1
|
Sobornova VV, Belov KV, Dyshin AA, Gurina DL, Khodov IA, Kiselev MG. Molecular Dynamics and Nuclear Magnetic Resonance Studies of Supercritical CO 2 Sorption in Poly(Methyl Methacrylate). Polymers (Basel) 2022; 14:polym14235332. [PMID: 36501726 PMCID: PMC9737377 DOI: 10.3390/polym14235332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The study of supercritical carbon dioxide sorption processes is an important and urgent task in the field of "green" chemistry and for the selection of conditions for new polymer material formation. However, at the moment, the research of these processes is very limited, and it is necessary to select the methodology for each polymer material separately. In this paper, the principal possibility to study the powder sorption processes using 13C nuclear magnetic resonance spectroscopy, relaxation-relaxation correlation spectroscopy and molecular dynamic modeling methods will be demonstrated based on the example of polymethylmethacrylate and supercritical carbon dioxide. It was found that in the first nanoseconds and seconds during the sorption process, most of the carbon dioxide, about 75%, is sorbed into polymethylmethacrylate, while on the clock scale the remaining 25% is sorbed. The methodology presented in this paper makes it possible to select optimal conditions for technological processes associated with the production of new polymer materials based on supercritical fluids.
Collapse
|
2
|
Ullah MS, Mankinen O, Zhivonitko VV, Telkki VV. Ultrafast transverse relaxation exchange NMR spectroscopy. Phys Chem Chem Phys 2022; 24:22109-22114. [PMID: 36074123 PMCID: PMC9491048 DOI: 10.1039/d2cp02944h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Molecular exchange between different physical or chemical environments occurs due to either diffusion or chemical transformation. Nuclear magnetic resonance (NMR) spectroscopy provides a means of understanding the molecular exchange in a noninvasive way and without tracers. Here, we introduce a novel two dimensional, single-scan ultrafast Laplace NMR (UF LNMR) method to monitor molecular exchange using transverse relaxation as a contrast. The UF T2-T2 relaxation exchange spectroscopy (REXSY) method shortens the experiment time by one to two orders of magnitude compared to its conventional counterpart. Contrary to the conventional EXSY, the exchanging sites are distinguished based on T2 relaxation times instead of chemical shifts, making the method especially useful for systems including physical exchange of molecules. Therefore, the UF REXSY method offers an efficient means for quantification of exchange processes in various fields such as cellular metabolism and ion transport in electrolytes. As a proof of principle, we studied a halogen-free orthoborate based ionic liquid system and followed molecular exchange between molecular aggregates and free molecules. The results are in good agreement with the conventional exchange studies. Due to the single-scan nature, the method potentially significantly facilitates the use of modern hyperpolarization techniques to boost the sensitivity by several orders of magnitude.
Collapse
Affiliation(s)
- Md Sharif Ullah
- NMR Research Unit, Faculty of Science, University of Oulu, P.O.Box 3000, 90014 Oulu, Finland.
| | - Otto Mankinen
- NMR Research Unit, Faculty of Science, University of Oulu, P.O.Box 3000, 90014 Oulu, Finland.
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu, P.O.Box 3000, 90014 Oulu, Finland.
| | - Ville-Veikko Telkki
- NMR Research Unit, Faculty of Science, University of Oulu, P.O.Box 3000, 90014 Oulu, Finland.
