1
|
Pacheco Da Silva E, Varraso R, Orsi L, Wiernik E, Goldberg M, Paris C, Fezeu LK, Ribet C, Nadif R, Carrat F, Touvier M, Zins M, Dumas O, Le Moual N. Changes in household use of disinfectant and cleaning products during the first lockdown period in France. BMC Public Health 2024; 24:2691. [PMID: 39358770 PMCID: PMC11445968 DOI: 10.1186/s12889-024-20202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Few studies evaluated the use of Household Disinfectant and Cleaning Products (HDCPs) during the COVID-19 pandemic, but no population-based cohorts used longitudinal data. We studied changes in HDCPs during the first lockdown, based on longitudinal data from the French population-based NutriNet-Santé and CONSTANCES cohorts. METHODS Based on standardized questionnaires on household cleaning tasks in 2018-2019 and around the first lockdown in France (March17-May3 2020), we compared the duration of weekly use of HDCPs (< 1 day/week, < 10 min/week; 10-30 min/week; > 30 min/week) and the household cleaning help (yes/no) before and during the lockdown period by Bhapkar and McNemar's tests. Moreover, we assessed self-reported changes in the frequency of HDCPs during the lockdown from before (unchanged/increased). RESULTS Analyses were carried on 31,105 participants of NutriNet-Santé (48 years, 75% women, 81% ≥ high school diploma) and 49,491 of CONSTANCES (47 years, 51% women, 87% ≥ high school diploma). During the lockdown, compared with 2018-2019, duration of HDCPs use increased (> 30 min; NutriNet-Santé: 44% versus 18%; CONSTANCES: 63% versus 16%) and household help decreased (NutriNet-Santé: 5% versus 40%; CONSTANCES: 3% versus 56%). Regarding the frequency of HDCPs use, 55% of participants of NutriNet-Santé (57% women/49% men) and 83% of CONSTANCES (86% women/81% men) reported an increased use since the beginning of the lockdown, significantly higher among women (p < 0.0001). CONCLUSIONS The frequency and duration of weekly use of HDCPs has significantly increased since the pandemic. As the use of HDCPs is associated with health issues, further studies are now needed to evaluate the potential health impacts of these changes.
Collapse
Affiliation(s)
- Emilie Pacheco Da Silva
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, Villejuif, 94807, France.
| | - Raphaëlle Varraso
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, Villejuif, 94807, France
| | - Laurent Orsi
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, Villejuif, 94807, France
| | - Emmanuel Wiernik
- Université Paris Cité, Université Paris Saclay, UVSQ, Inserm, UMS 011 "Cohortes épidémiologiques en Population", Villejuif, France
| | - Marcel Goldberg
- Université Paris Cité, Université Paris Saclay, UVSQ, Inserm, UMS 011 "Cohortes épidémiologiques en Population", Villejuif, France
| | - Christophe Paris
- Équipe d'Épidémiologie en Santé Au Travail Et Ergonomie (Ester), Université Rennes 1, Institut de Recherche en Santé, Environnement Et Travail (Irset), Inserm (U1085), École Des Hautes Études en Santé Publique (EHESP), Rennes, France
| | - Léopold K Fezeu
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - Céline Ribet
- Université Paris Cité, Université Paris Saclay, UVSQ, Inserm, UMS 011 "Cohortes épidémiologiques en Population", Villejuif, France
| | - Rachel Nadif
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, Villejuif, 94807, France
| | - Fabrice Carrat
- Sorbonne Université, Inserm, Institut Pierre-Louis d'Epidémiologie Et de Santé Publique, Paris, France
- Département de Santé Publique, APHP.Sorbonne Université, Paris, France
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - Marie Zins
- Université Paris Cité, Université Paris Saclay, UVSQ, Inserm, UMS 011 "Cohortes épidémiologiques en Population", Villejuif, France
| | - Orianne Dumas
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, Villejuif, 94807, France
| | - Nicole Le Moual
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, Villejuif, 94807, France
| |
Collapse
|
2
|
Erickson M, Boone TJ, Nadworny PL. Antiviral Activity of Ag 5IO 6, a Unique Silver Compound. Viruses 2024; 16:959. [PMID: 38932251 PMCID: PMC11209601 DOI: 10.3390/v16060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pentasilver hexaoxoiodate (Ag5IO6) has broad-spectrum antimicrobial efficacy, including the long-term prevention of microbial adherence, the rapid killing of planktonic microorganisms, and the elimination of mature biofilms. This study's goal was to determine whether it may also have antiviral activity against structurally distinct viruses. Ag5IO6 was tested following ASTM E1052-20, Standard Practice to Assess the Activity of Microbicides Against Viruses in Suspension, against adenovirus type 5, murine norovirus, poliovirus type 1, SARS-CoV-2 (original), and SARS-CoV-2 (omicron) (host cells: H1HeLa, RAW 264.7, LLC-MK2, Vero E6, and Vero E6, respectively). A 0.1 g/mL Ag5IO6 suspension was prepared and the viruses were exposed for 30 min, 4 h, or 24 h. Exposure to Ag5IO6 resulted in complete kill of SARS-CoV-2 (omicron) within 30 min, as well as complete kill of both SARS-CoV-2 (original) and the murine norovirus within 4 h. Ag5IO6 showed increasing activity over time against the adenovirus, but did not achieve a 3-log reduction within 24 h, and showed no antiviral activity against the poliovirus. These results demonstrate that Ag5IO6 has antiviral activity against medically important viruses, in addition to its well-characterized antimicrobial activity, suggesting that it may be valuable in situations where the prevention or simultaneous treatment of microbes and viruses are necessary.
Collapse
Affiliation(s)
- Mauri Erickson
- Nelson Laboratories Bozeman, LLC, 1765 S. 19th Avenue, Bozeman, MT 59718, USA;
| | - Tyler J. Boone
- Innovotech, Inc., Suite L131, 2011—94 St. NW, Edmonton, AL T6N 1H1, Canada;
| | | |
Collapse
|
3
|
Nazarov D, Kozlova L, Rogacheva E, Kraeva L, Maximov M. Atomic Layer Deposition of Antibacterial Nanocoatings: A Review. Antibiotics (Basel) 2023; 12:1656. [PMID: 38136691 PMCID: PMC10740478 DOI: 10.3390/antibiotics12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.
Collapse
Affiliation(s)
- Denis Nazarov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Lada Kozlova
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Ludmila Kraeva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Maxim Maximov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
| |
Collapse
|
4
|
Medvedev AZ, Bokhonov BB, Kiselev OS, Ukhina AV, Dudina DV, Alekseev AY, Adamenko LS, Solomatina MV, Shestopalov AM. Silver nanoparticle-modified melt-blown polypropylene: Antibacterial and antifungal properties and antiviral activity against SARS-CoV-2. MATERIALS LETTERS 2023; 346:134557. [PMID: 37215536 PMCID: PMC10192065 DOI: 10.1016/j.matlet.2023.134557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/30/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Melt-blown polymer fiber materials are frequently used in the face mask manufacturing. In the present work, a melt-blown polypropylene tape was modified by silver nanoparticles using chemical metallization. The silver coatings on the fiber surface consisted of crystallites 4-14 nm in size. For the first time, these materials were comprehensively tested for antibacterial, antifungal and antiviral activity. The silver-modified materials showed antibacterial and antifungal activities, especially at high concentrations of silver, and were found to be efficient against the SARS-CoV-2 virus. The silver-modified fiber tape can be used in the face mask manufacturing and as an antimicrobial and antiviral component in filters of liquid and gaseous media.
