1
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
2
|
Patrawalla NY, Liebendorfer K, Kishore V. An innovative 4D printing approach for fabrication of anisotropic collagen scaffolds. Biofabrication 2024; 17:015002. [PMID: 39321844 PMCID: PMC11499585 DOI: 10.1088/1758-5090/ad7f8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Collagen anisotropy is known to provide the essential topographical cues to guide tissue-specific cell function. Recent work has shown that extrusion-based printing using collagenous inks yield 3D scaffolds with high geometric precision and print fidelity. However, these scaffolds lack collagen anisotropy. In this study, extrusion-based 3D printing was combined with a magnetic alignment approach in an innovative 4D printing scheme to generate 3D collagen scaffolds with high degree of collagen anisotropy. Specifically, the 4D printing process parameters-collagen (Col):xanthan gum (XG) ratio (Col:XG; 1:1, 4:1, 9:1 v/v), streptavidin-coated magnetic particle concentration (SMP; 0, 0.2, 0.4 mg ml-1), and print flow speed (2, 3 mm s-1)-were modulated and the effects of these parameters on rheological properties, print fidelity, and collagen alignment were assessed. Further, the effects of collagen anisotropy on human mesenchymal stem cell (hMSC) morphology, orientation, metabolic activity, and ligamentous differentiation were investigated. Results showed that increasing the XG composition (Col:XG 1:1) enhanced ink viscosity and yielded scaffolds with good print fidelity but poor collagen alignment. On the other hand, use of inks with lower XG composition (Col:XG 4:1 and 9:1) together with 0.4 mg ml-1SMP concentration yielded scaffolds with high degree of collagen alignment albeit with suboptimal print fidelity. Modulating the print flow speed conditions (2 mm s-1) with 4:1 Col:XG inks and 0.4 mg ml-1SMP resulted in improved print fidelity of the collagen scaffolds while retaining high level of collagen anisotropy. Cell studies revealed hMSCs orient uniformly on aligned collagen scaffolds. More importantly, collagen anisotropy was found to trigger tendon or ligament-like differentiation of hMSCs. Together, these results suggest that 4D printing is a viable strategy to generate anisotropic collagen scaffolds with significant potential for use in tendon and ligament tissue engineering applications.
Collapse
Affiliation(s)
- Nashaita Y Patrawalla
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| | - Karly Liebendorfer
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| | - Vipuil Kishore
- Department of Biomedical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, United States of America
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| |
Collapse
|
3
|
Friedrich LM, Woodcock JW. Filament Disturbance and Fusion during Embedded 3D Printing of Silicones. ACS Biomater Sci Eng 2024; 10:6690-6710. [PMID: 39235368 DOI: 10.1021/acsbiomaterials.4c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Embedded 3D printing (EMB3D) is an additive manufacturing technique that enables complex fabrication of soft materials including tissues and silicones. In EMB3D, a nozzle writes continuous filaments into a support bath consisting of a yield stress fluid. Lack of fusion defects between filaments can occur because the nozzle pushes support fluid into existing filaments, preventing coalescence. Interfacial tension was previously proposed as a tool to drive interfilament fusion. However, interfacial tension can also drive rupture and shrinkage of printed filaments. Here, we evaluate the efficacy of interfacial tension as a tool to control defects in EMB3D. Using polydimethylsiloxane (PDMS)-based inks with varying amounts of fumed silica and surfactant, printed into Laponite in water supports, we evaluate the effect of rheology, interfacial tension, print speeds, and interfilament spacings on defects. We print pairs of parallel filaments at varying orientations in the bath and use digital image analysis to quantify shrinkage, rupture, fusion, and positioning defects. By comparing disturbed filaments to printed pairs of filaments, we disentangle the effects of nozzle movement and filament extrusion. Critically, we find that capillary instabilities and interfilament fusion scale with the balance between support rheology and interfacial tension. Less viscous supports and higher interfacial tensions lead to more shrinkage and rupture at all points in the printing process, from relaxation after writing, to disturbance of the line, to writing of a second line. It is necessary to overextrude material to achieve interfilament fusion, particularly at high support viscosities and low interfacial tensions. Finally, fusion quality varies with printing orientation, and writing neighboring filaments causes displacement of existing structures. As such, specialized slicers are needed for EMB3D that consider the tighter spacings and orientation-dependent spacings necessary to achieve precise control over printed shapes.
Collapse
Affiliation(s)
- Leanne M Friedrich
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jeremiah W Woodcock
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
4
|
Hen N, Josef E, Davidovich-Pinhas M, Levenberg S, Bianco-Peled H. On the Relation between the Viscoelastic Properties of Granular Hydrogels and Their Performance as Support Materials in Embedded Bioprinting. ACS Biomater Sci Eng 2024; 10:6734-6750. [PMID: 39344029 DOI: 10.1021/acsbiomaterials.4c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.
Collapse
Affiliation(s)
- Noy Hen
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Elinor Josef
- Technion─Israel Institute of Technology, Atlit, 12th Nahal Galim, 3033980, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
5
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616662. [PMID: 39416011 PMCID: PMC11482760 DOI: 10.1101/2024.10.04.616662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cell-laden hydrogel constructs suspended between pillars are powerful tools for modeling tissue structure and physiology, though current fabrication techniques often limit them to uniform compositions. In contrast, tissues are complex in nature with spatial arrangements of cell types and extracellular matrices. Thus, we present Suspended Tissue Open Microfluidic Patterning (STOMP), which utilizes a removable, open microfluidic patterning channel to pattern multiple spatial regions across a single suspended tissue. The STOMP platform contains capillary pinning features along the open channel that controls the fluid front, allowing multiple cell and extracellular matrix precursors to be pipetted into one tissue. We have used this technique to pattern suspended tissues with multiple regional components using a variety of native and synthetic extracellular matrices, including fibrin, collagen, and poly(ethylene glycol). Here, we demonstrate that STOMP models a region of fibrosis in a functional heart tissue and a bone-ligament junction in periodontal tissues. Additionally, the STOMP platform can be customized to allow patterning of suspended cores and more spatial configurations, enhancing its utility in complex tissue modeling. STOMP is a versatile technique for generating suspended tissue models with increased control over cell and hydrogel composition to model interfacial tissue regions in a suspended tissue.
Collapse
Affiliation(s)
- Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195 USA
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Alex J. Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | | | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Jamison M. Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
| | - Serena H. Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Thomas P. Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ella E. Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ruby M. Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Natalie A. Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195 USA
| | - Jodie C. Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ross C. Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle WA 98195, USA
| | - Cole A. DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
| | - Tracy E. Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Nathan J. Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195 USA
| |
Collapse
|
6
|
Brunel LG, Christakopoulos F, Kilian D, Cai B, Hull SM, Myung D, Heilshorn SC. Embedded 3D Bioprinting of Collagen Inks into Microgel Baths to Control Hydrogel Microstructure and Cell Spreading. Adv Healthc Mater 2024; 13:e2303325. [PMID: 38134346 PMCID: PMC11192865 DOI: 10.1002/adhm.202303325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microextrusion-based 3D bioprinting into support baths has emerged as a promising technique to pattern soft biomaterials into complex, macroscopic structures. It is hypothesized that interactions between inks and support baths, which are often composed of granular microgels, can be modulated to control the microscopic structure within these macroscopic-printed constructs. Using printed collagen bioinks crosslinked either through physical self-assembly or bioorthogonal covalent chemistry, it is demonstrated that microscopic porosity is introduced into collagen inks printed into microgel support baths but not bulk gel support baths. The overall porosity is governed by the ratio between the ink's shear viscosity and the microgel support bath's zero-shear viscosity. By adjusting the flow rate during extrusion, the ink's shear viscosity is modulated, thus controlling the extent of microscopic porosity independent of the ink composition. For covalently crosslinked collagen, printing into support baths comprised of gelatin microgels (15-50 µm) results in large pores (≈40 µm) that allow human corneal mesenchymal stromal cells (MSCs) to readily spread, while control samples of cast collagen or collagen printed in non-granular support baths do not allow cell spreading. Taken together, these data demonstrate a new method to impart controlled microscale porosity into 3D printed hydrogels using granular microgel support baths.