| |
Collapse
|
3
|
Elgersma SV, Sederman AJ, Mantle MD, Gladden LF. Measuring the liquid-solid mass transfer coefficient in packed beds using T2-T2 relaxation exchange NMR. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods. Sci Rep 2021; 11:15691. [PMID: 34344919 PMCID: PMC8333047 DOI: 10.1038/s41598-021-94401-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma fibrinogen is an important coagulation factor and susceptible to post-translational modification by oxidants. We have reported impairment of fibrin polymerization after exposure to hypochlorous acid (HOCl) and increased methionine oxidation of fibrinogen in severely injured trauma patients. Molecular dynamics suggests that methionine oxidation poses a mechanistic link between oxidative stress and coagulation through protofibril lateral aggregation by disruption of AαC domain structures. However, experimental evidence explaining how HOCl oxidation impairs fibrinogen structure and function has not been demonstrated. We utilized polymerization studies and two dimensional-nuclear magnetic resonance spectrometry (2D-NMR) to investigate the hypothesis that HOCl oxidation alters fibrinogen conformation and T2 relaxation time of water protons in the fibrin gels. We have demonstrated that both HOCl oxidation of purified fibrinogen and addition of HOCl-oxidized fibrinogen to plasma fibrinogen solution disrupted lateral aggregation of protofibrils similarly to competitive inhibition of fibrin polymerization using a recombinant AαC fragment (AαC 419–502). DOSY NMR measurement of fibrinogen protons demonstrated that the diffusion coefficient of fibrinogen increased by 17.4%, suggesting the oxidized fibrinogen was more compact and fast motion in the prefibrillar state. 2D-NMR analysis reflected that water protons existed as bulk water (T2) and intermediate water (T2i) in the control plasma fibrin. Bulk water T2 relaxation time was increased twofold and correlated positively with the level of HOCl oxidation. However, T2 relaxation of the oxidized plasma fibrin gels was dominated by intermediate water. Oxidation induced thinner fibers, in which less water is released into the bulk and water fraction in the hydration shell was increased. We have confirmed that T2 relaxation is affected by the self-assembly of fibers and stiffness of the plasma fibrin gel. We propose that water protons can serve as an NMR signature to probe oxidative rearrangement of the fibrin clot.
Collapse
|
5
|
Kim D, Wisnowski JL, Nguyen CT, Haldar JP. Multidimensional correlation spectroscopic imaging of exponential decays: From theoretical principles to in vivo human applications. NMR IN BIOMEDICINE 2020; 33:e4244. [PMID: 31909534 PMCID: PMC7338241 DOI: 10.1002/nbm.4244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 05/02/2023]
Abstract
Multiexponential modeling of relaxation or diffusion MR signal decays is a popular approach for estimating and spatially mapping different microstructural tissue compartments. While this approach can be quite powerful, it is also limited by the fact that one-dimensional multiexponential modeling is an ill-posed inverse problem with substantial ambiguities. In this article, we present an overview of a recent multidimensional correlation spectroscopic imaging approach to this problem. This approach helps to alleviate ill-posedness by making advantageous use of multidimensional contrast encoding (e.g., 2D diffusion-relaxation encoding or 2D relaxation-relaxation encoding) combined with a regularized spatial-spectral estimation procedure. Theoretical calculations, simulations, and experimental results are used to illustrate the benefits of this approach relative to classical methods. In addition, we demonstrate an initial proof-of-principle application of this kind of approach to in vivo human MRI experiments.
Collapse
Affiliation(s)
- Daeun Kim
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, CA, USA
- Signal and Image Processing Institute, University of Southern California, CA, USA
- Correspondence Daeun Kim,
| | - Jessica L. Wisnowski
- Radiology, Children’s Hospital Los Angeles, CA, USA
- Pediatrics, Children’s Hospital Los Angeles, CA, USA
| | - Christopher T. Nguyen
- Harvard Medical School and Cardiovascular Research Center, Massachusetts General Hospital, MA, USA
- Martinos Center for Biomedical Imaging, Radiology, Massachusetts General Hospital, MA, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, CA, USA
| | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, CA, USA
- Signal and Image Processing Institute, University of Southern California, CA, USA
| |
Collapse
|
6
|
Peng WK, Ng TT, Loh TP. Machine learning assistive rapid, label-free molecular phenotyping of blood with two-dimensional NMR correlational spectroscopy. Commun Biol 2020; 3:535. [PMID: 32985608 PMCID: PMC7522972 DOI: 10.1038/s42003-020-01262-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
Translation of the findings in basic science and clinical research into routine practice is hampered by large variations in human phenotype. Developments in genotyping and phenotyping, such as proteomics and lipidomics, are beginning to address these limitations. In this work, we developed a new methodology for rapid, label-free molecular phenotyping of biological fluids (e.g., blood) by exploiting the recent advances in fast and highly efficient multidimensional inverse Laplace decomposition technique. We demonstrated that using two-dimensional T1-T2 correlational spectroscopy on a single drop of blood (<5 μL), a highly time- and patient-specific 'molecular fingerprint' can be obtained in minutes. Machine learning techniques were introduced to transform the NMR correlational map into user-friendly information for point-of-care disease diagnostic and monitoring. The clinical utilities of this technique were demonstrated through the direct analysis of human whole blood in various physiological (e.g., oxygenated/deoxygenated states) and pathological (e.g., blood oxidation, hemoglobinopathies) conditions.