Collapse
Affiliation(s)
- Alexander Zh Medvedev
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Str. 18, Novosibirsk 630090, Russia
| | - Boris B Bokhonov
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Str. 18, Novosibirsk 630090, Russia
| | - Oleg S Kiselev
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Str. 18, Novosibirsk 630090, Russia
| | - Arina V Ukhina
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Str. 18, Novosibirsk 630090, Russia
| | - Dina V Dudina
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Str. 18, Novosibirsk 630090, Russia
| | - Alexander Y Alekseev
- Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
- Research Institute of Applied Ecology, Dagestan State University, Dahadaeva 21, 367000 Makhachkala, Russia
| | - Lyubov S Adamenko
- Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria V Solomatina
- Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Alexander M Shestopalov
- Research Institute of Virology, The Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
- Research Institute of Applied Ecology, Dagestan State University, Dahadaeva 21, 367000 Makhachkala, Russia
| |
Collapse
|
5
|
Nefedova A, Rausalu K, Zusinaite E, Kisand V, Kook M, Smits K, Vanetsev A, Ivask A. Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions. Heliyon 2023; 9:e20067. [PMID: 37810009 PMCID: PMC10559815 DOI: 10.1016/j.heliyon.2023.e20067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the growing interest towards reducing the number of potentially infectious agents on critical high-touch surfaces, the popularity of antimicrobially and antivirally active surfaces, including textiles, has increased. The goal of this study was to create antiviral textiles by spray-depositing three different nanomaterials, two types of CeO2 nanoparticles and quaternary ammonium surfactant CTAB loaded SiO2 nanocontainers, onto the surface of a knitted polyester textile and assess their antiviral activity against two coronaviruses, porcine transmissible gastroenteritis virus (TGEV) and severe acute respiratory syndrome virus (SARS CoV-2). Antiviral testing was carried out in small droplets in semi-dry conditions and in the presence of organic soiling, to mimic aerosol deposition of viruses onto the textiles. In such conditions, SARS CoV-2 stayed infectious at least for 24 h and TGEV infected cells even after 72h of semi-dry deposition suggesting that textiles exhibiting sufficient antiviral activity before or at 24 h, can be considered promising. The antiviral efficacy of nanomaterial-deposited textiles was compared with the activity of the same nanomaterials in colloidal form and with positive control textiles loaded with copper nitrate and CTAB. Our results indicated that after deposition onto the textile, CeO2 nanoparticles lost most of their antiviral activity, but antiviral efficacy of CTAB-loaded SiO2 nanocontainers was retained also after deposition. Copper nitrate deposited textile that was used as a positive control, showed relatively high antiviral activity as expected. However, as copper was effectively washed away from the textile already during 1 h, the use of copper for creating antiviral textiles would be impractical. In summary, our results indicated that antiviral activity of textiles cannot be predicted from antiviral efficacy of the deposited compounds in colloid and attention should be paid on prolonged efficacy of antivirally coated textiles.
Collapse
Affiliation(s)
- Alexandra Nefedova
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Mati Kook
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Krisjanis Smits
- Institute Solid State Physics, University of Latvia, 8 Kengaraga street, Riga, LV-1063, Latvia
| | - Alexander Vanetsev
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| |
Collapse
|
6
|
Wang J, Xie Q, Song H, Chen X, Zhang X, Zhao X, Hao Y, Zhang Y, Li H, Li N, Fan K, Wang X. Utilizing nanozymes for combating COVID-19: advancements in diagnostics, treatments, and preventative measures. J Nanobiotechnology 2023; 21:200. [PMID: 37344839 PMCID: PMC10283317 DOI: 10.1186/s12951-023-01945-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
The emergence of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses significant challenges to global public health. Despite the extensive efforts of researchers worldwide, there remains considerable opportunities for improvement in timely diagnosis, specific treatment, and effective vaccines for SARS-CoV-2. This is due, in part, to the large number of asymptomatic carriers, rapid virus mutations, inconsistent confinement policies, untimely diagnosis and limited clear treatment plans. The emerging of nanozymes offers a promising approach for combating SARS-CoV-2 due to their stable physicochemical properties and high surface areas, which enable easier and multiple nano-bio interactions in vivo. Nanozymes inspire the development of sensitive and economic nanosensors for rapid detection, facilitate the development of specific medicines with minimal side effects for targeted therapy, trigger defensive mechanisms in the form of vaccines, and eliminate SARS-CoV-2 in the environment for prevention. In this review, we briefly present the limitations of existing countermeasures against coronavirus disease 2019 (COVID-19). We then reviewed the applications of nanozyme-based platforms in the fields of diagnostics, therapeutics and the prevention in COVID-19. Finally, we propose opportunities and challenges for the further development of nanozyme-based platforms for COVID-19. We expect that our review will provide valuable insights into the new emerging and re-emerging infectious pandemic from the perspective of nanozymes.
Collapse
Affiliation(s)
- Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| |
Collapse
|
7
|
El-Sayyad GS, Elfadil D, Gaballah MS, El-Sherif DM, Abouzid M, Nada HG, Khalil MS, Ghorab MA. Implication of nanotechnology to reduce the environmental risks of waste associated with the COVID-19 pandemic. RSC Adv 2023; 13:12438-12454. [PMID: 37091621 PMCID: PMC10117286 DOI: 10.1039/d3ra01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
The COVID-19 pandemic is the largest global public health outbreak in the 21st century so far. It has contributed to a significant increase in the generation of waste, particularly personal protective equipment and hazardous medical, as it can contribute to environmental pollution and expose individuals to various hazards. To minimize the risk of infection, the entire surrounding environment should be disinfected or neutralized regularly. Effective medical waste management can add value by reducing the spread of COVID-19 and increasing the recyclability of materials instead of sending them to landfill. Developing an antiviral coating for the surface of objects frequently used by the public could be a practical solution to prevent the spread of virus particles and the inactivation of virus transmission. Relying on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to address this emergency. Here, through a multidisciplinary perspective encompassing various fields such as virology, biology, medicine, engineering, chemistry, materials science, and computer science, we describe how nanotechnology-based strategies can support the fight against COVID-19 well as infectious diseases in general, including future pandemics. In this review, the design of the antiviral coating to combat the spread of COVID-19 was discussed, and technological attempts to minimize the coronavirus outbreak were highlighted.
