1
|
Ghaneialvar H, Jahani S, Hashemi E, Khalilzad MA, Falahi S, Rashidi MA, Majidpoor J, Najafi S. Combining anti-checkpoint immunotherapies and cancer vaccines as a novel strategy in oncological therapy: A review. Hum Immunol 2024; 86:111209. [PMID: 39662393 DOI: 10.1016/j.humimm.2024.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The field of cancer immunotherapy has experienced remarkable advancements in the treatment of human cancers over recent decades. Therapeutic cancer vaccines have been employed to elicit antitumor immune responses through the generation of specific reactions against tumor-associated antigens. Although preclinical studies have demonstrated hopeful results and at least one product is approved for clinical use, the overall efficacy of cancer vaccines remains restricted. The co-administration of anti-checkpoint antibodies alongside cancer vaccines is proposed as a potential strategy to enhance the clinical efficacy of immunotherapies. Among the various anti-checkpoint agents, monoclonal antibodies targeting CD127, OX40, and CD40 have been further investigated in combined administration with cancer vaccines, demonstrating a synergistic impact on disease outcomes in both animal models and human subjects. This combinational approach has been shown to suppress tumor regression, improve survival rates, and promote the efficacy of cancer vaccines via multiple mechanisms, including the augmentation of generation, activation, and expansion of CD8+ T cells, as well as the production of tumor-inhibitory cytokines. Importantly, the impact of the concurrent administration of anti-checkpoint agents and cancer vaccines surpass those observed with the sole vaccine, indicating that this strategy may offer significant advantages for clinical application in cancer patients. In this review, we aim to provide a comprehensive overview of the significance and therapeutic potential of the combined administration of checkpoint agonist/antagonist antibodies and cancer vaccines for human tumors.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saleheh Jahani
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Amin Rashidi
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Waheed A, Gul MH, Wardak AB, Raja HA, Hussaini H. Nogapendekin alfa inbakicept-PMLN: first approval milestone for BCG-unresponsive noninvasive bladder cancer: editorial. Ann Med Surg (Lond) 2024; 86:6386-6388. [PMID: 39525706 PMCID: PMC11543176 DOI: 10.1097/ms9.0000000000002591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Aiman Waheed
- Rawalpindi Medical College, Rawalpindi, Pakistan
| | | | | | | | - Helai Hussaini
- Anaheim Regional Medical Center California, California, USA
| |
Collapse
|
3
|
Singh P, Tabassum G, Masood M, Anwar S, Syed MA, Dev K, Hassan MI, Haque MM, Dohare R, Singh IK. Investigating the role of prognostic mitophagy-related genes in non-small cell cancer pathogenesis via multiomics and network-based approach. 3 Biotech 2024; 14:273. [PMID: 39444988 PMCID: PMC11493942 DOI: 10.1007/s13205-024-04127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
As one of the most prevalent malignancies, lung cancer displays considerable biological variability in both molecular and clinical characteristics. Lung cancer is broadly categorized into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) with the latter being most prevalent. The primary histological subtypes of NSCLC are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). In the present work, we primarily extracted mRNA count data from a publicly accessible database followed by differentially expressed genes (DEGs) and differentially expressed mitophagy-related genes (DEMRGs) identification in case of both LUAD and LUSC cohorts. Next, we identified important DEMRGs via clustering approach followed by enrichment, survival, and mutational analyses. Lastly, the finalized prognostic biomarker was validated using wet-lab experimentations. Primarily, we obtained 986 and 1714 DEGs across LUAD and LUSC cohorts. Only 7 DEMRGs from both cohorts had significant membership values as indicated by the clustering analysis. Most significant pathway, Gene Ontology (GO)-biological process (BP), GO-molecular function (MF), GO-cellular compartment (CC) terms were macroautophagy, GTP metabolic process, magnesium ion binding, mitochondrial outer membrane. Among all, only TDRKH reported significant overall survival (OS) and 14% amplification across LUAD patients. Lastly, we validated TDRKH via immunohistochemistry (IHC) and semi-quantitative polymerase chain reaction (PCR). In conclusion, our findings advocate for the exploration of TDRKH and their genetic alterations in precision oncology therapeutic approaches for LUAD, emphasizing the potential for target-driven therapy and early diagnostics. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04127-y.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Gulnaz Tabassum
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Kapil Dev
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology & DBC i4 Center, Deshbandhu College, University of Delhi, New Delhi, 110019 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
4
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
5
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
6
|
Pote MS, Singh D, M. A A, Suchita J, Gacche RN. Cancer metastases: Tailoring the targets. Heliyon 2024; 10:e35369. [PMID: 39170575 PMCID: PMC11336595 DOI: 10.1016/j.heliyon.2024.e35369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metastasis is an intricate and formidable pathophysiological process encompassing the dissemination of cancer cells from the primary tumour body to distant organs. It stands as a profound and devastating phenomenon that constitutes the primary driver of cancer-related mortality. Despite great strides of advancements in cancer research and treatment, tailored anti-metastasis therapies are either lacking or have shown limited success, necessitating a deeper understanding of the intrinsic elements driving cancer invasiveness. This comprehensive review presents a contemporary elucidation of pivotal facets within the realm of cancer metastasis, commencing with the intricate processes of homing and invasion. The process of angiogenesis, which supports tumour growth and metastasis, is addressed, along with the pre-metastatic niche, wherein the primary tumour prepares for a favorable microenvironment at distant sites for subsequent metastatic colonization. The landscape of metastasis-related genetic and epigenetic mechanisms, involvement of metastasis genes and metastasis suppressor genes, and microRNAs (miRNA) are also discussed. Furthermore, immune modulators' impact on metastasis and their potential as therapeutic targets are addressed. The interplay between cancer cells and the immune system, including immune evasion mechanisms employed by metastatic cells, is discussed, highlighting the importance of targeting immune modulation in arresting metastatic progression. Finally, this review presents promising treatment opportunities derived from the insights gained into the mechanisms of metastasis. Identifying novel therapeutic targets and developing innovative strategies to disrupt the metastatic cascade holds excellent potential for improving patient outcomes and ultimately reducing cancer-related mortality.
Collapse
Affiliation(s)
| | | | | | | | - Rajesh N. Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
7
|
Harley RJ, Lyden M, Aribindi S, Socolovsky L, Harley EH. Head and Neck Merkel Cell Carcinoma: Therapeutic Benefit of Adjuvant Radiotherapy for Nodal Disease. Laryngoscope 2024; 134:3587-3594. [PMID: 38401116 DOI: 10.1002/lary.31333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/26/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES To evaluate the therapeutic effect of post-operative radiotherapy (PORT) with respect to nodal status among patients with head and neck Merkel cell carcinoma (HNMCC). METHODS In this retrospective study, we queried Surveillance, Epidemiology, and End Results (SEER) dataset from 2000 through 2019. We included all adult patients who received primary surgical resection for histologically confirmed treatment naive HNMCC. Entropy balancing was used to reweight observations such that there was covariate balance between patients who received PORT and patients who received surgical resection alone. Doubly robust estimation was achieved by incorporating weights into a multivariable cox proportional hazards model. Planned post hoc subgroup analysis was performed to evaluate the impact of PORT by pathological node status. RESULTS Among 752 patients (mean age, 73.3 years [SD 10.8]; 64.2% male; 91.2% White; 41.9% node-positive), 60.4% received PORT. Among node-positive patients, we found that PORT was associated with improved overall survival (OS) (aHR, 0.55; 95% CI, 0.37-0.81; p = 0.003) and improved disease-specific survival (DSS) (aHR, 0.57; 95% CI, 0.35-0.92; p = 0.022). Among node-negative patients, we found that PORT was not associated with OS and was associated with worse DSS (aHR, 2.34; 95% CI, 1.30-4.23; p = 0.005). CONCLUSIONS We found that PORT was associated with improved OS and DSS for node-positive patients and worse DSS for node-negative patients. For HNMCC treated with primary surgical resection, these data confirm the value of PORT for pathologically node-positive patients and support the use of single modality surgical therapy for pathologically node-negative patients without other adverse risk factors. LEVEL OF EVIDENCE 4 Laryngoscope, 134:3587-3594, 2024.
Collapse
Affiliation(s)
- Randall J Harley
- Department of Otolaryngology - Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Megan Lyden
- Department of Otolaryngology - Head and Neck Surgery, Georgetown University Hospital, Washington, District of Columbia, U.S.A
| | - Seetha Aribindi
- Department of Otolaryngology - Head and Neck Surgery, Georgetown University Hospital, Washington, District of Columbia, U.S.A
| | - Leandro Socolovsky
- Department of Otolaryngology - Head and Neck Surgery, Georgetown University Hospital, Washington, District of Columbia, U.S.A
| | - Earl H Harley
- Department of Otolaryngology - Head and Neck Surgery, Georgetown University Hospital, Washington, District of Columbia, U.S.A
| |
Collapse
|
8
|
Gao XC, Zhou BH, Ji ZX, Li Q, Liu HN. Canopy FGF signaling regulator 3 affects prognosis, immune infiltration, and PI3K/AKT pathway in colon adenocarcinoma. World J Gastrointest Oncol 2024; 16:3284-3298. [PMID: 39072149 PMCID: PMC11271795 DOI: 10.4251/wjgo.v16.i7.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a malignant tumor of the digestive system. The mechanisms underlying COAD development and progression are still largely unknown. AIM To identify the role of canopy FGF signaling regulator 3 (CNPY3) in the development and progression of COAD by using bioinformatic tools and functional experiments. METHODS Bioinformatic data were downloaded from public databases. The associations of clinicopathological features, survival, and immune function with the expression of CNPY3 were analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis were used to explore the related pathways. Then, quantitative real-time PCR and immunohistochemistry were used for validation of CNPY3 expression in clinical samples and tumor cell lines. Cell lines with CNPY3 knockdown were constructed to further analyze gene functions. The functional experiments included proliferation, invasion, migration and apoptosis assays. RESULTS In both the TCGA cohort and the merged dataset, elevated CNPY3 expression was observed in tumor tissues. High CNPY3 expression correlated with adverse survival and compromised immune functions. Functional enrichment analysis suggested that the pro-oncogenic properties of CNPY3 might be linked to the PI3K-AKT signaling pathway. CNPY3 expression was validated at both the RNA and protein levels. Functional assays indicated that cell proliferation, invasion, and migration were inhibited and cell apoptosis was promoted after CNPY3 knockdown. Additionally, Western blot results revealed the downregulation of key proteins in the PI3K/AKT pathway following CNPY3 knockdown. PI3K/AKT pathway activator reversed the decrease in proliferation, invasion, and migration and the increase in apoptosis. Notably, CNPY3 knockdown still affected the cells when the pathway was inhibited. CONCLUSION This study showed that CNPY3 is upregulated in COAD and might regulate COAD development and progression by the PI3K/AKT pathway. Thus, CNPY3 might be a promising therapeutic target.