Collapse
Affiliation(s)
- Lucia G. Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Fotis Christakopoulos
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah M. Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Hwang DG, Kang W, Park SM, Jang J. Biohybrid printing approaches for cardiac pathophysiological studies. Biosens Bioelectron 2024; 260:116420. [PMID: 38805890 DOI: 10.1016/j.bios.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Bioengineered hearts, which include single cardiomyocytes, engineered heart tissue, and chamber-like models, generate various biosignals, such as contractility, electrophysiological, and volume-pressure dynamic signals. Monitoring changes in these signals is crucial for understanding the mechanisms of disease progression and developing potential treatments. However, current methodologies face challenges in the continuous monitoring of bioengineered hearts over extended periods and typically require sacrificing the sample post-experiment, thereby limiting in-depth analysis. Thus, a biohybrid system consisting of living and nonliving components was developed. This system primarily features heart tissue alongside nonliving elements designed to support or comprehend its functionality. Biohybrid printing technology has simplified the creation of such systems and facilitated the development of various functional biohybrid systems capable of measuring or even regulating multiple functions, such as pacemakers, which demonstrates its versatility and potential applications. The future of biohybrid printing appears promising, with the ongoing exploration of its capabilities and potential directions for advancement.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea; Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Yogeshwaran S, Goodarzi Hosseinabadi H, Gendy DE, Miri AK. Design considerations and biomaterials selection in embedded extrusion 3D bioprinting. Biomater Sci 2024; 12:4506-4518. [PMID: 39045682 DOI: 10.1039/d4bm00550c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In embedded extrusion 3D bioprinting, a temporary matrix preserves a paste-like filament ejecting from a narrow nozzle. For granular sacrificial matrices, the methodology is known as the freeform reversible embedding of suspended hydrogels (FRESH). Embedded extrusion 3D bioprinting methods result in more rapid and controlled manufacturing of cell-laden tissue constructs, particularly vascular and multi-component structures. This report focuses on the working principles and bioink design criteria for implementing conventional embedded extrusion and FRESH 3D bioprinting strategies. We also present a set of experimental data as a guideline for selecting the support bath or matrix. We discuss the advantages of embedded extrusion methods over conventional biomanufacturing methods. This work provides a short recipe for selecting inks and printing parameters for desired shapes in embedded extrusion and FRESH 3D bioprinting methods.
Collapse
Affiliation(s)
- Swaprakash Yogeshwaran
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| | - Hossein Goodarzi Hosseinabadi
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Daniel E Gendy
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Alioglu MA, Yilmaz YO, Singh YP, Nagamine M, Celik N, Kim MH, Pal V, Gupta D, Ozbolat IT. Nested Biofabrication: Matryoshka-Inspired Intra-Embedded Bioprinting. SMALL METHODS 2024; 8:e2301325. [PMID: 38111377 PMCID: PMC11187694 DOI: 10.1002/smtd.202301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Engineering functional tissues and organs remains a fundamental pursuit in bio-fabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, here a new method called "Intra-Embedded Bioprinting (IEB)" is introduced building upon existing embedded bioprinting methods. a xanthan gum-based material is used which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. IEB's capabilities in organ modeling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite is demonstrated. Further, a head phantom and a Matryoshka doll are 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Toward the use case of IEB and employing an innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity is developed. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.
Collapse
Affiliation(s)
- Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Yasar Ozer Yilmaz
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Nazmiye Celik
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Myoung Hwan Kim
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA
| | - Vaibhav Pal
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA
- Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey
| |
Collapse
|
10
|
Caiado Decarli M, Ferreira HP, Sobreiro-Almeida R, Teixeira FC, Correia TR, Babilotte J, Olijve J, Custódio CA, Gonçalves IC, Mota C, Mano JF, Moroni L. Embedding Bioprinting of Low Viscous, Photopolymerizable Blood-Based Bioinks in a Crystal Self-Healing Transparent Supporting Bath. SMALL METHODS 2024:e2400857. [PMID: 38970553 DOI: 10.1002/smtd.202400857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Protein-based hydrogels have great potential to be used as bioinks for biofabrication-driven tissue regeneration strategies due to their innate bioactivity. Nevertheless, their use as bioinks in conventional 3D bioprinting is impaired due to their intrinsic low viscosity. Using embedding bioprinting, a liquid bioink is printed within a support that physically holds the patterned filament. Inspired by the recognized microencapsulation technique complex coacervation, crystal self-healing embedding bioprinting (CLADDING) is introduced based on a highly transparent crystal supporting bath. The suitability of distinct classes of gelatins is evaluated (i.e., molecular weight distribution, isoelectric point, and ionic content), as well as the formation of gelatin-gum arabic microparticles as a function of pH, temperature, solvent, and mass ratios. Characterizing and controlling this parametric window resulted in high yields of support bath with ideal self-healing properties for interaction with protein-based bioinks. This support bath achieved transparency, which boosted light permeation within the bath. Bioprinted constructs fully composed of platelet lysates encapsulating a co-culture of human mesenchymal stromal cells and endothelial cells are obtained, demonstrating a high-dense cellular network with excellent cell viability and stability over a month. CLADDING broadens the spectrum of photocrosslinkable materials with extremely low viscosity that can now be bioprinted with sensitive cells without any additional support.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen/University of Groningen, A. Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Helena P Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde/INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-180, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Rita Sobreiro-Almeida
- CICECO - Department of Chemistry, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Filipa C Teixeira
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Tiago R Correia
- CICECO - Department of Chemistry, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Joanna Babilotte
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Jos Olijve
- Rousselot Biomedical, Expertise Center, Meulestedekaai 81, Ghent, 9000, Belgium
| | - Catarina A Custódio
- CICECO - Department of Chemistry, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
- Metatissue, PCI, Creative Science Park Aveiro Region, Via do Conhecimento, Ílhavo, 3830-352, Portugal
| | - Inês C Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde/INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-180, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - João F Mano
- CICECO - Department of Chemistry, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
11
|
Lai J, Liu Y, Lu G, Yung P, Wang X, Tuan RS, Li ZA. 4D bioprinting of programmed dynamic tissues. Bioact Mater 2024; 37:348-377. [PMID: 38694766 PMCID: PMC11061618 DOI: 10.1016/j.bioactmat.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Setting time as the fourth dimension, 4D printing allows us to construct dynamic structures that can change their shape, property, or functionality over time under stimuli, leading to a wave of innovations in various fields. Recently, 4D printing of smart biomaterials, biological components, and living cells into dynamic living 3D constructs with 4D effects has led to an exciting field of 4D bioprinting. 4D bioprinting has gained increasing attention and is being applied to create programmed and dynamic cell-laden constructs such as bone, cartilage, and vasculature. This review presents an overview on 4D bioprinting for engineering dynamic tissues and organs, followed by a discussion on the approaches, bioprinting technologies, smart biomaterials and smart design, bioink requirements, and applications. While much progress has been achieved, 4D bioprinting as a complex process is facing challenges that need to be addressed by transdisciplinary strategies to unleash the full potential of this advanced biofabrication technology. Finally, we present future perspectives on the rapidly evolving field of 4D bioprinting, in view of its potential, increasingly important roles in the development of advanced dynamic tissues for basic research, pharmaceutics, and regenerative medicine.
Collapse
Affiliation(s)
- Jiahui Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Rossi A, Pescara T, Gambelli AM, Gaggia F, Asthana A, Perrier Q, Basta G, Moretti M, Senin N, Rossi F, Orlando G, Calafiore R. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol 2024; 12:1393641. [PMID: 38974655 PMCID: PMC11225062 DOI: 10.3389/fbioe.2024.1393641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Amongst the range of bioprinting technologies currently available, bioprinting by material extrusion is gaining increasing popularity due to accessibility, low cost, and the absence of energy sources, such as lasers, which may significantly damage the cells. New applications of extrusion-based bioprinting are systematically emerging in the biomedical field in relation to tissue and organ fabrication. Extrusion-based bioprinting presents a series of specific challenges in relation to achievable resolutions, accuracy and speed. Resolution and accuracy in particular are of paramount importance for the realization of microstructures (for example, vascularization) within tissues and organs. Another major theme of research is cell survival and functional preservation, as extruded bioinks have cells subjected to considerable shear stresses as they travel through the extrusion apparatus. Here, an overview of the main available extrusion-based printing technologies and related families of bioprinting materials (bioinks) is provided. The main challenges related to achieving resolution and accuracy whilst assuring cell viability and function are discussed in relation to specific application contexts in the field of tissue and organ fabrication.
Collapse
Affiliation(s)
- Arianna Rossi
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Teresa Pescara
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alberto Maria Gambelli
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Quentin Perrier
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Basta
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Moretti
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Nicola Senin
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Federico Rossi
- Engineering Department, University of Perugia, Perugia, Italy
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | |
Collapse
|
13
|
Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. CELL REPORTS METHODS 2024; 4:100779. [PMID: 38759654 PMCID: PMC11228284 DOI: 10.1016/j.crmeth.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.