Collapse
Affiliation(s)
- Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU) Giza Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca Morocco
| | - Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University Beijing 100083 PR China
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences Rokietnicka 3 St. 60-806 Poznan Poland
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF) Cairo Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences Rokietnicka 3 St. 60-806 Poznan Poland
- Doctoral School, Poznan University of Medical Sciences 60-812 Poznan Poland
| | - Hanady G Nada
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Department of Microbiology, Faculty of Science, Ain Shams University Cairo Egypt
| | - Mohamed S Khalil
- Agricultural Research Center, Central Agricultural Pesticides Laboratory Alexandria Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
8
|
Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023; 15:v15030640. [PMID: 36992349 PMCID: PMC10051592 DOI: 10.3390/v15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.
Collapse
|
9
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
10
|
Pilaquinga F, Bosch R, Morey J, Bastidas-Caldes C, Torres M, Toscano F, Debut A, Pazmiño-Viteri K, Nieves Piña MDL. High in vitroactivity of gold and silver nanoparticles from Solanum mammosum L. against SARS-CoV-2 surrogate Phi6 and viral model PhiX174. NANOTECHNOLOGY 2023; 34:175705. [PMID: 36689773 DOI: 10.1088/1361-6528/acb558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
The search for new strategies to curb the spread of the SARS-CoV-2 coronavirus, which causes COVID-19, has become a global priority. Various nanomaterials have been proposed as ideal candidates to inactivate the virus; however, because of the high level of biosecurity required for their use, alternative models should be determined. This study aimed to compare the effects of two types of nanomaterials gold (AuNPs) and silver nanoparticles (AgNPs), recognized for their antiviral activity and affinity with the coronavirus spike protein using PhiX174 and enveloped Phi6 bacteriophages as models. To reduce the toxicity of nanoparticles, a species known for its intermediate antiviral activity,Solanum mammosumL. (Sm), was used. NPs prepared with sodium borohydride (NaBH4) functioned as the control. Antiviral activity against PhiX174 and Phi6 was analyzed using its seed, fruit, leaves, and essential oil; the leaves were the most effective on Phi6. Using the aqueous extract of the leaves, AuNPs-Sm of 5.34 ± 2.25 nm and AgNPs-Sm of 15.92 ± 8.03 nm, measured by transmission electron microscopy, were obtained. When comparing NPs with precursors, both gold(III) acetate and silver nitrate were more toxic than their respective NPs (99.99% at 1 mg ml-1). The AuNPs-Sm were less toxic, reaching 99.30% viral inactivation at 1 mg ml-1, unlike the AgNPs-Sm, which reached 99.94% at 0.01 mg ml-1. In addition, cell toxicity was tested in human adenocarcinoma alveolar basal epithelial cells (A549) and human foreskin fibroblasts. Gallic acid was the main component identified in the leaf extract using high performance liquid chromatography with diode array detection (HPLC-DAD). The FT-IR spectra showed the presence of a large proportion of polyphenolic compounds, and the antioxidant analysis confirmed the antiradical activity. The control NPs showed less antiviral activity than the AuNPs-Sm and AgNPs-Sm, which was statistically significant; this demonstrates that both theS. mammosumextract and its corresponding NPs have a greater antiviral effect on the surrogate Phi bacteriophage, which is an appropriate model for studying SARS-CoV-2.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- Laboratory of Nanotechnology, School of Chemistry Sciences, Pontificia Universidad Católica del Ecuador, Avenida 12 de octubre 1076 y Roca, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB); and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Redondel del Ciclista, Antigua Vía a Nayón, Quito, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Universidad de Extremadura, Plaza de Caldereros, s/n, Extremadura, Spain
| | - Marbel Torres
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Fernanda Toscano
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Katherine Pazmiño-Viteri
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - María de Las Nieves Piña
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
11
|
Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, Adlim M. Cellulosic fiber nanocomposite application review with zinc oxide antimicrobial agent nanoparticle: an opt for COVID-19 purpose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16779-16796. [PMID: 35084685 PMCID: PMC8793331 DOI: 10.1007/s11356-022-18515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/01/2022] [Indexed: 05/08/2023]
Abstract
Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
Collapse
Affiliation(s)
- Amizon Azizan
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Aisyah Afiqah Samsudin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | | | - Muhammad Harith Dzulkiflee
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nor Roslina Rosli
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Noor Fitrah Abu Bakar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Muhammad Adlim
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
- Chemistry Department, FKIP, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
| |
Collapse
|
12
|
Kim MJ, Song Z, Lee CK, Yun TG, Noh JY, Park MK, Yong D, Kang MJ, Pyun JC. Breathing-Driven Self-Powered Pyroelectric ZnO Integrated Face Mask for Bioprotection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2200712. [PMID: 36385593 DOI: 10.1002/smll.202200712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Indexed: 06/16/2023]
Abstract
Rapid spread of infectious diseases is a global threat and has an adverse impact on human health, livelihood, and economic stability, as manifested in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Even though people wear a face mask as protective equipment, direct disinfection of the pathogens is barely feasible, which thereby urges the development of biocidal agents. Meanwhile, repetitive respiration generates temperature variation wherein the heat is regrettably wasted. Herein, a biocidal ZnO nanorod-modified paper (ZNR-paper) composite that is 1) integrated on a face mask, 2) harvests waste breathing-driven thermal energy, 3) facilitates the pyrocatalytic production of reactive oxygen species (ROS), and ultimately 4) exhibits antibacterial and antiviral performance is proposed. Furthermore, in situ generated compressive/tensile strain of the composite by being attached to a curved mask is investigated for high pyroelectricity. The anisotropic ZNR distortion in the bent composite is verified with changes in ZnO bond lengths and OZnO bond angles in a ZnO4 tetrahedron, resulting in an increased polarization state and possibly contributing to the following pyroelectricity. The enhanced pyroelectric behavior is demonstrated by efficient ROS production and notable bioprotection. This study exploring the pre-strain effect on the pyroelectricity of ZNR-paper might provide new insights into the piezo-/pyroelectric material-based applications.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Zhiquan Song
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chang Kyu Lee
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae Gyeong Yun
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Joo-Yoon Noh
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials and Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Thomberg T, Bulgarin H, Lust A, Nerut J, Koppel M, Romann T, Palm R, Månsson M, Flores March NM, Junninen H, Külaviir M, Paiste P, Kirsimäe K, Punapart M, Viru L, Merits A, Lust E. The anti SARS-CoV-2 activity of nanofibrous filter materials activated with metal clusters. ATMOSPHERIC ENVIRONMENT: X 2023; 17:100212. [PMID: 36915669 PMCID: PMC9984305 DOI: 10.1016/j.aeaoa.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanofibrous filter materials were prepared by electrospinning a solution of 28 wt% poly(vinylidene fluoride) in N,N-dimethylacetamide with and without the addition of 2 wt% AgNO3, Cu(NO3)2·2.5H2O or ZnCl2. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, inductively coupled plasma mass spectroscopy, thermogravimetric analysis, contact angle measurement, nitrogen sorption, and mercury intrusion porosimetry methods were used for the characterization of physical structure as well as the chemical composition of the electrospun materials. Particle filtration efficiency and antiviral activity against the SARS-CoV-2 alpha variant were tested in order to estimate the suitability of the prepared electrospun filter materials for application as indoor air filtration systems with virucidal properties. All filter materials prepared with salts demonstrated very high particle filtration efficiency (≥98.0%). The best antiviral activity was demonstrated by a material containing Cu(NO3)2·2.5H2O in the spinning solution, which displayed the decrease in the number of infectious virions by three orders of magnitude after a contact time of 12 h. Materials with the addition of AgNO3 and ZnCl2 decreased the number of infectious virions after the same contact time by only ∼8 and ∼11 times, respectively.