Collapse
Affiliation(s)
- Xu-Can Gao
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| | - Biao-Huan Zhou
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| | - Zhou-Xin Ji
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| | - Qiang Li
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| | - Hui-Ning Liu
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
9
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
11
|
Han X, Leng C, Zhao S, Wang S, Chen S, Wang S, Zhang M, Li X, Lu Y, Wang B, Qi W. Development and verification of a manganese metabolism- and immune-related genes signature for prediction of prognosis and immune landscape in gastric cancer. Front Immunol 2024; 15:1377472. [PMID: 38807601 PMCID: PMC11131102 DOI: 10.3389/fimmu.2024.1377472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Background Gastric cancer (GC) poses a global health challenge due to its widespread prevalence and unfavorable prognosis. Although immunotherapy has shown promise in clinical settings, its efficacy remains limited to a minority of GC patients. Manganese, recognized for its role in the body's anti-tumor immune response, has the potential to enhance the effectiveness of tumor treatment when combined with immune checkpoint inhibitors. Methods Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases was utilized to obtain transcriptome information and clinical data for GC. Unsupervised clustering was employed to stratify samples into distinct subtypes. Manganese metabolism- and immune-related genes (MIRGs) were identified in GC by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis. We conducted gene set variation analysis, and assessed the immune landscape, drug sensitivity, immunotherapy efficacy, and somatic mutations. The underlying role of NPR3 in GC was further analyzed in the single-cell RNA sequencing data and cellular experiments. Results GC patients were classified into four subtypes characterized by significantly different prognoses and tumor microenvironments. Thirteen genes were identified and established as MIRGs, demonstrating exceptional predictive effectiveness in GC patients. Distinct enrichment patterns of molecular functions and pathways were observed among various risk subgroups. Immune infiltration analysis revealed a significantly greater abundance of macrophages and monocytes in the high-risk group. Drug sensitivity analysis identified effective drugs for patients, while patients in the low-risk group could potentially benefit from immunotherapy. NPR3 expression was significantly downregulated in GC tissues. Single-cell RNA sequencing analysis indicated that the expression of NPR3 was distributed in endothelial cells. Cellular experiments demonstrated that NPR3 facilitated the proliferation of GC cells. Conclusion This is the first study to utilize manganese metabolism- and immune-related genes to identify the prognostic MIRGs for GC. The MIRGs not only reliably predicted the clinical outcome of GC patients but also hold the potential to guide future immunotherapy interventions for these patients.
Collapse
Affiliation(s)
- Xiaoxi Han
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanyu Leng
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuming Chen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shibo Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengqi Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangxue Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangyang Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Zhou SK, Zeng DH, Zhang MQ, Chen MM, Liu YM, Chen QQ, Lin ZY, Yang SS, Fu ZC, Lian DH, Ying WM. Identification of lung adenocarcinoma subtypes and a prognostic signature based on activity changes of the hallmark and immunologic gene sets. Heliyon 2024; 10:e28090. [PMID: 38571596 PMCID: PMC10987920 DOI: 10.1016/j.heliyon.2024.e28090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) has a complex tumor heterogeneity. Our research attempts to clearness LUAD subtypes and build a reliable prognostic signature according to the activity changes of the hallmark and immunologic gene sets. Methods According to The Cancer Genome Atlas (TCGA) - LUAD dataset, changes in marker and immune gene activity were analyzed, followed by identification of prognosis-related differential gene sets (DGSs) and their related LUAD subtypes. Survival analysis, correlation with clinical characteristics, and immune microenvironment assessment for subtypes were performed. Moreover, the differentially expressed genes (DEGs) between different subtypes were identified, followed by the construction of a prognostic risk score (RS) model and nomogram model. The tumor mutation burden (TMB) and tumor immune dysfunction and exclusion (TIDE) of different risk groups were compared. Results Two LUAD subtypes were determined according to the activity changes of the hallmark and immunologic gene sets. Cluster 2 had worse prognosis, more advanced tumor and clinical stages than cluster 1. Moreover, a prognostic RS signature was established using two LUAD subtype-related DEGs, which could stratify patients at different risk levels. Nomogram model incorporated RS and clinical stage exerted good prognostic performance in LUAD patients. A shorter survival time and higher TMB were observed in the high-risk patients. Conclusions Our findings revealed that our constructed prognostic signature could exactly predict the survival status of LUAD cases, which was helpful in predicting the prognosis and guiding personalized therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Shun-Kai Zhou
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - De-Hua Zeng
- Department of Pathology, 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Mei-Qing Zhang
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Meng-Meng Chen
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Ya-Ming Liu
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Qi-Qiang Chen
- Department of Anesthesiology, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Zhen-Ya Lin
- Department of Anesthesiology, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Sheng-Sheng Yang
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Zhi-Chao Fu
- Department of Radiotherapy, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Duo-Huang Lian
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People's Liberation Army, Fuzhou, Fujian Province, 350000, China
| | - Wen-Min Ying
- Department of Radiotherapy, Fuding Hospital, Fuding City, Fujian Province, 355200, China
| |
Collapse
|
13
|
Karan S, Jung E, Boone C, Steinmetz NF. Synergistic combination therapy using cowpea mosaic virus intratumoral immunotherapy and Lag-3 checkpoint blockade. Cancer Immunol Immunother 2024; 73:51. [PMID: 38349406 PMCID: PMC10864561 DOI: 10.1007/s00262-024-03636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
Immune checkpoint therapy (ICT) for cancer can yield dramatic clinical responses; however, these may only be observed in a minority of patients. These responses can be further limited by subsequent disease recurrence and resistance. Combination immunotherapy strategies are being developed to overcome these limitations. We have previously reported enhanced efficacy of combined intratumoral cowpea mosaic virus immunotherapy (CPMV IIT) and ICT approaches. Lymphocyte-activation gene-3 (LAG-3) is a next-generation inhibitory immune checkpoint with broad expression across multiple immune cell subsets. Its expression increases on activated T cells and contributes to T cell exhaustion. We observed heightened efficacy of a combined CPMV IIT and anti-LAG-3 treatment in a mouse model of melanoma. Further, LAG-3 expression was found to be increased within the TME following intratumoral CPMV administration. The integration of CPMV IIT with LAG-3 inhibition holds significant potential to improve treatment outcomes by concurrently inducing a comprehensive anti-tumor immune response, enhancing local immune activation, and mitigating T cell exhaustion.
Collapse
Affiliation(s)
- Sweta Karan
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Eunkyeong Jung
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christine Boone
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
| | - Nicole F Steinmetz
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Bell D. Top IHC/ISH Hacks for and Molecular Surrogates of Poorly Differentiated Sinonasal Small Round Cell Tumors. Head Neck Pathol 2024; 18:2. [PMID: 38315310 PMCID: PMC10844182 DOI: 10.1007/s12105-023-01608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Poorly differentiated sinonasal small round cell tumors (SRCTs) are rare and heterogeneous, posing challenges in diagnosis and treatment. METHODS Recent advances in molecular findings and diagnostic refinement have promoted better understanding and management of these tumors. RESULTS The newly defined and emerging sinonasal entities demonstrate diverse morphologies, specific genomic signatures, and clinical behavior from conventional counterparts. In this review of SRCTs, emphasis is placed on the diagnostic approach with the employment of a pertinent panel of immunohistochemistry studies and/or molecular tests, fine-tuned to the latest WHO 5 classification of sinonasal/paranasal tumors and personalized treatment. CONCLUSION Specifically, this review focuses on tumors with epithelial and neuroectodermal derivation.
Collapse
Affiliation(s)
- Diana Bell
- Anatomic Pathology, Disease Team Alignment: Head and Neck, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
15
|
Malik MA, Hashmi AA, Al-Bogami AS, Wani MY. Harnessing the power of gold: advancements in anticancer gold complexes and their functionalized nanoparticles. J Mater Chem B 2024; 12:552-576. [PMID: 38116755 DOI: 10.1039/d3tb01976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer poses a formidable challenge, necessitating improved treatment strategies. Metal-based drugs and nanotechnology offer new hope in this battle. Versatile gold complexes and functionalized gold nanoparticles exhibit unique properties like biologically inert behaviour, outstanding light absorption, and heat-conversion abilities. These nanoparticles can be finely tuned for drug delivery, enabling precise and targeted cancer therapy. Their exceptional drug-loading capacity and low toxicity, stemming from excellent stability, biocompatibility, and customizable shapes, make them a promising option for enhancing cancer treatment outcomes and improving diagnostic imaging. Leveraging these attributes, researchers can design more effective and targeted cancer therapeutics. The potential of functionalized gold nanoparticles to advance cancer treatment and diagnostics holds a promising avenue for further exploration and development in the fight against cancer. This review article delves into the finely tuned attributes of functionalized gold nanoparticles, unveiling their potential for application in drug delivery for precise and targeted cancer therapy.
Collapse
Affiliation(s)
- Manzoor Ahmad Malik
- Department of Chemistry, University of Kashmir, 190006 Srinagar, Jammu and Kashmir, India.
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Athar Adil Hashmi
- Bioinorganic Lab., Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
16
|
Whitham Z, Hsiehchen D. Role of Neoadjuvant Therapy Prior to Curative Resection in Hepatocellular Carcinoma. Surg Oncol Clin N Am 2024; 33:87-97. [PMID: 37945147 DOI: 10.1016/j.soc.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Immunotherapy has revolutionized the standard of care in multiple aspects of oncology. Given successes in the setting of unresectable hepatocellular carcinoma (HCC) and the advantages of neoadjuvant therapy, many trials are demonstrating the safety and feasibility of combination of immune checkpoint inhibitors (ICIs)/tyrosine kinases in patients with resectable HCC. Numerous clinical trials are currently investigating the role of different immune modulators either as monotherapy or as combination therapy in the neoadjuvant setting. Key questions that remain to be addressed include efficacy, safety, predictive biomarkers, and length of treatment.