Collapse
Affiliation(s)
- Peter N Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar J Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Division of Pediatric CT Surgery, Stanford University, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
陈 小, 胡 浩, 李 谊, 岳 玮, 张 秀, 沈 德, 麻 文, 邢 培, 张 亚, 关 泰. [Research progress of three-dimensional bioprinting technology in auricle repair and reconstruction]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:763-768. [PMID: 38918200 PMCID: PMC11190673 DOI: 10.7507/1002-1892.202403001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Objective To review the research progress on the application of three-dimensional (3D) bioprinting technology in auricle repair and reconstruction. Methods The recent domestic and international research literature on 3D printing and auricle repair and reconstruction was extensively reviewed, and the concept of 3D bioprinting technology and research progress in auricle repair and reconstruction were summarized. Results The auricle possesses intricate anatomical structure and functionality, necessitating precise tissue reconstruction and morphological replication. Hence, 3D printing technology holds immense potential in auricle reconstruction. In contrast to conventional 3D printing technology, 3D bioprinting technology not only enables the simulation of auricular outer shape but also facilitates the precise distribution of cells within the scaffold during fabrication by incorporating cells into bioink. This approach mimics the composition and structure of natural tissues, thereby favoring the construction of biologically active auricular tissues and enhancing tissue repair outcomes. Conclusion 3D bioprinting technology enables the reconstruction of auricular tissues, avoiding potential complications associated with traditional autologous cartilage grafting. The primary challenge in current research lies in identifying bioinks that meet both the mechanical requirements of complex tissues and biological criteria.
Collapse
Affiliation(s)
- 小雷 陈
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 浩磊 胡
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 谊 李
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 玮 岳
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 秀静 张
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 德新 沈
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 文来 麻
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 培梅 邢
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 亚戈 张
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| | - 泰红 关
- 新乡医学院(河南新乡 453003)Xinxiang Medical University, Xinxiang Henan, 453003, P. R. China
| |
Collapse
|
15
|
Nwokoye PN, Abilez OJ. Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids. Front Cardiovasc Med 2024; 11:1336910. [PMID: 38938652 PMCID: PMC11210405 DOI: 10.3389/fcvm.2024.1336910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024] Open
Abstract
Vascular pathologies are prevalent in a broad spectrum of diseases, necessitating a deeper understanding of vascular biology, particularly in overcoming the oxygen and nutrient diffusion limit in tissue constructs. The evolution of vascularized tissues signifies a convergence of multiple scientific disciplines, encompassing the differentiation of human pluripotent stem cells (hPSCs) into vascular cells, the development of advanced three-dimensional (3D) bioprinting techniques, and the refinement of bioinks. These technologies are instrumental in creating intricate vascular networks essential for tissue viability, especially in thick, complex constructs. This review provides broad perspectives on the past, current state, and advancements in key areas, including the differentiation of hPSCs into specific vascular lineages, the potential and challenges of 3D bioprinting methods, and the role of innovative bioinks mimicking the native extracellular matrix. We also explore the integration of biophysical cues in vascularized tissues in vitro, highlighting their importance in stimulating vessel maturation and functionality. In this review, we aim to synthesize these diverse yet interconnected domains, offering a broad, multidisciplinary perspective on tissue vascularization. Advancements in this field will help address the global organ shortage and transform patient care.
Collapse
Affiliation(s)
- Peter N. Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Oscar J. Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Division of Pediatric CT Surgery, Stanford University, Stanford, CA, United States
- Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, United States
- Bio-X Program, Stanford University, Stanford, CA, United States
| |
Collapse
|
16
|
Liu P, Mao Z, Zhao Y, Yin J, Chu C, Chen X, Lu J. Hydrogel-Reactive-Microenvironment Powering Reconfiguration of Polymer Architectures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307830. [PMID: 38588016 PMCID: PMC11199975 DOI: 10.1002/advs.202307830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/13/2024] [Indexed: 04/10/2024]
Abstract
Reconfiguration of architected structures has great significance for achieving new topologies and functions of engineering materials. Existing reconfigurable strategies have been reported, including approaches based on heat, mechanical instability, swelling, origami/kirigami designs, and electromagnetic actuation. However, these approaches mainly involve physical interactions between the host materials and the relevant stimuli. Herein, a novel, easy-manipulated, and controllable reconfiguration strategy for polymer architectures is proposed by using a chemical reaction of host material within a hydrogel reactive microenvironment. 3D printed polycaprolactone (PCL) lattices transformed in an aqueous polyacrylamide (PAAm) hydrogel precursor solution, in which ultraviolet (UV) light triggered heterogeneous grafting polymerization between PCL and AAm. In situ microscopy shows that PCL beams go through volumetric expansion and cooperative buckling, resulting in transformation of PCL lattices into sinusoidal patterns. The transformation process can be tuned easily and patterned through the adjustment of the PCL beam diameter, unit cell width, and UV light on-off state. Controlling domain formation is achieved by using UV masks. This framework enables the design, fabrication, and programming of architected materials and inspires the development of novel 4D printing approaches.
Collapse
Affiliation(s)
- Pengchao Liu
- Department of Mechanical EngineeringCity University of Hong KongHong KongChina
- CityU‐Shenzhen Futian Research InstituteShenzhenChina
| | - Zhengyi Mao
- CityU‐Shenzhen Futian Research InstituteShenzhenChina
- Centre for Advanced Structural MaterialsCity University of Hong Kong Shenzhen Research InstituteGreater Bay Joint DivisionShenyang National Laboratory for Materials ScienceShenzhenChina
| | - Yan Zhao
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082China
| | - Jian'an Yin
- CityU‐Shenzhen Futian Research InstituteShenzhenChina
| | | | - Xuliang Chen
- CityU‐Shenzhen Futian Research InstituteShenzhenChina
| | - Jian Lu
- Department of Mechanical EngineeringCity University of Hong KongHong KongChina
- CityU‐Shenzhen Futian Research InstituteShenzhenChina
- Centre for Advanced Structural MaterialsCity University of Hong Kong Shenzhen Research InstituteGreater Bay Joint DivisionShenyang National Laboratory for Materials ScienceShenzhenChina
- Laboratory of Nanomaterials & NanomechanicsCity University of Hong KongHong KongChina
| |
Collapse
|
17
|
Wu Y, Yang X, Gupta D, Alioglu MA, Qin M, Ozbolat V, Li Y, Ozbolat IT. Dissecting the Interplay Mechanism among Process Parameters toward the Biofabrication of High-Quality Shapes in Embedded Bioprinting. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2313088. [PMID: 38952568 PMCID: PMC11216718 DOI: 10.1002/adfm.202313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 07/03/2024]
Abstract
Embedded bioprinting overcomes the barriers associated with the conventional extrusion-based bioprinting process as it enables the direct deposition of bioinks in 3D inside a support bath by providing in situ self-support for deposited bioinks during bioprinting to prevent their collapse and deformation. Embedded bioprinting improves the shape quality of bioprinted constructs made up of soft materials and low-viscosity bioinks, leading to a promising strategy for better anatomical mimicry of tissues or organs. Herein, the interplay mechanism among the printing process parameters toward improved shape quality is critically reviewed. The impact of material properties of the support bath and bioink, printing conditions, cross-linking mechanisms, and post-printing treatment methods, on the printing fidelity, stability, and resolution of the structures is meticulously dissected and thoroughly discussed. Further, the potential scope and applications of this technology in the fields of bioprinting and regenerative medicine are presented. Finally, outstanding challenges and opportunities of embedded bioprinting as well as its promise for fabricating functional solid organs in the future are discussed.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Veli Ozbolat
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
- Ceyhan Engineering Faculty, Mechanical Engineering Department, Cukurova University, Adana 01330, Turkey
- Institute of Natural and Applied Sciences, Tissue Engineering Department, Cukurova University, Adana 01130, Turkey
| | - Yao Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, USA
| |
Collapse
|
18
|
Ozbek I, Saybasili H, Ulgen KO. Applications of 3D Bioprinting Technology to Brain Cells and Brain Tumor Models: Special Emphasis to Glioblastoma. ACS Biomater Sci Eng 2024; 10:2616-2635. [PMID: 38664996 PMCID: PMC11094688 DOI: 10.1021/acsbiomaterials.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Primary brain tumor is one of the most fatal diseases. The most malignant type among them, glioblastoma (GBM), has low survival rates. Standard treatments reduce the life quality of patients due to serious side effects. Tumor aggressiveness and the unique structure of the brain render the removal of tumors and the development of new therapies challenging. To elucidate the characteristics of brain tumors and examine their response to drugs, realistic systems that mimic the tumor environment and cellular crosstalk are desperately needed. In the past decade, 3D GBM models have been presented as excellent platforms as they allowed the investigation of the phenotypes of GBM and testing innovative therapeutic strategies. In that scope, 3D bioprinting technology offers utilities such as fabricating realistic 3D bioprinted structures in a layer-by-layer manner and precisely controlled deposition of materials and cells, and they can be integrated with other technologies like the microfluidics approach. This Review covers studies that investigated 3D bioprinted brain tumor models, especially GBM using 3D bioprinting techniques and essential parameters that affect the result and quality of the study like frequently used cells, the type and physical characteristics of hydrogel, bioprinting conditions, cross-linking methods, and characterization techniques.
