturation trajectory through enhanced degradation of specific epigenetic regulators, including histone acetylation machinery components, resulting in global reductions in H3K9Ac, H3K14Ac, H3K56Ac, H4K5Ac, and H4K8Ac marks and gene expression changes. These results provide new insights into how selective pressure on distinct tumor cell populations contributes to different mechanisms of resistance to targeted therapies. This insight provides a new conceptual framework to understand responses and resistance to SMOis and other targeted therapies.
Collapse
Affiliation(s)
- Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Yaohui Chen
- Department of Neurosurgery, Houston Methodist Neurological Institute and Institute for Academic Medicine, Houston, Texas
- The Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist, Houston Texas
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas
| | - Keiko Yamamoto
- The Jackson Laboratory-Mammalian Genetics, Bar Harbor, Maine
| | - Thomas D. Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott I. Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut
| | - Brad Rybinski
- Department of Internal Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Anuj Srivastava
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S. Baskin
- Department of Neurosurgery, Houston Methodist Neurological Institute and Institute for Academic Medicine, Houston, Texas
- The Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist, Houston Texas
- Department of Neurosurgery, Weill Cornell Medical College, New York, New York
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jong Min Choi
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - William Flavahan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Internal Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiaqiong Xu
- Center for Outcomes Research, Houston Methodist Research Institute, Houston Texas
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas
- Department of Neurology, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
48
|
Lo M, Sharir A, Paul MD, Torosyan H, Agnew C, Li A, Neben C, Marangoni P, Xu L, Raleigh DR, Jura N, Klein OD. CNPY4 inhibits the Hedgehog pathway by modulating membrane sterol lipids. Nat Commun 2022; 13:2407. [PMID: 35504891 PMCID: PMC9065090 DOI: 10.1038/s41467-022-30186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
The Hedgehog (HH) pathway is critical for development and adult tissue homeostasis. Aberrant HH signaling can lead to congenital malformations and diseases including cancer. Although cholesterol and several oxysterol lipids have been shown to play crucial roles in HH activation, the molecular mechanisms governing their regulation remain unresolved. Here, we identify Canopy4 (CNPY4), a Saposin-like protein, as a regulator of the HH pathway that modulates levels of membrane sterol lipids. Cnpy4-/- embryos exhibit multiple defects consistent with HH signaling perturbations, most notably changes in digit number. Knockdown of Cnpy4 hyperactivates the HH pathway in vitro and elevates membrane levels of accessible sterol lipids, such as cholesterol, an endogenous ligand involved in HH activation. Our data demonstrate that CNPY4 is a negative regulator that fine-tunes HH signal transduction, revealing a previously undescribed facet of HH pathway regulation that operates through control of membrane composition.
Collapse
Affiliation(s)
- Megan Lo
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Amnon Sharir
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Ein Kerem, Jerusalem, Israel
| | - Michael D Paul
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Hayarpi Torosyan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Cynthia Neben
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA.
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA.
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Kurnia Wijaya J, Djawad K, Wahab S, Nurdin A, Irawan Anwar A. [Translated article] Vismodegib and Sonidegib in Locally Advanced and Metastatic Basal Cell Carcinoma: Update on Hedgehog Pathway Inhibitors. ACTAS DERMO-SIFILIOGRAFICAS 2022. [DOI: 10.1016/j.ad.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Rahi S, Mehan S. Understanding Abnormal SMO-SHH Signaling in Autism Spectrum Disorder: Potential Drug Target and Therapeutic Goals. Cell Mol Neurobiol 2022; 42:931-953. [PMID: 33206287 PMCID: PMC11441210 DOI: 10.1007/s10571-020-01010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Autism is a multifactorial neurodevelopmental condition; it demonstrates some main characteristics, such as impaired social relationships and increased repetitive behavior. The initiation of autism spectrum disorder is mostly triggered during brain development by the deregulation of signaling pathways. Sonic hedgehog (SHH) signaling is one such mechanism that influences neurogenesis and neural processes during the development of the central nervous system. SMO-SHH signaling is also an important part of a broad variety of neurological processes, including neuronal cell differentiation, proliferation, and survival. Dysregulation of SMO-SHH signaling leads to many physiological changes that lead to neurological disorders such as ASD and contribute to cognitive decline. The aberrant downregulation of SMO-SHH signals contributes to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which increases oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis by suppressing target gene expression. We outlined in this review that SMO-SHH deregulation plays a crucial role in the pathogenesis of autism and addresses the current status of SMO-SHH pathway modulators. Additionally, a greater understanding of the SHH signaling pathway is an effort to improve successful treatment for autism and other neurological disorders.
Collapse
Affiliation(s)
- Saloni Rahi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|