Collapse
Affiliation(s)
- Zachary Whitham
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - David Hsiehchen
- Department of Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Ling H, Zhang Q, Luo Q, Ouyang D, He Z, Sun J, Sun M. Dynamic immuno-nanomedicines in oncology. J Control Release 2024; 365:668-687. [PMID: 38042376 DOI: 10.1016/j.jconrel.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Anti-cancer therapeutics have achieved significant advances due to the emergence of immunotherapies that rely on the identification of tumors by the patients' immune system and subsequent tumor eradication. However, tumor cells often escape immunity, leading to poor responsiveness and easy tolerance to immunotherapy. Thus, the potentiated anti-tumor immunity in patients resistant to immunotherapies remains a challenge. Reactive oxygen species-based dynamic nanotherapeutics are not new in the anti-tumor field, but their potential as immunomodulators has only been demonstrated in recent years. Dynamic nanotherapeutics can distinctly enhance anti-tumor immune response, which derives the concept of the dynamic immuno-nanomedicines (DINMs). This review describes the pivotal role of DINMs in cancer immunotherapy and provides an overview of the clinical realities of DINMs. The preclinical development of emerging DINMs is also outlined. Moreover, strategies to synergize the antitumor immunity by DINMs in combination with other immunologic agents are summarized. Last but not least, the challenges and opportunities related to DINMs-mediated immune responses are also discussed.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qinyi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
18
|
Mianowska M, Zaremba-Czogalla M, Zygmunt A, Mahmud M, Süss R, Gubernator J. Dual Role of Vitamin C-Encapsulated Liposomal Berberine in Effective Colon Anticancer Immunotherapy. Pharmaceuticals (Basel) 2023; 17:5. [PMID: 38275991 PMCID: PMC10819181 DOI: 10.3390/ph17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
The aim of the study was to achieve effective colon anticancer immunotherapy using the alkaloid berberine. In the presented paper we attempt to develop a formulation of berberine loaded into liposomal carriers using the vitamin C gradient method, characterized by efficient drug encapsulation, high stability during long-term storage, low drug release in human plasma with specific cytotoxicity towards colon cancer cells. Liposomal berberine was responsible for the induction of oxidative stress, the presence of Ca2+ ions in the cytosol, the reduction of Δψm, and ATP depletion with a simultaneous lack of caspase activity. Moreover, treatment with liposomal berberine led to CRT exposure on the surface of cancer cells, extracellular ATP, and HMGB1 release. The above-described mechanism of action was most likely associated with ICD induction, contributing to the increased number of phagocytic cancer cells. We have shown that cancer cells treated with liposomal berberine were phagocytosed more frequently by macrophages compared to the untreated cancer cells. What is more, we have shown that macrophage pre-treatment with liposomal berberine led to a 3-fold change in the number of phagocytosed SW620 cancer cells. The obtained results provide new insights into the role of berberine in maintaining the immune response against colorectal cancer.
Collapse
Affiliation(s)
- Martyna Mianowska
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| | - Mohamed Mahmud
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
- Department of Medical Genetics, Faculty of Health Sciences, University of Misurata, Misurata 2478, Libya
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Albert Ludwig University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany;
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (M.Z.-C.); (A.Z.); (M.M.)
| |
Collapse
|
19
|
Zheng Z, Wieder T, Mauerer B, Schäfer L, Kesselring R, Braumüller H. T Cells in Colorectal Cancer: Unravelling the Function of Different T Cell Subsets in the Tumor Microenvironment. Int J Mol Sci 2023; 24:11673. [PMID: 37511431 PMCID: PMC10380781 DOI: 10.3390/ijms241411673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic options for metastatic colorectal cancer (mCRC) are very limited, and the prognosis using combination therapy with a chemotherapeutic drug and a targeted agent, e.g., epidermal growth factor receptor or tyrosine kinase, remains poor. Therefore, mCRC is associated with a poor median overall survival (mOS) of only 25-30 months. Current immunotherapies with checkpoint inhibitor blockade (ICB) have led to a substantial change in the treatment of several cancers, such as melanoma and non-small cell lung cancer. In CRC, ICB has only limited effects, except in patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, which comprise about 15% of sporadic CRC patients and about 4% of patients with metastatic CRC. The vast majority of sporadic CRCs are microsatellite-stable (MSS) tumors with low levels of infiltrating immune cells, in which immunotherapy has no clinical benefit so far. Immunotherapy with checkpoint inhibitors requires the presence of infiltrating T cells into the tumor microenvironment (TME). This makes T cells the most important effector cells in the TME, as evidenced by the establishment of the immunoscore-a method to estimate the prognosis of CRC patients. The microenvironment of a tumor contains several types of T cells that are anti-tumorigenic, such as CD8+ T cells or pro-tumorigenic, such as regulatory T cells (Tregs) or T helper 17 (Th17) cells. However, even CD8+ T cells show marked heterogeneity, e.g., they can become exhausted, enter a state of hyporesponsiveness or become dysfunctional and express high levels of checkpoint molecules, the targets for ICB. To kill cancer cells, CD8+ T cells need the recognition of the MHC class I, which is often downregulated on colorectal cancer cells. In this case, a population of unconventional T cells with a γδ T cell receptor can overcome the limitations of the conventional CD8+ T cells with an αβT cell receptor. γδ T cells recognize antigens in an MHC-independent manner, thus acting as a bridge between innate and adaptive immunity. Here, we discuss the effects of different T cell subsets in colorectal cancer with a special emphasis on γδ T cells and the possibility of using them in CAR-T cell therapy. We explain T cell exclusion in microsatellite-stable colorectal cancer and the possibilities to overcome this exclusion to enable immunotherapy even in these "cold" tumors.
Collapse
Affiliation(s)
- Ziwen Zheng
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Wieder
- Department of Vegetative and Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa Schäfer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Heidi Braumüller
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Jotatsu Y, Shigemura K, Arbiser JL, Moriwaki M, Hirata Y, Maeda K, Yang YM, Fujisawa M. Intralesional Chemotherapy for Prostate Cancer: In vivo Proof of Principle. Oncology 2023; 101:645-654. [PMID: 37364538 DOI: 10.1159/000531494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Prostate cancer (PCA) is one of the most common cancers in the world, and current therapies are debilitating to patients. To develop a novel modality for the treatment of PCA, we evaluated the efficacy of intralesional administration of the Sirt3 activator Honokiol (HK) and the NADPH oxidase inhibitor Dibenzolium (DIB). METHODS We used a well-established transgenic adenocarcinoma mouse prostate (TRAMP-C2) model of hormone-independent PCA. MTS assay, apoptosis assay, wound healing assay, transwell invasion assay, RT-qPCR, and Western blotting were conducted in vitro, and HK and DIB were intratumorally administered to mice bearing TRAMP-C2 tumors. Tumor size and weight were observed over time. After removing tumors, H-E staining and immunohistochemistry (IHC) staining were conducted. RESULTS Treatment by HK or DIB showed an inhibitory effect on cell proliferation and migration in PCA cells. Poor ability to induce apoptosis in vitro, insufficient expression of caspase-3 on IHC staining, and increased necrotic areas on H-E staining indicated that necrosis plays an important role in cell death in treating groups by HK or DIB. RT-PCR, Western blotting, and IHC staining for epithelial mesenchymal transition (EMT) markers suggested that EMT was suppressed by HK and DIB individually. In addition, HK induced activation of CD3. Mouse experiments showed safe antitumor effects in vivo. CONCLUSIONS HK and DIB suppressed PCA proliferation and migration. Further research will explore the effects of HK and DIB at the molecular level to reveal new mechanisms that can be exploited as therapeutic modalities.
Collapse
Affiliation(s)
- Yura Jotatsu
- Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Katsumi Shigemura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Medical Innovation Engineering, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Michika Moriwaki
- Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuto Hirata
- Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Koki Maeda
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Young-Min Yang
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
21
|
Jackson K, Samaddar S, Markiewicz MA, Bansal A. Vaccination-Based Immunoprevention of Colorectal Tumors: A Primer for the Clinician. J Clin Gastroenterol 2023; 57:246-252. [PMID: 36730670 PMCID: PMC9911105 DOI: 10.1097/mcg.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) continues to be a significant public health problem worldwide. CRC screening programs have reduced the incidence rates of CRCs but still suffer from the problems of missed lesions and interval cancers. Chemopreventive strategies against CRC would benefit high-risk populations but trials testing synthetic and naturally occurring compounds have not yielded a front runner. Immune mechanisms promoting cancer have been modulated to develop immunotherapy for cancer treatment that has revolutionized cancer management, but could also be applied to cancer interception, that is, cancer immunoprevention. Cancer immunoprevention refers to approaches that can enhance the immune system, either directly or by removing natural breaks such as immune checkpoints, to survey and destroy tumor cells. In this primer, we aim to explain the concepts behind vaccine-based cancer immunoprevention. Multiple cancer vaccines have been tried in advanced cancer populations, but most have failed primarily because of an immunosuppressive environment that accompanies advanced cancers. Preventive vaccines in immunocompetent hosts may have a better clinical response compared with therapeutic vaccines in immunosuppressed hosts. The first randomized controlled trial testing the mucin1 vaccine against CRC in the prevention setting has been successfully completed. For the benefit of the clinician, we briefly discuss important concepts related to the workings of preventive vaccines. Prevention with vaccines is a highly attractive approach because of the potential for highly targeted therapy with minimal side effects that could theoretically provide lifelong protection.