Collapse
Affiliation(s)
- T Thomberg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - H Bulgarin
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - A Lust
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - J Nerut
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - M Koppel
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - T Romann
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - R Palm
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - M Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - N M Flores March
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411, Tartu, Estonia
| | - H Junninen
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411, Tartu, Estonia
| | - M Külaviir
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - P Paiste
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - K Kirsimäe
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - M Punapart
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - L Viru
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - A Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - E Lust
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
14
|
Wang F, Yang S, Lu Q, Liu W, Sun P, Wang Q, Cao W. Colloidal Cu-doped TiO2 nanocrystals containing oxygen vacancies for highly-efficient photocatalytic degradation of benzene and antibacterial. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Sano M, Morishita K, Onizawa Y, Takagi T, Sumaru K. Rapid and Highly Sensitive Method for Evaluating Surface Coatings against an Enveloped RNA Virus. ACS APPLIED BIO MATERIALS 2022; 5:5174-5180. [PMID: 36240051 DOI: 10.1021/acsabm.2c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The COVID-19 pandemic has increased public health vigilance worldwide. The coronavirus (SARS-CoV-2) can spread via aerosols, and droplet-borne viruses remain viable on nonliving surfaces for long duration. Hence, effective antiviral coatings are highly useful in eliminating viral persistence on nonliving surfaces. Although innovative antiviral coatings have been designed, conventional procedures for antiviral assays are generally laborious, time-consuming, and have a high limit of detection. In the present study, we report a rapid and highly sensitive method for evaluating antiviral coatings by measuring the luciferase activity derived from recombinant Sendai virus (SeV). The physicochemical characteristics of SeV, which has a single-stranded RNA genome encapsulated within a lipid envelope, allow us to exploit it as an indicator of the physicochemical potential of coating materials against enveloped RNA viruses in general. We demonstrate that SeV-based assay systems allow for the rapid and quantitative evaluation of the surface coatings composed of iodine solubilized in polyvinyl acetate. Additionally, we have investigated the effect of mucins, the dominant protein component of saliva, on the antiviral activity of surface coatings. The presence of mucins in the SeV suspension considerably rescues luciferase activity at the viral-surface interface, presumably due to mucin-mediated viral protection. Our findings provide insights into a procedure capable of the rapid evaluation and optimization of surface coatings, and suggest an important role of the mucin in the valid evaluation of antiviral agents.
Collapse
Affiliation(s)
- Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuri Onizawa
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Takagi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
16
|
Lishchynskyi O, Shymborska Y, Stetsyshyn Y, Raczkowska J, Skirtach AG, Peretiatko T, Budkowski A. Passive antifouling and active self-disinfecting antiviral surfaces. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 446:137048. [PMID: 35601363 PMCID: PMC9113772 DOI: 10.1016/j.cej.2022.137048] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 05/15/2023]
Abstract
Viruses pose a serious threat to human health and society in general, as virus infections are one of the main causes of morbidity and mortality. Till May 2022, over 513 million people around the world have been confirmed to be infected and more than 6.2 million have died due to SARS-CoV-2. Although the COVID-19 pandemic will be defeated in the near future, we are likely to face new viral threats in the coming years. One of the important instruments to protect from viruses are antiviral surfaces, which are essentially capable of limiting their spread. The formulation of the concept of antiviral surfaces is relatively new. In general, five types of mechanism directed against virus spread can be proposed for antiviral surfaces; involving: direct and indirect actions, receptor inactivation, photothermal effect, and antifouling behavior. All antiviral surfaces can be classified into two main types - passive and active. Passive antiviral surfaces are based on superhydrophobic coatings that are able to repel virus contaminated droplets. In turn, viruses can become biologically inert (e.g., blocked or destroyed) upon contact with active antiviral surfaces, as they contain antiviral agents: metal atoms, synthetic or natural polymers, and small molecules. The functionality of antiviral surfaces can be significantly improved with additional properties, such as temperature- or pH-responsivity, multifunctionality, non-specific action on different virus types, long-term application, high antiviral efficiency and self-cleaning.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Taras Peretiatko
- Ivan Franko National University of Lviv, Universytetska 1, 79000 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| |
Collapse
|
17
|
Assis M, Ribeiro LK, Gonçalves MO, Staffa LH, Paiva RS, Lima LR, Coelho D, Almeida LF, Moraes LN, Rosa ILV, Mascaro LH, Grotto RMT, Sousa CP, Andrés J, Longo E, Cruz SA. Polypropylene Modified with Ag-Based Semiconductors as a Potential Material against SARS-CoV-2 and Other Pathogens. ACS APPLIED POLYMER MATERIALS 2022; 4:7102-7114. [PMID: 36873928 PMCID: PMC9972354 DOI: 10.1021/acsapm.2c00744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 06/18/2023]
Abstract
The worldwide outbreak of the coronavirus pandemic (COVID-19) and other emerging infections are difficult and sometimes impossible to treat, making them one of the major public health problems of our time. It is noteworthy that Ag-based semiconductors can help orchestrate several strategies to fight this serious societal issue. In this work, we present the synthesis of α-Ag2WO4, β-Ag2MoO4, and Ag2CrO4 and their immobilization in polypropylene in the amounts of 0.5, 1.0, and 3.0 wt %, respectively. The antimicrobial activity of the composites was investigated against the Gram-negative bacterium Escherichia coli, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. The best antimicrobial efficiency was achieved by the composite with α-Ag2WO4, which completely eliminated the microorganisms in up to 4 h of exposure. The composites were also tested for the inhibition of SARS-CoV-2 virus, showing antiviral efficiency higher than 98% in just 10 min. Additionally, we evaluated the stability of the antimicrobial activity, resulting in constant inhibition, even after material aging. The antimicrobial activity of the compounds was attributed to the production of reactive oxygen species by the semiconductors, which can induce high local oxidative stress, causing the death of these microorganisms.
