1
|
Nicholls SJ, Nelson AJ, Kastelein JJP, Ditmarsch M, Hsieh A, Johnson J, Curcio D, Kling D, Kirkpatrick CF, Davidson MH. Obicetrapib exhibits favorable physiochemical and pharmacokinetic properties compared to previous cholesteryl ester transfer protein inhibitors: An integrated summary of results from non-human primate studies and clinical trials. Pharmacol Res Perspect 2024; 12:e70010. [PMID: 39425271 PMCID: PMC11489133 DOI: 10.1002/prp2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 10/21/2024] Open
Abstract
Anacetrapib, a cholesteryl ester transfer protein (CETP) inhibitor previously under development, exhibited an usually extended terminal half-life and large food effect and accumulated in adipose tissue. Other CETP inhibitors have not shown such effects. Obicetrapib, a potent selective CETP inhibitor, is undergoing Phase III clinical development. Dedicated assessments were conducted in pre-clinical and Phase I and II clinical studies of obicetrapib to examine the pharmacokinetic issues observed with anacetrapib. After 9 months of dosing up to 50 mg/kg/day in cynomolgus monkeys, obicetrapib was completely eliminated from systemic circulation and not detected in adipose tissue after a 13-week recovery period. In healthy humans receiving 1-25 mg of obicetrapib, the mean terminal half-life of obicetrapib was 148, 131, and 121 h at 5, 10, and 25 mg, respectively, and food increased plasma levels by ~1.6-fold with a 10 mg dose. At the end of treatment in Phase II trials, mean plasma levels of obicetrapib ranged from 194.5 ng/mL with 2.5 mg to 506.3 ng/mL with 10 mg. Plasma levels of obicetrapib decreased by 92.2% and 98.5% at four and 15 weeks post-treatment, respectively. Obicetrapib shows no clinically relevant accumulation, is minimally affected by food, and has a mean terminal half-life of 131 h for the 10 mg dose. These data support once daily, chronic dosing of obicetrapib in Phase III trials for dyslipidemia management.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| | | | | | - Andrew Hsieh
- NewAmsterdam Pharma B.V, Naarden, The Netherlands
| | | | | | | | | | | |
Collapse
|
2
|
Beazer J, Sillars A, Beck S, Christoffersen C, Ferraz M, Mulder MT, Graham D, Karlsson H, Ljunggren S, Gill J, Freeman D. Favourable HDL composition in endurance athletes is not associated with changes in HDL in vitro antioxidant and endothelial anti-inflammatory function. Biosci Rep 2024; 44:BSR20241165. [PMID: 39344511 PMCID: PMC11499383 DOI: 10.1042/bsr20241165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Given the failure of high-density lipoprotein (HDL) raising therapies to reduce cardiovascular disease risk, attention has turned towards HDL composition and vascular protective functions. In individuals with insulin resistance, exercise interventions recover HDL function. However, the effect of exercise on HDL in otherwise healthy individuals is unknown. This cross-sectional study aimed to measure HDL composition and antioxidant/endothelial anti-inflammatory function in insulin sensitive endurance athlete and healthy control men. HDL was isolated using density gradient ultracentrifugation. HDL composition was measured using microplate assays for apolipoprotein A-I, total cholesterol content and apolipoprotein M. HDL protein composition was measured using nano-liquid chromatography tandem mass spectrometry. HDL subclass distribution was measured by native gel electrophoresis. HDL in vitro antioxidant function was measured by paraoxonase-1 activity assay and anti-inflammatory function assessed in endothelial cells. Compared with controls, endurance athlete HDL had higher apolipoprotein A-1 (1.65 ± 0.62 mg/ml vs 1.21 ± 0.34 mg/ml, P=0.028) and higher total cholesterol content (2.09 ± 0.44 mmol/L vs 1.54 ± 0.33 mmol/L, P<0.001). Proteomics revealed higher apolipoprotein A-II, A-IV and D and transthyretin in endurance athlete HDL versus controls. There was no difference observed in in vitro HDL antioxidant or anti-inflammatory functions between controls and endurance athletes. Despite a more favourable composition, endurance athlete HDL did not have higher in vitro antioxidant or anti-inflammatory function. It is possible that HDL has a ceiling of function, i.e. that healthy HDL function cannot be enhanced by endurance exercise.
Collapse
Affiliation(s)
- Jack David Beazer
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Anne Sillars
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Sally Beck
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Section 3-01-3, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark and Institute of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200 Copenhagen, Denmark
| | - Maria J. Ferraz
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Monique T. Mulder
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Jason Gill
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Dilys J. Freeman
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| |
Collapse
|
3
|
Al Zein M, Khazzeka A, El Khoury A, Al Zein J, Zoghaib D, Eid AH. Revisiting high-density lipoprotein cholesterol in cardiovascular disease: Is too much of a good thing always a good thing? Prog Cardiovasc Dis 2024:S0033-0620(24)00146-4. [PMID: 39442601 DOI: 10.1016/j.pcad.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of global mortality and morbidity. Various established risk factors are linked to CVD, and modifying these risk factors is fundamental in CVD management. Clinical studies underscore the association between dyslipidemia and CVD, and therapeutic interventions that target low-density lipoprotein cholesterol elicit clear benefits. Despite the correlation between low high-density lipoprotein cholesterol (HDLC) and heightened CVD risk, HDL-raising therapies have yet to showcase significant clinical benefits. Furthermore, evidence from epidemiological and genetic studies reveals that not only low HDL-C levels, but also very high levels of HDL-C are linked to increased risk of CVD. In this review, we focus on HDL metabolism and delve into the relationship between HDL and CVD, exploring HDL functions and the observed alterations in its roles in disease. Altogether, the results discussed herein support the conventional wisdom that "too much of a good thing is not always a good thing". Thus, our recommendation is that a careful reconsideration of the impact of high HDL-C levels is warranted, and shall be revisited in future research.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Alicia Khazzeka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Dima Zoghaib
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Larifla L, Bassien-Capsa V, Velayoudom FL, Chingan-Martino V, Afassinou Y, Ancedy Y, Galantine O, Galantine V, Nicolas L, Martino F, Numeric P, Foucan L, Humphries SE. Influence of Common Gene Variants on Lipid Levels and Risk of Coronary Heart Disease in Afro-Caribbeans. Int J Mol Sci 2024; 25:11140. [PMID: 39456920 PMCID: PMC11508861 DOI: 10.3390/ijms252011140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A lower mortality rate from coronary artery disease (CAD) and a more favourable lipid profile have been reported in Afro-Caribbeans compared with people of European ancestry. The aim of this study was to determine whether common lipid variants identified in other populations are associated with lipid levels and CAD in Afro-Caribbeans. We studied 705 Afro-Caribbeans (192 with CAD) who were genotyped for 13 lipid-associated variants. We calculated three polygenic risk scores (PRSs) for elevated LDL (LDL-PRS), decreased HDL (HDL-PRS), and elevated triglycerides (TG-PRS). LDL-PRS, HDL-PRS, and TG-PRS were associated with LDL, HDL, and TG levels, respectively. The LDL-PRS was positively associated with LDL > 2.6 mmol/L and with LDL > 3.0 mmol/L with ORs (odds ratios) of 1.33 (95% confidence interval (CI) = 1.14-1.56) and 1.40 (CI = 1.21-1.62), respectively. The HDL-PRS was associated with a low HDL category (HDL < 1.03 mmol/L) with an OR of 1.3 (CI = 1.04-1.63) and inversely associated with a high HDL category (HDL > 1.55 mmol/L) with an OR of 0.79 (CI = 0.65-0.96). The LDL-PRS was positively associated with CAD after adjustment for age, gender, hypertension, diabetes, and smoking with an OR of 1.27 (CI = 1.06-1.51) but not the HDL-PRS nor the TG-PRS. Results of the present study indicate that common lipid variants are associated with lipid levels and prevalent CAD in Afro-Caribbeans.
Collapse
Affiliation(s)
- Laurent Larifla
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
- Laboratoire de Mathématiques Informatique et Applications (LAMIA), UR 1_1, University of Antilles, 97157 Pointe-à-Pitre, France
- Department of Cardiology, University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Valerie Bassien-Capsa
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Fritz-Line Velayoudom
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
- Laboratoire de Mathématiques Informatique et Applications (LAMIA), UR 1_1, University of Antilles, 97157 Pointe-à-Pitre, France
| | - Vaneva Chingan-Martino
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Yaovi Afassinou
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Yann Ancedy
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
- Department of Cardiology, University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Olivier Galantine
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Valérie Galantine
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Livy Nicolas
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Frédérique Martino
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Patrick Numeric
- Department of Rheumatology, University Hospital of Martinique, 97261 Fort-de France, France;
| | - Lydia Foucan
- Research Team on Cardiometabolic Risk (ECM-RCM), University Hospital of Guadeloupe, 97159 Pointe-à-Pitre, France; (V.B.-C.); (F.-L.V.); (V.C.-M.); (Y.A.); (Y.A.); (O.G.); (V.G.); (L.N.); (F.M.); (L.F.)
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Sciences, University College London, London WC1E 6JF, UK;
| |
Collapse
|
5
|
Futatsugi A, Tozuka M, Horiuchi Y, Ohkawa R, Kosho T. High-density lipoprotein functionality in cholesterol efflux in early childhood is related to the content ratio of triglyceride to cholesterol. Sci Rep 2024; 14:23323. [PMID: 39375444 PMCID: PMC11458590 DOI: 10.1038/s41598-024-74699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Cholesterol efflux capacity (CEC), commonly measured as a useful risk marker of atherosclerotic cardiovascular disease, depends on high-density lipoprotein (HDL) functionality and its concentration. We defined the relative HDL functionality in cholesterol efflux, not influenced by HDL concentration, as the ratio of measured CEC to standardized CEC (stCEC) based on HDL-cholesterol (HDL-C) of each individual using the curve regression equation obtained from the correlation. HDL-C, CEC, and CEC/stCEC levels in the < 28-day-old participants (neonates) were significantly low compared to those of the ≥ 28-day-old participants, indicating that the low CEC levels in the neonates depend on not only lower HDL-C but also lower HDL functionality. The low level of CEC/stCEC was remarkable in neonates born at < 34 weeks of gestation and did not improved to the reference level (1.000) until the infantile period. The relatively low or high CEC/stCEC ratios in neonates and infants were associated with lower or higher HDL-TG and HDL-TG/HDL-C ratio, respectively. However, no apparent effect of HDL-TG and HDL-TG/HDL-C ratio on CEC/stCEC was observed in the ≥ 1-year-old participants, indicating that HDL functionality in cholesterol efflux could be associated with the various HDL particles with various lipid compositions, but not just with HDL-TG and HDL-TG/HDL-C ratio.
Collapse
Affiliation(s)
- Akiko Futatsugi
- Department of Medical Genetics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Clinical Laboratory, Nagano Children's Hospital, 3100 Toyoshina, Azumino, 399-8288, Japan
| | - Minoru Tozuka
- Department of Medical Genetics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Life Science Research Center, Nagano Children's Hospital, 3100, Toyoshina, Azumino, 399-8288, Japan.
| | - Yuna Horiuchi
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, 6-8-1 Hinode, Urayasu, 279-0013, Japan
| | - Ryunosuke Ohkawa
- Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Center for Medical Genetics, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- BioBank Shinshu, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
6
|
Chang B, Laffin LJ, Sarraju A, Nissen SE. Obicetrapib-the Rebirth of CETP Inhibitors? Curr Atheroscler Rep 2024; 26:603-608. [PMID: 39150671 PMCID: PMC11393031 DOI: 10.1007/s11883-024-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW To provide perspective on the current development status, and potential future role, of obicetrapib, a third-generation cholesterylester transfer protein (CETP) inhibitor. Obicetrapib has received recent attention following positive Phase II clinical trial data and initiation of Phase III trials for the treatment of dyslipidemia and atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS The ROSE and ROSE2 trials are Phase II studies that examined the lipid lowering effects of obicetrapib in patients on pre-existing high-intensity statin therapy. Obicetrapib significantly reduced key dyslipidemia biomarkers including low density lipoprotein cholesterol (LDL-C), Apolipoprotein B (Apo B), and non-high-density lipoprotein cholesterol (non-HDL-C) while increasing high-density lipoprotein cholesterol (HDL-C). Four phase III clinical trials, including a cardiovascular outcomes trial, are ongoing. Preliminary data for obicetrapib shows favorable effects on dyslipidemia, which could theoretically lead to a decrease in ASCVD clinical events. Short-term safety data in preliminary studies shows no significant safety signals.
Collapse
Affiliation(s)
- Bliss Chang
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Luke J Laffin
- Section of Preventive Cardiology and Rehabilitation, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail Code JB1, Cleveland, OH, 44195, USA
- Cleveland Clinic Coordinating Center for Clinical Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ashish Sarraju
- Section of Preventive Cardiology and Rehabilitation, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail Code JB1, Cleveland, OH, 44195, USA
- Cleveland Clinic Coordinating Center for Clinical Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Steven E Nissen
- Section of Preventive Cardiology and Rehabilitation, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail Code JB1, Cleveland, OH, 44195, USA.