Collapse
Affiliation(s)
- Ilkay
Irem Ozbek
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| | - Hale Saybasili
- Institute
of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
19
|
Ji D, Liu J, Zhao J, Li M, Rho Y, Shin H, Han TH, Bae J. Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions. Nat Commun 2024; 15:3925. [PMID: 38724512 PMCID: PMC11082145 DOI: 10.1038/s41467-024-48121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.
Collapse
Affiliation(s)
- Donghwan Ji
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yumi Rho
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hwansoo Shin
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Booth D, Afshari R, Ghovvati M, Shariati K, Sturm R, Annabi N. Advances in 3D bioprinting for urethral tissue reconstruction. Trends Biotechnol 2024; 42:544-559. [PMID: 38057169 DOI: 10.1016/j.tibtech.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Urethral conditions affect children and adults, increasing the risk of urinary tract infections, voiding and sexual dysfunction, and renal failure. Current tissue replacements differ from healthy urethral tissues in structural and mechanical characteristics, causing high risk of postoperative complications. 3D bioprinting can overcome these limitations through the creation of complex, layered architectures using materials with location-specific biomechanical properties. This review highlights prior research and describes the potential for these emerging technologies to address ongoing challenges in urethral tissue engineering, including biomechanical and structural mismatch, lack of individualized repair solutions, and inadequate wound healing and vascularization. In the future, the integration of 3D bioprinting technology with advanced biomaterials, computational modeling, and 3D imaging could transform personalized urethral surgical procedures.
Collapse
Affiliation(s)
- Daniel Booth
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaavian Shariati
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Renea Sturm
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
22
|
Abdollahi F, Saghatchi M, Paryab A, Malek Khachatourian A, Stephens ED, Toprak MS, Badv M. Angiogenesis in bone tissue engineering via ceramic scaffolds: A review of concepts and recent advancements. BIOMATERIALS ADVANCES 2024; 159:213828. [PMID: 38479240 DOI: 10.1016/j.bioadv.2024.213828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.
Collapse
Affiliation(s)
- Farnoosh Abdollahi
- Department of Dentistry, Kashan University of Medical Science, Kashan, Iran
| | - Mahshid Saghatchi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Emma D Stephens
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Muhammet S Toprak
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden
| | - Maryam Badv
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
23
|
Stiefbold M, Zhang H, Wan LQ. Engineered platforms for mimicking cardiac development and drug screening. Cell Mol Life Sci 2024; 81:197. [PMID: 38664263 PMCID: PMC11045633 DOI: 10.1007/s00018-024-05231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.
Collapse
Affiliation(s)
- Madison Stiefbold
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
24
|
Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng 2024; 47:443-461. [PMID: 38296889 PMCID: PMC11003907 DOI: 10.1007/s00449-023-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.
Collapse
Affiliation(s)
- Josha Herzog
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lea Franke
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Yingyao Lai
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Pablo Gomez Rossi
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Janina Sachtleben
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
25
|
Cai B, Kilian D, Ramos Mejia D, Rios RJ, Ali A, Heilshorn SC. Diffusion-Based 3D Bioprinting Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306470. [PMID: 38145962 PMCID: PMC10885663 DOI: 10.1002/advs.202306470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Indexed: 12/27/2023]
Abstract
3D bioprinting has enabled the fabrication of tissue-mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity-modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion-induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion-based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion-based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion-based strategies to overcome current limitations in biofabrication.
Collapse
Affiliation(s)
- Betty Cai
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - David Kilian
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Daniel Ramos Mejia
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ricardo J. Rios
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ashal Ali
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| |
Collapse
|
26
|
Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting - An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater 2024; 32:356-384. [PMID: 37920828 PMCID: PMC10618244 DOI: 10.1016/j.bioactmat.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Three-dimensional bioprinting is an advanced tissue fabrication technique that allows printing complex structures with precise positioning of multiple cell types layer-by-layer. Compared to other bioprinting methods, extrusion bioprinting has several advantages to print large-sized tissue constructs and complex organ models due to large build volume. Extrusion bioprinting using sacrificial, support and embedded strategies have been successfully employed to facilitate printing of complex and hollow structures. Embedded bioprinting is a gel-in-gel approach developed to overcome the gravitational and overhanging limits of bioprinting to print large-sized constructs with a micron-scale resolution. In embedded bioprinting, deposition of bioinks into the microgel or granular support bath will be facilitated by the sol-gel transition of the support bath through needle movement inside the granular medium. This review outlines various embedded bioprinting strategies and the polymers used in the embedded systems with advantages, limitations, and efficacy in the fabrication of complex vascularized tissues or organ models with micron-scale resolution. Further, the essential requirements of support bath systems like viscoelasticity, stability, transparency and easy extraction to print human scale organs are discussed. Additionally, the organs or complex geometries like vascular constructs, heart, bone, octopus and jellyfish models printed using support bath assisted printing methods with their anatomical features are elaborated. Finally, the challenges in clinical translation and the future scope of these embedded bioprinting models to replace the native organs are envisaged.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Center for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Center, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
27
|
Desai SU, Srinivasan SS, Kumbar SG, Moss IL. Hydrogel-Based Strategies for Intervertebral Disc Regeneration: Advances, Challenges and Clinical Prospects. Gels 2024; 10:62. [PMID: 38247785 PMCID: PMC10815657 DOI: 10.3390/gels10010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Millions of people worldwide suffer from low back pain and disability associated with intervertebral disc (IVD) degeneration. IVD degeneration is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and the annulus fibrosus (AF) fissures form, which often results in intervertebral disc herniation or disc space collapse and related clinical symptoms. Currently available options for treating intervertebral disc degeneration are symptoms control with therapy modalities, and/or medication, and/or surgical resection of the IVD with or without spinal fusion. As such, there is an urgent clinical demand for more effective disease-modifying treatments for this ubiquitous disorder, rather than the current paradigms focused only on symptom control. Hydrogels are unique biomaterials that have a variety of distinctive qualities, including (but not limited to) biocompatibility, highly adjustable mechanical characteristics, and most importantly, the capacity to absorb and retain water in a manner like that of native human nucleus pulposus tissue. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. In this review, we summarize the latest findings and developments in the application of hydrogel technology for the repair and regeneration of intervertebral discs.
Collapse
Affiliation(s)
- Shivam U. Desai
- Department of Orthopedic Surgery, Central Michigan University, College of Medicine, Saginaw, MI 48602, USA
| | | | | | - Isaac L. Moss
- Department of Orthopedic Surgery, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
28
|
Johnson N, Filler AC, Sethi A, Smith LR, Leach JK. Skeletal Muscle Spheroids as Building Blocks for Engineered Muscle Tissue. ACS Biomater Sci Eng 2024; 10:497-506. [PMID: 38113146 PMCID: PMC10777344 DOI: 10.1021/acsbiomaterials.3c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Spheroids exhibit enhanced cell-cell interactions that facilitate improved survival and mimic the physiological cellular environment in vivo. Cell spheroids have been successfully used as building blocks for engineered tissues, yet the viability of this approach with skeletal muscle spheroids is poorly understood, particularly when incorporated into three-dimensional (3D) constructs. Bioprinting is a promising strategy to recapitulate the hierarchical organization of native tissue that is fundamental to its function. However, the influence of bioprinting on skeletal muscle cell spheroids and their function are yet to be interrogated. Using C2C12 mouse myoblasts and primary bovine muscle stem cells (MuSCs), we characterized spheroid formation as a function of duration and cell seeding density. We then investigated the potential of skeletal muscle spheroids entrapped in alginate bioink as tissue building blocks for bioprinting myogenic tissue. Both C2C12 and primary bovine MuSCs formed spheroids of similar sizes and remained viable after bioprinting. Spheroids of both cell types fused into larger tissue clusters over time within alginate and exhibited tissue formation comparable to monodisperse cells. Compared to monodisperse cells in alginate gels, C2C12 spheroids exhibited greater MyHC expression after 2 weeks, while cells within bovine MuSC spheroids displayed increased cell spreading. Both monodisperse and MuSC spheroids exhibited increased expression of genes denoting mid- and late-stage myogenic differentiation. Together, these data suggest that skeletal muscle spheroids have the potential for generating myogenic tissue via 3D bioprinting and reveal areas of research that could enhance myogenesis and myogenic differentiation in future studies.