Collapse
Affiliation(s)
- Marcelo Assis
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Lara K. Ribeiro
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Mariana O. Gonçalves
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program
(PPGBiotec), Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| | - Lucas H. Staffa
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos - (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Robert S. Paiva
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| | - Lais R. Lima
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| | - Dyovani Coelho
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Lauana F. Almeida
- School of
Agriculture, São Paulo State University
(Unesp), Botucatu, SP, 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School, São Paulo State University (Unesp), Botucatu, SP, 18618-687, Brazil
| | - Leonardo N. Moraes
- School of
Agriculture, São Paulo State University
(Unesp), Botucatu, SP, 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School, São Paulo State University (Unesp), Botucatu, SP, 18618-687, Brazil
| | - Ieda L. V. Rosa
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Lucia H. Mascaro
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Rejane M. T. Grotto
- School of
Agriculture, São Paulo State University
(Unesp), Botucatu, SP, 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School, São Paulo State University (Unesp), Botucatu, SP, 18618-687, Brazil
| | - Cristina P. Sousa
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program
(PPGBiotec), Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| | - Juan Andrés
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Elson Longo
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Sandra A. Cruz
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| |
Collapse
|
18
|
Plohl O, Fric K, Filipić A, Kogovšek P, Tušek Žnidarič M, Zemljič LF. First Insights into the Antiviral Activity of Chitosan-Based Bioactive Polymers towards the Bacteriophage Phi6: Physicochemical Characterization, Inactivation Potential, and Inhibitory Mechanisms. Polymers (Basel) 2022; 14:3357. [PMID: 36015613 PMCID: PMC9413598 DOI: 10.3390/polym14163357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The outbreak of the worrisome coronavirus disease in 2019 has caused great concern among the global public, especially regarding the need for personal protective equipment with applied antiviral agents to reduce the spread and transmission of the virus. Thus, in our research, chitosan-based bioactive polymers as potential antiviral agents were first evaluated as colloidal macromolecular solutions by elemental analysis and charge. Three different types of low and high molecular weight chitosan (LMW Ch, HMW Ch) and a LMW Ch derivative, i.e., quaternary chitosan (quart-LMW Ch), were used. To explore their antiviral activity for subsequent use in the form of coatings, the macromolecular Chs dispersions were incubated with the model virus phi6 (surrogate for SARS-CoV-2), and the success of virus inactivation was determined. Inactivation of phi6 with some chitosan-based compounds was very successful (>6 log), and the mechanisms behind this were explored. The changes in viral morphology after incubation were observed and the changes in infrared bands position were determined. In addition, dynamic and electrophoretic light scattering studies were performed to better understand the interaction between Chs and phi6. The results allowed us to better understand the antiviral mode of action of Chs agents as a function of their physicochemical properties.
Collapse
Affiliation(s)
- Olivija Plohl
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Katja Fric
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
19
|
Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. REACTIONS 2022. [DOI: 10.3390/reactions3030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotoxicity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc., especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties, it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022 European Green Deal announced by the European Commission, even science and nanotechnology are moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO nanoparticles have been extensively studied for their biological applications and environmental remediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules) play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on their bioactive properties and antimicrobial application.
Collapse
|
20
|
Ayodeji OJ, Khyum MMO, Afolabi RT, Smith E, Kendall R, Ramkumar S. Preparation of surface-functionalized electrospun PVA nanowebs for potential remedy for SARS-CoV-2. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100128. [PMID: 37520801 PMCID: PMC9278001 DOI: 10.1016/j.hazadv.2022.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 08/01/2023]
Abstract
Infections with coronaviruses remain a burden that is negatively affecting human life. The use of metal oxides to prevent and control the spread of severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been widely studied. However, the use of metal oxides in masks to enhance the performances of barrier face coverings in trapping and neutralizing SARS-CoV-2 remained unexplored. In the present study, we explore the possibility of developing surface functional PVA/ZnO electrospun nanowebs to be used as a component of multilayer barrier face coverings. Polyvinyl alcohol (PVA) and zinc acetate (ZnA) nanowebs were electrospun as precursor samples. After calcination at 400 degrees centigrade under a controlled atmosphere of nitrogen gas, product nanowebs containing ZnO (PVA/ZnO) were obtained. The presence of ZnO was determined using an attenuated total reflectance Fourier Transform Infrared (FT-IR) spectrometer. This study inspired the possibility of developing surface-functional materials to produce enhanced performance masks against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Olukayode J Ayodeji
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Mirza M O Khyum
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Racheal T Afolabi
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Ernest Smith
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Ron Kendall
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Seshadri Ramkumar
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| |
Collapse
|
21
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
23
|
Sarkar J, Das S, Aich S, Bhattacharyya P, Acharya K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J Trace Elem Med Biol 2022; 72:126977. [PMID: 35397331 PMCID: PMC8957383 DOI: 10.1016/j.jtemb.2022.126977] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND On 31st December 2019 in Wuhan, China, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was acknowledged. This virus spread quickly throughout the world causing a global pandemic. The World Health Organization declared COVID-19 a pandemic disease on 11th March 2020. Since then, the whole world has come together and have developed several vaccines against this deadly virus. Similarly, several alternative searches for pandemic disease therapeutics are still ongoing. One of them has been identified as nanotechnology. It has demonstrated significant promise for detecting and inhibiting a variety of viruses, including coronaviruses. Several nanoparticles, including gold nanoparticles, silver nanoparticles, quantum dots, carbon dots, graphene oxide nanoparticles, and zinc oxide nanoparticles, have previously demonstrated remarkable antiviral activity against a diverse array of viruses. OBJECTIVE This review aims to provide a basic and comprehensive overview of COVID-19's initial global outbreak and its mechanism of infiltration into human host cells, as well as the detailed mechanism and inhibitory effects of various nanoparticles against this virus. In addition to nanoparticles, this review focuses on the role of several antiviral drugs used against COVID-19 to date. CONCLUSION COVID-19 has severely disrupted the social and economic lives of people all over the world. Due to a lack of adequate medical facilities, countries have struggled to maintain control of the situation. Neither a drug nor a vaccine has a 100% efficacy rate. As a result, nanotechnology may be a better therapeutic alternative for this pandemic disease.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sunandana Das
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sahasrabdi Aich
- Department of Botany, Vivekananda College, Thakurpukur, Kolkata, West Bengal 700063, India
| | - Prithu Bhattacharyya
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India; Center for Research in Nanoscience & Nanotechnology, Technology Campus, University of Calcutta, Kolkata, West Bengal 700098, India.
| |
Collapse
|
24
|
Prophylactic Architecture: Formulating the Concept of Pandemic-Resilient Homes. BUILDINGS 2022. [DOI: 10.3390/buildings12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lockdown instituted during the COVID-19 pandemic has drawn the world’s attention to the importance of homes as integrated structures for practicing all aspects of life. The home has been transformed from a mere place to live into a complete piece of infrastructure accommodating all activities of life, including study, work, shopping, exercise, entertainment, and even telehealth. Although quarantines were necessary to protect against viral infection, we have faced social and psychological challenges due to the failure of the current home design to accommodate the new lockdown lifestyle during the pandemic. Thus, this study aims to set a foundation for the development and design of resilient homes in a post-quarantine world by establishing a comprehensive framework for quarantine-resilient homes. The framework was established on the basis of the relevant literature and proposals from architects and experts. It brings a perspective to the future requirements of homes so as to provide architects, stakeholders, and policymakers with the appropriate knowledge to mitigate the impact of lockdowns on mental health and well-being in residential buildings by focusing on the physical and architectural environment.