Collapse
Affiliation(s)
- Katy Jackson
- Department of Medicine, The University of Kansas Health System
| | | | - Mary A. Markiewicz
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center
| | - Ajay Bansal
- Division of Gastroenterology and Hepatology
- The University of Kansas Cancer Center, Kansas City, KS
| |
Collapse
|
22
|
Liu L, Pan Y, Zhao C, Huang P, Chen X, Rao L. Boosting Checkpoint Immunotherapy with Biomaterials. ACS NANO 2023; 17:3225-3258. [PMID: 36746639 DOI: 10.1021/acsnano.2c11691] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The immune checkpoint blockade (ICB) therapy has revolutionized the field of cancer treatment, while low response rates and systemic toxicity limit its clinical outcomes. With the rapid advances in nanotechnology and materials science, various types of biomaterials have been developed to maximize therapeutic efficacy while minimizing side effects by increasing tumor antigenicity, reversing immunosuppressive microenvironment, amplifying antitumor immune response, and reducing extratumoral distribution of checkpoint inhibitors as well as enhancing their retention within target sites. In this review, we reviewed current design strategies for different types of biomaterials to augment ICB therapy effectively and then discussed present representative biomaterial-assisted immune modulation and targeted delivery of checkpoint inhibitors to boost ICB therapy. Current challenges and future development prospects for expanding the ICB with biomaterials were also summarized. We anticipate this review will be helpful for developing emerging biomaterials for ICB therapy and promoting the clinical application of ICB therapy.
Collapse
Affiliation(s)
- Lujie Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
23
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
24
|
Lou K, Feng S, Luo H, Zou J, Zhang G, Zou X. Extracellular vesicles derived from macrophages: Current applications and prospects in tumors. Front Bioeng Biotechnol 2022; 10:1097074. [PMID: 36588947 PMCID: PMC9797603 DOI: 10.3389/fbioe.2022.1097074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφs) are significant innate immune cells that perform a variety of tasks in response to different pathogens or stimuli. They are widely engaged in the pathological processes of various diseases and can contribute to tumorigenesis, progression and metastasis by regulating the tumor microenvironment and cancer cells. They are also the basis of chemoresistance. In turn, the tumor microenvironment and the metabolism of cancer cells can limit the differentiation, polarization, mobilization and the ability of Mφs to initiate an effective anti-tumor response. Extracellular vesicles (EVs) are small vesicles released by live cells that serve as crucial mediators of intercellular cell communication as well as a potential promising drug carrier. A growing number of studies have demonstrated that Mφs-EVs are not only important mediators in the pathological processes of various diseases such as inflammatory disorders, fibrosis and cancer, but also show significant potential in immunological modulation, cancer therapy, infectious defense and tissue repair. These natural nanoparticles (NPs) derived from Mφs are believed to be pleiotropic, stable, biocompatible and low immunogenic, providing novel alternatives for cancer treatment. This review provides an update on the pathological and therapeutic roles of Mφs-EVs in cancer, as well as their potential clinical applications and prospects.
Collapse
Affiliation(s)
- Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China,*Correspondence: Xiaofeng Zou,
| |
Collapse
|
25
|
Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022; 39:2635-2671. [PMID: 35028802 PMCID: PMC8757927 DOI: 10.1007/s11095-021-03143-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are cell-derived components composed of proteins, lipid, genetic information, cytokines, and growth factors. They play a vital role in immune modulation, cell-cell communication, and response to inflammation. Immune modulation has downstream effects on the regeneration of damaged tissue, promoting survival and repair of damaged resident cells, and promoting the tumor microenvironment via growth factors, antigens, and signaling molecules. On top of carrying biological messengers like mRNAs, miRNAs, fragmented DNA, disease antigens, and proteins, exosomes modulate internal cell environments that promote downstream cell signaling pathways to facilitate different disease progression and induce anti-tumoral effects. In this review, we have summarized how vaccines modulate our immune response in the context of cancer and infectious diseases and the potential of exosomes as vaccine delivery vehicles. Both pre-clinical and clinical studies show that exosomes play a decisive role in processes like angiogenesis, prognosis, tumor growth metastasis, stromal cell activation, intercellular communication, maintaining cellular and systematic homeostasis, and antigen-specific T- and B cell responses. This critical review summarizes the advancement of exosome based vaccine development and delivery, and this comprehensive review can be used as a valuable reference for the broader delivery science community.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
26
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Li Q, Chen W, Li Q, Mao J, Chen X. A novel neutrophil extracellular trap signature to predict prognosis and immunotherapy response in head and neck squamous cell carcinoma. Front Immunol 2022; 13:1019967. [PMID: 36225931 PMCID: PMC9549764 DOI: 10.3389/fimmu.2022.1019967] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant cancers, and patients with HNSCC possess early metastases and poor prognosis. Systematic therapies (including chemotherapy, targeted therapy, and immunotherapy) are generally applied in the advanced/late stages of HNSCC, but primary and acquired resistance eventually occurs. At present, reliable biomarkers to predict the prognosis of HNSCC have not been completely identified. Recent studies have shown that neutrophil extracellular traps (NETs) are implicated in cancer progression, metastasis and cancer immune response, and NET-related gene signatures are associated with the prognosis of patients with several human cancers. To explore whether NET-related genes play crucial roles in HNSCC, we have performed systematic analysis and reported several findings in the current study. Firstly, we identified seven novel NET-related genes and developed a NET-score signature, which was highly associated with the clinicopathological and immune traits of the HNSCC patients. Then, we, for the first time, found that NIFK was significantly upregulated in HNSCC patient samples, and its levels were significantly linked to tumor malignancy and immune status. Moreover, functional experiments confirmed that NIFK was required for HNSCC cell proliferation and metastasis. Altogether, this study has identified a novel NET-score signature based on seven novel NET-related genes to predict the prognosis of HNSCC and NIFK has also explored a new method for personalized chemo-/immuno-therapy of HNSCC.
Collapse
Affiliation(s)
- Qilin Li
- Department of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Weimin Chen
- Department of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qiuhui Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Xin Chen, ; Qiuhui Li, ; Jing Mao,
| | - Jing Mao
- Department of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Xin Chen, ; Qiuhui Li, ; Jing Mao,
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xin Chen, ; Qiuhui Li, ; Jing Mao,
| |
Collapse
|
28
|
Michaeli DT, Mills M, Kanavos P. Value and Price of Multi-indication Cancer Drugs in the USA, Germany, France, England, Canada, Australia, and Scotland. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2022; 20:757-768. [PMID: 35821360 PMCID: PMC9385843 DOI: 10.1007/s40258-022-00737-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 05/24/2023]
Abstract
PURPOSE Oncology drugs are often approved for multiple indications, for which their clinical benefit varies. Aligning a single price to this differing value remains a challenge. This study examines the clinical and economic value, price, and reimbursement of multi-indication cancer drugs across seven countries, representing different approaches to value assessment, pricing, and coverage decisions: the USA, Germany, France, England, Canada, Australia, and Scotland. METHODS Twenty-five multi-indication cancer drugs across 100 indications were identified with US Food and Drug Administration (FDA) approval between 2009 and 2019. For each indication data on Health Technology Assessment (HTA) recommendations, disease prevalence, and drug prices were obtained. Quality-adjusted life years (QALYs) gained, disease prevalence, list prices, and HTA outcomes were then compared across indications and regions. RESULTS First approved indications provide a higher clinical benefit whilst targeting a smaller patient group than indication extensions. Quality-adjusted life year gains were higher for first (0.99, 95% CI 0.05-3.25) compared to second (0.51, 95% CI 0.02-1.63, p < 0.001) and third (0.58, 95% CI 0.05-2.07, p < 0.01) approved indications. Disease prevalence per 100,000 inhabitants was 20.7 (95% CI 0.2-63.3) for first compared to 27.1 (95% CI 1.5-109.6, p = 0.907) for second and 128.3 (95% CI 3.1-720.1, p < 0.001) for third approved indications. With each approved indication drug prices declined in Germany and France, remained constant in the UK, Canada, and Australia, whilst they increased in the USA. Negative HTA outcomes, clinical restrictions, and managed entry agreements (MEAs) were more frequently observed for indication extensions. CONCLUSIONS Results suggest that indication development is prioritised according to clinical value and disease prevalence. Countries employ different mechanisms to account for each indication's differential benefit, e.g., weighted-average prices (Germany, France, Australia), differential discounts (England, Scotland), clinical restrictions, and MEAs (England, Scotland, Australia, Canada). Value-based indication-specific pricing can help to align the benefit and price for multi-indication cancer drugs.
Collapse
Affiliation(s)
- Daniel Tobias Michaeli
- Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Personalized Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Health Policy and Medical Technology Research Group LSE Health, London School of Economics and Political Science, London, UK.
| | - Mackenzie Mills
- Department of Health Policy and Medical Technology Research Group LSE Health, London School of Economics and Political Science, London, UK
| | - Panos Kanavos
- Department of Health Policy and Medical Technology Research Group LSE Health, London School of Economics and Political Science, London, UK.
| |
Collapse
|
29
|
Maakaron JE, Hu M, El Jurdi N. Chimeric antigen receptor T cell therapy for cancer: clinical applications and practical considerations. BRITISH MEDICAL JOURNAL 2022. [DOI: 10.1136/bmj-2021-068956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Chimeric antigen receptor T cells have revolutionized the treatment of hematological malignancies during the past five years, boasting impressive response rates and durable remissions for patients who previously had no viable options. In this review, we provide a brief historical overview of their development. We focus on the practical aspects of a patient’s journey through this treatment and the unique toxicities and current best practices to manage those. We then discuss the key registration trials that have led to approvals for the treatment of relapsed/refractory acute lymphoblastic leukemia (ALL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma, mantle cell lymphoma (MCL), and multiple myeloma. Finally, we consider the future development and research directions of this cutting edge therapy.
Collapse
|
30
|
Afify SM, Hassan G, Seno A, Seno M. Cancer-inducing niche: the force of chronic inflammation. Br J Cancer 2022; 127:193-201. [PMID: 35292758 PMCID: PMC9296522 DOI: 10.1038/s41416-022-01775-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
The growth of cancer tissue is thought to be considered driven by a small subpopulation of cells, so-called cancer stem cells (CSCs). CSCs are located at the apex of a hierarchy in a cancer tissue with self-renewal, differentiation and tumorigenic potential that produce the progeny in the tissue. Although CSCs are generally believed to play a critical role in the growth, metastasis, and recurrence of cancers, the origin of CSCs remains to be reconsidered. We hypothesise that, chronic diseases, including obesity and diabetes, establish the cancer-inducing niche (CIN) that drives the undifferentiated/progenitor cells into CSCs, which then develop malignant tumours in vivo. In this context, a CIN could be traced to chronic inflammation that involves long-lasting tissue damage and repair after being exposed to factors such as cytokines and growth factors. This must be distinguished from the cancer microenvironment, which is responsible for cancer maintenance. The concept of a CIN is most important for cancer prevention as well as cancer therapy.