- Cleveland Clinic Coordinating Center for Clinical Research, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
7
|
Vaisar T, Babenko I, Horvath KV, Niisuke K, Asztalos BF. Relationships between HDL subpopulation proteome and HDL function in overweight/obese people with and without coronary heart disease. Atherosclerosis 2024; 397:118565. [PMID: 39260003 DOI: 10.1016/j.atherosclerosis.2024.118565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIMS The structure-function relationships of high-density lipoprotein (HDL) subpopulations are not well understood. Our aim was to examine the interrelationships between HDL particle proteome and HDL functionality in subjects with and without coronary heart disease (CHD). METHODS We isolated 5 different HDL subpopulations based on charge, size, and apolipoprotein A1 (APOA1) content from the plasma of 33 overweight/obese CHD patients and 33 age-and body mass index (BMI)-matched CHD-free subjects. We measured the relative molar concentration of HDL-associated proteins by liquid chromatography tandem mass spectrometry (LC-MS/MS) and assessed particle functionality. RESULTS We quantified 110 proteins associated with the 5 APOA1-containing HDL subpopulations. The relative molar concentration of these proteins spanned five orders of magnitude. Only 10 proteins were present in >1% while 73 were present in <0.1% concentration. Only 6 of the 10 most abundant proteins were apolipoproteins. Interestingly, the largest (α-1) and the smallest (preβ-1) HDL particles contained the most diverse proteomes. The protein composition of each HDL subpopulation was altered in CHD cases as compared to controls with the most prominent differences in preβ-1 and α-1 particles. APOA2 concentration was positively correlated with preβ-1 particle functionality (ABCA1-CEC/mg APOA1 in preβ-1) (R2 = 0.42, p = 0.005), while APOE concentration was inversely correlated with large-HDL particle functionality (SRBI-CEC/mg APOA1 in α-1+α-2) (R2 = 0.18, p = 0.01). CONCLUSIONS The protein composition of the different HDL subpopulations was altered differentially in CHD patients. The functionality of the small and large HDL particles correlated with the protein content of APOA2 and APOE, respectively. Our data indicate that distinct particle subspecies and specific particle associated proteins provide new information about the role of HDL in CHD.
Collapse
Affiliation(s)
- Tomas Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Ilona Babenko
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katalin V Horvath
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Katrin Niisuke
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Bela F Asztalos
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
8
|
Hua N, Qin C, Wu F, Wang A, Chen J, Zhang Q. High-density lipoprotein cholesterol level and risk of muscle strength decline and sarcopenia in older adults. Clin Nutr 2024; 43:2289-2295. [PMID: 39217844 DOI: 10.1016/j.clnu.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Recent studies have demonstrated that very high high-density lipoprotein cholesterol (HDL-C) level was paradoxically linked with higher risk of cardiovascular mortality, all-cause mortality, and several age-related diseases. However, whether very high HDL-C level is associated with a higher risk of sarcopenia in older adults remains unclear. We aimed to investigate the association between HDL-C level and the risk of developing sarcopenia and low grip strength over time in older adults. METHODS Participants were from the ongoing China Health and Retirement Longitudinal Study (CHARLS), which includes a nationally representative sample of adults aged ≥45 years and was performed from 2011 to 2020 with follow-ups every two to three years. The current study included 4031 participants aged ≥60 years. Muscle health-related data were collected in waves 2011, 2013, and 2015. Based on HDL-C level at baseline, participants were categorized into five groups: <35 mg/dl, 35-40 mg/dl, 40-60 mg/dl, 60-70 mg/dl and >70 mg/dl. The main outcomes were incident sarcopenia and incident low grip strength over follow-up. Low grip strength and sarcopenia were defined according to the 2019 Consensus by the Asian Working Group for Sarcopenia. Cox proportional-hazard regression was performed to investigate the association between HDL-C level and the risk of developing sarcopenia and low grip strength in older adults. RESULTS The mean age of study sample was 67.3 (SD 6.1) years, and 49.6% were male. During an average 3.7-year follow-up, 409 (10.1%) participants developed sarcopenia and 771 (21.1%) developed low grip strength. Non-linear association was observed between HDL-C level and the hazard of developing sarcopenia and low grip strength. The multivariable model showed that compared to the reference group (40-60 mg/dl), older adults with very high HDL-C level (>70 mg/dl) had a significantly higher risk of developing sarcopenia (HR 1.69, 95% CI 1.28-2.23) and low grip strength (HR 1.23 95% CI 1.00-1.51). Stratified analyses by sex revealed similar association. CONCLUSIONS We present the first longitudinal evidence that very high HDL-C level was associated with a significantly higher risk of muscle strength decline and developing sarcopenia in older adults. It is essential to monitor the muscle health of older adults with very high HDL-C level in clinical practice.
Collapse
Affiliation(s)
- Nan Hua
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengfan Qin
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feitong Wu
- Baker Heart and Diabetes Institute, Melbourne, Australia; Baker Department of Cardiometabolic Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| | - Ange Wang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Chen
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Chen JX, Lu Q, Geng T, Wang Y, Wang Y, Li R, Xia PF, Guo KQ, Yang K, Tong WW, Liu G, Pan A, Liao YF. Differences in HDL-related coronary heart disease risk between individuals with and without diabetes. Atherosclerosis 2024; 397:118553. [PMID: 39186911 DOI: 10.1016/j.atherosclerosis.2024.118553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS High-density lipoprotein (HDL) might lose atheroprotective functions in the presence of diabetes. We sought to examine associations of HDL cholesterol (HDL-C) and HDL particle (HDL-P) subclasses with risk of coronary heart disease (CHD) stratified by diabetes. METHODS We included 393,516 participants (20,691 diabetics and 372,825 nondiabetics) from the UK Biobank. Restricted cubic splines cooperated with Cox model were used to estimate associations of HDL with CHD. RESULTS During a median follow-up of 13.0 years, 3398 (16.4 %) and 24,772 (6.6 %) incident CHD events occurred among diabetics and nondiabetics, respectively. HDL-C showed inverse associations with CHD among nondiabetics, whereas U-shaped associations among diabetics. Compared to individuals with normal HDL-C (40th - 60th percentile, 1.32-1.51 mmol/L), those in the top percentile (95th, >2.16 mmol/L) had lower CHD risks among nondiabetics (Hazard Ratio, 0.79; 95 % confidence interval, 0.73-0.86), but higher risks among diabetics (1.38, 1.02-1.88). As for HDL-P, there were inverted U-shaped associations of very large HDL-P and linearly negative associations of large HDL-P with CHD among nondiabetics; however, linearly positive associations of very large HDL-P and null associations of large HDL were observed among diabetics. L-shaped associations of medium and small HDL-P were found both in diabetics and nondiabetics. CONCLUSIONS Very high HDL-C levels were associated with lower CHD risks in nondiabetics, but higher risks in diabetics. Smaller HDL-P was negatively, whereas very large HDL-P was positively associated with CHD risk in diabetics. These data advance our knowledge about the interactions between HDL and diabetes.
Collapse
Affiliation(s)
- Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuexuan Wang
- Department of Applied Statistics, Johannes Kepler Universität Linz, Linz, Austria
| | - Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Fei Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun-Quan Guo
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Yang
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen-Wei Tong
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Lo J, Melhorn SJ, Kee S, Olerich KLW, Huang A, Yeum D, Beiser A, Seshadri S, De Carli C, Schur EA. Hypothalamic Gliosis is Associated With Multiple Cardiovascular Disease Risk Factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24313914. [PMID: 39371136 PMCID: PMC11451704 DOI: 10.1101/2024.09.19.24313914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Hypothalamic gliosis is mechanistically linked to obesity and insulin resistance in rodent models. We tested cross-sectional associations between radiologic measures of hypothalamic gliosis in humans and clinically relevant cardiovascular disease risk factors, as well as prevalent coronary heart disease. Methods Using brain MRI images from Framingham Heart Study participants (N=867; mean age, 55 years; 55% females), T2 signal intensities were extracted bilaterally from the region of interest in the mediobasal hypothalamus (MBH) and reference regions in the amygdala (AMY) and putamen (PUT). T2 signal ratios were created in which greater relative T2 signal intensity suggests gliosis. The primary measure compared MBH to AMY (MBH/AMY); a positive control ratio (MBH/PUT) also assessed MBH whereas a negative control (PUT/AMY) did not. Outcomes were BMI, HDL-C, LDL-C, fasting triglycerides, and the presence of hypertension (n=449), diabetes mellitus (n=66), metabolic syndrome (n=254), or coronary heart disease (n=25). Dietary risk factors for gliosis were assessed in a prospective analysis. Statistical testing was performed using linear or logistic regression. Results Greater MBH/AMY T2 signal ratios were associated with higher BMI (β = 21.5 [95% CI, 15.4-27.6]; P<0.001), higher fasting triglycerides (β = 1.1 [95% CI, 0.6-1.7]; P<0.001), lower HDL-C (β = -20.8 [95% CI, -40.0 to -1.6]; P=0.034), and presence of hypertension (odds ratio, 1.2 [95% CI, 1.1-1.4]; P=0.0088), and the latter two were independent of BMI. Findings for diabetes mellitus were mixed and attenuated by adjusting for BMI. Metabolic syndrome was associated with MBH/AMY T2 signal ratios (odds ratio, 1.3 [95% CI, 1.1-1.6]; P<0.001). Model results were almost uniformly confirmed by the positive control ratios, whereas negative control ratios that did not test the MBH were unrelated to any outcomes (all P≥0.05). T2 signal ratios were not associated with prevalent coronary heart disease (all P>0.05), but confidence intervals were wide. Self-reported percentages of macronutrient intake were not consistently related to future T2 signal ratios. Conclusions Using a well-established study of cardiovascular disease development, we found evidence linking hypothalamic gliosis to multiple cardiovascular disease risk factors, even independent of adiposity. Our results highlight the need to consider neurologic mechanisms to understand and improve cardiometabolic health.
Collapse
Affiliation(s)
- Justin Lo
- School of Medicine, University of Washington, Seattle, WA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA
| | - Sarah Kee
- Department of Medicine, University of Washington, Seattle, WA
| | - Kelsey LW Olerich
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Washington, Seattle, WA
| | - Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Dabin Yeum
- Department of Medicine, University of Washington, Seattle, WA
| | - Alexa Beiser
- School of Public Health, Boston University, Boston, MA
| | - Sudha Seshadri
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Charles De Carli
- Department of Neurology, University of California, Davis, Davis, CA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Kissinger D. Are bacterial infections a major cause of cardiovascular disease? Front Cardiovasc Med 2024; 11:1389109. [PMID: 39296376 PMCID: PMC11408193 DOI: 10.3389/fcvm.2024.1389109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 09/21/2024] Open
Affiliation(s)
- Dohn Kissinger
- Independent Researcher, El Dorado Hills, CA, United States
| |
Collapse
|
12
|
Kastrati L, Raeisi-Dehkordi H, Llanaj E, Quezada-Pinedo HG, Khatami F, Ahanchi NS, Llane A, Meçani R, Muka T, Ioannidis JPA. Agreement Between Mega-Trials and Smaller Trials: A Systematic Review and Meta-Research Analysis. JAMA Netw Open 2024; 7:e2432296. [PMID: 39240561 PMCID: PMC11380108 DOI: 10.1001/jamanetworkopen.2024.32296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Importance Mega-trials can provide large-scale evidence on important questions. Objective To explore how the results of mega-trials compare with the meta-analysis results of trials with smaller sample sizes. Data Sources ClinicalTrials.gov was searched for mega-trials until January 2023. PubMed was searched until June 2023 for meta-analyses incorporating the results of the eligible mega-trials. Study Selection Mega-trials were eligible if they were noncluster nonvaccine randomized clinical trials, had a sample size over 10 000, and had a peer-reviewed meta-analysis publication presenting results for the primary outcome of the mega-trials and/or all-cause mortality. Data Extraction and Synthesis For each selected meta-analysis, we extracted results of smaller trials and mega-trials included in the summary effect estimate and combined them separately using random effects. These estimates were used to calculate the ratio of odds ratios (ROR) between mega-trials and smaller trials in each meta-analysis. Next, the RORs were combined using random effects. Risk of bias was extracted for each trial included in our analyses (or when not available, assessed only for mega-trials). Data analysis was conducted from January to June 2024. Main Outcomes and Measures The main outcomes were the summary ROR for the primary outcome and all-cause mortality between mega-trials and smaller trials. Sensitivity analyses were performed with respect to the year of publication, masking, weight, type of intervention, and specialty. Results Of 120 mega-trials identified, 41 showed a significant result for the primary outcome and 22 showed a significant result for all-cause mortality. In 35 comparisons of primary outcomes (including 85 point estimates from 69 unique mega-trials and 272 point estimates from smaller trials) and 26 comparisons of all-cause mortality (including 70 point estimates from 65 unique mega-trials and 267 point estimates from smaller trials), no difference existed between the outcomes of the mega-trials and smaller trials for primary outcome (ROR, 1.00; 95% CI, 0.97-1.04) nor for all-cause mortality (ROR, 1.00; 95% CI, 0.97-1.04). For the primary outcomes, smaller trials published before the mega-trials had more favorable results than the mega-trials (ROR, 1.05; 95% CI, 1.01-1.10) and subsequent smaller trials published after the mega-trials (ROR, 1.10; 95% CI, 1.04-1.18). Conclusions and Relevance In this meta-research analysis, meta-analyses of smaller studies showed overall comparable results with mega-trials, but smaller trials published before the mega-trials gave more favorable results than mega-trials. These findings suggest that mega-trials need to be performed more often given the relative low number of mega-trials found, their low significant rates, and the fact that smaller trials published prior to mega-trial report more beneficial results than mega-trials and subsequent smaller trials.