Collapse
Affiliation(s)
- Weng Kung Peng
- Precision Medicine - Engineering Group, International Iberian Nanotechnology Laboratory, 4715 330, Braga, Portugal.
| | - Tian-Tsong Ng
- Institute for Infocomm Research, Fusionopolis Way, Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore.
| |
Collapse
|
7
|
Williamson NH, Ravin R, Cai TX, Benjamini D, Falgairolle M, O'Donovan MJ, Basser PJ. Real-time measurement of diffusion exchange rate in biological tissue. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 317:106782. [PMID: 32679514 PMCID: PMC7427561 DOI: 10.1016/j.jmr.2020.106782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 05/05/2023]
Abstract
Diffusion exchange spectroscopy (DEXSY) provides a means to isolate the signal attenuation associated with exchange from other sources of signal loss. With the total diffusion weighting b1+b2=bs held constant, DEXSY signals acquired with b1=0 or b2=0 have no exchange weighting, while a DEXSY signal acquired with b1=b2 has maximal exchange weighting. The exchange rate can be estimated by fitting a diffusion exchange model to signals acquired with variable mixing times. Conventionally, acquired signals are normalized by a signal with b1=0 and b2=0 to remove the decay due to spin-lattice relaxation. Instead, division by a signal with equal bs but b1=0 or b2=0 reduces spin-lattice relaxation weighting of the apparent exchange rate (AXR). Furthermore, apparent diffusion-weighted R1 relaxation rates can be estimated from non-exchange-weighted DEXSY signals. Estimated R1 values are utilized to remove signal decay due to spin-lattice relaxation from exchange-weighted signals, permitting a more precise estimate of AXR with less data. Data reduction methods are proposed and tested with regards to statistical accuracy and precision of AXR estimates on simulated and experimental data. Simulations show that the methods are capable of accurately measuring the ground-truth exchange rate. The methods remain accurate even when the assumption that DEXSY signals attenuate with b is violated, as occurs for restricted diffusion. Experimental data was collected from fixed neonatal mouse spinal cord samples at 25 and 7°C using the strong static magnetic field gradient produced by a single-sided permanent magnet (i.e., an NMR MOUSE). The most rapid method for exchange measurements requires only five data points (an 80 s experiment as implemented) and achieves a similar level of accuracy and precision to the baseline method using 44 data points. This represents a significant improvement in acquisition speed, overcoming a barrier which has limited the use of DEXSY on living specimen.
Collapse
Affiliation(s)
- Nathan H Williamson
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Rea Ravin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Celoptics, Rockville, MD, USA
| | - Teddy X Cai
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences, Bethesda, MD 20814, USA
| | - Melanie Falgairolle
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael J O'Donovan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Abstract
The exchange of molecules between different physical or chemical environments due to diffusion or chemical transformations has a crucial role in a plethora of fundamental processes such as breathing, protein folding, chemical reactions and catalysis. Here, we introduce a method for a single-scan, ultrafast NMR analysis of molecular exchange based on the diffusion coefficient contrast. The method shortens the experiment time by one to four orders of magnitude. Consequently, it opens the way for high sensitivity quantification of important transient physical and chemical exchange processes such as in cellular metabolism. As a proof of principle, we demonstrate that the method reveals the structure of aggregates formed by surfactants relevant to aerosol research. Analysis of exchange processes is time consuming by two-dimensional exchange NMR spectroscopy. Here the authors demonstrate a single-scan ultrafast Laplace NMR approach based on spatial encoding to measure molecular diffusion, with an increase by a factor six in the sensitivity per unit time.