Collapse
|
25
|
Dahanayake MH, Athukorala SS, Jayasundera ACA. Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review. RSC Adv 2022; 12:16369-16385. [PMID: 35747530 PMCID: PMC9158512 DOI: 10.1039/d2ra01567f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
COVID-19 persists as the most challenging pandemic of the 21st century with a high rate of transmission. The main pathway of SARS-CoV-2 transmission is aerosol-mediated infection transfer through virus-laden droplets that are expelled by infected people, whereas indirect transmission occurs when contact is made with a contaminated surface. This mini review delivers an overview of the current state of knowledge, research directions, and applications by examining the most recent developments in antiviral surface coatings and filters and analyzing their efficiencies. Reusable masks and other personal protective devices with antiviral properties and self-decontamination could be valuable tools in the fight against viral spread. Moreover, antiviral surface coatings that repel pathogens by preventing adhesion or neutralize pathogens with self-sanitizing ability are assumed to be the most desirable for terminating indirect transmission of viruses. Although many nanomaterials have shown high antiviral capacities, additional research is unquestionably required to develop next-generation antiviral agents with unique characteristics to face future viral outbreaks.
Collapse
Affiliation(s)
- Madushani H Dahanayake
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- National Institute of Fundamental Studies Hanthana Kandy Sri Lanka
| | - Sandya S Athukorala
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya Sri Lanka
| | - A C A Jayasundera
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Division of Mathematics and Science, Missouri Valley College Marshall MO 65340 USA
| |
Collapse
|
26
|
Thomberg T, Ramah P, Lust A, Nerut J, Koppel M, Romann T, Palm R, Månsson M, March NF, Junninen H, Külaviir M, Paiste P, Kirsimäe K, Punapart M, Viru L, Merits A, Lust E. Preparation of nanofibrous materials activated with metal clusters for active and long-lasting air filters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Gutiérrez Rodelo C, Salinas RA, Armenta JaimeArmenta E, Armenta S, Galdámez-Martínez A, Castillo-Blum SE, Astudillo-de la Vega H, Nirmala Grace A, Aguilar-Salinas CA, Gutiérrez Rodelo J, Christie G, Alsanie WF, Santana G, Thakur VK, Dutt A. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coord Chem Rev 2022; 457:214402. [PMID: 35095109 PMCID: PMC8788306 DOI: 10.1016/j.ccr.2021.214402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges.
Collapse
Affiliation(s)
- Citlaly Gutiérrez Rodelo
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Rafael A Salinas
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Tlaxcala 72197, Mexico
| | - Erika Armenta JaimeArmenta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Silvia Armenta
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Andrés Galdámez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Silvia E Castillo-Blum
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Horacio Astudillo-de la Vega
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, VIT University, Vellore, Tamil Nadu 632 014, India
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas y Dirección de Nutrición. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Juliana Gutiérrez Rodelo
- Instituto Méxicano del Seguro Social, Hospital General de SubZona No. 4, C.P. 80370, Navolato, Sinaloa, México
| | - Graham Christie
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Guillermo Santana
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| |
Collapse
|
28
|
Khan GR, Malik SI. Ag-enriched TiO 2 nanocoating apposite for self-sanitizing/ self-sterilizing/ self-disinfecting of glass surfaces. MATERIALS CHEMISTRY AND PHYSICS 2022; 282:125803. [PMID: 35153357 PMCID: PMC8818044 DOI: 10.1016/j.matchemphys.2022.125803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The excellent strategy to mitigate the spread of the COVID-19 pandemic is to inhibit the transmission of the SARS-CoV-2. Since fomites are one of the vital routes of coronaviral transmission, disinfecting of fomites play a pivotal role in curbing its survival on the contaminated surfaces. Available commercial disinfectants cannot keep the contaminated surfaces sanitized all the time. Self-disinfecting ability of Ag-enriched TiO2 nanocoating due to its superb photocatalytic efficiency can effectively reduce infections caused by spread of pathogens at public places. Anatase Ag-TiO2 nanocoatings synthesized by sol-gel process at 0.5, 1.5, and 2.5% enriching concentrations were casted on glass substrates by spin-coating technique and subsequently annealed at 650 °C. The morphological shape, crystallographic structure, light absorbance, photo-luminosity, vibrational modes, and functional groups of Ag-TiO2 nanocoating on glass surface were studied by FE-SEM, GIXRD, UV-Visible, Photoluminescence, Raman, and FTIR spectroscopy. The developed anatase Ag-TiO2 nanocoatings manifested to improve photocatalytic disinfecting performance due to the achieved small crystallite size of 10.5-19.2 nm, diminished band gap energy of 2.56-2.60 eV, elevated surface area of 0.802-1.470 ×105 cm2/g, and enhanced light absorbance. Among the enriched specimens, 0.5% Ag-TiO2 nanocoatings predicted an overall exalted functionality compared to pristine one.
Collapse
Affiliation(s)
- G R Khan
- Nanotechnology Research Lab, Department of Physics, National Institute of Technology Srinagar, Hazratbal, 190006, Kashmir, India
| | - S I Malik
- Nanotechnology Research Lab, Department of Physics, National Institute of Technology Srinagar, Hazratbal, 190006, Kashmir, India
| |
Collapse
|
29
|
Yasuda Y, Mutsuo S, Hamada M, Murai K, Hirayama Y, Uemasu K, Arasawa S, Iwashima D, Takahashi KI. Aluminium Gauze Reduces SARS-CoV-2 Viral Load in Non-Woven Masks Worn by Patients with COVID-19. Infect Dis Rep 2022; 14:250-257. [PMID: 35447882 PMCID: PMC9028381 DOI: 10.3390/idr14020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Aluminium reduces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) survival in experimental settings. It is unknown whether adding an aluminium gauze to a mask reduces the SARS-CoV-2 RNA load in the mask and whether SARS-CoV-2 is detectable in the breath that permeates through such a mask in clinical settings. Methods: Patients admitted to Kishiwada City Hospital, Osaka, Japan, between July 2021 and September 2021 were enrolled in the study. Non-woven masks comprising filters with 99% viral filtration efficacy and aluminium and cotton gauzes attached to plastic collection cases were developed. All participants wore the experimental mask models for three hours. Results: Twenty-nine patients who wore the final model masks were analysed in this study. The Ct values of the nucleocapsid gene and envelope gene of SARS-CoV-2 were significantly higher in the aluminium gauze than in the cotton gauze. SARS-CoV-2 RNA was detected in the masks of 8 out of 12 vaccinated patients (66.7%). Although breath condensates were collected behind both aluminium and cotton gauzes, SARS-CoV-2 RNA was not detected in these condensates. Conclusions: Our study indicated that non-woven masks with an aluminium gauze may obstruct SARS-CoV-2 transmission in clinical settings better than non-woven masks with cotton gauzes.
Collapse
Affiliation(s)
- Yuto Yasuda
- Department of Respiratory Medicine, Kishiwada City Hospital, 1001 Gakuhara-cho, Kishiwada-shi 586-8501, Japan; (K.U.); (D.I.); (K.-i.T.)