Collapse
Affiliation(s)
- Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, 32511, Egypt.
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, USA
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
31
|
Mohammad T, Singh P, Jairajpuri DS, Al-Keridis LA, Alshammari N, Adnan M, Dohare R, Hassan MI. Differential Gene Expression and Weighted Correlation Network Dynamics in High-Throughput Datasets of Prostate Cancer. Front Oncol 2022; 12:881246. [PMID: 35719950 PMCID: PMC9198298 DOI: 10.3389/fonc.2022.881246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Precision oncology is an absolute need today due to the emergence of treatment resistance and heterogeneity among cancerous profiles. Target-propelled cancer therapy is one of the treasures of precision oncology which has come together with substantial medical accomplishment. Prostate cancer is one of the most common cancers in males, with tremendous biological heterogeneity in molecular and clinical behavior. The spectrum of molecular abnormalities and varying clinical patterns in prostate cancer suggest substantial heterogeneity among different profiles. To identify novel therapeutic targets and precise biomarkers implicated with prostate cancer, we performed a state-of-the-art bioinformatics study, beginning with analyzing high-throughput genomic datasets from The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) suggests a set of five dysregulated hub genes (MAF, STAT6, SOX2, FOXO1, and WNT3A) that played crucial roles in biological pathways associated with prostate cancer progression. We found overexpressed STAT6 and SOX2 and proposed them as candidate biomarkers and potential targets in prostate cancer. Furthermore, the alteration frequencies in STAT6 and SOX2 and their impact on the patients' survival were explored through the cBioPortal platform. The Kaplan-Meier survival analysis suggested that the alterations in the candidate genes were linked to the decreased overall survival of the patients. Altogether, the results signify that STAT6 and SOX2 and their genomic alterations can be explored in therapeutic interventions of prostate cancer for precision oncology, utilizing early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
32
|
Zhang Q, Wei Y, Li Y, Jiao X. Low MARCO Expression is Associated with Poor Survival in Patients with Hepatocellular Carcinoma Following Liver Transplantation. Cancer Manag Res 2022; 14:1935-1944. [PMID: 35720642 PMCID: PMC9200231 DOI: 10.2147/cmar.s363219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Macrophage receptor with collagenous structure (MARCO) reportedly plays a crucial role in the occurrence and development of several cancers. However, the association between MARCO and the prognosis of hepatocellular carcinoma (HCC) post-liver transplantation remains poorly elucidated. Methods We examined MARCO expression at mRNA and protein level in 145 HCC samples and adjacent nontumor tissues using quantitative reverse transcription PCR, Western blot and immunohistochemistry. Furthermore, we analyzed the correlation of MARCO expression with clinicopathologic features and prognosis. Results We assessed the association between MARCO expression and clinicopathologic features and used the Cox proportional hazards regression model to explore the association between MARCO expression and clinical prognosis of patients with HCC post-liver transplantation. We observed that the expression of MARCO at mRNA and protein level in adjacent nontumor tissues was higher than that in the HCC tissues. Low MARCO expression in HCC tissues was correlated with higher alpha-fetoprotein levels, higher incidence of microvascular invasion, and a higher number of patients beyond Milan criteria. Kaplan–Meier survival curves showed that patients with HCC with low MARCO expression exhibited poor overall survival (OS) and disease-free survival (DFS). Univariate and multivariate analysis revealed that MARCO expression was an independent prognostic factor for OS (hazard ratio [HR] 2.696, 95% confidence interval [CI] 1.335–5.444, P=0.006) and DFS (HR 2.867, 95% CI 1.665–4.936, P<0.001) in patients with HCC post-liver transplantation. Based on immunofluorescence analysis, MARCO expression was primarily localized to macrophages and might be associated with M2-like macrophage polarization during HCC. Conclusion MARCO expression was downregulated in HCC and associated with poor prognosis of patients with HCC post-liver transplantation. Moreover, it could be a potential prognostic marker and therapeutic target in post-liver transplantation HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yuxuan Wei
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yihu Li
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Xingyuan Jiao
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
33
|
Su H, Imai K, Jia W, Li Z, DiCioccio RA, Serody JS, Poe JC, Chen BJ, Doan PL, Sarantopoulos S. Alphavirus Replicon Particle Vaccine Breaks B Cell Tolerance and Rapidly Induces IgG to Murine Hematolymphoid Tumor Associated Antigens. Front Immunol 2022; 13:865486. [PMID: 35686131 PMCID: PMC9171395 DOI: 10.3389/fimmu.2022.865486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
De novo immune responses to myeloid and other blood-borne tumors are notably limited and ineffective, making our ability to promote immune responses with vaccines a major challenge. While focus has been largely on cytotoxic cell-mediated tumor eradication, B-cells and the antibodies they produce also have roles in anti-tumor responses. Indeed, therapeutic antibody-mediated tumor cell killing is routinely employed in patients with hematolymphoid cancers, but whether endogenous antibody responses can be incited to blood-born tumors remains poorly studied. A major limitation of immunoglobulin therapies is that cell surface expression of tumor-associated antigen (TAA) targets is dynamic and varied, making promotion of polyclonal, endogenous B cell responses appealing. Since many TAAs are self-antigens, developing tumor vaccines that enable production of antibodies to non-polymorphic antigen targets remains a challenge. As B cell responses to RNA vaccines are known to occur, we employed the Viral Replicon Particles (VRP) which was constructed to encode mouse FLT3. The VRP-FLT3 vaccine provoked a rapid IgG B-cell response to this self-antigen in leukemia and lymphoma mouse models. In addition, IgGs to other TAAs were also produced. Our data suggest that vaccination with RNA viral particle vectors incites a loss of B-cell tolerance that enables production of anti-tumor antibodies. This proof of principle work provides impetus to employ such strategies that lead to a break in B-cell tolerance and enable production of broadly reactive anti-TAA antibodies as potential future therapeutic agents for patients with hematolymphoid cancers.
Collapse
Affiliation(s)
- Hsuan Su
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Kazuhiro Imai
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Wei Jia
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Zhiguo Li
- Biostatistics and Bioinformatics, Basic Science Department, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Rachel A DiCioccio
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan C Poe
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Benny J Chen
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Phuong L Doan
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States.,Department of Immunology, School of Medicine, Duke University , Durham, NC, United States
| |
Collapse
|
34
|
Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS, Chakraborty C. Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (Review). Int J Oncol 2022; 60:56. [PMID: 35362541 DOI: 10.3892/ijo.2022.5346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non‑coding RNAs that have been recently regarded as functionally active. CircRNAs are remarkably stable and known to possess several biological functions such as microRNA sponging, regulating transcription and splicing and occasionally acting as polypeptide‑producing templates. CircRNAs show tissue‑specific expression and have been reported to be associated with the progression of several types of malignancies. Given the recent progress in genome sequencing and bioinformatics techniques, a rapid increment in the biological role of circRNAs has been observed. Concurrently, the patent search from different patent databases shows that the patent number of circRNA is increasing very quickly. These phenomena reveal a rapid development of the technological landscape. In the present review, the recent progress on circRNAs in various kinds of cancer has been investigated and their function as biomarkers or therapeutic targets and their technological landscape have been appreciated. A new insight into circRNAs structure and functional capabilities in cancer has been reviewed. Continually increasing knowledge on their critical role during cancer progression is projecting them as biomarkers or therapeutic targets for various kinds of cancer. Thus, recent updates on the functional role of circRNAs in terms of the technological landscape, clinical opportunities (biomarkers and therapeutic targets), and challenges in cancer have been illustrated.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Shreya Banerjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| |
Collapse
|
35
|
Zheng D, Fu W, Jin L, Jiang X, Jiang W, Guan Y, Hao R. The Overexpression and Clinical Significance of AP1S1 in Breast Cancer. Cancer Manag Res 2022; 14:1475-1492. [PMID: 35463798 PMCID: PMC9021008 DOI: 10.2147/cmar.s346519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To explore the mechanism of AP1S1 in breast cancer. Methods and Results In different datasets, we found that AP1S1 is more highly expressed in breast tumors, which was furthermore verified in our local cohort.Immune infiltration analysis showed that AP1S1 was related to a variety of immune cells. The higher AP1S1 expression was negatively correlated with a variety of immune infiltrating cells, suggesting that AP1S1 may affect cellular immunity.Clinical analysis showed that patients with higher AP1S1 expression had higher estrogen receptor gene expression and were more prone to distant metastasis and lymph node metastasis.The overall survival rate, disease-specific survival rate, and progression-free interval time were worse in the group with higher AP1S1 expression. AP1S1 may be a potential oncogene of breast cancer, and overexpression is related to the poor prognosis of breast cancer.Therefore, a nomogram was constructed, along with correlated gene analysis and functional analysis to further explore the carcinogenic mechanism, practical clinical issues, and value of AP1S1. Conclusion AP1S1 is a potential oncogene of breast cancer.