Collapse
|
9
|
Williamson NH, Ravin R, Benjamini D, Merkle H, Falgairolle M, O'Donovan MJ, Blivis D, Ide D, Cai TX, Ghorashi NS, Bai R, Basser PJ. Magnetic resonance measurements of cellular and sub-cellular membrane structures in live and fixed neural tissue. eLife 2019; 8:51101. [PMID: 31829935 PMCID: PMC6977971 DOI: 10.7554/elife.51101] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
We develop magnetic resonance (MR) methods for real-time measurement of tissue microstructure and membrane permeability of live and fixed excised neonatal mouse spinal cords. Diffusion and exchange MR measurements are performed using the strong static gradient produced by a single-sided permanent magnet. Using tissue delipidation methods, we show that water diffusion is restricted solely by lipid membranes. Most of the diffusion signal can be assigned to water in tissue which is far from membranes. The remaining 25% can be assigned to water restricted on length scales of roughly a micron or less, near or within membrane structures at the cellular, organelle, and vesicle levels. Diffusion exchange spectroscopy measures water exchanging between membrane structures and free environments at 100 s-1.
Collapse
Affiliation(s)
- Nathan H Williamson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Rea Ravin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Celoptics, Rockville, United States
| | - Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, United States
| | - Hellmut Merkle
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Melanie Falgairolle
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Michael James O'Donovan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Dvir Blivis
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Dave Ide
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Teddy X Cai
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Nima S Ghorashi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ruiliang Bai
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.,Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
10
|
Stabinska J, Neudecker P, Ljimani A, Wittsack H, Lanzman RS, Müller‐Lutz A. Proton exchange in aqueous urea solutions measured by water‐exchange (WEX) NMR spectroscopy and chemical exchange saturation transfer (CEST) imaging in vitro. Magn Reson Med 2019; 82:935-947. [DOI: 10.1002/mrm.27778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| | - Philipp Neudecker
- Institute of Physical Biology Heinrich Heine University Düsseldorf Dusseldorf Germany
- Institute of Complex Systems: Structural Biochemistry (ICS‐6), Forschungszentrum Jülich Julich Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| | - Hans‐Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| | - Rotem Shlomo Lanzman
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| | - Anja Müller‐Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty Heinrich Heine University Düsseldorf Dusseldorf Germany
| |
Collapse
|
11
|
Montrazi ET, Bonagamba TJ. Saturation-recovery as a T 1-filter for T 2-T 2 exchange NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 301:67-72. [PMID: 30851667 DOI: 10.1016/j.jmr.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The Inversion-Recovery (IR) technique has already been proposed to be used as a T1-filter for T2-T2 Exchange experiments. However, when the Exchange experiments are employed for studying samples that show T1 distributions, where the pools are defined by broad relaxation time distributions, e.g. porous media, IR might be difficult to be used as a filter. This paper presents the difficulties found when using IR and proposes the use of Saturation-Recovery (SR) technique as an alternative to T1-filter.