Collapse
Affiliation(s)
- Lum Kastrati
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hamidreza Raeisi-Dehkordi
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Erand Llanaj
- Epistudia, Bern, Switzerland
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Centre for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hugo G Quezada-Pinedo
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Farnaz Khatami
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Community Medicine Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Sadat Ahanchi
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Department of Internal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Renald Meçani
- Epistudia, Bern, Switzerland
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Taulant Muka
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California
- Epistudia, Bern, Switzerland
| | - John P A Ioannidis
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California
- Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California
| |
Collapse
|
13
|
Zhu J, Wang Y, Li M, Huang D, Li S, Li J. Clinical incidence and relevance of incomplete endothelialization in atrial fibrillation patients with Left Atrial Appendage Closure. BMC Cardiovasc Disord 2024; 24:439. [PMID: 39179989 PMCID: PMC11342651 DOI: 10.1186/s12872-024-04113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The objective of this study is to investigate the incidence, potential risk factors, and clinical outcomes of incomplete device endothelialization (IDE) in atrial fibrillation (AF) patients undergoing Watchman left atrial appendage closure (LAAC). METHODS In this study, 68 AF patients who underwent successful implantation of the Watchman device without peri-device leak (PDL) during follow-up were included. The endothelialization status was assessed using Transesophageal echocardiography (TEE) and LAA computed tomography angiography (CTA) at 6 weeks and 6 months post-implantation. Adverse cerebro-cardiac events were documented at one-year follow-up. Baseline characteristics, including age, device sizes, and clinical indicators, were analyzed as potential predictors for IDE. RESULTS IDE was observed in 70.6% and 67.6% of patients at 6 weeks and 6 months after implantation, respectively. Higher levels of high-density lipoprotein cholesterol (HDL-C) [odds ratio (OR): 15.109, 95% confidence interval (CI): 1.637-139.478, p = 0.017 and OR: 11.015, 95% CI: 1.365-88.896, p = 0.024] and lower aspartate aminotransferase (AST) (OR 0.924, 95% CI: 0.865-0.986, p = 0.017 and OR: 0.930, 95% CI: 0.874-0.990, p = 0.023) at baseline were found to be significantly associated with IDE at 6 weeks and 6 months, respectively, although no significant difference in adverse cerebro-cardiac events was noted between incomplete and complete DE groups during 1-year follow-up CONCLUSIONS: IDE is found to be a prevalent occurrence in humans following LAAC. Elevated HDL-C and reduced AST levels are shown to be linked to an increased risk of IDE after LAAC.
Collapse
Affiliation(s)
- Jini Zhu
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanpeng Wang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meifang Li
- Department of Emergency, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Huang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Li
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingbo Li
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Aguchem RN, Okagu IU, Okorigwe EM, Uzoechina JO, Nnemolisa SC, Ezeorba TPC. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci 2024; 351:122823. [PMID: 38866219 DOI: 10.1016/j.lfs.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide, primarily affecting the heart and blood vessels, with atherosclerosis being a major contributing factor to their onset. Epidemiological and clinical studies have linked high levels of low-density lipoprotein (LDL) emanating from distorted cholesterol homeostasis as its major predisposing factor. Cholesterol homeostasis, which involves maintaining the balance in body cholesterol level, is mediated by several proteins or receptors, transcription factors, and even genes, regulating cholesterol influx (through dietary intake or de novo synthesis) and efflux (by their conversion to bile acids). Previous knowledge about CVDs management has evolved around modulating these receptors' activities through synthetic small molecules/antibodies, with limited interest in natural products. The central roles of the cholesteryl ester transfer protein (CETP), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cytochrome P450 family 7 subfamily A member 1 (CYP7A1), among other proteins or receptors, have fostered growing scientific interests in understanding more on their regulatory activities and potential as drug targets. We present up-to-date knowledge on the contributions of CETP, PCSK9, and CYP7A1 toward CVDs, highlighting the clinical successes and failures of small molecules/antibodies to modulate their activities. In recommendation for a new direction to improve cardiovascular health, we have presented recent findings on natural products (including functional food, plant extracts, phytochemicals, bioactive peptides, and therapeutic carbohydrates) that also modulate the activities of CETP, PCSK-9, and CYP7A1, and emphasized the need for more research efforts redirected toward unraveling more on natural products potentials even at clinical trial level for CVD management.
Collapse
Affiliation(s)
- Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Chemistry and Biochemistry, College of Sciences, University of Notre Dame, 46556 Notre Dame, IN, United States
| | - Jude Obiorah Uzoechina
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Biochemistry and Molecular Biology, Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
15
|
Lan NSR, Watts GF. New perspectives on the high-density lipoprotein system and its role in the prevention and treatment of atherosclerotic cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 2024:01266029-990000000-00102. [PMID: 39092802 DOI: 10.1097/med.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW The causal role of high-density lipoprotein (HDL) in atherosclerotic cardiovascular disease (CVD) remains debated. Considering recent evidence, the purpose of this review is to a provide a focused update and new perspectives on HDL and CVD. RECENT FINDINGS A Mendelian randomization study demonstrated an increased risk of CVD when HDL-cholesterol was predominantly transported in larger HDL particles and a decreased risk of CVD when HDL-cholesterol was predominantly transported in smaller HDL particles. Moreover, another Mendelian randomization study demonstrated that concentration and content of medium HDL particles is associated with CVD. A Mendelian randomization study that utilized stratified analyses demonstrated that individuals with HDL-cholesterol 50 mg/dl or less were at increased risk of CVD. Lastly, the AEGIS-II trial demonstrated that CSL112, a human apolipoprotein A-I that increases cholesterol efflux, did not significantly reduce cardiovascular events in patients at very high risk. Exploratory analyses showed that patients treated with CSL112 had numerically lower rates of cardiovascular events. SUMMARY Qualitative markers of HDL may be causally related to CVD. There is a need for ongoing research into HDL therapeutics that promote the biological properties of HDL. The optimal cohort or disease state that will benefit from these therapies needs to be identified.
Collapse
Affiliation(s)
- Nick S R Lan
- Medical School, The University of Western Australia
- Department of Cardiology, Fiona Stanley Hospital
| | - Gerald F Watts
- Medical School, The University of Western Australia
- Departments of Internal Medicine and Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
16
|
Wang Z, Chen T, Wu S, Dong X, Zhang M, Ma G. Impact of the ketogenic diet as a dietary approach on cardiovascular disease risk factors: a meta-analysis of randomized clinical trials. Am J Clin Nutr 2024; 120:294-309. [PMID: 39097343 DOI: 10.1016/j.ajcnut.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD) remain the leading cause of mortality globally, and the scarcity of scientific evidence regarding the impact of ketogenic diets on CVD risk factors necessitates urgent attention and redress. OBJECTIVES This meta-analysis evaluates the impact of the ketogenic diet on CVD risk factors compared with control diets through randomized controlled trials (RCTs). METHODS The study was registered in advance in the PROSPERO database (CRD42023491853). A systematic search was conducted across PubMed, Web of Science, EMBASE, and Cochrane Library to identify relevant RCTs. Fixed and random effects were employed to calculate the mean differences and 95% confidence intervals (CIs) for changes in CVD risk factors pre- and postketogenic diet intervention. RESULTS A total of 27 RCTs with 1278 participants were analyzed. The ketogenic diet intervention presented increase in total cholesterol (mean differences: 0.36 mmol/L; 95% CI: 0.15, 0.57; I2: 85.1%), low-density lipoprotein cholesterol (mean differences: 0.35 mmol/L; 95% CI: 0.20, 0.50; I2: 73.9%) and high-density lipoprotein cholesterol (mean differences: 0.16 mmol/L; 95% CI: 0.09, 0.23; I2: 86.7%) concentrations. Reductions were observed in the triglyceride (mean differences: -0.20 mmol/L; 95% CI: -0.29, -0.11; I2: 72.2%), blood glucose (mean differences: -0.18 mmol/L; 95% CI: -0.33, -0.02; I2: 76.4%), blood insulin (mean differences: -8.32 pmol/L; 95% CI: -14.52, -2.12; I2: 81.5%), diastolic blood pressure (mean differences: -1.41 mmHg; 95% CI: -2.57, -0.26; I2: 49.1%), weight (mean differences: -2.59 kg; 95% CI: -3.90, -1.28; I2: 87.4%), and body mass index (mean differences: -1.59 kg/m2; 95% CI: -2.32, -0.86; I2: 84.5%) concentrations after implementing ketogenic diets. CONCLUSIONS Although the ketogenic diet demonstrates benefits in terms of triglyceride, blood pressure, weight, and glycemic control, its impact on CVD risk factors, especially the elevated total cholesterol and low-density lipoprotein cholesterol concentrations, warrants a cautious approach.
Collapse
Affiliation(s)
- Zixuan Wang
- Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tu Chen
- Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sihai Wu
- Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuesi Dong
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Zhang
- Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Cardiology, Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
17
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
18
|
Davidson MH, Hsieh A, Dicklin MR, Maki KC. The Imperative to Enhance Cost-Effectiveness for Cardiovascular Therapeutic Development. JACC Basic Transl Sci 2024; 9:1029-1040. [PMID: 39297137 PMCID: PMC11405807 DOI: 10.1016/j.jacbts.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 09/21/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Therapeutic agents, such as those that lower low-density lipoprotein cholesterol, have been a critical factor in mitigating CVD event risk and demonstrate the important role that drug discovery plays in reducing morbidity and mortality. However, rapidly rising development costs, diminishing returns, and an increasingly challenging regulatory environment have all contributed to a declining number of cardiovascular (CV) therapeutic agents entering the health care marketplace. For pharmaceutical companies, a traditional cardiovascular outcomes trial (CVOT) can be a major financial burden and impediment to CV agent development. They can take as long as a decade to conduct, delaying potential investment return while carrying risk of failure. For patients, lengthy CVOTs delay drug accessibility. Without cost-effective CVOTs, drug innovation may be compromised, with CV patients bearing the consequences. This paper reviews potential approaches for making CV drug development more cost-effective.
Collapse
Affiliation(s)
- Michael H Davidson
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
- NewAmsterdam Pharma, Naarden, the Netherlands
| | | | - Mary R Dicklin
- Midwest Biomedical Research, Addison, Illinois, and Boca Raton, Florida, USA
| | - Kevin C Maki
- Midwest Biomedical Research, Addison, Illinois, and Boca Raton, Florida, USA
- Indiana University School of Public Health, Bloomington, Indiana, USA
| |
Collapse
|
19
|
Zaman MA, Kalsoom S, Koran W. CSL112 and HDL function hypothesis - a never-ending wait. Expert Rev Clin Pharmacol 2024; 17:633-636. [PMID: 39007673 DOI: 10.1080/17512433.2024.2378763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Affiliation(s)
| | - Sidra Kalsoom
- Cardiology Department, Mercy Health Saint Vincent Medical Center, Toledo, OH, USA
| | - Warsha Koran
- Internal Medicine Department, Conemaugh Health System, Johnstown, PA, USA
| |
Collapse
|
20
|
Chen Q, Abudukeremu A, Li K, Zheng M, Li H, Huang T, Huang C, Wen K, Wang Y, Zhang Y. High-Density Lipoprotein Subclasses and Their Role in the Prevention and Treatment of Cardiovascular Disease: A Narrative Review. Int J Mol Sci 2024; 25:7856. [PMID: 39063097 PMCID: PMC11277419 DOI: 10.3390/ijms25147856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The association between high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease (CVD) is controversial. HDL-C is one content type of high-density lipoprotein (HDL). HDL consists of diverse proteins and lipids and can be classified into different subclasses based on size, shape, charge, and density, and can change dynamically in disease states. Therefore, HDL-C levels alone cannot represent HDLs' cardioprotective role. In this review, we summarized the methods for separating HDL subclasses, the studies on the association between HDL subclasses and cardiovascular risk (CVR), and the impact of lipid-modifying medications and nonpharmacological approaches (exercise training, dietary omega fatty acids, and low-density lipoprotein apheresis) on HDL subclasses. As HDL is a natural nanoplatform, recombinant HDLs (rHDLs) have been used as a delivery system in vivo by loading small interfering RNA, drugs, contrast agents, etc. Therefore, we further reviewed the HDL subclasses used in rHDLs and their advantages and disadvantages. This review would provide recommendations and guidance for future studies on HDL subclasses' cardioprotective roles.