Collapse
Affiliation(s)
- Danni Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Weida Fu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Lingli Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiaofang Jiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yaoyao Guan
- Department of Plastic Surgery, Sir Run-Run Hospital Affiliated to Zhejiang University, Hangzhou, People’s Republic of China
- Correspondence: Yaoyao Guan, 3 Qingchun East Road, Jianggan District, Hangzhou, Zhejiang, People’s Republic of China, Tel +86 571-86006618, Fax +86 571-86044817, Email
| | - Rutian Hao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Rutian Hao, South White Elephant Warm hospital first New Area, Ouhai District, Wenzhou, Zhejiang, People’s Republic of China, Tel +86 577 5557, Fax +86 577-55578033, Email
| |
Collapse
|
36
|
Zhang X, Li K, Zhong S, Liu S, Liu T, Li L, Han S, Zhai Q, Bao N, Shi X, Bao Y. Immunotherapeutic Value of MAP1LC3C and Its Candidate FDA-Approved Drugs Identified by Pan-Cancer Analysis, Virtual Screening and Sensitivity Analysis. Front Pharmacol 2022; 13:863856. [PMID: 35308199 PMCID: PMC8929514 DOI: 10.3389/fphar.2022.863856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Background: The autophagy pathway within the tumour microenvironment can be regulated to inhibit or promote tumour development. In the fight against tumour growth, immunotherapy induces an anti-tumour immune response, whereas autophagy modulates this immune response. A key protein in the autophagy pathway, microtubule-associated protein 1 light chain 3 (MAP1LC3), has recently become a hotspot for tumour research. As a relatively novel member, the function of MAP1LC3C in tumours still need to be investigated. Therefore, the goal of this study was to look into the possible link between MAP1LC3C and immunotherapy for 33 kinds of human malignancies by using pan-cancer analysis. Methods: High-throughput sequencing data from The Cancer Genome Atlas, Genotype-Tissue Expression Project and Cancer Cell Line Encyclopedia databases, combined with clinical data, were used to analyze the expression of MAP1LC3C in 33 types of cancer, as well as patient prognosis and neoplasm staging. Activity scores were calculated using ssGSEA to assess the MAP1LC3C activity in pan-cancer. Associations between MAP1LC3C and the tumour microenvironment, including immune cell infiltration and immunomodulators, were analyzed. Moreover, tumour tissue ImmuneScores and StromalScores were analyzed using the ESTIMATE algorithm. Additionally, associations between MAP1LC3C and tumour mutational burden/microsatellite instability, were investigated. Finally, based on the expression and structure of MAP1LC3C, the United States Food and Drug Administration (FDA)-approved drugs, were screened by virtual screening, molecular docking and NCI-60 drug sensitivity analysis. Results: Our study found that MAP1LC3C was differentially expressed in tumour and normal tissues in 23 of 33 human cancer types, among which MAP1LC3C had prognostic effects in 12 cancer types, and MAP1LC3C expression was significantly correlated with tumour stage in four cancer types. In addition, MAP1LC3C activity in 14 cancer types was consistent with changes in transcription levels. Moreover, MAP1LC3C strongly correlated with immune infiltration, immune modulators and immune markers. Finally, a number of FDA-approved drugs were identified via virtual screening and drug sensitivity analysis. Conclusion: Our study investigated the prognostic and immunotherapeutic value of MAP1LC3C in 33 types of cancer, and several FDA-approved drugs were identified to be highly related to MAP1LC3C and can be potential cancer therapeutic candidates.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Kunhang Li
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Shiyu Zhong
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Shengyu Liu
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Lishuai Li
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Shuo Han
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Shenyang, China
| | - Qingqing Zhai
- School of Management, Shanghai University, Shanghai, China
| | - Nan Bao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xin Shi
- School of Maths and Information Science, Shangdong Technology and Business University, Yantai, China.,Business School, All Saints Campus, Manchester Metropolitan University, Manchester, United Kingdom
| | - Yijun Bao
- Department of Neurosurgery, The Fourth Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
The Role of Autophagy in Tumor Immune Infiltration in Colorectal Cancer. Anal Cell Pathol (Amst) 2022; 2022:2055676. [PMID: 35321516 PMCID: PMC8938087 DOI: 10.1155/2022/2055676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Objective. This study is aimed at exploring the association between autophagy and tumor immune infiltration (TII) in colorectal cancer (CRC). Methods and Materials. We downloaded the transcriptome profiling and clinical data for CRC from The Cancer Genome Atlas (TCGA) database and obtained the normal colon transcriptome profiling data from Genotype-Tissue Expression Project (GTEx) database. The list of autophagy-related signatures was obtained from the Human Autophagy Database. We isolated the autophagy-related genes from the CRC gene expression matrix and constructed an autophagy-related prognostic (ARP) risk model. Then, we constructed a multiROC curve to validate the prognostic ability of the ARP risk model. CIBERSORT was used to determine the fractions of 22 immune cells in each CRC sample, and the association between these TII cells and CRC clinical variables was further investigated. Finally, we estimated the association of 3 hub-ARP signatures and 20 different types of TII cell distribution. Results. We classified 447 CRC patients into 224 low-risk and 223 high-risk patients using the median ARP risk score. According to the univariate survival test results, except for gender (
), age (
), cancer stage, and pathological stage T, M, and N were closely correlated with the prognosis of CRC patients (
). Multivariate survival analysis results indicate that age and rescore were the only independent prognostic indicators with significant differences (
). After merging the immune cell distribution (by CIBERSORT) with the CRC clinical data, the results indicate that activated macrophage M0 cells exhibited the highest clinical response, which included cancer stage and stage T, N, and M. Additionally, six immune cells were closely associated with cancer stage, including regulatory T cells (Tregs), gamma delta T cells, follicular helper T cells, activated memory CD4 T cells, activated NK cells, and resting dendritic cells. Finally, we evaluated the correlation of ARP signatures with TII cell distribution. Compared with the other correlation, NRG1 and plasma cells (↑), risk score and macrophage M1 (↑), NRG1 and dendritic cell activated (↑), CDKN2A and T cell CD4 memory resting (↓), risk score and T cell CD8 (↑), risk score and T cell CD4 memory resting (↓), and DAPK1 and T cell CD4 memory activated (↓) exhibited a stronger association (
). Conclusions. In summary, we explored the correlation between the risk of autophagy and the TII microenvironment in CRC patients. Furthermore, we integrated different CAR signatures with tumor-infiltrating immune cells and found robust associations between different levels of CAR signature expression and immune cell infiltrating density.
Collapse
|
38
|
Jiang N, Zhang X, Chen Q, Kantawong F, Wan S, Liu J, Li H, Zhou J, Lu B, Wu J. Identification of a Mitochondria-Related Gene Signature to Predict the Prognosis in AML. Front Oncol 2022; 12:823831. [PMID: 35359394 PMCID: PMC8960857 DOI: 10.3389/fonc.2022.823831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria-related metabolic reprogramming plays a major role in the occurrence, development, drug resistance, and recurrence of acute myeloid leukemia (AML). However, the roles of mitochondria-related genes (MRGs) in the prognosis and immune microenvironment for AML patients remain largely unknown. In this study, by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, 4 MRGs’ (HPDL, CPT1A, IDH3A, and ETFB) signature was established that demonstrated good robustness in TARGET AML datasets. The univariate and multivariate Cox regression analyses both demonstrated that the MRG signature was a robust independent prognostic factor in overall survival prediction with high accuracy for AML patients. Based on the risk score calculated by the signature, samples were divided into high- and low-risk groups. Gene set enrichment analysis (GSEA) suggested that the MRG signature is involved in the immune-related pathways. Via immune infiltration analysis and immunosuppressive genes analysis, we found that MRG risk of AML patients was strikingly positively correlated with an immune cell infiltration and expression of critical immune checkpoints, indicating that the poor prognosis might be caused by immunosuppressive tumor microenvironment (TME). In summary, the signature based on MRGs could act as an independent risk factor for predicting the clinical prognosis of AML and could also reflect an association with the immunosuppressive microenvironment, providing a novel method for AML metabolic and immune therapy based on the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Foreign Language School, Southwest Medical University, Luzhou, China
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xinzhuo Zhang
- Foreign Language School, Southwest Medical University, Luzhou, China
| | - Qi Chen
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Shengli Wan
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Jian Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bin Lu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Jianming Wu, ; Bin Lu,
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Jianming Wu, ; Bin Lu,
| |
Collapse
|
39
|
Improving the role of immune checkpoint inhibitors in the management of advanced urothelial carcinoma, where do we stand? Transl Oncol 2022; 19:101387. [PMID: 35278793 PMCID: PMC8917314 DOI: 10.1016/j.tranon.2022.101387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Immune checkpoint inhibitors improve outcome in metastatic urothelial carcinoma. Maintenance strategy involves early use of avelumab after efficient chemotherapy. Patients with no progression on chemotherapy should receive maintenance avelumab. There is no place for PD-L1 testing when considering maintenance strategy.
Immune checkpoint inhibitors (ICIs) have significantly improved the outcome of patients with metastatic urothelial cancer (mUC). If these agents were first used in monotherapy after failure of platinum-based chemotherapy, new strategies have been evaluated in the last years, including association of ICIs, ICI plus chemotherapy association or maintenance therapy. This maintenance concept allows a better management of mUC, which is particularly interesting in cisplatin-ineligible patients. This paper aims to review the current knowledge of ICIs in urothelial carcinoma as well as the new indications of these agents in mUC.
Collapse
|
40
|
Li H, Qu L, Yang Y, Zhang H, Li X, Zhang X. Single-cell Transcriptomic Architecture Unraveling the Complexity of Tumor Heterogeneity in Distal Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2022; 13:1592-1609.e9. [PMID: 35219893 PMCID: PMC9043309 DOI: 10.1016/j.jcmgh.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Distal cholangiocarcinoma (dCCA) are a group of epithelial cell malignancies that occurs at the distal common bile duct, and account for approximately 40% of all cholangiocarcinoma cases. dCCA remains a highly lethal disease as it typically features remarkable cellular heterogeneity. A comprehensive exploration of cellular diversity and the tumor microenvironment is essential to depict the mechanisms driving dCCA progression. METHODS Single-cell RNA sequencing was used here to dissect the heterogeneity landscape and tumor microenvironment composition of human dCCAs. Seven human dCCAs and adjacent normal bile duct samples were included in the current study for single-cell RNA sequencing and subsequent validation approaches. Additionally, the results of the analyses were compared with bulk transcriptomic datasets from extrahepatic cholangiocarcinoma and single-cell RNA data from intrahepatic cholangiocarcinoma. RESULTS We sequenced a total of 49,717 single cells derived from human dCCAs and adjacent tissues, identifying 11 distinct cell types. Malignant cells displayed remarkable inter- and intra-tumor heterogeneity with 5 distinct subsets were defined in tumor samples. The malignant cells displayed variable degree of aneuploidy, which can be classified into low- and high-copy number variation groups based on either amplification or deletion of chr17q12 - chr17q21.2. Additionally, we identified 4 distinct T lymphocytes subsets, of which cytotoxic CD8+ T cells predominated as effectors in tumor tissues, whereas tumor infiltrating FOXP3+ CD4+ regulatory T cells exhibited highly immunosuppressive characteristics. CONCLUSION Our single-cell transcriptomic dataset depicts the inter- and intra-tumor heterogeneity of human dCCAs at the expression level.