Collapse
Affiliation(s)
- Nicholas Johnson
- Department
of Orthopaedic Surgery, UC Davis Health, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, UC Davis, Davis, California 95616, United States
| | - Andrea C. Filler
- Department
of Orthopaedic Surgery, UC Davis Health, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, UC Davis, Davis, California 95616, United States
| | - Akash Sethi
- Department
of Molecular and Cellular Biology, UC Davis, Davis, California 95616, United States
| | - Lucas R. Smith
- Department
of Neurobiology, Physiology and Behavior, UC Davis, Davis, California 95616, United States
| | - J. Kent Leach
- Department
of Orthopaedic Surgery, UC Davis Health, Sacramento, California 95817, United States
- Department
of Biomedical Engineering, UC Davis, Davis, California 95616, United States
| |
Collapse
|
29
|
Shin S, Brunel LG, Cai B, Kilian D, Roth JG, Seymour AJ, Heilshorn SC. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2307435. [PMID: 38646474 PMCID: PMC11031202 DOI: 10.1002/adfm.202307435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 04/23/2024]
Abstract
While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physicochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.
Collapse
Affiliation(s)
- Sungchul Shin
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 08826 Gwanak-ro 1, Gwanak-gu, Seoul, Republic of Korea
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Alexis J Seymour
- Department of Bioengineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, 466 Lomita Mall, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Elomaa L, Almalla A, Keshi E, Hillebrandt KH, Sauer IM, Weinhart M. Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins. BIOMATERIALS AND BIOSYSTEMS 2023; 12:100084. [PMID: 38035034 PMCID: PMC10685010 DOI: 10.1016/j.bbiosy.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Thanks to its natural complexity and functionality, decellularized extracellular matrix (dECM) serves as an excellent foundation for creating highly cell-compatible bioinks and bioresins. This enables the bioprinted cells to thrive in an environment that closely mimics their native ECM composition and offers customizable biomechanical properties. To formulate dECM bioinks and bioresins, one must first pulverize and/or solubilize the dECM into non-crosslinked fragments, which can then be chemically modified as needed. In bioprinting, the solubilized dECM-derived material is typically deposited and/or crosslinked in a layer-by-layer fashion to build 3D hydrogel structures. Since the introduction of the first liver-derived dECM-based bioinks, a wide variety of decellularized tissue have been employed in bioprinting, including kidney, heart, cartilage, and adipose tissue among others. This review aims to summarize the critical steps involved in tissue-derived dECM bioprinting, starting from the decellularization of the ECM to the standardized formulation of bioinks and bioresins, ultimately leading to the reproducible bioprinting of tissue constructs. Notably, this discussion also covers photocrosslinkable dECM bioresins, which are particularly attractive due to their ability to provide precise spatiotemporal control over the gelation in bioprinting. Both in extrusion printing and vat photopolymerization, there is a need for more standardized protocols to fully harness the unique properties of dECM-derived materials. In addition to mammalian tissues, the most recent bioprinting approaches involve the use of microbial extracellular polymeric substances in bioprinting of bacteria. This presents similar challenges as those encountered in mammalian cell printing and represents a fascinating frontier in bioprinting technology.
Collapse
Affiliation(s)
- Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Ahed Almalla
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Eriselda Keshi
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Karl H. Hillebrandt
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, Berlin 10117, Germany
| | - Igor M. Sauer
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, Hannover 30167, Germany
| |
Collapse
|
31
|
Gingras AA, Jansen PA, Smith C, Zhang X, Niu Y, Zhao Y, Roberts CJ, Herderick ED, Swindle-Reilly KE. 3D Bioprinting of Acellular Corneal Stromal Scaffolds with a Low Cost Modified 3D Printer: A Feasibility Study. Curr Eye Res 2023; 48:1112-1121. [PMID: 37669915 DOI: 10.1080/02713683.2023.2251172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE Loss of corneal transparency is one of the major causes of visual loss, generating a considerable health and economic burden globally. Corneal transplantation is the leading treatment procedure, where the diseased cornea is replaced by donated corneal tissue. Despite the rise of cornea donations in the past decade, there is still a huge gap between cornea supply and demand worldwide. 3D bioprinting is an emerging technology that can be used to fabricate tissue equivalents that resemble the native tissue, which holds great potential for corneal tissue engineering application. This study evaluates the manufacturability of 3D bioprinted acellular corneal grafts using low-cost equipment and software, not necessarily designed for bioprinting applications. This approach allows access to 3D printed structures where commercial 3D bioprinters are cost prohibitive and not readily accessible to researchers and clinicians. METHODS Two extrusion-based methods were used to 3D print acellular corneal stromal scaffolds with collagen, alginate, and alginate-gelatin composite bioinks from a digital corneal model. Compression testing was used to determine moduli. RESULTS The printed model was visually transparent with tunable mechanical properties. The model had central radius of curvature of 7.4 mm, diameter of 13.2 mm, and central thickness of 0.4 mm. The compressive secant modulus of the material was 23.7 ± 1.7 kPa at 20% strain. 3D printing into a concave mold had reliability advantages over printing into a convex mold. CONCLUSIONS The printed corneal models exhibited visible transparency and a dome shape, demonstrating the potential of this process for the preparation of acellular partial thickness corneal replacements. The modified printing process presented a low-cost option for corneal bioprinting.
Collapse
Affiliation(s)
- Amelia A Gingras
- Center for Design and Manufacturing Excellence, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Peter A Jansen
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Caroline Smith
- Center for Design and Manufacturing Excellence, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Xu Zhang
- Center for Design and Manufacturing Excellence, The Ohio State University, Columbus, OH, USA
| | - Ye Niu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cynthia J Roberts
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Edward D Herderick
- Center for Design and Manufacturing Excellence, The Ohio State University, Columbus, OH, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Lewns FK, Tsigkou O, Cox LR, Wildman RD, Grover LM, Poologasundarampillai G. Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301670. [PMID: 37087739 PMCID: PMC11478930 DOI: 10.1002/adma.202301670] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization ranging from the molecular to whole organ level. Current bioprinting techniques and the materials employed have imposed limits on the scale, speed, and resolution that can be achieved, rendering the technique unable to reproduce the structural hierarchies and cell-matrix interactions that are observed in bone. The shift toward biomimetic approaches in bone tissue engineering, where hydrogels provide biophysical and biochemical cues to encapsulated cells, is a promising approach to enhancing the biological function and development of tissues for in vitro modeling. A major focus in bioprinting of bone tissue for in vitro modeling is creating dynamic microenvironmental niches to support, stimulate, and direct the cellular processes for bone formation and remodeling. Hydrogels are ideal materials for imitating the extracellular matrix since they can be engineered to present various cues whilst allowing bioprinting. Here, recent advances in hydrogels and 3D bioprinting toward creating a microenvironmental niche that is conducive to tissue engineering of in vitro models of bone are reviewed.