- Correspondence:
| | - Satoru Mutsuo
- Department of Central Clinical Laboratory, Kishiwada City Hospital, 1001 Gakuhara-cho, Kishiwada-shi 586-8501, Japan;
| | - Motoaki Hamada
- Department of Research and Development, Dawn Inc., 1-13-5 Ayabe Bld.3F-B, Isehara-shi 259-1131, Japan;
| | - Kazuo Murai
- Department of Engineering, Dawn Inc., 1-13-5 Ayabe Bld.3F-B, Isehara-shi 259-1131, Japan;
| | - Yutaka Hirayama
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin Sakyoku, Kyoto 606-8507, Japan;
| | - Kiyoshi Uemasu
- Department of Respiratory Medicine, Kishiwada City Hospital, 1001 Gakuhara-cho, Kishiwada-shi 586-8501, Japan; (K.U.); (D.I.); (K.-i.T.)
| | - Soichi Arasawa
- Department of Gastroenterology, Kishiwada City Hospital, 1001 Gakuhara-cho, Kishiwada-shi 586-8501, Japan;
| | - Daisuke Iwashima
- Department of Respiratory Medicine, Kishiwada City Hospital, 1001 Gakuhara-cho, Kishiwada-shi 586-8501, Japan; (K.U.); (D.I.); (K.-i.T.)
| | - Ken-ichi Takahashi
- Department of Respiratory Medicine, Kishiwada City Hospital, 1001 Gakuhara-cho, Kishiwada-shi 586-8501, Japan; (K.U.); (D.I.); (K.-i.T.)
| |
Collapse
|
30
|
Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread. MICRO AND NANO ENGINEERING 2022. [PMCID: PMC8685168 DOI: 10.1016/j.mne.2021.100100] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies.
Collapse
|
31
|
Sustainable synthesis of rose flower-like magnetic biochar from tea waste for environmental applications. J Adv Res 2022; 34:13-27. [PMID: 35024178 PMCID: PMC8655236 DOI: 10.1016/j.jare.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023] Open
Abstract
Introduction Biochar utilization for adsorption seems to be the most cost-effective, easy/fast approach for pollutants removal from water and wastewater. Due to the high adsorption properties, magnetic biochar proved to be efficient in the sorption of heavy metals and nutrients. Although there are several studies on development of magnetic biochars, there is a lack of research on development of high-performance magnetic biochar from food waste for removal applications. Objectives This study aimed at preparing new classes of magnetic biochar derived from tea waste (TBC) for removal of heavy metals (Ni2+, Co2+), and nutrients (NH4+ and PO43−) from water and effective fertilizer (source of NH4+ and PO43−). Methods Standard carbonization process and ultrafast microwave have been used for fabrication of TBCs. The removal of nickel, cobalt as the representatives of heavy metals, and over-enriched nutrients (NH4+ and PO43−) from water were tested and the removal kinetics, mechanism, and the effect of pH, dissolved organic matter and ionic strength were studied. Simultaneously, possible fertilizing effect of TBC for controlled release of nutrients (NH4+ and PO43−) in soil was investigated. Results Up to 147.84 mg g−1 of Ni2+ and 160.00 mg g−1 of Co2+ were adsorbed onto tested biochars. The process of co-adsorption was also efficient (at least 131.68 mg g−1 of Co2+ and 160.00 mg g−1 of Ni2+). The highest adsorbed amount of NH4+ was 49.43 mg g−1, and the highest amount of PO43− was 112.61 mg g−1. The increase of the solution ionic strength and the presence of natural organic matter affected both the amount of adsorbed Ni2++Co2+ and the reaction mechanism. Conclusions The results revealed that magnetic nanoparticle impregnated onto tea biochar, can be a very promising alternative for wastewater treatment especially considering removal of heavy metals and nutrients and slow-release fertilizer to improve the composition of soil elements.
Collapse
|
32
|
Abstract
The COVID-19 pandemic forced the accessibility, social gathering, lifestyle, and working environment to be changed to reduce the infection. Coronavirus spreads between people in several different ways. Small liquid particles (aerosols, respiratory droplets) from an infected person are transmitted through air and surfaces that are in contact with humans. Reducing transmission through modified heating, ventilation, and air conditioning (HVAC) systems and building design are potential solutions. A comprehensive review of the engineering control preventive measures to mitigate COVID-19 spread, healthy building design, and material was carried out. The current state-of-the-art engineering control preventive measures presented include ultraviolet germicidal irradiation (UVGI), bipolar ionization, vertical gardening, and indoor plants. They have potential to improve the indoor air quality. In addition, this article presents building design with materials (e.g., copper alloys, anti-microbial paintings) and smart technologies (e.g., automation, voice control, and artificial intelligence-based facial recognition) to mitigate the infections of communicable diseases.
Collapse
|
33
|
Facemask Global Challenges: The Case of Effective Synthesis, Utilization, and Environmental Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14020737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a rapidly spreading pandemic and is severely threatening public health globally. The human-to-human transmission route of SARS-CoV-2 is now well established. The reported clinical observations and symptoms of this infection in humans appear in the range between being asymptomatic and severe pneumonia. The virus can be transmitted through aerosols and droplets that are released into the air by a carrier, especially when the person coughs, sneezes, or talks forcefully in a closed environment. As the disease progresses, the use and handling of contaminated personal protective equipment and facemasks have become major issues with significant environmental risks. Therefore, providing an effective method for treating used/contaminated facemasks is crucial. In this paper, we review the environmental challenges and risks associated with the surge in facemask production. We also discuss facemasks and their materials as sources of microplastics and how disposal procedures can potentially lead to the contamination of water resources. We herein review the potential of developing nanomaterial-based antiviral and self-cleaning facemasks. This review discusses these challenges and concludes that the use of sustainable and alternative facemask materials is a promising and viable solution. In this context, it has become essential to address the emerging challenges by developing a new class of facemasks that are effective against the virus, while being biodegradable and sustainable. This paper represents the potentials of natural and/or biodegradable polymers for manufacturing facemasks, such as wood-based polymers, chitosan, and other biodegradable synthetic polymers for achieving sustainability goals during and after pandemics.
Collapse
|
34
|
Foffa I, Losi P, Quaranta P, Cara A, Al Kayal T, D'Acunto M, Presciuttini G, Pistello M, Soldani G. A Copper nanoparticles-based polymeric spray coating: Nanoshield against Sars-Cov-2. J Appl Biomater Funct Mater 2022; 20:22808000221076326. [PMID: 35611488 DOI: 10.1177/22808000221076326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Face masks are an effective protection tool to prevent bacterial and viral transmission. However, commercial face masks contain filters made of materials that are not capable of inactivating either SARS-CoV-2. In this regard, we report the development of an antiviral coating of polyurethane and Copper nanoparticles on a face mask filter fabricated with a spray technology that is capable of inactivating more than 99% of SARS-CoV-2 particles in 30 min of contact.