Collapse
Affiliation(s)
- E T Montrazi
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970 São Carlos, SP, Brazil.
| | - T J Bonagamba
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
12
|
Terenzi C, Sederman AJ, Mantle MD, Gladden LF. Spatially-resolved 1H NMR relaxation-exchange measurements in heterogeneous media. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:101-108. [PMID: 30593999 DOI: 10.1016/j.jmr.2018.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
In the last decades, the 1H NMR T2-T2 relaxation-exchange (REXSY) technique has become an essential tool for the molecular investigation of simple and complex fluids in heterogeneous porous solids and soft matter, where the mixing-time-evolution of cross-correlated T2-T2 peaks enables a quantitative study of diffusive exchange kinetics in multi-component systems. Here, we present a spatially-resolved implementation of the T2-T2 correlation technique, named z-T2-T2, based on one-dimensional spatial mapping along z using a rapid frequency-encode imaging scheme. Compared to other phase-encoding methods, the adopted MRI technique has two distinct advantages: (i) is has the same experimental duration of a standard (bulk) T2-T2 measurement, and (ii) it provides a high spatial resolution. The proposed z-T2-T2 method is first validated against bulk T2-T2 measurements on homogeneous phantom consisting of cyclohexane uniformly imbibed in finely-sized α-Al2O3 particles at a spatial resolution of 0.47 mm; thereafter, its performance is demonstrated, on a layered bed of multi-sized α-Al2O3 particles, for revealing spatially-dependent molecular exchange kinetics properties of intra- and inter-particle cyclohexane as a function of particle size. It is found that localised z-T2-T2 spectra provide well resolved cross peaks whilst such resolution is lost in standard bulk T2-T2 data. Future prospective applications of the method lie, in particular, in the local characterisation of mass transport phenomena in multi-component porous media, such as rock cores and heterogeneous catalysts.
Collapse
Affiliation(s)
- Camilla Terenzi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Andrew J Sederman
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Michael D Mantle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Lynn F Gladden
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
13
|
Cai TX, Benjamini D, Komlosh ME, Basser PJ, Williamson NH. Rapid detection of the presence of diffusion exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:17-22. [PMID: 30340203 PMCID: PMC6289744 DOI: 10.1016/j.jmr.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 05/08/2023]
Abstract
Diffusion exchange spectroscopy (DEXSY) provides a detailed picture of how fluids in different microenvironments communicate with one another but requires a large amount of data. For DEXSY MRI, a simple measure of apparent exchanging fractions may suffice to characterize and differentiate materials and tissues. Reparameterizing signal intensity from a PGSE-storage-PGSE experiment as a function of the sum, bs=b1+b2, and difference bd=b2-b1 of the diffusion encodings separates diffusion weighting from exchange weighting. Exchange leads to upward curvature along a slice of constant bs. Exchanging fractions can be measured rapidly by a finite difference approximation of the curvature using four data points. The method is generalized for non-steady-state and multi-site exchange. We apply the method to image exchanging fractions and calculate exchange rates of water diffusing across the bulk water interface of a glass capillary array.
Collapse
Affiliation(s)
- Teddy X Cai
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; National Institute of Biomedical Imaging and Bioengineering (BESIP), National Institutes of Health, Bethesda, MD, USA
| | - Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal E Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nathan H Williamson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Lucas-Oliveira E, Araujo-Ferreira AG, Trevizan WA, Fortulan CA, Bonagamba TJ. Computational approach to integrate 3D X-ray microtomography and NMR data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:16-24. [PMID: 29751275 DOI: 10.1016/j.jmr.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials.
Collapse
Affiliation(s)
- Everton Lucas-Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo, Brazil.
| | - Arthur G Araujo-Ferreira
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo, Brazil
| | - Willian A Trevizan
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo, Brazil; Cenpes-Petrobras, 21941-915 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Fortulan
- Escola de Engenharia de São Carlos, Universidade de São Paulo, CP 359, 13560-970 São Carlos, São Paulo, Brazil
| | - Tito J Bonagamba
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
15
|
Montrazi ET, Lucas-Oliveira E, Araujo-Ferreira AG, Barsi-Andreeta M, Bonagamba TJ. Simultaneous acquisition for T 2-T 2 Exchange and T 1-T 2 correlation NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:63-71. [PMID: 29471277 DOI: 10.1016/j.jmr.2018.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
The NMR measurements of longitudinal and transverse relaxation times and its multidimensional correlations provide useful information about molecular dynamics. However, these experiments are very time-consuming, and many researchers proposed faster experiments to reduce this issue. This paper presents a new way to simultaneously perform T2-T2 Exchange and T1-T2 correlation experiments by taking the advantage of the storage time and the two steps phase cycling used for running the relaxation exchange experiment. The data corresponding to each step is either summed or subtracted to produce the T2-T2 and T1-T2 data, enhancing the information obtained while maintaining the experiment duration. Comparing the results from this technique with traditional NMR experiments it was possible to validate the method.