Collapse
Affiliation(s)
| | - Olga Tsigkou
- Department of MaterialsUniversity of ManchesterManchesterM1 5GFUK
| | - Liam R. Cox
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Ricky D. Wildman
- Faculty of EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | - Liam M. Grover
- Healthcare Technologies InstituteSchool of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | | |
Collapse
|
33
|
Gupta D, Singh AK, Bellare J. Natural bone inspired core-shell triple-layered gel/PCL/gel 3D printed scaffolds for bone tissue engineering. Biomed Mater 2023; 18:065027. [PMID: 37879307 DOI: 10.1088/1748-605x/ad06c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Despite technological advancements in bone tissue engineering, it is still a challenge to fabricate a scaffold with high bioactivity as well as high mechanical strength that can promote osteogenesis as well as bear load. Here we developed a 3D printed gel-polymer multi-layered hybrid scaffold. The innermost layer is porous gel-based framework made of gelatin/carboxymethyl-chitin/nano-hydroxyapatite and is cryogenically 3D printed. Further, the second and middle layer of micro-engineered polycaprolactone (PCL) is infused in the gel with controlled penetration and tuneable coating thickness. The PCL surface is further coated with a third and final thin layer of gel matrix used for the first layer. This triple-layered structure demonstrates compression strength and modulus of 13.07 ± 1.15 MPa and 21.8 ± 0.82 MPa, respectively, post 8 weeks degradation which is >3000% and >700% than gel scaffold. It also shows degradation of 6.84 ± 0.70% (83% reduction than gel scaffold) after 12 weeks and swelling of 69.09 ± 6.83% (81% reduction) as compared to gel scaffolds. Further, nearly 300%, 250%, 50%, and 440% increase in cellular attachment, proliferation, protein generation, and mineralization, respectively are achieved as compared to only PCL scaffolds. Thus, these hybrid scaffolds offer high mechanical strength, slow degradation rate, high bioactivity, and high osteoconductivity. These multifunctional scaffolds have potential for reconstructing non-load-bearing bone defects like sinus lift, jaw cysts, and moderate load-bearing like reconstructing hard palate, orbital palate, and other craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Deepak Gupta
- Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | - Atul Kumar Singh
- Central Research Facility (CRF), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jayesh Bellare
- Chemical Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Tata Centre for Technology and Design, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Wadhwani Research Centre for Bioengineering (WRCB), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
34
|
Murphy AR, Allenby MC. In vitro microvascular engineering approaches and strategies for interstitial tissue integration. Acta Biomater 2023; 171:114-130. [PMID: 37717711 DOI: 10.1016/j.actbio.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The increasing gap between clinical demand for tissue or organ transplants and the availability of donated tissue highlights the emerging opportunities for lab-grown or synthetically engineered tissue. While the field of tissue engineering has existed for nearly half a century, its clinical translation remains unrealised, in part, due to a limited ability to engineer sufficient vascular supply into fabricated tissue, which is necessary to enable nutrient and waste exchange, prevent cellular necrosis, and support tissue proliferation. Techniques to develop anatomically relevant, functional vascular networks in vitro have made significant progress in the last decade, however, the challenge now remains as to how best incorporate these throughout dense parenchymal tissue-like structures to address diffusion-limited development and allow for the fabrication of large-scale vascularised tissue. This review explores advances made in the laboratory engineering of vasculature structures and summarises recent attempts to integrate vascular networks together with sophisticated in vitro avascular tissue and organ-like structures. STATEMENT OF SIGNIFICANCE: The ability to grow full scale, functional tissue and organs in vitro is primarily limited by an inability to adequately diffuse oxygen and nutrients throughout developing cellularised structures, which generally results from the absence of perfusable vessel networks. Techniques to engineering both perfusable vascular networks and avascular miniaturised organ-like structures have recently increased in complexity, sophistication, and physiological relevance. However, integrating these two essential elements into a single functioning vascularised tissue structure represents a significant spatial and temporal engineering challenge which is yet to be surmounted. Here, we explore a range of vessel morphogenic phenomena essential for tissue-vascular co-development, as well as evaluate a range of recent noteworthy approaches for generating vascularised tissue products in vitro.
Collapse
Affiliation(s)
- A R Murphy
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4100, Australia
| | - M C Allenby
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4100, Australia; Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
35
|
Kotani T, Mubarok W, Hananouchi T, Sakai S. Horseradish Peroxidase-Mediated Bioprinting via Bioink Gelation by Alternately Extruded Support Material. ACS Biomater Sci Eng 2023; 9:5804-5812. [PMID: 37738620 DOI: 10.1021/acsbiomaterials.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Horseradish peroxidase (HRP)-mediated extrusion bioprinting has a significant potential in tissue engineering and regenerative medicine. However, they often face challenges in terms of printing fidelity and structural integrity when using low-viscosity inks. To address this issue, a method that alternately extrudes bioinks and support material was developed in this study. The bioinks consisting of cells, HRP, and phenolated polymers, and the support material contained hydrogen peroxide (H2O2). The support material not only prevented the collapse of the constructs but also supplied H2O2 to facilitate the enzymatic reaction. 3D constructs with tall and complex shapes were successfully printed from a low-viscosity ink containing 10 U/mL HRP and 1.0% w/v phenolated hyaluronic acid (HA-Ph), with a support material containing 10 mM H2O2. Over 90% viability of mouse fibroblasts (10T1/2) was achieved following the printing process, along with a morphology and proliferation rate similar to that of nontreated cells. Furthermore, human hepatoblastoma (HepG2) cells showed an increased spheroid size over 14 days in the printed constructs. The 10T1/2 cells adhered and proliferated on the constructs printed from inks containing both phenolated gelatin and HA-Ph. These results demonstrate the great potential of this HRP-mediated extrusion bioprinting technique for tissue engineering applications.
Collapse
Affiliation(s)
- Takashi Kotani
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| | - Wildan Mubarok
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| | - Takehito Hananouchi
- Medical Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Osaka Sangyo University, Daito, Osaka 574-8530, Japan
- Biodesign Division, Department of Academia-Government-Industry Collaboration, Office of Research and Academia-Government-Community Collaboration, Hiroshima University, Hiroshima, Hiroshima 734-8551, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
36
|
Alioglu MA, Yilmaz YO, Singh YP, Nagamine M, Celik N, Kim MH, Pal V, Gupta D, Ozbolat IT. Nested biofabrication: Matryoshka-inspired Intra-embedded Bioprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560028. [PMID: 37808743 PMCID: PMC10557751 DOI: 10.1101/2023.09.28.560028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Engineering functional tissues and organs remains a fundamental pursuit in biofabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, we here introduce a new method called 'Intra-Embedded Bioprinting (IEB),' building upon existing embedded bioprinting methods. We used a xanthan gum-based material, which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. We demonstrated IEB's capabilities in organ modelling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite. Further, a head phantom and a Matryoshka doll were 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Towards the use case of IEB and employing innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, we developed a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.
Collapse
|
37
|
Shi W, Mirza S, Kuss M, Liu B, Hartin A, Wan S, Kong Y, Mohapatra B, Krishnan M, Band H, Band V, Duan B. Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks. Adv Healthc Mater 2023; 12:e2300905. [PMID: 37422447 PMCID: PMC10592394 DOI: 10.1002/adhm.202300905] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Bioinks for 3D bioprinting of tumor models should not only meet printability requirements but also accurately maintain and support phenotypes of tumor surrounding cells to recapitulate key tumor hallmarks. Collagen is a major extracellular matrix protein for solid tumors, but low viscosity of collagen solution has made 3D bioprinted cancer models challenging. This work produces embedded, bioprinted breast cancer cells and tumor organoid models using low-concentration collagen I based bioinks. The biocompatible and physically crosslinked silk fibroin hydrogel is used to generate the support bath for the embedded 3D printing. The composition of the collagen I based bioink is optimized with a thermoresponsive hyaluronic acid-based polymer to maintain the phenotypes of both the noninvasive epithelial and invasive breast cancer cells, as well as cancer-associated fibroblasts. Mouse breast tumor organoids are bioprinted using optimized collagen bioink to mimic in vivo tumor morphology. A vascularized tumor model is also created using a similar strategy, with significantly enhanced vasculature formation under hypoxia. This study shows the great potential of embedded bioprinted breast tumor models utilizing a low-concentration collagen-based bioink for advancing the understanding of tumor cell biology and facilitating drug discovery research.
Collapse
Affiliation(s)
- Wen Shi
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sameer Mirza
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of ChemistryCollege of ScienceUnited Arab Emirates UniversityAbu DhabiUnited Arab Emirates
| | - Mitchell Kuss
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Andrew Hartin
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shibiao Wan
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Yunfan Kong
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bhopal Mohapatra
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mena Krishnan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Hamid Band
- Eppley InstituteUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Vimla Band
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of SurgeryUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical EngineeringUniversity of Nebraska–LincolnLincolnNE68588USA
| |
Collapse
|
38
|
Frankowski J, Kurzątkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research - State-of-the-art. Int J Pharm 2023; 644:123313. [PMID: 37579828 DOI: 10.1016/j.ijpharm.2023.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Rapid development of tissue engineering in recent years has increased the importance of three-dimensional (3D) bioprinting technology as novel strategy for fabrication functional 3D tissue and organoid models for pharmaceutical research. 3D bioprinting technology gives hope for eliminating many problems associated with traditional cell culture methods during drug screening. However, there is a still long way to wider clinical application of this technology due to the numerous difficulties associated with development of bioinks, advanced printers and in-depth understanding of human tissue architecture. In this review, the work associated with relatively well-known extrusion-based bioprinting (EBB), jetting-based bioprinting (JBB), and vat photopolymerization bioprinting (VPB) is presented and discussed with the latest advances and limitations in this field. Next we discuss state-of-the-art research of 3D bioprinted in vitro models including liver, kidney, lung, heart, intestines, eye, skin as well as neural and bone tissue that have potential applications in the development of new drugs.