Collapse
Affiliation(s)
- Qiaofei Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Ayiguli Abudukeremu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Kaiwen Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China;
| | - Minglong Zheng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Hongwei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Tongsheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Canxia Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Kexin Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Yue Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; (Q.C.); (A.A.); (M.Z.); (H.L.); (T.H.); (C.H.); (K.W.); (Y.W.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510080, China
| |
Collapse
|
21
|
Ao L, Noordam R, Rensen PCN, van Heemst D, Willems van Dijk K. The role of genetically-influenced phospholipid transfer protein activity in lipoprotein metabolism and coronary artery disease. J Clin Lipidol 2024; 18:e579-e587. [PMID: 38906750 DOI: 10.1016/j.jacl.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Phospholipid transfer protein (PLTP) transfers surface phospholipids between lipoproteins and as such plays a role in lipoprotein metabolism, but with unclear effects on coronary artery disease (CAD) risk. We aimed to investigate the associations of genetically-influenced PLTP activity with 1-H nuclear magnetic resonance (1H-NMR) metabolomic measures and with CAD. Furthermore, using factorial Mendelian randomization (MR), we examined the potential additional effect of genetically-influenced PLTP activity on CAD risk on top of genetically-influenced low-density lipoprotein-cholesterol (LDL-C) lowering. METHODS Using data from UK Biobank, genetic scores for PLTP activity and LDL-C were calculated and dichotomised based on the median, generating four groups with combinations of high/low PLTP activity and high/low LDL-C levels for the factorial MR. Linear and logistic regressions were performed on 168 metabolomic measures (N = 58,514) and CAD (N = 318,734, N-cases=37,552), respectively, with results expressed as β coefficients (in standard deviation units) or odds ratios (ORs) and 95% confidence interval (CI). RESULTS Irrespective of the genetically-influenced LDL-C, genetically-influenced low PLTP activity was associated with a higher high-density lipoprotein (HDL) particle concentration (β [95% CI]: 0.03 [0.01, 0.05]), smaller HDL size (-0.14 [-0.15, -0.12]) and higher triglyceride (TG) concentration (0.04 [0.02, 0.05]), but not with CAD (OR 0.99 [0.97, 1.02]). In factorial MR analyses, genetically-influenced low PLTP activity and genetically-influenced low LDL-C had independent associations with metabolomic measures, and genetically-influenced low PLTP activity did not show an additional effect on CAD risk. CONCLUSIONS Low PLTP activity associates with higher HDL particle concentration, smaller HDL particle size and higher TG concentration, but no association with CAD risk was observed.
Collapse
Affiliation(s)
- Linjun Ao
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands (MMed Ao and Dr Willems van Dijk).
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands (Drs Noordam and van Heemst)
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands (Drs Rensen and Willems van Dijk); Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands (Drs Rensen and Willems van Dijk)
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands (Drs Noordam and van Heemst)
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands (MMed Ao and Dr Willems van Dijk); Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands (Drs Rensen and Willems van Dijk); Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands (Drs Rensen and Willems van Dijk)
| |
Collapse
|
22
|
Sarraju A, Nissen SE. Atherosclerotic plaque stabilization and regression: a review of clinical evidence. Nat Rev Cardiol 2024; 21:487-497. [PMID: 38177454 DOI: 10.1038/s41569-023-00979-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Atherosclerotic plaque results from a complex interplay between lipid deposition, inflammatory changes, cell migration and arterial wall injury. Over the past two decades, clinical trials utilizing invasive arterial imaging modalities, such as intravascular ultrasonography, have shown that reducing levels of atherogenic lipoproteins, mainly serum LDL-cholesterol (LDL-C), to very low levels can safely reduce overall atherosclerotic plaque burden and favourably modify plaque composition. Classically, this outcome has been achieved with intensive statin therapy. Since 2016, newer and potent lipid-lowering strategies, such as proprotein convertase subtilisin-kexin type 9 inhibition, have shown incremental effects on plaque regression and risk of clinical events. Despite maximal reduction in plasma LDL-C levels, considerable residual cardiovascular risk remains in some patients. Therefore, there is a need to study therapeutic approaches that address residual risk beyond LDL-C reduction to promote plaque stabilization or regression. Contemporary imaging modalities, such as coronary computed tomography angiography, enable non-invasive assessment of the overall atherosclerotic plaque burden as well as of certain local plaque characteristics. This technology could allow further study of plaque stabilization and regression using novel therapeutic approaches. Non-invasive plaque assessment might also offer the potential to guide personalized management strategies if validated for this purpose.
Collapse
Affiliation(s)
- Ashish Sarraju
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Steven E Nissen
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
23
|
Dunca D, Chopade S, Gordillo-Marañón M, Hingorani AD, Kuchenbaecker K, Finan C, Schmidt AF. Comparing the effects of CETP in East Asian and European ancestries: a Mendelian randomization study. Nat Commun 2024; 15:5302. [PMID: 38906890 PMCID: PMC11192935 DOI: 10.1038/s41467-024-49109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
CETP inhibitors are a class of lipid-lowering drugs in development for treatment of coronary heart disease (CHD). Genetic studies in East Asian ancestry have interpreted the lack of CETP signal with low-density lipoprotein cholesterol (LDL-C) and lack of drug target Mendelian randomization (MR) effect on CHD as evidence that CETP inhibitors might not be effective in East Asian participants. Capitalizing on recent increases in sample size of East Asian genetic studies, we conducted a drug target MR analysis, scaled to a standard deviation increase in high-density lipoprotein cholesterol. Despite finding evidence for possible neutral effects of lower CETP levels on LDL-C, systolic blood pressure and pulse pressure in East Asians (interaction p-values < 1.6 × 10-3), effects on cardiovascular outcomes were similarly protective in both ancestry groups. In conclusion, on-target inhibition of CETP is anticipated to decrease cardiovascular disease in individuals of both European and East Asian ancestries.
Collapse
Affiliation(s)
- Diana Dunca
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom.
- UCL Genetics Institute, University College London, London, UK.
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - María Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK, London, UK
| | - Karoline Kuchenbaecker
- UCL Genetics Institute, University College London, London, UK
- Division of Psychiatry, University College London, London, UK
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK, London, UK
| | - Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
- UCL British Heart Foundation Research Accelerator, London, UK
- Department of Cardiology, Amsterdam UMC Heart Center, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Zheng W, Zhang J, Jiang Y, Wang S, Yang Z. Overlapping Pattern of the Four Individual Components of Dyslipidemia in Adults: Analysis of Nationally Representative Data. J Clin Med 2024; 13:3624. [PMID: 38930152 PMCID: PMC11204754 DOI: 10.3390/jcm13123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Dyslipidemia is a well-established risk factor for cardiovascular disease (CVD). However, among available drug treatments, only those targeted at lowering LDL-C and consequently TC have demonstrated efficacy in preventing CVD. This is to say that the benefit for those with isolated high TG or low HDL-C is limited. The objective of this study is to examine the overlapping pattern of the four dyslipidemia components in US adult populations, which is important for quantifying the proportion of those who are less likely to benefit from lipid-lowering drugs and for a more precise use of the drug. Methods: A total of 7822 participants aged over 20 with abnormalities in any of the four lipid parameters, excluding those on lipid-lowering medications, were included from the National Health and Nutrition Examination Survey (NHANES) cycles spanning 1999-2000 through 2017-2018. The proportions of different combinations of them were calculated and presented using area-proportional Euler plots. Results: High TC, high LDL-C, high TG, and low HDL-C were seen in 32.8% (95% CI: 31.3%-34.2%), 28.1% (95% CI: 26.6%-29.6%), 26.7% (95% CI: 25.4%-28.0%), and 65.9% (95% CI: 64.0%-67.7%) of the people with dyslipidemia, respectively. The proportions of dyslipidemia cases attributable to "high LDL-C or high TC" (irrespective of HDL-C and TG levels), "normal LDL-C, normal TC, but high TG" (irrespective of HDL-C level), and "normal LDL-C, normal TC, normal TG, but low HDL-C" (i.e., isolated low HDL-C) accounted for 37.5% (95% CI: 35.9%-39.1%), 18.3% (95% CI: 17.2%-19.4%), and 44.2% (95% CI: 42.5%-46.0%), respectively. Conclusions: Some two-thirds of those with dyslipidemia had low HDL-C or high TG but normal LDL-C and normal TC. As these people are less likely to benefit from currently available drug treatments in terms of CVD prevention, it is important to identify other effective strategies or interventions targeted at them in order to achieve more precise and cost-effective management of dyslipidemia.
Collapse
Affiliation(s)
- Wenxiao Zheng
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.Z.); (S.W.)
| | - Jiayue Zhang
- Faculty of Medicine, Macau University of Science of Technology, Macau SAR, China;
| | - Ying Jiang
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310052, China;
| | - Shuting Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.Z.); (S.W.)
| | - Zuyao Yang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.Z.); (S.W.)
| |
Collapse
|
25
|
Reyes-Soffer G, Matveyenko A, Lignos J, Matienzo N, Santos Baez LS, Hernandez-Ono A, Yung L, Nandakumar R, Singh SA, Aikawa M, George R, Ginsberg HN. Effects of Recombinant Human Lecithin Cholesterol Acyltransferase on Lipoprotein Metabolism in Humans. Arterioscler Thromb Vasc Biol 2024; 44:1407-1418. [PMID: 38695168 DOI: 10.1161/atvbaha.123.320387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport. METHODS We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins. RESULTS As expected, recombinant human LCAT treatment significantly increased HDL-cholesterol (34.9 mg/dL; P≤0.001), and this was mostly due to the increase in cholesteryl ester content (33.0 mg/dL; P=0.014). This change did not affect the fractional clearance or production rates of HDL-APOA1 and HDL-APOA2. There were also no significant changes in the metabolism of APOB100-lipoproteins. CONCLUSIONS Our results suggest that an acute increase in LCAT activity drives greater flux of cholesteryl ester through the reverse cholesterol transport pathway without significantly altering the clearance and production of the main HDL proteins and without affecting the metabolism of APOB100-lipoproteins. Long-term elevations of LCAT might, therefore, have beneficial effects on total body cholesterol balance and atherogenesis.
Collapse
Affiliation(s)
- Gissette Reyes-Soffer
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Anastasiya Matveyenko
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - James Lignos
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Nelsa Matienzo
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Leinys S Santos Baez
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Antonio Hernandez-Ono
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Lau Yung
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Renu Nandakumar
- Irving Institute for Clinical and Translations Research (R.N.) and Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine (S.A.S., M.A.), Brigham Women's Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine (S.A.S., M.A.), Brigham Women's Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine (M.A.), Brigham Women's Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine (M.A.), Brigham Women's Hospital, Harvard Medical School, Boston, MA
| | - Richard George
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD (R.G.)
| | - Henry N Ginsberg
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| |
Collapse
|
26
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
27
|
Rehman WU, Yarkoni M, Ilyas MA, Athar F, Javaid M, Ehsan M, Khalid MT, Pasha A, Selma AB, Yarkoni A, Patel K, Sabouni MA, Rehman AU. Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis 2024; 11:152. [PMID: 38786974 PMCID: PMC11122262 DOI: 10.3390/jcdd11050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Atherosclerosis is a multi-factorial disease, and low-density lipoprotein cholesterol (LDL-C) is a critical risk factor in developing atherosclerotic cardiovascular disease (ASCVD). Cholesteryl-ester transfer-protein (CETP), synthesized by the liver, regulates LDL-C and high-density lipoprotein cholesterol (HDL-C) through the bidirectional transfer of lipids. The novelty of CETP inhibitors (CETPis) has granted new focus towards increasing HDL-C, besides lowering LDL-C strategies. To date, five CETPis that are projected to improve lipid profiles, torcetrapib, dalcetrapib, evacetrapib, anacetrapib, and obicetrapib, have reached late-stage clinical development for ASCVD risk reduction. Early trials failed to reduce atherosclerotic cardiovascular occurrences. Given the advent of some recent large-scale clinical trials (ACCELERATE, HPS3/TIMI55-REVEAL Collaborative Group), conducting a meta-analysis is essential to investigate CETPis' efficacy. METHODS We conducted a thorough search of randomized controlled trials (RCTs) that commenced between 2003 and 2023; CETPi versus placebo studies with a ≥6-month follow-up and defined outcomes were eligible. PRIMARY OUTCOMES major adverse cardiovascular events (MACEs), cardiovascular disease (CVD)-related mortality, all-cause mortality. SECONDARY OUTCOMES stroke, revascularization, hospitalization due to acute coronary syndrome, myocardial infarction (MI). RESULTS Nine RCTs revealed that the use of a CETPi significantly reduced CVD-related mortality (RR = 0.89; 95% CI: 0.81-0.98; p = 0.02; I2 = 0%); the same studies also reduced the risk of MI (RR = 0.92; 95% CI: 0.86-0.98; p = 0.01; I2 = 0%), which was primarily attributed to anacetrapib. The use of a CETPi did not reduce the likelihood any other outcomes. CONCLUSIONS Our meta-analysis shows, for the first time, that CETPis are associated with reduced CVD-related mortality and MI.