Collapse
Affiliation(s)
- Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingxin Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongheng Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haibin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuexin Li
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Correspondence Address correspondence to: Xiaolu Zhang, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. tel: (+86) 17862933917; fax: (+86) 53188565657.
| |
Collapse
|
41
|
Detraining Effects of COVID-19 Pandemic on Physical Fitness, Cytokines, C-Reactive Protein and Immunocytes in Men of Various Age Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031845. [PMID: 35162870 PMCID: PMC8835692 DOI: 10.3390/ijerph19031845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023]
Abstract
Background and Objectives: Since the start of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus II, levels of physical inactivity have become more severe and widespread than ever before. Physical inactivity is known to have a negative effect on the human body, but the extent to which reduced physical fitness has effected immune function before and after the current pandemic has not yet been uncovered. The aim of this study was to investigate the detraining effects of the COVID-19 confinement period on physical fitness, immunocytes, inflammatory cytokines, and proteins in various age groups. The participants of this study included sixty-four male adults who did not exercise during the pandemic, although they had exercised regularly before. Materials and Methods: Participants were classified by age group, which included the 20s group (20s’G, n = 14), 30s group (30s’G, n = 12), 40s group (40s’G, n = 12), 50s group (50s’G, n = 12), and 60s group (60s’G, n = 14). Results: Regarding body composition, muscle mass significantly decreased, whereas fat mass, fat percentage, and waist/hip ratio significantly increased in most groups. Cardiopulmonary endurance and strength significantly decreased in all groups, while muscle endurance and flexibility decreased in some groups compared to the pre-COVID-19 pandemic. This study confirmed the immunocytopenia and enhanced inflammation due to physical inactivity during the COVID-19 pandemic, and a greater detrimental decrease mainly after the age of 50. Conclusion: This study confirmed a decrease in physical fitness after the start of the COVID-19 pandemic, characterized by an increase in fat mass and a decrease in muscle mass, thereby increasing cytokines and reducing immunocytes in the body. While social distancing is important during the pandemic, maintaining physical fitness should also be a top priority.
Collapse
|
42
|
Chen L, Jiang X, Zhang Q, Li Q, Zhang X, Zhang M, Yu Q, Gao D. How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC. Clin Immunol 2022; 237:108962. [DOI: 10.1016/j.clim.2022.108962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
|
43
|
Abdelatty A, Sun Q, Hu J, Wu F, Wei G, Xu H, Zhou G, Wang X, Xia H, Lan L. Pan-Cancer Study on Protein Kinase C Family as a Potential Biomarker for the Tumors Immune Landscape and the Response to Immunotherapy. Front Cell Dev Biol 2022; 9:798319. [PMID: 35174160 PMCID: PMC8841516 DOI: 10.3389/fcell.2021.798319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
The protein kinase C (PKC) family has been described with its role in some cancers, either as a promoter or suppressor. PKC signaling also regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha (PPARalpha). However, the role of different PKC enzymes in tumor immunity remains poorly defined. This study aims to investigate the correlation between PKC genes and tumor immunity, in addition to studying the probability of their use as predictive biomarkers for tumor immunity and immunotherapeutic response. The ssGSEA and the ESTIMATE methods were used to assess 28 tumor-infiltrating lymphocytes (TILs) and the immune component of each cancer, then correlated with PKC levels. Prediction of PKC levels-dependent immunotherapeutic response was based on human leukocytic antigen (HLA) gene enrichment scores and programmed cell death 1 ligand (PD-L1) expression. Univariate and multivariate Cox analysis was performed to evaluate the prognostic role of PKC genes in cancers. Methylation level and CNAs could drive the expression levels of some PKC members, especially PRKCI, whose CNGs are predicted to elevate their level in many cancer types. The most crucial finding in this study was that PKC isoenzymes are robust biomarkers for the tumor immune status, PRKCB, PRKCH, and PRKCQ as stimulators, while PRKCI and PRKCZ as inhibitors in most cancers. Also, PKC family gene levels can be used as predictors for the response to immunotherapies, especially HLAs dependent and PD-L1 blockade-dependent ones. In addition to its prognostic function, all PKC family enzymes are promising tumor immunity biomarkers and can help select suitable immune therapy in different cancers.
Collapse
Affiliation(s)
- Alaa Abdelatty
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Junhong Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fubing Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Guanqun Wei
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Haojun Xu
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Hongping Xia
- Department of Pathology in the School of Basic Medical Sciences and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guoren Zhou, ; Xiaoming Wang, ; Hongping Xia, ; Linhua Lan,
| |
Collapse
|
44
|
Cai Z, Jiang J, Huang L, Yuan Y, Zheng R, Zhang J, Qiu W. The Prognostic Impact of Combined Tumor-Infiltrating Lymphocytes and Pretreatment Blood Lymphocyte Percentage in Locally Advanced Nasopharyngeal Carcinoma. Front Oncol 2022; 11:788497. [PMID: 35117992 PMCID: PMC8804347 DOI: 10.3389/fonc.2021.788497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose To explore the prognostic impact of combined tumor-infiltrating lymphocytes (TILs) and pretreatment peripheral lymphocyte percentage (LYM%) among patients with locally advanced nasopharyngeal carcinoma (LA-NPC). Patients and Methods TILs and pretreatment LYM% were retrospectively assessed in 253 LA-NPC patients who underwent chemoradiation therapy between January 2012 and December 2017. According to TILs and LYM% status, the patients were divided into three groups: high-risk group (HRG) (TILs–LYM% score = 0), middle-risk group (MRG) (TILs–LYM% score = 1), and low-risk group (LRG) (TILs–LYM% score = 2). The relationship between TILs level and LYM%, and also the associations of TILs–LYM% status with clinicopathological factors and survival, were evaluated. Results As a continuous variable, LYM% was significantly higher in TILs-high group. High TILs or high LYM% alone was significantly related to better 3-year disease-free survival (DFS), overall survival (OS), distant metastasis-free survival (DMFS) and locoregional relapse-free survival (LRRFS), respectively. Kaplan–Meier analysis and log-rank tests also revealed significant decreases in DFS, OS, DMFS, and LRRFS among LA-NPC patients with TILs–LYM% score of 0, 1, and 2 (all P <0.05). Further multivariate analyses showed that TILs–LYM% score was an independent factor affecting survival of the patients, and HRG (TILs–LYM% score = 0) had increased hazard ratios (HRs) for disease (HR = 6.89, P <0.001), death (HR = 8.08, P = 0.008), distant metastasis (HR = 7.66, P = 0.001), and local relapse (HR = 5.18, P = 0.013) compared with LRG (TILs–LYM% score = 2). In receiver operating characteristics (ROC) analyses, TILs–LYM% score had a higher area under the ROC curve (AUC) for the prediction of DFS than did TILs or LYM% alone. Conclusions A positive correlation was found between TILs level and pretreatment blood lymphocyte percentage. Moreover, TILs–LYM% score can be considered as a novel independent prognostic indicator of survival outcome among patients with LA-NPC.
Collapse
Affiliation(s)
- Zhuochen Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiali Jiang
- Health Ward, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Laiji Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jiangyu Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jiangyu Zhang, ; Wenze Qiu,
| | - Wenze Qiu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jiangyu Zhang, ; Wenze Qiu,
| |
Collapse
|
45
|
Liu K, Hoover AR, Krawic JR, DeVette CI, Sun XH, Hildebrand WH, Lang ML, Axtell RC, Chen WR. Antigen presentation and interferon signatures in B cells driven by localized ablative cancer immunotherapy correlate with extended survival. Am J Cancer Res 2022; 12:639-656. [PMID: 34976205 PMCID: PMC8692917 DOI: 10.7150/thno.65773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Rationale: B cells have emerged as key regulators in protective cancer immunity. However, the activation pathways induced in B cells during effective immunotherapy are not well understood. Methods: We used a novel localized ablative immunotherapy (LAIT), combining photothermal therapy (PTT) with intra-tumor delivery of the immunostimulant N-dihydrogalactochitosan (GC), to treat mice bearing mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT). We used single-cell RNA sequencing to compare the transcriptional changes induced by PTT, GC and PTT+GC in B cells within the tumor microenvironment (TME). Results: LAIT significantly increased survival in the tumor-bearing mice, compared to the treatment by PTT and GC alone. We found that PTT, GC and PTT+GC increased the proportion of tumor-infiltrating B cells and induced gene expression signatures associated with B cell activation. Both GC and PTT+GC elevated gene expression associated with antigen presentation, whereas GC elevated transcripts that regulate B cell activation and GTPase function and PTT+GC induced interferon response genes. Trajectory analysis, where B cells were organized according to pseudotime progression, revealed that both GC and PTT+GC induced the differentiation of B cells from a resting state towards an effector phenotype. The analyses confirmed upregulated interferon signatures in the differentiated tumor-infiltrating B cells following treatment by PTT+GC but not by GC. We also observed that breast cancer patients had significantly longer survival time if they had elevated expression of genes in B cells that were induced by PTT+GC therapy in the mouse tumors. Conclusion: Our findings show that the combination of local ablation and local application of immunostimulant initiates the activation of interferon signatures and antigen-presentation in B cells which is associated with positive clinical outcomes for breast cancer. These findings broaden our understanding of LAIT's regulatory roles in remodeling TME and shed light on the potentials of B cell activation in clinical applications.