Collapse
Affiliation(s)
- Joachim Frankowski
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Matylda Kurzątkowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
| |
Collapse
|
39
|
Ribezzi D, Gueye M, Florczak S, Dusi F, de Vos D, Manente F, Hierholzer A, Fussenegger M, Caiazzo M, Blunk T, Malda J, Levato R. Shaping Synthetic Multicellular and Complex Multimaterial Tissues via Embedded Extrusion-Volumetric Printing of Microgels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301673. [PMID: 37269532 DOI: 10.1002/adma.202301673] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Indexed: 06/05/2023]
Abstract
In living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck toward creating physiologically-relevant models. Addressing this limitation, a novel technique is introduced, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing spatially pattern multiple inks/cell types. Light-responsive microgels are developed for the first time as bioresins (µResins) for light-based volumetric bioprinting, providing a microporous environment permissive for cell homing and self-organization. Tuning the mechanical and optical properties of gelatin-based microparticles enables their use as support bath for suspended extrusion printing, in which features containing high cell densities can be easily introduced. µResins can be sculpted within seconds with tomographic light projections into centimeter-scale, granular hydrogel-based, convoluted constructs. Interstitial microvoids enhanced differentiation of multiple stem/progenitor cells (vascular, mesenchymal, neural), otherwise not possible with conventional bulk hydrogels. As proof-of-concept, EmVP is applied to create complex synthetic biology-inspired intercellular communication models, where adipocyte differentiation is regulated by optogenetic-engineered pancreatic cells. Overall, EmVP offers new avenues for producing regenerative grafts with biological functionality, and for developing engineered living systems and (metabolic) disease models.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Marième Gueye
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Franziska Dusi
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Dieuwke de Vos
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Francesca Manente
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | - Andreas Hierholzer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
40
|
Li W, Liu Z, Tang F, Jiang H, Zhou Z, Hao X, Zhang JM. Application of 3D Bioprinting in Liver Diseases. MICROMACHINES 2023; 14:1648. [PMID: 37630184 PMCID: PMC10457767 DOI: 10.3390/mi14081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Liver diseases are the primary reason for morbidity and mortality in the world. Owing to a shortage of organ donors and postoperative immune rejection, patients routinely suffer from liver failure. Unlike 2D cell models, animal models, and organoids, 3D bioprinting can be successfully employed to print living tissues and organs that contain blood vessels, bone, and kidney, heart, and liver tissues and so on. 3D bioprinting is mainly classified into four types: inkjet 3D bioprinting, extrusion-based 3D bioprinting, laser-assisted bioprinting (LAB), and vat photopolymerization. Bioinks for 3D bioprinting are composed of hydrogels and cells. For liver 3D bioprinting, hepatic parenchymal cells (hepatocytes) and liver nonparenchymal cells (hepatic stellate cells, hepatic sinusoidal endothelial cells, and Kupffer cells) are commonly used. Compared to conventional scaffold-based approaches, marked by limited functionality and complexity, 3D bioprinting can achieve accurate cell settlement, a high resolution, and more efficient usage of biomaterials, better mimicking the complex microstructures of native tissues. This method will make contributions to disease modeling, drug discovery, and even regenerative medicine. However, the limitations and challenges of this method cannot be ignored. Limitation include the requirement of diverse fabrication technologies, observation of drug dynamic response under perfusion culture, the resolution to reproduce complex hepatic microenvironment, and so on. Despite this, 3D bioprinting is still a promising and innovative biofabrication strategy for the creation of artificial multi-cellular tissues/organs.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Radiology, Yancheng Third People’s Hospital, Affiliated Hospital 6 of Nantong University, Yancheng 224000, China
| | - Zhaoyue Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Fengwei Tang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Hao Jiang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Zhengyuan Zhou
- Nanjing Hangdian Intelligent Manufacturing Technology Co., Ltd., Nanjing 210014, China
| | - Xiuqing Hao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Jia Ming Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
- Nanjing Hangdian Intelligent Manufacturing Technology Co., Ltd., Nanjing 210014, China
- Yangtze River Delta Intelligent Manufacturing Innovation Center, Nanjing 210014, China
| |
Collapse
|
41
|
Öztürk-Öncel MÖ, Leal-Martínez BH, Monteiro RF, Gomes ME, Domingues RMA. A dive into the bath: embedded 3D bioprinting of freeform in vitro models. Biomater Sci 2023; 11:5462-5473. [PMID: 37489648 PMCID: PMC10408712 DOI: 10.1039/d3bm00626c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Designing functional, vascularized, human scale in vitro models with biomimetic architectures and multiple cell types is a highly promising strategy for both a better understanding of natural tissue/organ development stages to inspire regenerative medicine, and to test novel therapeutics on personalized microphysiological systems. Extrusion-based 3D bioprinting is an effective biofabrication technology to engineer living constructs with predefined geometries and cell patterns. However, bioprinting high-resolution multilayered structures with mechanically weak hydrogel bioinks is challenging. The advent of embedded 3D bioprinting systems in recent years offered new avenues to explore this technology for in vitro modeling. By providing a stable, cell-friendly and perfusable environment to hold the bioink during and after printing, it allows to recapitulate native tissues' architecture and function in a well-controlled manner. Besides enabling freeform bioprinting of constructs with complex spatial organization, support baths can further provide functional housing systems for their long-term in vitro maintenance and screening. This minireview summarizes the recent advances in this field and discuss the enormous potential of embedded 3D bioprinting technologies as alternatives for the automated fabrication of more biomimetic in vitro models.
Collapse
Affiliation(s)
- M Özgen Öztürk-Öncel
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Baltazar Hiram Leal-Martínez
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rosa F Monteiro
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
42
|
Menshutina N, Abramov A, Okisheva M, Tsygankov P. Investigation of the 3D Printing Process Utilizing a Heterophase System. Gels 2023; 9:566. [PMID: 37504445 PMCID: PMC10379737 DOI: 10.3390/gels9070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Direct ink writing (DIW) requires careful selection of ink composition with specific rheological properties, and it has limitations, such as the inability to create overhanging parts or branched geometries. This study presents an investigation into enhancing the 3D printing process through the use of a heterophase system, aiming to overcome these limitations. A modification was carried out in the 3D printer construction, involving adjustments to the structural elements responsible for the extrusion device's movement. Additionally, a method for obtaining a heterophase system based on gelatin microparticles was developed to enable the 3D printing process with the upgraded printer. The structure and rheological properties of the heterophase system, varying in gelatin concentration, were thoroughly examined. The material's viscosity ranged from 5.4 to 32.8 kPa·s, exhibiting thixotropic properties, pseudoplastic behavior, and long-term stability at 20 °C. The developed 3D printing technology was successfully implemented using a heterophase system based on different gelatin concentrations. The highest product quality was achieved with a heterophase system consisting of 4.5 wt.% gelatin, which exhibited a viscosity of 22.4 kPa·s, enabling the production of products without spreading or compromising geometrical integrity.
Collapse
Affiliation(s)
- Natalia Menshutina
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Andrey Abramov
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Maria Okisheva
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Pavel Tsygankov
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| |
Collapse
|
43
|
Valchanov P, Dukov N, Pavlov S, Kontny A, Dikova T. 3D Printing, Histological, and Radiological Analysis of Nanosilicate-Polysaccharide Composite Hydrogel as a Tissue-Equivalent Material for Complex Biological Bone Phantom. Gels 2023; 9:547. [PMID: 37504427 PMCID: PMC10379613 DOI: 10.3390/gels9070547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Nanosilicate-polysaccharide composite hydrogels are a well-studied class of materials in regenerative medicine that combine good 3D printability, staining, and biological properties, making them an excellent candidate material for complex bone scaffolds. The aim of this study was to develop a hydrogel suitable for 3D printing that has biological and radiological properties similar to those of the natural bone and to develop protocols for their histological and radiological analysis. We synthesized a hydrogel based on alginate, methylcellulose, and laponite, then 3D printed it into a series of complex bioscaffolds. The scaffolds were scanned with CT and CBCT scanners and exported as DICOM datasets, then cut into histological slides and stained using standard histological protocols. From the DICOM datasets, the average value of the voxels in Hounsfield Units (HU) was calculated and compared with natural trabecular bone. In the histological sections, we tested the effect of standard histological stains on the hydrogel matrix in the context of future cytological and histological analysis. The results confirmed that an alginate/methylcellulose/laponite-based composite hydrogel can be used for 3D printing of complex high fidelity three-dimensional scaffolds. This opens an avenue for the development of dynamic biological physical phantoms for bone tissue engineering and the development of new CT-based imaging algorithms for the needs of radiology and radiation therapy.