Collapse
Affiliation(s)
- Wajeeh ur Rehman
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Merav Yarkoni
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Muhammad Abdullah Ilyas
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Farwa Athar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Mahnoor Javaid
- School of Medicine, CMH Lahore Medical College, Lahore 54000, Pakistan;
| | - Muhammad Ehsan
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Muhammad Talha Khalid
- Department of Medicine, United Health Services, Johnson City, NY 13790, USA; (M.T.K.); (A.B.S.)
| | - Ahmed Pasha
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Abdelhamid Ben Selma
- Department of Medicine, United Health Services, Johnson City, NY 13790, USA; (M.T.K.); (A.B.S.)
| | - Alon Yarkoni
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Keyoor Patel
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Mouhamed Amr Sabouni
- Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Afzal ur Rehman
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| |
Collapse
|
28
|
Won KB, Kim HJ, Cho JH, Lee SY, Her AY, Kim BK, Joo HJ, Park Y, Chang K, Song YB, Ahn SG, Suh JW, Cho JR, Kim HS, Kim MH, Lim DS, Kim SW, Jeong YH, Shin ES. Different association of atherogenic index of plasma with the risk of high platelet reactivity according to the presentation of acute myocardial infarction. Sci Rep 2024; 14:10894. [PMID: 38740817 DOI: 10.1038/s41598-024-60999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
This study evaluated the association of atherogenic index of plasma (AIP) with platelet reactivity and clinical outcomes according to acute myocardial infarction (AMI). The composite of 3-year adverse outcomes of all-cause death, myocardial infarction, and cerebrovascular accident was evaluated in 10,735 patients after successful percutaneous coronary intervention with drug-eluting stents. AIP was defined as the base 10 logarithm of the ratio of triglyceride to high-density lipoprotein cholesterol concentration. High platelet reactivity (HPR) was defined as ≥ 252 P2Y12 reactivity unit. An increase of AIP (per-0.1 unit) was related to the decreased risk of HPR [odds ratio (OR) 0.97, 95% confidence interval (CI) 0.96-0.99; P = 0.001] in non-AMI patients, not in AMI patients (OR 0.98, 95% CI 0.96-1.01; P = 0.138). The HPR was associated with the increased risk of composite outcomes in both non-AMI and AMI patients (all-P < 0.05). AIP levels were not independently associated with the risk of composite outcomes in both patients with non-AMI and AMI. In conclusion, an inverse association between AIP and the risk of HPR was observed in patients with non-AMI. This suggests that the association between plasma atherogenicity and platelet reactivity may play a substantial role in the development of AMI.Trial registration: NCT04734028.
Collapse
Affiliation(s)
- Ki-Bum Won
- Division of Cardiology, Chung-Ang University Gwangmyeong Medical Center, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| | - Hyeon Jeong Kim
- Division of Cardiology, Chung-Ang University Gwangmyeong Medical Center, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
- Division of Cardiology, Busan Veterance Hospital, Busan, South Korea
| | - Jun Hwan Cho
- Division of Cardiology, Chung-Ang University Gwangmyeong Medical Center, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| | - Sang Yup Lee
- Division of Cardiology, Chung-Ang University Gwangmyeong Medical Center, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| | - Ae-Young Her
- Division of Cardiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Byeong-Keuk Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Joon Joo
- Division of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Yongwhi Park
- Division of Cardiology, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, South Korea
| | - Kiyuk Chang
- Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Young Bin Song
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Gyun Ahn
- Division of Cardiology, Yonsei University Wonju Severance Christian Hospital, Wonju, South Korea
| | - Jung-Won Suh
- Division of Cardiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jung Rae Cho
- Division of Cardiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyo-Soo Kim
- Division of Cardiology, Seoul National University Hospital, Seoul, South Korea
| | - Moo Hyun Kim
- Division of Cardiology, Dong-A University Hospital, Busan, South Korea
| | - Do-Sun Lim
- Division of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Sang-Wook Kim
- Division of Cardiology, Chung-Ang University Gwangmyeong Medical Center, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| | - Young-Hoon Jeong
- Division of Cardiology, Chung-Ang University Gwangmyeong Medical Center, Chung-Ang University College of Medicine, Gwangmyeong, South Korea
| | - Eun-Seok Shin
- Division of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwando-ro, Dong-gu, Ulsan, 44033, South Korea.
| |
Collapse
|
29
|
Verbrugge FH, Krychtiuk KA. In perspective: CSL112 (apolipoprotein A-I) infusions and cardiovascular outcomes in patients with acute myocardial infarction: the ApoA-I Event Reducing in Ischemic Syndromes II (AEGIS-II) trial. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:362-364. [PMID: 38598460 DOI: 10.1093/ehjacc/zuae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Frederik H Verbrugge
- Centre for Cardiovascular Diseases, University Hospital Brussels, Laarbeeklaan 101, 1090 Jette, Belgium
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Konstantin A Krychtiuk
- Department of Internal Medicine II-Division of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Chen JX, Li Y, Zhang YB, Wang Y, Zhou YF, Geng T, Liu G, Pan A, Liao YF. Nonlinear relationship between high-density lipoprotein cholesterol and cardiovascular disease: an observational and Mendelian randomization analysis. Metabolism 2024; 154:155817. [PMID: 38364900 DOI: 10.1016/j.metabol.2024.155817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Clinical trials and Mendelian randomization (MR) studies reported null effects of high-density lipoprotein cholesterol (HDL-C) on risk of cardiovascular disease (CVD), which might have overlooked a nonlinear causal association. We aimed to investigate the dose-response relationship between circulating HDL-C concentrations and CVD in observational and MR frameworks. METHODS We included 348,636 participants (52,919 CVD cases and 295,717 non-cases) of European ancestry with genetic data from the UK Biobank (UKB) and acquired genome-wide association summary data for HDL-C of Europeans from the Global Lipids Genetics Consortium (GLGC). Observational analyses were conducted in the UKB. Stratified MR analyses were conducted combing genetic data for CVD from UKB and lipids from GLGC. RESULTS Observational analyses showed L-shaped associations of HDL-C with CVD, with no further risk reduction when HDL-C levels exceeded 70 mg/dL. Multivariable MR analyses across entire distribution of HDL-C found no association of HDL-C with CVD, after control of the pleiotropic effect on other lipids and unmeasured pleiotropism. However, in stratified MR analyses, significant inverse associations of HDL-C with CVD were observed in the stratum of participants with HDL-C ≤ 50 mg/dL (odds ratio per unit increase, 0.86; 95 % confidence interval, 0.79-0.94), while null associations were observed in any stratum above 50 mg/dL. CONCLUSIONS Our data suggest a potentially causal inverse association of HDL-C at low levels with CVD risks. These findings advance our knowledge about the role of HDL as a potential target in CVD prevention and therapy.
Collapse
Affiliation(s)
- Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Bo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan-Feng Zhou
- Department of Social Medicine and Health Management, School of Public Health, Guangxi Medical University, Nanning, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
31
|
Nicholls SJ, Nelson AJ. New targets and mechanisms of action for lipid-lowering and anti-inflammatory therapies in atherosclerosis: where does the field stand? Expert Opin Ther Targets 2024; 28:375-384. [PMID: 38815057 DOI: 10.1080/14728222.2024.2362644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Atherosclerotic cardiovascular disease remains a leading cause of morbidity and mortality worldwide, despite widespread use of statins. There is a need to develop additional therapeutic strategies that will complement statins to achieve more effective reductions in cardiovascular risk. AREAS COVERED This review provides a comprehensive summary of current areas of therapeutic development targeting both lipid and inflammatory factors implicated in the pathogenesis of atherosclerosis. In addition to develop of novel approaches that will produce more effective lowering of low-density lipoprotein cholesterol, clinical trials are currently evaluating the potential to target other atherogenic lipid parameters such as triglyceride-rich lipoproteins and Lp(a), in addition to promoting the biological properties of high-density lipoproteins. Targeting inflammation within the vascular wall has emerged as a new frontier in cardiovascular prevention, with early evidence that use of anti-inflammatory agents have the potential to reduce cardiovascular risk. EXPERT OPINION Clinical practice has an increasing array of therapeutic tools to achieve more effective lowering of low-density lipoprotein cholesterol for high-risk patients. In addition, clinical trials have the potential to deliver a range of additional agents to the clinic, that target alternative lipid and inflammatory mediators. This will permit the potential to personalize cardiovascular prevention.
Collapse
Affiliation(s)
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
32
|
Pawlos A, Khoury E, Gaudet D. Emerging therapies for refractory hypercholesterolemia: a narrative review. Future Cardiol 2024; 20:317-334. [PMID: 38985520 PMCID: PMC11318688 DOI: 10.1080/14796678.2024.2367860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Refractory hypercholesterolemia (RH) is characterized by the failure of patients to achieve therapeutic targets for low-density lipoprotein-cholesterol (LDL-C) despite receiving maximal tolerable doses of standard lipid-lowering treatments. It predominantly impacts individuals with familial hypercholesterolemia (FH), thereby elevating the risk of cardiovascular complications. The prevalence of RH is now recognized to be substantially greater than previously thought. This review provides a comprehensive insight into current and emerging therapies for RH patients, including groundbreaking genetic-based therapeutic approaches. The review places emphasis on the dependency of therapies on low-density lipoprotein receptors (LDLRs) and highlights the critical role of considering LDLR activity in RH patients for individualization of the treatment.
Collapse
Affiliation(s)
- Agnieszka Pawlos
- Department of Internal Diseases & Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347, Lodz, Poland
| | - Etienne Khoury
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| |
Collapse
|
33
|
Zhang H, Xu Y, Xu Y. The association of the platelet/high-density lipoprotein cholesterol ratio with self-reported stroke and cardiovascular mortality: a population-based observational study. Lipids Health Dis 2024; 23:121. [PMID: 38659020 PMCID: PMC11040779 DOI: 10.1186/s12944-024-02115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Previous studies have shown that the relationship between high-density lipoprotein cholesterol (HDL-C) and stroke is controversial, and the association between the platelet/high-density lipoprotein cholesterol ratio (PHR), a novel marker for inflammation and hypercoagulability states, and stroke has not been established. METHODS This study presents an analysis of cross-sectional data from the 2005-2018 National Health and Nutrition Examination Survey (NHANES). Stroke history, HDL-C levels, and platelet counts were obtained during cross-sectional surveys. The PHR was calculated as the ratio of the number of platelets to HDL-C concentration. Weighted logistic regression was used to assess the associations of HDL-C and the PHR with stroke. Nonlinearity of this relationship was determined through restricted cubic splines (RCSs) and two-piecewise linear regression for identifying inflection points. Furthermore, Cox regression was utilized to prospectively analyze the associations of the PHR and HDL-C concentration with cardiovascular disease (CVD) mortality in stroke survivors. RESULTS A total of 27,301 eligible participants were included in the study; mean age, 47.28 years and 50.57% were female, among whom 1,040 had a history of stroke. After full adjustment, the odds ratio (OR) of stroke associated with a per standard deviation (SD) increase in the PHR was estimated at 1.13 (95% confidence interval (CI): 1.03 - 1.24, P = 0.01), and the OR of stroke associated with a per SD increase in HDL-C was 0.95 (95% CI: 0.86-1.05, P = 0.30). The RCS indicated a nonlinear relationship for both variables (PPHR = 0.018 and PHDL-C = 0.003), and further piecewise linear regression identified inflection points at PHR = 223.684 and HDL-C = 1.4 mmol/L. Segmental regression indicated that in the PHR ≥ 223.684 segment, the estimated OR of stroke associated with a per-SD increase in the PHR was 1.20 (95% CI: 1.09 - 1.31, P < 0.001), while the association of stroke with HDL-C was not significant before or after the inflection point (P > 0.05). Furthermore, Cox regression and RCS showed that a per-SD increase in the PHR was linearly associated with a greater risk of CVD mortality among stroke survivors (HR: 1.14, 95% CI: 1.06 - 1.22, P < 0.001; nonlinear, P = 0.956), while HDL-C was not significantly associated with CVD mortality. CONCLUSION The association between the PHR and stroke incidence exhibited a significant threshold effect, with an inflection point at 223.684. A PHR exceeding 223.684 was positively associated with stroke, while the association between HDL-C and stroke was not significant. Additionally, the PHR was positively and linearly associated with CVD mortality among stroke survivors.
Collapse
Affiliation(s)
- Huifeng Zhang
- Department of Cardiovascular, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24, Jinghua Road, Jianxi District, Luoyang City, Henan Province, China.
| | - Ying Xu
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yaying Xu
- Department of Endocrinology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
34
|
Yu Z, Yang H, Shou B, Cheng Z, Jiang C, Ye Y, Xu J. Remnant cholesterol and the risk of carotid plaque in hypertension: results from a community-based screening among old adults in Hangzhou, China. Sci Rep 2024; 14:8407. [PMID: 38600230 PMCID: PMC11006856 DOI: 10.1038/s41598-024-58484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Elevated remnant cholesterol (RC) is considered a risk factor for atherosclerotic cardiovascular disease, but the evidence on this association applies to the Chinese population with hypertension is limited. We aimed to explore the association between RC levels and carotid plaque in old adults with hypertension. 8523 hypertensive patients aged ≥ 60 years with serum lipids and carotid ultrasonography data were included in this community-based screening. Fasting RC was calculated as total cholesterol minus high-density lipoprotein cholesterol minus low-density lipoprotein cholesterol (LDLC). The associations of RC levels with carotid plaque risk were evaluated using Logistic regression and restricted cubic spline models. Carotid plaque was screened in 4821 (56.56%) subjects. After multivariable-adjusted, RC was significantly related to carotid plaque [Odd ratio (OR)] = 1.043 per 0.1 mmol/L increase, 95% confidence interval (CI): 1.030-1.056). The highest versus the lowest quartile of RC was 1.928 (1.673-2.223) for carotid plaque. A nonlinear association was found between serum RC levels and the risk of carotid plaque (P for nonlinearity < 0.001). Moreover, an RC > 0.78 mmol/L differentiated patients at a higher risk of carotid plaque compared to those at lower concentrations, regardless of whether LDLC was on target at 2.59 mmol/L. In old adults with hypertension, elevated RC was positively associated with carotid plaque, independent of LDLC and other conventional risk factors.