Collapse
Affiliation(s)
- Elton T Montrazi
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - Everton Lucas-Oliveira
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - Arthur G Araujo-Ferreira
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - Mariane Barsi-Andreeta
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - Tito J Bonagamba
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
16
|
Mailhiot SE, Zong F, Maneval JE, June RK, Galvosas P, Seymour JD. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:82-90. [PMID: 29306110 DOI: 10.1016/j.jmr.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.
Collapse
Affiliation(s)
- Sarah E Mailhiot
- Department of Mechanical Engineering, Montana State University, Bozeman, MT 59715, USA
| | - Fangrong Zong
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, NZ 6140, USA
| | - James E Maneval
- Chemical Engineering, Bucknell University, Lewisburg, PA 17837, USA
| | - Ronald K June
- Department of Mechanical Engineering, Montana State University, Bozeman, MT 59715, USA
| | - Petrik Galvosas
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, NZ 6140, USA
| | - Joseph D Seymour
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59715, USA.
| |
Collapse
|
17
|
Does MD. Inferring brain tissue composition and microstructure via MR relaxometry. Neuroimage 2018; 182:136-148. [PMID: 29305163 DOI: 10.1016/j.neuroimage.2017.12.087] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 11/28/2022] Open
Abstract
MRI relaxometry is sensitive to a variety of tissue characteristics in a complex manner, which makes it both attractive and challenging for characterizing tissue. This article reviews the most common water proton relaxometry measures, T1, T2, and T2*, and reports on their development and current potential to probe the composition and microstructure of brain tissue. The development of these relaxometry measures is challenged by the need for suitably accurate tissue models, as well as robust acquisition and analysis methodologies. MRI relaxometry has been established as a tool for characterizing neural tissue, particular with respect to myelination, and the potential for further development exists.
Collapse
Affiliation(s)
- Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Asakura T, Isobe K, Kametani S, Ukpebor OT, Silverstein MC, Boutis GS. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR. Acta Biomater 2017; 50:322-333. [PMID: 28065870 DOI: 10.1016/j.actbio.2016.12.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 11/30/2016] [Accepted: 12/29/2016] [Indexed: 11/18/2022]
Abstract
The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3-13C]Ala-, [3-13C]Ser-, and [3-13C]Tyr-SF fibers and films were investigated by 13C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. STATEMENTS OF SIGNIFICANCE The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13C selectively labeled SF, respectively, could be determined independently. Thus, our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | - Kotaro Isobe
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Shunsuke Kametani
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Obehi T Ukpebor
- Department of Physics, Hunter College of The City University of New York, 695 Park Avenue, NY 10065, USA
| | - Moshe C Silverstein
- Department of Physics, Hunter College of The City University of New York, 695 Park Avenue, NY 10065, USA
| | - Gregory S Boutis
- Department of Physics, Brooklyn College of The City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; Department of Physics, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
19
|
Bai R, Benjamini D, Cheng J, Basser PJ. Fast, accurate 2D-MR relaxation exchange spectroscopy (REXSY): Beyond compressed sensing. J Chem Phys 2016; 145:154202. [PMID: 27782473 PMCID: PMC5074998 DOI: 10.1063/1.4964144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/19/2016] [Indexed: 11/14/2022] Open
Abstract
Previously, we showed that compressive or compressed sensing (CS) can be used to reduce significantly the data required to obtain 2D-NMR relaxation and diffusion spectra when they are sparse or well localized. In some cases, an order of magnitude fewer uniformly sampled data were required to reconstruct 2D-MR spectra of comparable quality. Nonetheless, this acceleration may still not be sufficient to make 2D-MR spectroscopy practicable for many important applications, such as studying time-varying exchange processes in swelling gels or drying paints, in living tissue in response to various biological or biochemical challenges, and particularly for in vivo MRI applications. A recently introduced framework, marginal distributions constrained optimization (MADCO), tremendously accelerates such 2D acquisitions by using a priori obtained 1D marginal distribution as powerful constraints when 2D spectra are reconstructed. Here we exploit one important