Collapse
Affiliation(s)
- Petar Valchanov
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Nikolay Dukov
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria
| | - Stoyan Pavlov
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Andreas Kontny
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Tsanka Dikova
- Department of Dental Material Science and Prosthetic Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria
| |
Collapse
|
44
|
McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D Bioprinting in Otolaryngology: A Review. Adv Healthc Mater 2023; 12:e2203268. [PMID: 36921327 PMCID: PMC10502192 DOI: 10.1002/adhm.202203268] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The evolution of tissue engineering and 3D bioprinting has allowed for increased opportunities to generate musculoskeletal tissue grafts that can enhance functional and aesthetic outcomes in otolaryngology-head and neck surgery. Despite literature reporting successes in the fabrication of cartilage and bone scaffolds for applications in the head and neck, the full potential of this technology has yet to be realized. Otolaryngology as a field has always been at the forefront of new advancements and technology and is well poised to spearhead clinical application of these engineered tissues. In this review, current 3D bioprinting methods are described and an overview of potential cell types, bioinks, and bioactive factors available for musculoskeletal engineering using this technology is presented. The otologic, nasal, tracheal, and craniofacial bone applications of 3D bioprinting with a focus on engineered graft implantation in animal models to highlight the status of functional outcomes in vivo; a necessary step to future clinical translation are reviewed. Continued multidisciplinary efforts between material chemistry, biological sciences, and otolaryngologists will play a key role in the translation of engineered, 3D bioprinted constructs for head and neck surgery.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Nadia McMillan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Sohit P. Kanotra
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
45
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
46
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
47
|
Shin S, Brunel LG, Cai B, Kilian D, Roth JG, Seymour AJ, Heilshorn SC. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535250. [PMID: 37066190 PMCID: PMC10104000 DOI: 10.1101/2023.04.02.535250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self-supporting, branched networks with multiple channel diameters is particularly challenging. Here, we present the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE-3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes. To achieve user-specified channel dimensions, this technique leverages the predictable diffusion of crosslinking reaction-initiators released from sacrificial inks printed within a hydrogel precursor. We demonstrate the versatility of GUIDE-3DP to be adapted for use with diverse physiochemical crosslinking mechanisms by designing seven printable material systems. Importantly, GUIDE-3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, we demonstrate the fabrication of vasculature-like networks lined with endothelial cells. GUIDE-3DP represents an important advance toward the fabrication of self-supporting, physiologically relevant networks with intricate and perfusable geometries.
Collapse
|
48
|
Honaryar H, Amirfattahi S, Niroobakhsh Z. Associative Liquid-In-Liquid 3D Printing Techniques for Freeform Fabrication of Soft Matter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206524. [PMID: 36670057 DOI: 10.1002/smll.202206524] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Shaping soft materials into prescribed 3D complex designs has been challenging yet feasible using various 3D printing technologies. For a broader range of soft matters to be printable, liquid-in-liquid 3D printing techniques have emerged in which an ink phase is printed into 3D constructs within a bath. Most of the attention in this field has been focused on using a support bath with favorable rheology (i.e., shear-thinning behavior) which limits the selection of materials, impeding the broad application of such techniques. However, a growing body of work has begun to leverage the interaction or association of the two involved phases (specifically at the liquid-liquid interface) to fabricate complex constructs from a myriad of soft materials with practical structural, mechanical, optical, magnetic, and communicative properties. This review article has provided an overview of the studies on such associative liquid-in-liquid 3D printing techniques along with their fundamentals, underlying mechanisms, various characterization techniques used for ensuring the structural stability, and practical properties of prints. Also, the future paths with the potential applications are discussed.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
49
|
Wu CA, Zhu Y, Venkatesh A, Stark CJ, Lee SH, Woo YJ. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities. Tissue Eng Part C Methods 2023; 29:85-94. [PMID: 36719778 PMCID: PMC10024587 DOI: 10.1089/ten.tec.2022.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Three-dimensional (3D) bioprinting demonstrates technology that is capable of producing structures comparable to native tissues in the human body. The freeform reversible embedding of suspended hydrogels (FRESH) technique involves hydrogel-based bio-inks printed within a thermo-reversible support bath to provide mechanical strength to the printed construct. Smaller and more uniform microsphere sizes of FRESH were reported to aid in enhancing printing resolution and construct accuracy. Therefore, we sought to optimize the FRESH generation protocol, particularly by varying stir speed and stir duration, in hopes to further improve microsphere size and uniformity. We observed optimal conditions at a stir speed of 600 rpm and stir duration for 20 h that generated the smallest microspheres with the best uniformity. Comparison of using the optimized FRESH to the commercial FRESH LifeSupport to bioprint single filament and geometrical constructs revealed reduced single filament diameters and higher angular precision in the optimized FRESH bio-printed constructs compared with those printed in the commercial FRESH. Overall, our refinement of the FRESH manufacturing protocol represents an important step toward enhancing 3D bioprinting resolution and construct fidelity. Improving such technologies allows for the fabrication of highly accurate constructs with anatomical properties similar to native counterparts. Such work has significant implications in the field of tissue engineering for producing accurate human organ model systems. Impact statement Freeform reversible embedding of suspended hydrogels (FRESH) is a method of sacrificial three-dimensional (3D) bioprinting that offers support to reinforce bio-ink extrusion during printing. During FRESH generation, the stir speed and stir duration of the mixture can significantly impact FRESH microsphere characteristics. In this study, we optimized FRESH microspheres to significantly improve resolution and accuracy in bioprinting. This advancement in FRESH-based 3D bioprinting technologies allows for the fabrication of highly accurate constructs with anatomical properties similar to native counterparts and has significant implications in the field of tissue engineering and translational medicine.
Collapse
Affiliation(s)
- Catherine A. Wu
- Department of Cardiothoracic Surgery and Stanford University, Stanford, California, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery and Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Akshay Venkatesh
- Department of Cardiothoracic Surgery and Stanford University, Stanford, California, USA
| | - Charles J. Stark
- Department of Cardiothoracic Surgery and Stanford University, Stanford, California, USA
| | - Seung Hyun Lee
- Department of Cardiothoracic Surgery and Stanford University, Stanford, California, USA
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery and Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
50
|
Zeng J, Xie Z, Dekishima Y, Kuwagaki S, Sakai N, Matsusaki M. "Out-of-the-box" Granular Gel Bath Based on Cationic Polyvinyl Alcohol Microgels for Embedded Extrusion Printing. Macromol Rapid Commun 2023; 44:e2300025. [PMID: 36794543 DOI: 10.1002/marc.202300025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Embedded extrusion printing provides a versatile platform for fabricating complex hydrogel-based biological structures with living cells. However, the time-consuming process and rigorous storage conditions of current support baths hinder their commercial application. This work reports a novel "out-of-the-box" granular support bath based on chemically crosslinked cationic polyvinyl alcohol (PVA) microgels, which is ready to use by simply dispersing the lyophilized bath in water. Notably, with ionic modification, PVA microgels yield reduced particle size, uniform distribution, and appropriate rheological properties, contributing to high-resolution printing. Following by the lyophilization and re-dispersion process, ion-modified PVA baths recover to its original state, with unchanged particle size, rheological properties, and printing resolution, demonstrating its stability and recoverability. Lyophilization facilitates the long-term storage and delivery of granular gel baths, and enables the application of "out-of-the-box" support materials, which will greatly simplify experimental procedures, avoid labor-intensive and time-consuming operations, thus accelerating the broad commercial development of embedded bioprinting.
Collapse
Affiliation(s)
- Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Zhengtian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasumasa Dekishima
- Mitsubishi Chemical Corporation, Science and Innovation Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | - Setsuka Kuwagaki
- Mitsubishi Chemical Corporation, Osaka R&D Center, 13-1 Muroyama 2-chome, Ibaraki, Osaka, 567-0052, Japan
| | - Norihito Sakai
- Mitsubishi Chemical Corporation, Osaka R&D Center, 13-1 Muroyama 2-chome, Ibaraki, Osaka, 567-0052, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|