Collapse
Affiliation(s)
- Zhecong Yu
- Institute for Chronic Non-Communicable Disease Control and Prevention, Hangzhou Center for Disease Control and Prevention, Hangzhou, 310000, People's Republic of China
| | - Haifeng Yang
- Fuyang Center for Disease Control and Prevention, Hangzhou, 311400, People's Republic of China
| | - Biqi Shou
- Fuyang Center for Disease Control and Prevention, Hangzhou, 311400, People's Republic of China
| | - Zongxue Cheng
- Institute for Chronic Non-Communicable Disease Control and Prevention, Hangzhou Center for Disease Control and Prevention, Hangzhou, 310000, People's Republic of China
| | - Caixia Jiang
- Institute for Chronic Non-Communicable Disease Control and Prevention, Hangzhou Center for Disease Control and Prevention, Hangzhou, 310000, People's Republic of China
| | - Yang Ye
- Tonglu Center for Disease Control and Prevention, Hangzhou, 311400, People's Republic of China
| | - Jue Xu
- Institute for Chronic Non-Communicable Disease Control and Prevention, Hangzhou Center for Disease Control and Prevention, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
35
|
Ding Y, Yao M, Liu J, Fu W, Zhu X, He Y, Ma Q, Zhang C, Yin J. Association between human blood metabolome and the risk of pre-eclampsia. Hypertens Res 2024; 47:1063-1072. [PMID: 38332312 DOI: 10.1038/s41440-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Pre-eclampsia is a complex multi-system pregnancy disorder with limited treatment options. Therefore, we aimed to screen for metabolites that have causal associations with preeclampsia and to predict target-mediated side effects based on Mendelian randomization (MR) analysis. A two-sample MR analysis was firstly conducted to systematically assess causal associations of blood metabolites with pre-eclampsia, by using metabolites related large-scale genome-wide association studies (GWASs) involving 147,827 European participants, as well as GWASs summary data about pre-eclampsia from the FinnGen consortium R8 release data that included 182,035 Finnish adult female subjects (5922 cases and 176,113 controls). Subsequently, a phenome-wide MR (Phe-MR) analysis was applied to assess the potential on-target side effects associated with hypothetical interventions that reduced the burden of pre-eclampsia by targeting identified metabolites. Four metabolites were identified as potential causal mediators for pre-eclampsia by using the inverse-variance weighted method, including cholesterol in large HDL (L-HDL-C) [odds ratio (OR): 0.88; 95% confidence interval (95% CI): 0.83-0.93; P = 2.14 × 10-5), cholesteryl esters in large HDL (L-HDL-CE) (OR: 0.88; 95% CI: 0.83-0.94; P = 5.93 × 10-5), free cholesterol in very large HDL (XL-HDL-FC) (OR: 0.88; 95% CI: 0.82-0.94; P = 1.10 × 10-4) and free cholesterol in large HDL (L-HDL-FC) (OR: 0.89; 95% CI: 0.84-0.95; P = 1.45 × 10-4). Phe-MR analysis showed that targeting L-HDL-CE had beneficial effects on the risk of 24 diseases from seven disease chapters. Based on this systematic MR analysis, L-HDL-C, L-HDL-CE, XL-HDL-FC, and L-HDL-FC were inversely associated with the risk of pre-eclampsia. Interestingly, L-HDL-CE may be a promising drug target for preventing pre-eclampsia with no predicted detrimental side effects. The study consists of a two-stage design that conducts MR at both stages. First, we assessed the causality for the associations between 194 blood metabolites and the risk of pre-eclampsia. Second, we investigated a broad spectrum of side effects associated with the targeting identified metabolites in 693 non-preeclampsia diseases. Our results suggested that Cholesteryl esters in large HDL may serve as a promising drug target for the prevention or treatment of pre-eclampsia with no predicted detrimental side effects.
Collapse
Affiliation(s)
- Yaling Ding
- Department of Epidemiology and Health Statistic, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mengxin Yao
- Department of Epidemiology and Health Statistic, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiafeng Liu
- Department of Epidemiology and Health Statistic, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wanyi Fu
- Department of Epidemiology and Health Statistic, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaoyan Zhu
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, China
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yelin He
- Department of Epidemiology and Health Statistic, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qiuping Ma
- Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, 58 Changsheng Road, Suzhou, Jiangsu, 215413, China
| | - Chunhua Zhang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215000, China
| | - Jieyun Yin
- Department of Epidemiology and Health Statistic, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
36
|
Ranasinghe S, Cui Y, Muhyieddeen A, Obrutu O, Wei J, Gulati M, Bittner V, Reis S, Handberg E, Pepine CJ, Merz CNB. Elevated high-density lipoprotein cholesterol and adverse outcomes in women with symptoms of ischemic heart disease. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100376. [PMID: 38510502 PMCID: PMC10946010 DOI: 10.1016/j.ahjo.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Background Emerging data in the general population and those with coronary artery disease demonstrate higher risk of adverse outcomes with high (>70 mg/dL) HDL-C levels. There are limited data on the risk of adverse outcomes in women with suspected ischemic heart disease. Objective To investigate relationships between high (>70 mg/dL), average (50-70 mg/dL), and low (<50 mg/dL) HDL-C levels with major adverse cardiac events (MACE) (death, myocardial infarction, stroke, and heart failure hospitalization), and all-cause mortality in women referred for coronary angiography for suspected myocardial ischemia. Methods A total of 607 women enrolled in the Women's Ischemia Syndrome Evaluation (WISE) original cohort (NCT00000554) with available HDL-C values were included in this analysis. Associations between HDL-C level and outcomes were evaluated using both multivariate Cox proportional hazard regression and spline regression analysis. Results The mean age was 59 ± 12 years, 62 % had 3 or more cardiac risk factors, and 66 (10.9 %) had a high HDL-C. High and low HDL-C were both associated with higher MACE risk compared to average HDL-C after adjusting for demographic and clinical characteristics (HR 1.80, CI 1.03-3.14, p = 0.038; HR 1.63, CI 1.09-2.42, p = 0.016, respectively). Similarly, high, and low HDL-C were associated with higher risk of all-cause mortality (HR 3.64, CI 1.84-7.20, p < 0.001; HR 2.81, CI 1.67-4.71, p < 0.001, respectively). Conclusions High and low HDL-C levels are both independently associated with higher MACE and all-cause mortality in women with suspected ischemia undergoing coronary angiography.
Collapse
Affiliation(s)
- Sachini Ranasinghe
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Yujie Cui
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Amer Muhyieddeen
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Okezi Obrutu
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Janet Wei
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Martha Gulati
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Vera Bittner
- Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steven Reis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eileen Handberg
- Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Carl J. Pepine
- Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - C. Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| |
Collapse
|
37
|
Chen XF, Xiang YF, Cai XL, Chen JH, Lin XQ, Lin BT, Liang WJ, Zhou GY, Guo YS, Lin KY. A V-shaped association between high-density lipoprotein cholesterol levels and poor outcomes in patients after percutaneous coronary intervention. Int J Cardiol 2024; 400:131773. [PMID: 38211670 DOI: 10.1016/j.ijcard.2024.131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND High density lipoprotein cholesterol (HDL-C) is considered as "good cholesterol". Recent evidence suggests that a high HDL-C level may increase the risk of poor outcomes in some populations. PURPOSE To investigate the association between HDL-C levels and poor outcomes in patients after percutaneous coronary intervention (PCI). METHODS Patients undergoing PCI during January 2012 and December 2018 were consecutively recruited and divided into three groups with different HDL-C levels: HDL-C ≤ 25 mg/dL, 25 < HDL-C ≤ 60 mg/dL, HDL-C > 60 mg/dL by the restricted cubic spline (RCS) analysis and assessed for all-cause mortality (ACM). The association between HDL-C levels and poor outcomes was assessed by multivariable cox regression analysis. RESULTS The patients were followed with a median duration of 4 years. Of the 7284 participants, 727 all-cause deaths and 334 cardiovascular deaths occurred. A V-shaped association of HDL-C with the prognosis was observed, patients with either excessively low or high HDL-C levels reporting a higher risk than those with midrange values. After adjustment for confounding factors, the former exhibited a higher cumulative rate of ACM and cardiovascular mortality (CM) than the latter [low HDL-C: for ACM, hazard ratio (HR), 1.96; 95%CI, 1.41, 2.73, P < 0.001; for CM, HR, 1.66; 95%CI, 1.03, 2.67; P = 0.037; high HDL-C: for ACM, HR, 1.73; 95%CI, 1.29, 2.32, P < 0.001; for CM, HR, 1.73; 95%CI, 1.16, 2.58; P = 0.007]. CONCLUSION HDL-C levels display a V-shaped association with poor outcomes in patients after PCI, with excessively high or low HDL-C suggesting a higher mortality risk. An optimal HDL-C level may fall in the range of 25-60 mg/dL.
Collapse
Affiliation(s)
- Xiao-Fang Chen
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
| | - Yi-Fei Xiang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
| | - Xiao-Ling Cai
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
| | - Jun-Han Chen
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
| | - Xue-Qin Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
| | - Bi-Ting Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
| | - Wen-Jia Liang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
| | - Geng-Yu Zhou
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
| | - Yan-Song Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China.
| | - Kai-Yang Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China.
| |
Collapse
|
38
|
Agarwal N, St. John J, Van Iterson EH, Laffin LJ. Association of pulse pressure with death, myocardial infarction, and stroke among cardiovascular outcome trial participants. Am J Prev Cardiol 2024; 17:100623. [PMID: 38144432 PMCID: PMC10746405 DOI: 10.1016/j.ajpc.2023.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Background Prior evidence demonstrates that pulse pressure (PP), a surrogate marker of arterial stiffness, is an independent risk factor for mortality and major adverse cardiovascular (CV) events. Objectives The study aimed to identify the association of PP with death, myocardial infarction, and stroke among participants enrolled in large CV outcome clinical trials and determine if this association was impacted by pre-existing CV disease, or specific CV risk factors. Methods A total of 65,382 individuals, ages 19 to 98 years, that were enrolled in one of five CV outcome trials were analyzed. Baseline demographics, history, blood pressures, and medications were collected. Univariate and multivariable analyses were conducted to explore temporal patterns, risks, and adjusted survival rates. Results Mean baseline PP was 52 ± 12 mmHg. For every 10 mmHg increase in PP, there was an increased risk of death, stroke, or myocardial infarction (hazard ratio (HR) 1.11, 95 % CI 1.08 to 1.14, p < 0.001). Similarly, a PP ≥ 60 mmHg demonstrated an HR of 1.27 (95 % CI 1.19 to 1.36, p < 0.001) compared with PP < 60 mmHg. A similar association existed for all subgroups analyzed except for participants with a history of stroke where increasing PP did not increase risk (HR 1.02, 95 % CI 0.95 to 1.10, p = 0.53). PP was a better predictor of adverse outcomes when compared to both systolic and diastolic blood pressures using the AIC and C-index. Conclusions Among participants enrolled in CV outcome trials, baseline PP is associated with increased risk of death, myocardial infarction, and stroke for those with pre-existing CV disease and risk factors with the exception of a prior history of stroke.
Collapse
Affiliation(s)
- Neel Agarwal
- Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Julie St. John
- Cleveland Clinic, C5Research, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Erik H. Van Iterson
- Cleveland Clinic, Section of Preventive Cardiology and Rehabilitation, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Luke J. Laffin
- Cleveland Clinic, C5Research, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Cleveland Clinic, Section of Preventive Cardiology and Rehabilitation, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
39
|
Liu R, Cheng W. Association between HDL-C and intensive blood pressure control in patients with hypertension: A post-hoc analysis of SPRINT. J Clin Hypertens (Greenwich) 2024; 26:225-234. [PMID: 38318688 PMCID: PMC10918727 DOI: 10.1111/jch.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024]
Abstract
Previous studies in patients with hypertension have demonstrated that there is a U-shaped association between HDL-C (high-density lipoprotein cholesterol) and the risk of cardiovascular events in male patients with hypertension. However, to the best of our knowledge, the relationship between HDL-C and intensive blood pressure control in specific cardiovascular events has never been investigated. To fill this knowledge gap, the authors analyzed the relationship between HDL-C levels and cardiovascular events in hypertensive patients within the Systolic Blood Pressure Intervention Trial (SPRINT). The SPRINT evaluated the impact of intensive blood pressure control (systolic blood pressure < 120 mm Hg) versus standard blood pressure control (systolic blood pressure < 140 mm Hg). The Cox proportional risk regression was used to investigate the association between different HDL-C status and clinical outcomes. Additional stratified analyzes were performed to evaluate the robustness of sex difference. A total of 9323 participants (6016 [64.53%] males and 3307 [35.47%] females) with hypertension from the SPRINT research were included in the analysis. The median follow-up period was 3.26 years. Our population was divided into five groups based on the HDL-C plasma levels: HDL-C < 30 mg/dL, HDL-C between 30 and 40 mg/dL, HDL-C between 40 and 60 mg/dL, HDL-C between 60 and 80 mg/dL and HDL-C > 80 mg/dL. Sensitivity analyzes showed that in the SPRINT, women in the HDL-C high population had a higher risk of mortality from all causes than men. In this cohort study, results suggest that patients with HDL-C levels higher than 80 mg/dL had lower risk of SPRINT primary outcome, cardiovascular death, and stroke, but this study tested association, not causation. HDL-C levels were associated with composite cardiovascular outcomes in male but not female patients. Our results demonstrated that in patients with hypertension, the association between HDL-C and risk of cardiovascular events is L-shaped.