Collapse
Affiliation(s)
- Ilenia Foffa
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Paola Quaranta
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alice Cara
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| | - Mario D'Acunto
- Institute of Biophysics, National Research Council, Pisa, Italy
| | | | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Pisa University Hospital, Pisa, Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, Italy
| |
Collapse
|
35
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
36
|
Arjunan A, Robinson J, Baroutaji A, Tuñón-Molina A, Martí M, Serrano-Aroca Á. 3D Printed Cobalt-Chromium-Molybdenum Porous Superalloy with Superior Antiviral Activity. Int J Mol Sci 2021; 22:12721. [PMID: 34884526 PMCID: PMC8657688 DOI: 10.3390/ijms222312721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material's viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.
Collapse
Affiliation(s)
- Arun Arjunan
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
| | - John Robinson
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
- Additive Analytics Ltd., Stirchley Road, Telford TF3 1EB, UK
| | - Ahmad Baroutaji
- Centre for Engineering Innovation and Research, Additive Manufacturing of Functional Materials (AMFM) Research Group, Faculty of Science and Engineering, Telford Innovation Campus, University of Wolverhampton, Telford TF2 9NT, UK; (J.R.); (A.B.)
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain; (A.T.-M.); (M.M.)
| |
Collapse
|
37
|
Bello-Lopez JM, Silva-Bermudez P, Prado G, Martínez A, Ibáñez-Cervantes G, Cureño-Díaz MA, Rocha-Zavaleta L, Manzo-Merino J, Almaguer-Flores A, Ramos-Vilchis C, Rodil SE. Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomed Mater 2021; 17. [PMID: 34673548 DOI: 10.1088/1748-605x/ac3208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Nanometric materials with biocidal properties effective against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and pathogenic bacteria could be used to modify surfaces, reducing the risk of touching transmission. In this work, we showed that a nanometric layer of bimetallic AgCu can be effectively deposited on polypropylene (PP) fibers. The virucidal properties of the AgCu nanofilm were evaluated by comparing the viral loads remaining on uncoated and coated PP after contact times between 2 and 24 h. Quantification of virion numbers for different initial concentrations indicated a reduction of more than 95% after 2 h of contact. The bactericidal action of the AgCu nanofilm was also confirmed by inoculating uncoated and coated PP with a pool of pathogenic bacteria associated with pneumonia (ESKAPE). Meanwhile, no cytotoxicity was observed for human fibroblasts and keratinocyte cells, indicating that the nanofilm could be in contact with human skin without threat. The deposition of the AgCu nanofilm on the nonwoven component of reusable cloth masks might help to prevent virus and bacterial infection while reducing the pollution burden related to the disposable masks. The possible mechanism of biocide contact action was studied by quantum chemistry calculations that show that the addition of Ag and/or Cu makes the polymeric fiber a better electron acceptor. This can promote the oxidation of the phospholipids present at both the virus and bacterial membranes. The rupture at the membrane exposes and damages the genetic material of the virus. More studies are needed to determine the mechanism of action, but the results reported here indicate that Cu and Ag ions are good allies, which can help protect us from the virus that has caused this disturbing pandemic.
Collapse
Affiliation(s)
- J M Bello-Lopez
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - P Silva-Bermudez
- Unidad de ingeniería de Téjidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - G Prado
- Laboratorio de Biotecnología; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - A Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - Gabriela Ibáñez-Cervantes
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - Mónica Alethia Cureño-Díaz
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - L Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar sn, Ciudad Universitaria, 04510 CDMX, México
| | - J Manzo-Merino
- Cátedras CONACyT-Instituto Nacional de Cancerología, CDMX, México
| | - A Almaguer-Flores
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, 04510 CDMX, México
| | - C Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - S E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| |
Collapse
|
38
|
Rai M, Bonde S, Yadav A, Bhowmik A, Rathod S, Ingle P, Gade A. Nanotechnology as a Shield against COVID-19: Current Advancement and Limitations. Viruses 2021; 13:1224. [PMID: 34202815 PMCID: PMC8310263 DOI: 10.3390/v13071224] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health problem that the WHO declared a pandemic. COVID-19 has resulted in a worldwide lockdown and threatened to topple the global economy. The mortality of COVID-19 is comparatively low compared with previous SARS outbreaks, but the rate of spread of the disease and its morbidity is alarming. This virus can be transmitted human-to-human through droplets and close contact, and people of all ages are susceptible to this virus. With the advancements in nanotechnology, their remarkable properties, including their ability to amplify signal, can be used for the development of nanobiosensors and nanoimaging techniques that can be used for early-stage detection along with other diagnostic tools. Nano-based protection equipment and disinfecting agents can provide much-needed protection against SARS-CoV-2. Moreover, nanoparticles can serve as a carrier for antigens or as an adjuvant, thereby making way for the development of a new generation of vaccines. The present review elaborates the role of nanotechnology-based tactics used for the detection, diagnosis, protection, and treatment of COVID-19 caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Shital Bonde
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Alka Yadav
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Arpita Bhowmik
- Faculty of Medicine, Dentistry and Health, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Sanjay Rathod
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Pramod Ingle
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Aniket Gade
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| |
Collapse
|
39
|
Ramaiah GB, Tegegne A, Melese B. Developments in Nano-materials and Analysing its role in Fighting COVID-19. MATERIALS TODAY. PROCEEDINGS 2021; 47:4357-4363. [PMID: 33996513 PMCID: PMC8106907 DOI: 10.1016/j.matpr.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/23/2023]
Abstract
Nanomaterials like silver, iron, ceramic, graphene carbon nanotubes, etc. These are used to develop and create multifunctional materials to fight the corona virus. This work focuses on analyzing and discussing the developments of Nano-materials and their effectiveness in fighting and preventing the spread of the corona virus. The paper also analyses the use of Nano-materials in the development of vaccines and anti-viral drugs. However, the use of carbon-based materials like carbon dots and other forms of carbon has not only helped in increasing the protection levels in human life but also provided greater security and freedom for people to carry out day-to-day activities without any fear of being infected by the virus. The application of graphene-based materials for making unique face masks and germ trap technologies is presented. Nano-compounds blended with hand sanitizers have played an active role in the control of coronavirus along with soap-based liquids that are used for handwashing. Some of the Nano-materials like gold nanoparticles are extensively used in the making of detection devices like RT-PCR, etc. The use of Nano-polymer coatings has created a safe environment for users by preventing the spread of coronavirus through surfaces. Different coating methods used for the application of nanomaterials are explained with suitable technical interpretations The anti-viral efficiency of different coatings is also discussed through surfaces. Nano-materials and contributions from the synthetic biology area have helped to develop vaccines and anti-viral drugs which are presently used to cure and prevent the spread of coronavirus infected patients. The method followed in analyzing the Nano-materials and their applications mainly focused on tracing the development and applications of Nano-materials. This analysis proves and shows that Nano-materials are playing a vital role in fighting the corona virus.
Collapse
Affiliation(s)
| | | | - Bahiru Melese
- Ethiopian Technical University, Addis Ababa, Ethiopia
| |
Collapse
|