intrinsic property of the 2D-MR relaxation exchange spectra: the fact that the 1D marginal distributions of each 2D-MR relaxation exchange spectrum in both dimensions are equal and can be rapidly estimated from a single Carr-Purcell-Meiboom-Gill (CPMG) or inversion recovery prepared CPMG measurement. We extend the MADCO framework by further proposing to use the 1D marginal distributions to inform the subsequent 2D data-sampling scheme, concentrating measurements where spectral peaks are present and reducing them where they are not. In this way we achieve compression or acceleration that is an order of magnitude greater than that in our previous CS method while providing data in reconstructed 2D-MR spectral maps of comparable quality, demonstrated using several simulated and real 2D T2 - T2 experimental data. This method, which can be called "informed compressed sensing," is extendable to other 2D- and even ND-MR exchange spectroscopy.
Collapse
Affiliation(s)
- Ruiliang Bai
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jian Cheng
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
d’Eurydice MN, Montrazi ET, Fortulan CA, Bonagamba TJ. T2-Filtered T2 − T2 Exchange NMR. J Chem Phys 2016; 144:204201. [DOI: 10.1063/1.4951712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marcel Nogueira d’Eurydice
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo, Brazil
| | - Elton Tadeu Montrazi
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo, Brazil
| | - Carlos Alberto Fortulan
- Escola de Engenharia de São Carlos, Universidade de São Paulo, CP 359, 13560-970 São Carlos, São Paulo, Brazil
| | - Tito José Bonagamba
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
21
|
Bai R, Cloninger A, Czaja W, Basser PJ. Efficient 2D MRI relaxometry using compressed sensing. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 255:88-99. [PMID: 25917134 DOI: 10.1016/j.jmr.2015.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/03/2015] [Accepted: 04/05/2015] [Indexed: 05/02/2023]
Abstract
Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.
Collapse
Affiliation(s)
- Ruiliang Bai
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, MD 20892, USA; Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20740 USA
| | | | - Wojciech Czaja
- Department of Mathematics, Norbert Wiener Center, University of Maryland, College Park, MD 20742, USA
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Araujo ECA, Fromes Y, Carlier PG. New insights on human skeletal muscle tissue compartments revealed by in vivo t2 NMR relaxometry. Biophys J 2014; 106:2267-74. [PMID: 24853755 DOI: 10.1016/j.bpj.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/06/2014] [Accepted: 04/09/2014] [Indexed: 12/29/2022] Open
Abstract
The spin-spin (T2) relaxation of (1)H-NMR signals in human skeletal muscle has been previously hypothesized to reveal information about myowater compartmentation. Although experimental support has been provided, no consensus has yet emerged concerning the attribution of specific anatomical compartments to the observed T2 components. Potential application of a noninvasive tool that might offer such information urges the quest for a definitive answer to this question. The purpose of this work was to obtain new information that might help elucidate the mechanism of T2 distribution in muscle. To do so, in vivo T2 relaxation data was acquired from the soleus of eight healthy volunteers using a localized Carr-Purcell-Meiboom-Gill technique. Each acquisition contained 1000 echoes with an interecho spacing of 1 ms. Data were acquired from each subject under different vascular filling preparations expected to change exclusively the extracellular water fraction. Two exponential components were systematically observed: an intermediate component (T2 ~ 32 ms) and a long component (100 < T2 < 210 ms). The relative fraction and T2 value characterizing the long component systematically increased after progressive augmentation of extracellular water volume. Characteristic relaxation behavior for each vascular filling condition was analyzed with a two-site exchange model and a three-site two-exchange model. We show that a two-site exchange model can only predict the observations for small exchange rates, much more representative of transendothelial than transcytolemmal exchange regimes. The three-site two-exchange model representing the intracellular, interstitial, and vascular spaces was capable of precisely predicting the observations for realistic transcytolemmal and transendothelial exchange rates. The estimated intrinsic relative fractions of each of these compartments corroborate with estimations from previous works and strongly suggest that the T2 relaxation from water within the intracellular and interstitial spaces is described by the intermediate component, whereas the long component represents water within the vascular space.