Collapse
Affiliation(s)
- Rufei Liu
- Hypertension CenterBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Wenli Cheng
- Hypertension CenterBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
40
|
Abstract
The link between elevated LDL-C, low HDL-C, elevated triglycerides, and an increased risk for cardiovascular disease has solidified over the past decades. Concomitantly, the number of agents to treat dyslipidemia proliferated in clinical trials, proving or refuting their clinical efficacy. Many of these agents' role in reducing cardiovascular disease morbidity and mortality is now clear. Recently, there has been an explosion in emerging therapeutics for the primary and secondary prevention of cardiovascular disease through the control of dyslipidemia. This article reviews standard, new, and emerging treatments for hyperlipidemia.
Collapse
Affiliation(s)
- Brian V Reamy
- Academic Affairs, Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Brian Ford
- Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Charles Goodman
- Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
41
|
Basha A, Ramakrishnan S. Lipid clinical trials with special reference to Indian population. Indian Heart J 2024; 76 Suppl 1:S130-S137. [PMID: 38387551 PMCID: PMC11019330 DOI: 10.1016/j.ihj.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Indians have a pattern of atherogenic dyslipidaemia characterised by not so high LDL-C but elevated small, dense LDL-C, elevated triglyceride levels and low HDL-C levels. In addition, different lipid-lowering drugs exhibit pharmacokinetic variability in Indians, which may have implications on the optimum doses required to achieve the desired LDL-C levels. Currently the management of dyslipidaemia in Indians are based on the landmark trials, which largely included western population. This review focusses on major clinical trials of lipid lowering drugs with special reference to the Indian population.
Collapse
Affiliation(s)
- Aseem Basha
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
42
|
Yang R, Wu S, Zhao Z, Deng X, Deng Q, Wang D, Liu Q. Causal association between lipoproteins and risk of coronary artery disease-a systematic review and meta-analysis of Mendelian randomization studies. Clin Res Cardiol 2024:10.1007/s00392-024-02420-7. [PMID: 38407584 DOI: 10.1007/s00392-024-02420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE To systematically evaluate the causal effect of lipoproteins to the risk of coronary artery disease (CAD) by systematic review and meta-analysis of the associated Mendelian randomization (MR) studies. METHODS This systematic review was registered in PROSPERO (ID CRD42023465430). Searches from the databases (e.g., PubMed, Embase, Cochrane, Web of Science) and non-database sources to collect MR studies. The search time frame was from the database inception to August 2023. After data extraction, quality evaluation was performed, and the meta-analysis with bias evaluation was carried out with RevMan software. RESULTS A total of 5,828,409 participants from 21 records were included. Quality and bias assessment was performed by evaluating the internal three assumptions of MR studies. Meta-analysis for the causal association between non-HDL lipoproteins and CAD showed a significantly positive association between LDL and CAD (OR 1.37, 95% CI 1.26-1.49; P < 0.001, I2 = 95%), apoB and CAD (OR 1.38, 95% CI 1.11-1.71; P = 0.003, I2 = 98%), and Lp(a) and CAD (OR 1.21, 95% CI 1.12-1.31; P < 0.001, I2 = 99%). Interestingly, although there was no statistical significance in the association between VLDL/apoA1 and CAD (both P > 0.05), the pooled non-HDL lipoproteins showed a significantly positive association with CAD (OR 1.28, 95% CI 1.22-1.34; P < 0.001, I2 = 99%). For the HDL lipoproteins, the pooled OR showed a significantly negative association with CAD (OR 0.84, 95% CI 0.72-0.98; P = 0.002, I2 = 72%). However, the protective effect of HDL on CAD diminished when analyzed together with apoA1 and/or apoB (both P > 0.05). The funnel plot did not show serious publication bias, and sensitivity analysis performed relatively well robustness of the causal association of LDL, apoB, Lp(a), and total cholesterol with CAD. CONCLUSION The present meta-analysis suggests an overall effect of causal association between lipoproteins and CAD. Most of the non-HDL lipoproteins (LDL, apoB, Lp(a)) promote CAD, while the protective effect of HDL in CAD still needs to be verified in the future.
Collapse
Affiliation(s)
- Rongyuan Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Shirong Wu
- The Second Clinical School of Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Zhen Zhao
- The Second Clinical School of Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Xuanxuan Deng
- The Second Clinical School of Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Qiuying Deng
- The Second Clinical School of Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Dawei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, People's Republic of China
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, People's Republic of China.
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, #111 Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
43
|
Agnello F, Ingala S, Laterra G, Scalia L, Barbanti M. Novel and Emerging LDL-C Lowering Strategies: A New Era of Dyslipidemia Management. J Clin Med 2024; 13:1251. [PMID: 38592091 PMCID: PMC10931739 DOI: 10.3390/jcm13051251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) represents a major global health challenge, significantly contributing to mortality rates. This chronic inflammatory condition affecting blood vessels is intricately linked to hypercholesterolemia, with elevated levels of low-density lipoprotein cholesterol (LDL-C) recognized as a central and modifiable risk factor. The effectiveness of lipid-lowering therapy (LLT) in mitigating ASCVD risk is well established, with studies revealing a substantial reduction in major ischemic events correlating with LDL-C reduction. While statins, often combined with ezetimibe, remain fundamental in dyslipidemia management, a significant proportion of patients on statin therapy continue to experience cardiovascular events. Recent pharmacological advancements, driven by a deeper understanding of atherogenesis, have unveiled novel therapeutic targets and potent drugs. Notably, agents like bempedoic acid and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (evolocumab, alirocumab, inclisiran) have emerged as effective options to intensify LLT and achieve LDL-C goals, addressing limitations associated with statins, such as myopathy. Molecular insights into alternative pathways have spurred the investigation of emerging agents, offering promising perspectives for novel medications with efficacy comparable to established treatments, associated with advantages in cost and administration. This review provides a comprehensive overview of the evolving landscape of lipid-lowering strategies, highlighting the progress made in addressing ASCVD risk and the potential of upcoming therapies to further optimize cardiovascular prevention.
Collapse
Affiliation(s)
- Federica Agnello
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
| | - Salvatore Ingala
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
| | - Giulia Laterra
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
| | - Lorenzo Scalia
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
| | - Marco Barbanti
- Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, 94100 Enna, Italy; (F.A.); (S.I.); (L.S.)
- Faculty of Medicine and Surgery, Università degli Studi di Enna “Kore”, 94100 Enna, Italy
| |
Collapse
|
44
|
Delfin C, Dragan I, Kuznetsov D, Tajes JF, Smit F, Coral DE, Farzaneh A, Haugg A, Hungele A, Niknejad A, Hall C, Jacobs D, Marek D, Fraser DP, Thuillier D, Ahmadizar F, Mehl F, Pattou F, Burdet F, Hawkes G, Arts ICW, Blanch J, Van Soest J, Fernández-Real JM, Boehl J, Fink K, van Greevenbroek MMJ, Kavousi M, Minten M, Prinz N, Ipsen N, Franks PW, Ramos R, Holl RW, Horban S, Duarte-Salles T, Tran VDT, Raverdy V, Leal Y, Lenart A, Pearson E, Sparsø T, Giordano GN, Ioannidis V, Soh K, Frayling TM, Le Roux CW, Ibberson M. A Federated Database for Obesity Research: An IMI-SOPHIA Study. Life (Basel) 2024; 14:262. [PMID: 38398771 PMCID: PMC10890572 DOI: 10.3390/life14020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity is considered by many as a lifestyle choice rather than a chronic progressive disease. The Innovative Medicines Initiative (IMI) SOPHIA (Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy) project is part of a momentum shift aiming to provide better tools for the stratification of people with obesity according to disease risk and treatment response. One of the challenges to achieving these goals is that many clinical cohorts are siloed, limiting the potential of combined data for biomarker discovery. In SOPHIA, we have addressed this challenge by setting up a federated database building on open-source DataSHIELD technology. The database currently federates 16 cohorts that are accessible via a central gateway. The database is multi-modal, including research studies, clinical trials, and routine health data, and is accessed using the R statistical programming environment where statistical and machine learning analyses can be performed at a distance without any disclosure of patient-level data. We demonstrate the use of the database by providing a proof-of-concept analysis, performing a federated linear model of BMI and systolic blood pressure, pooling all data from 16 studies virtually without any analyst seeing individual patient-level data. This analysis provided similar point estimates compared to a meta-analysis of the 16 individual studies. Our approach provides a benchmark for reproducible, safe federated analyses across multiple study types provided by multiple stakeholders.
Collapse
Affiliation(s)
| | - Iulian Dragan
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Dmitry Kuznetsov
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Juan Fernandez Tajes
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Jan Waldenströmsgata 35, SE-20502 Malmö, Sweden
| | - Femke Smit
- Maastricht Center for Systems Biology, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Daniel E. Coral
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Jan Waldenströmsgata 35, SE-20502 Malmö, Sweden
| | - Ali Farzaneh
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - André Haugg
- Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | - Andreas Hungele
- Institute of Epidemiology and Medical Biometry, CAQM, University of Ulm, 89081 Ulm, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anne Niknejad
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Christopher Hall
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Daan Jacobs
- Nederlandse Obesitas Kliniek, Huis Ter Heide, 3712 BA Utrecht, The Netherlands
| | - Diana Marek
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Diane P. Fraser
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Dorothee Thuillier
- Univ Lille, Inserm, CHU Lille, Pasteur Institute Lille, U1190 Translational Research for Diabetes, European Genomic Institute of Diabetes, 59000 Lille, France; (D.T.)
| | - Fariba Ahmadizar
- Data Science and Biostatistics Department, Julius Global Health, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Francois Pattou
- Univ Lille, Inserm, CHU Lille, Pasteur Institute Lille, U1190 Translational Research for Diabetes, European Genomic Institute of Diabetes, 59000 Lille, France; (D.T.)
| | - Frederic Burdet
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Gareth Hawkes
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Ilja C. W. Arts
- Maastricht Center for Systems Biology, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Jordi Blanch
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
- ISV-Girona Research Group, Research Unit in Primary Care, Primary Care Services, Catalan Institute of Health (ICS), 08908 Barcelona, Spain
| | - Johan Van Soest
- Brightlands Institute for Smart Society (BISS), Faculty of Science and Engineering, Maastricht University, 6229 EN Maastricht, The Netherlands
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Center, 6229 EN Maastricht, The Netherlands
| | - José-Manuel Fernández-Real
- Nutrition, Eumetabolism and Health Group, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Av. França 30, 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Av. França, s/n, 17007 Girona, Spain
| | - Juergen Boehl
- Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | - Katharina Fink
- Institute of Epidemiology and Medical Biometry, CAQM, University of Ulm, 89081 Ulm, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Marleen M. J. van Greevenbroek
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, 6229 EN Maastricht, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Michiel Minten
- Maastricht Center for Systems Biology, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Nicole Prinz
- Institute of Epidemiology and Medical Biometry, CAQM, University of Ulm, 89081 Ulm, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Jan Waldenströmsgata 35, SE-20502 Malmö, Sweden
| | - Rafael Ramos
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Department of Medical Informatics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
- Research in Vascular Health Group, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, 17190 Salt, Spain
| | - Reinhard W. Holl
- Institute of Epidemiology and Medical Biometry, CAQM, University of Ulm, 89081 Ulm, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Scott Horban
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
- Department of Medical Informatics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Violeta Raverdy
- Univ Lille, Inserm, CHU Lille, Pasteur Institute Lille, U1190 Translational Research for Diabetes, European Genomic Institute of Diabetes, 59000 Lille, France; (D.T.)
| | - Yenny Leal
- Nutrition, Eumetabolism and Health Group, Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), Av. França 30, 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Av. França, s/n, 17007 Girona, Spain
| | | | - Ewan Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | | | - Giuseppe N. Giordano
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Jan Waldenströmsgata 35, SE-20502 Malmö, Sweden
| | - Vassilios Ioannidis
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Keng Soh
- Novo Nordisk A/S, 2860 Søborg, Denmark
| | - Timothy M. Frayling
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Carel W. Le Roux
- Diabetes Complications Research Centre, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Kastelein JJP, Hsieh A, Dicklin MR, Ditmarsch M, Davidson MH. Obicetrapib: Reversing the Tide of CETP Inhibitor Disappointments. Curr Atheroscler Rep 2024; 26:35-44. [PMID: 38133847 PMCID: PMC10838241 DOI: 10.1007/s11883-023-01184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW To discuss the history of cardiovascular outcomes trials of cholesteryl ester transfer protein (CETP) inhibitors and to describe obicetrapib, a next-generation, oral, once-daily, low-dose CETP inhibitor in late-stage development for dyslipidemia and atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS Phase 1 and 2 trials have evaluated the safety and lipid/lipoprotein effects of obicetrapib as monotherapy, in conjunction with statins, on top of high-intensity statins (HIS), and with ezetimibe on top of HIS. In ROSE2, 10 mg obicetrapib monotherapy and combined with 10 mg ezetimibe, each on top of HIS, significantly reduced low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B, total LDL particles, small LDL particles, small, dense LDL-C, and lipoprotein (a), and increased HDL-C. Phase 3 pivotal registration trials including a cardiovascular outcomes trial are underway. Obicetrapib has an excellent safety and tolerability profile and robustly lowers atherogenic lipoproteins and raises HDL-C. As such, obicetrapib may be a promising agent for the treatment of ASCVD.