Collapse
|
46
|
Boone CE, Wang L, Gautam A, Newton IG, Steinmetz NF. Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1739. [PMID: 34296535 PMCID: PMC8906799 DOI: 10.1002/wnan.1739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Cancer immunotherapy has emerged as a pillar of the cancer therapy armamentarium. Immune checkpoint therapy (ICT) is a mainstay of modern immunotherapy. Although ICT monotherapy has demonstrated remarkable clinical efficacy in some patients, the majority do not respond to treatment. In addition, many patients eventually develop resistance to ICT, disease recurrence, and toxicity from off-target effects. Combination therapy is a keystone strategy to overcome the limitations of monotherapy. With the integration of ICT and any therapy that induces tumor cell lysis and release of tumor-associated antigens (TAAs), ICT is expected to strengthen the coordinated innate and adaptive immune responses to TAA release and promote systemic, cellular antitumor immunity. Nanomedicine is well poised to facilitate combination ICT. Nanoparticles with delivery and/or immunomodulation capacities have been successfully combined with ICT in preclinical applications. Delivery nanoparticles protect and control the targeted release of their cargo. Inherently immunomodulatory nanoparticles can facilitate immunogenic cell death, modification of the tumor microenvironment, immune cell mimicry and modulation, and/or in situ vaccination. Nanoparticles are frequently multifunctional, combining multiple treatment strategies into a single platform with ICT. Nanomedicine and ICT combinations have great potential to yield novel, powerful treatments for patients with cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Lu Wang
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92039, USA
| | - Aayushma Gautam
- Department of Bioengineering, University of California, San Diego, La Jolla CA 92039, USA
| | - Isabel G. Newton
- Department of Radiology, University of California, San Diego, La Jolla CA 92039, USA,Veterans Administration San Diego Healthcare System, 3350 La Jolla Village Drive San Diego, CA 92161
| | | |
Collapse
|
47
|
Global management of brain metastasis from renal cell carcinoma. Crit Rev Oncol Hematol 2022; 171:103600. [DOI: 10.1016/j.critrevonc.2022.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
|
48
|
Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, Liu Y, Cheng J, Wang Z, Wang S, Liu Y, Zhang W. Cancer-Erythrocyte Hybrid Membrane-Camouflaged Magnetic Nanoparticles with Enhanced Photothermal-Immunotherapy for Ovarian Cancer. ACS NANO 2021; 15:19756-19770. [PMID: 34860006 DOI: 10.1021/acsnano.1c07180] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cell-membrane-coated nanoparticles are widely studied due to their inherent cellular properties, such as immune escape and homologous homing. A cell membrane coating can also maintain the relative stability of nanoparticles during circulation in a complex blood environment through cell membrane encapsulation technology. In this study, we fused a murine-derived ID8 ovarian cancer cell membrane with a red blood cell (RBC) membrane to create a hybrid biomimetic coating (IRM), and hybrid IRM camouflaged indocyanine green (ICG)-loaded magnetic nanoparticles (Fe3O4-ICG@IRM) were fabricated for combination therapy of ovarian cancer. Fe3O4-ICG@IRM retained both ID8 and RBC cell membrane proteins and exhibited highly specific self-recognition of ID8 cells in vitro and in vivo as well as a prolonged circulation lifetime in blood. Interestingly, in the bilateral flank tumor model, the IRM-coated nanoparticles also activated specific immunity, which killed homologous ID8 tumor cells but had no effect on B16-F10 tumor cells. Furthermore, Fe3O4-ICG@IRM showed synergistic photothermal therapy, resulting in the release of whole-cell tumor antigens by photothermal-induced tumor necrosis, which further enhanced antitumor immunotherapy for primary tumor and metastatic tumor by activating CD8+ cytotoxic T cells and reducing regulatory Foxp3+ T cells. Together, the biomimetic Fe3O4-ICG@IRM nanoparticles showed synergistic photothermal-immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Jilei Chen
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yaofa Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yurou Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanlan Fan
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenhua Wang
- Institute of Flexible Electronics, Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Yi Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Separation Membranes and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
49
|
Wu J, Yang H, Xu JC, Hu Z, Gu WF, Chen ZY, Xia JX, Lowrie DB, Lu SH, Fan XY. Mycobacterium tuberculosis Rv3628 isan effective adjuvant via activationof dendritic cells for cancer immunotherapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:288-302. [PMID: 34786473 PMCID: PMC8571481 DOI: 10.1016/j.omto.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/30/2022]
Abstract
Tumor antigens (Ags) are weakly immunogenic and elicit inadequate immune responses, thus induction of antigen-specific immune activation via the maturation of dendritic cells (DCs) is a strategy used for cancer immunotherapy. In this study, we examined the effect of Rv3628 from Mycobacterium tuberculosis (Mtb) on activation of DCs and anti-tumor immunity in vivo. Intravenous injection of mice with Rv3628 promoted DC activation of spleen and lymph nodes. More importantly, Rv3628 also induced activation of DCs and enhanced Ag presentation in tumor-bearing mice. In mice bearing ovalbumin (OVA)-expressing tumors, combination treatment with Rv3628 and OVA peptide promoted OVA-specific T cell activation and accumulation of interferon (IFN)-γ and tumor necrosis factor (TNF)-α-producing OT-I and OT-II cells in tumor-draining lymph nodes. Moreover, three different tumor Ags in three different tumor models showed enhanced anti-tumor activity with Rv3628 as adjuvant, including inhibition of growth of OVA-expressing B16 melanoma, CT26 carcinoma, and B16 melanoma tumors, and a synergistic effect with anti-programmed cell death protein 1 (PD-1) antibody treatment. Additionally, potential application against human tumors was indicated by similar activation of human peripheral blood DCs by Rv3628. Taken together, these data demonstrate that Rv3628 could be an effective adjuvant in tumor immunotherapy via enhanced capacity of DC activation and Ag presentation.
Collapse
Affiliation(s)
- Juan Wu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China.,TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai 201508, China
| | - Heng Yang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China
| | - Jin-Chuan Xu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China.,TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai 201508, China
| | - Wen-Fei Gu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhen-Yan Chen
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China
| | - Jing-Xian Xia
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China.,TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, China.,TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai 201508, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
50
|
Zhu J, Yuan Y, Wan X, Yin D, Li R, Chen W, Suo C, Song H. Immunotherapy (excluding checkpoint inhibitors) for stage I to III non-small cell lung cancer treated with surgery or radiotherapy with curative intent. Cochrane Database Syst Rev 2021; 12:CD011300. [PMID: 34870327 PMCID: PMC8647093 DOI: 10.1002/14651858.cd011300.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common lung cancer, accounting for approximately 80% to 85% of all cases. For people with localised NSCLC (stages I to III), it has been speculated that immunotherapy may be helpful for reducing postoperative recurrence rates, or improving the clinical outcomes of current treatment for unresectable tumours. This is an update of a Cochrane Review first published in 2017 and it includes two new randomised controlled trials (RCTs). OBJECTIVES To assess the effectiveness and safety of immunotherapy (excluding checkpoint inhibitors) among people with localised NSCLC of stages I to III who received curative intent of radiotherapy or surgery. SEARCH METHODS We searched the following databases (from inception to 19 May 2021): CENTRAL, MEDLINE, Embase, CINAHL, and five trial registers. We also searched conference proceedings and reference lists of included trials. SELECTION CRITERIA We included RCTs conducted in adults (≥ 18 years) diagnosed with NSCLC stage I to III after surgical resection, and those with unresectable locally advanced stage III NSCLC receiving radiotherapy with curative intent. We included participants who underwent primary surgical treatment, postoperative radiotherapy or chemoradiotherapy if the same strategy was provided for both intervention and control groups. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible trials, assessed risk of bias, and extracted data. We used survival analysis to pool time-to-event data, using hazard ratios (HRs). We used risk ratios (RRs) for dichotomous data, and mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). Due to clinical heterogeneity (immunotherapeutic agents with different underlying mechanisms), we combined data by applying random-effects models. MAIN RESULTS We included 11 RCTs involving 5128 participants (this included 2 new trials with 188 participants since the last search dated 20 January 2017). Participants who underwent surgical resection or received curative radiotherapy were randomised to either an immunotherapy group or a control group. The immunological interventions were active immunotherapy Bacillus Calmette-Guérin (BCG) adoptive cell transfer (i.e. transfer factor (TF), tumour-infiltrating lymphocytes (TIL), dendritic cell/cytokine-induced killer (DC/CIK), antigen-specific cancer vaccines (melanoma-associated antigen 3 (MAGE-A3) and L-BLP25), and targeted natural killer (NK) cells. Seven trials were at high risk of bias for at least one of the risk of bias domains. Three trials were at low risk of bias across all domains and one small trial was at unclear risk of bias as it provided insufficient information. We included data from nine of the 11 trials in the meta-analyses involving 4863 participants. There was no evidence of a difference between the immunotherapy agents and the controls on any of the following outcomes: overall survival (HR 0.94, 95% CI 0.84 to 1.05; P = 0.27; 4 trials, 3848 participants; high-quality evidence), progression-free survival (HR 0.94, 95% CI 0.86 to 1.03; P = 0.19; moderate-quality evidence), adverse events (RR 1.12, 95% CI 0.97 to 1.28; P = 0.11; 4 trials, 4126 evaluated participants; low-quality evidence), and severe adverse events (RR 1.14, 95% CI 0.92 to 1.40; 6 trials, 4546 evaluated participants; low-quality evidence). Survival rates at different time points showed no evidence of a difference between immunotherapy agents and the controls. Survival rate at 1-year follow-up (RR 1.02, 95% CI 0.96 to 1.08; I2 = 57%; 7 trials, 4420 participants; low-quality evidence), 2-year follow-up (RR 1.02, 95% CI 0.93 to 1.12; 7 trials, 4420 participants; moderate-quality evidence), 3-year follow-up (RR 0.99, 95% CI 0.90 to 1.09; 7 trials, 4420 participants; I2 = 22%; moderate-quality evidence) and at 5-year follow-up (RR 0.98, 95% CI 0.86 to 1.12; I2 = 0%; 7 trials, 4389 participants; moderate-quality evidence). Only one trial reported overall response rates. Two trials provided health-related quality of life results with contradicting results. AUTHORS' CONCLUSIONS: Based on this updated review, the current literature does not provide evidence that suggests a survival benefit from adding immunotherapy (excluding checkpoint inhibitors) to conventional curative surgery or radiotherapy, for people with localised NSCLC (stages I to III). Several ongoing trials with immune checkpoints inhibitors (PD-1/PD-L1) might bring new insights into the role of immunotherapy for people with stages I to III NSCLC.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Yuan
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wan
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Yin
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenwen Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Suo
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|