Collapse
Affiliation(s)
- Ericky C A Araujo
- Institute of Myology, Paris, France; University Paris-Sud (Paris 11), Orsay, France.
| | - Yves Fromes
- University Pierre and Marie Curie (Paris 06), Paris, France
| | - Pierre G Carlier
- Institute of Myology, Paris, France; University Pierre and Marie Curie (Paris 06), Paris, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut d'Imagerie Biomédicale, Molecular Imaging Research Center, IdM Nuclear Magnetic Resonance Laboratory, Paris, France.
| |
Collapse
|
23
|
Fechete R, Demco DE, Zhu X, Tillmann W, Möller M. Water states and dynamics in perfluorinated ionomer membranes by 1H one- and two-dimensional NMR spectroscopy, relaxometry, and diffusometry. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Dortch RD, Harkins KD, Juttukonda MR, Gore JC, Does MD. Characterizing inter-compartmental water exchange in myelinated tissue using relaxation exchange spectroscopy. Magn Reson Med 2012; 70:1450-9. [PMID: 23233414 DOI: 10.1002/mrm.24571] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/16/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate inter-compartmental water exchange in two model myelinated tissues ex vivo using relaxation exchange spectroscopy. METHODS Building upon a previously developed theoretical framework, a three-compartment (myelin, intra-axonal, and extra-axonal water) model of the inversion-recovery prepared relaxation exchange spectroscopy signal was applied in excised rat optic nerve and frog sciatic nerve samples to estimate the water residence time constants in myelin (τmyelin ). RESULTS In the rat optic nerve samples, τmyelin = 138 ± 15 ms (mean ± standard deviation) was estimated. In sciatic nerve, which possesses thicker myelin sheaths than optic nerve, a much longer τmyelin = 2046 ± 140 ms was observed. CONCLUSION Consistent with previous studies in rat spinal cord, the extrapolation of exchange rates in optic nerve to in vivo conditions indicates that τmyelin < 100 ms. This suggests that there is a significant effect of inter-compartmental water exchange on the transverse relaxation of water protons in white matter. The much longer τmyelin values in sciatic nerve supports the postulate that the inter-compartmental water exchange rate is mediated by myelin thickness. Together, these findings point to the potential for MRI methods to probe variations in myelin thickness in white matter.
Collapse
Affiliation(s)
- Richard D Dortch
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
25
|
Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med 2011; 64:680-7. [PMID: 20806375 DOI: 10.1002/mrm.22459] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advancements in MRI have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. In human cortical bone, MRI is sensitive to populations of protons ((1)H) partitioned among water and protein sources, which may be differentiated according to intrinsic NMR properties such as chemical shift and transverse and longitudinal relaxation rates. Herein, these NMR properties were assessed in human cortical bone donors from a broad age range, and four distinct (1)H populations were consistently identified and attributed to five microanatomical sources. These findings show that modern human cortical bone MRI contrast will be dominated by collagen-bound water, which can also be exploited to study human cortical bone collagen via magnetization transfer.
Collapse
Affiliation(s)
- R Adam Horch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|