Collapse
|
46
|
Trius-Soler M, Mukamal KJ, Guasch-Ferré M. High-density lipoprotein functionality, cardiovascular health, and patterns of alcohol consumption: new insights and future perspectives. Curr Opin Lipidol 2024; 35:25-32. [PMID: 37788374 DOI: 10.1097/mol.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases (CVD) pose a significant public health challenge, contributing to 422 million disability-adjusted life years in 2021. The role of high-density lipoproteins (HDL) and alcohol consumption, one of their major modifiable determinants, remains controversial. The objective of this review is to provide a comprehensive narrative overview of HDL functionality and its predictive value for CVD in relation to patterns of alcohol consumption. RECENT FINDINGS HDL phenotypes beyond HDL-cholesterol (HDL-c) such as distribution of HDL subspecies, HDL particle abundance, and reverse cholesterol transport capacity are promising indicators of atherosclerotic CVD risk. Low-to-moderate alcohol consumption seems to improve HDL functionality and reduce the incidence of CVD among primarily middle-aged men and postmenopausal women. Advancements in our understanding of HDL biogenesis, structure, and function hold promise for improving HDL-related measures and their predictive value for cardiovascular health. SUMMARY Low-to-moderate alcohol consumption appears to not only increase HDL-c concentration found in the HDL fraction of plasma but also enhance HDL functionality, providing insights into the underlying mechanisms linking alcohol exposure and cardiovascular health benefits. However, rigorous, well designed intervention trials of alcohol consumption on hard cardiovascular outcomes are needed to identify robust causal associations of HDL phenotypes and alcohol consumption with cardiovascular risk.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline
| | - Marta Guasch-Ferré
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Razavi AC, Jain V, Grandhi GR, Patel P, Karagiannis A, Patel N, Dhindsa DS, Liu C, Desai SR, Almuwaqqat Z, Sun YV, Vaccarino V, Quyyumi AA, Sperling LS, Mehta A. Does Elevated High-Density Lipoprotein Cholesterol Protect Against Cardiovascular Disease? J Clin Endocrinol Metab 2024; 109:321-332. [PMID: 37437107 PMCID: PMC11032254 DOI: 10.1210/clinem/dgad406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
High-density lipoprotein (HDL) contributes to reverse cholesterol transport, which is 1 of the main explanations for the described inverse association between HDL-cholesterol (HDL-C) and atherosclerotic cardiovascular disease (ASCVD) risk. However, efforts to therapeutically raise HDL-C levels with niacin, fibrates, or cholesteryl ester transfer protein inhibitors have not demonstrated a reduction in ASCVD events when compared with placebo among individuals treated with statins. Furthermore, mendelian randomization studies suggest that HDL-C is unlikely to be a direct biologic variable impacting ASCVD risk. More recently, observations from well-conducted epidemiologic studies have indicated a nonlinear U-shaped relationship between HDL-C and subclinical atherosclerosis, and that very high HDL-C (≥80 mg/dL in men, ≥100 mg/dL in women) is paradoxically associated with higher all-cause and ASCVD-related mortality. These observations suggest that HDL-C is not a universal protective factor for atherosclerosis. Thus, there are several opportunities for reframing the contribution of HDL-C to ASCVD risk and related clinical calculators. Here, we examine our growing understanding of HDL-C and its role in ASCVD risk assessment, treatment, and prevention. We discuss the biological functions of HDL-C and its normative values in relation to demographics and lifestyle markers. We then summarize original studies that observed a protective association between HDL-C and ASCVD risk and more recent evidence indicating an elevated ASCVD risk at very high HDL-C levels. Through this process, we advance the discussion regarding the future role of HDL-C in ASCVD risk assessment and identify knowledge gaps pertaining to the precise role of HDL-C in atherosclerosis and clinical ASCVD.
Collapse
Affiliation(s)
- Alexander C Razavi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vardhmaan Jain
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gowtham R Grandhi
- Virginia Commonwealth University Health Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Parth Patel
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Angelos Karagiannis
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nidhi Patel
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chang Liu
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Shivang R Desai
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zakaria Almuwaqqat
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yan V Sun
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Viola Vaccarino
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Laurence S Sperling
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anurag Mehta
- Virginia Commonwealth University Health Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
48
|
Jonker J, Doorenbos CSE, Kremer D, Gore EJ, Niesters HGM, van Leer-Buter C, Bourgeois P, Connelly MA, Dullaart RPF, Berger SP, Sanders JSF, Bakker SJL. High-Density Lipoprotein Particles and Torque Teno Virus in Stable Outpatient Kidney Transplant Recipients. Viruses 2024; 16:143. [PMID: 38257843 PMCID: PMC10818741 DOI: 10.3390/v16010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Torque teno virus (TTV) is emerging as a potential marker for monitoring immune status. In transplant recipients who are immunosuppressed, higher TTV DNA loads are observed than in healthy individuals. TTV load measurement may aid in optimizing immunosuppressive medication dosing in solid organ transplant recipients. Additionally, there is a growing interest in the role of HDL particles in immune function; therefore, assessment of both HDL concentrations and TTV load may be of interest in transplant recipients. The objective of this study was to analyze TTV loads and HDL parameters in serum samples collected at least one year post-transplantation from 656 stable outpatient kidney transplant recipients (KTRs), enrolled in the TransplantLines Food and Nutrition Cohort (Groningen, the Netherlands). Plasma HDL particles and subfractions were measured using nuclear magnetic resonance spectroscopy. Serum TTV load was measured using a quantitative real-time polymerase chain reaction. Associations between HDL parameters and TTV load were examined using univariable and multivariable linear regression. The median age was 54.6 [IQR: 44.6 to 63.1] years, 43.3% were female, the mean eGFR was 52.5 (±20.6) mL/min/1.73 m2 and the median allograft vintage was 5.4 [IQR: 2.0 to 12.0] years. A total of 539 participants (82.2%) had a detectable TTV load with a mean TTV load of 3.04 (±1.53) log10 copies/mL, the mean total HDL particle concentration was 19.7 (±3.4) μmol/L, and the mean HDL size was 9.1 (±0.5) nm. The univariable linear regression revealed a negative association between total HDL particle concentration and TTV load (st.β = -0.17, 95% CI st.β: -0.26 to -0.09, p < 0.001). An effect modification of smoking behavior influencing the association between HDL particle concentration and TTV load was observed (Pinteraction = 0.024). After adjustment for age, sex, alcohol intake, hemoglobin, eGFR, donor age, allograft vintage and the use of calcineurin inhibitors, the negative association between HDL particle concentration and TTV load remained statistically significant in the non-smoking population (st.β = -0.14, 95% CI st.β: -0.23 to -0.04, p = 0.006). Furthermore, an association between small HDL particle concentration and TTV load was found (st.β = -0.12, 95% CI st.β: -0.22 to -0.02, p = 0.017). Higher HDL particle concentrations were associated with a lower TTV load in kidney transplant recipients, potentially indicative of a higher immune function. Interventional studies are needed to provide causal evidence on the effects of HDL on the immune system.
Collapse
Affiliation(s)
- Jip Jonker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Caecilia S. E. Doorenbos
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Edmund J. Gore
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Hubert G. M. Niesters
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Coretta van Leer-Buter
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | - Robin P. F. Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stefan P. Berger
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan-Stephan F. Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
49
|
Lu J, Han G, Liu X, Chen B, Peng K, Shi Y, Zhang M, Yang Y, Cui J, Song L, Xu W, Yang H, He W, Zhang Y, Tian Y, Li Y, Li X. Association of high-density lipoprotein cholesterol with all-cause and cause-specific mortality in a Chinese population of 3.3 million adults: a prospective cohort study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100874. [PMID: 38357392 PMCID: PMC10865023 DOI: 10.1016/j.lanwpc.2023.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/23/2023] [Accepted: 07/23/2023] [Indexed: 02/16/2024]
Abstract
Background High-density lipoprotein cholesterol (HDL-C) has been inversely associated with cardiovascular disease (CVD) risk, but recent evidence suggests that extremely high levels of HDL-C are paradoxically related to increased CVD incidence and mortality. This study aimed to comprehensively examine the associations of HDL-C with all-cause and cause-specific mortality in a Chinese population. Methods The China Health Evaluation And risk Reduction through nationwide Teamwork (ChinaHEART) project included 3,397,547 participants aged 35-75 years with a median follow-up of 3.9 years. Baseline HDL-C levels were measured, and mortality data was ascertained from the National Mortality Surveillance System and Vital Registration of Chinese Center for Disease Control and Prevention. Findings This study found U-shaped associations of HDL-C with all-cause, cardiovascular and cancer mortality. When compared with the groups with the lowest risk, the adjusted hazard ratios (95% CIs) for HDL-C <30 mg/dL was 1.23 (1.17-1.29), 1.33 (1.23-1.45) and 1.18 (1.09-1.28) for all-cause, CVD and cancer mortality, respectively. For HDL-C >90 mg/dL, the corresponding HR (95% CIs) was 1.10 (1.05-1.15), 1.09 (1.01-1.18) and 1.11 (1.03-1.19). Similar U-shaped patterns were also found in associations of HDL-C with ischemic heart disease, ischemic stroke, and liver cancer. About 3.25% of all-cause mortality could be attributed to abnormal levels of HDL-C. The major contributor to mortality was ischemic heart disease (16.06 deaths per 100,000 persons, 95% UI: 10.30-22.67) for HDL-C <40 mg/dL and esophageal cancer (2.29 deaths per 100,000 persons, 95% UI: 0.57-4.77) for HDL-C >70 mg/dL. Interpretation Both low and high HDL-C were associated with increased mortality risk. We recommended 50-79 mg/dL as the optimal range of HDL-C among Chinese adults. Individuals with dyslipidemia might benefit from proper management of both low and high HDL-C. Funding The CAMS Innovation Fund for Medical Science (2021-1-I2M-011), the National High Level Hospital Clinical Research Funding (2022-GSP-GG-4), the Ministry of Finance of China and National Health Commission of China, and the 111 Project from the Ministry of Education of China (B16005), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (2019ZT08Y481), Sanming Project of Medicine in Shenzhen (SZSM201811096), the Young Talent Program of the Academician Fund, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen (YS-2022-006) and Guangdong Basic and Applied Basic Research Foundation (2023A1515010076 & 2021A1515220173).
Collapse
Affiliation(s)
- Jiapeng Lu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Guiyuan Han
- Shenzhen Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, People’s Republic of China
| | - Xiaoying Liu
- Shenzhen Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, People’s Republic of China
| | - Bowang Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ke Peng
- Shenzhen Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, People’s Republic of China
| | - Yu Shi
- Shenzhen Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, People’s Republic of China
| | - Mei Zhang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yang Yang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jianlan Cui
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lijuan Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Yang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenyan He
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yan Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuan Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yichong Li
- Shenzhen Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, People’s Republic of China
| | - Xi Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Central China Sub-center of the National Center for Cardiovascular Diseases, Zhengzhou, People’s Republic of China
| |
Collapse
|
50
|
Jasti M, Islam S, Steele N, Ivy K, Maimo W, Isiadinso I. Lp(a) and risk of cardiovascular disease - A review of existing evidence and emerging concepts. J Natl Med Assoc 2023:S0027-9684(23)00141-4. [PMID: 38143155 DOI: 10.1016/j.jnma.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death among adults in the United States. There has been significant advancement in the diagnosis and treatment of atherosclerotic cardiovascular disease (ASCVD) and its underlying risk factors. In certain populations, there remains a significant residual risk despite adequate lowering of low-density lipoprotein cholesterol (LDL-C) and control of traditional risk factors. This has led to an interest in research to identify additional risk factors that contribute to atherosclerotic cardiovascular disease. Elevated lipoprotein (a) [Lp(a)] has been identified as an independent risk factor contributing to an increased risk for CVD. There are also ethnic and racial disparities in Lp(a) inheritance that need to be understood. This paper reviews the current literature on lipoprotein a, proposed mechanisms of actions for cardiovascular disease, recommendations for testing, and the current and emerging therapies for lowering Lp(a).
Collapse
Affiliation(s)
- Manasa Jasti
- Division of Cardiology, University of Tennessee Health Science Center/Ascension Saint Thomas, Nashville, TN, United States
| | - Sabrina Islam
- Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathan Steele
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Kendra Ivy
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Willibroad Maimo
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Ijeoma Isiadinso
- Division of Cardiology, Department of Medicine, Center for Heart Disease Prevention, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|