1
|
Shibuya R, Kim BS. Skin-homing basophils and beyond. Front Immunol 2022; 13:1059098. [PMID: 36618424 PMCID: PMC9815541 DOI: 10.3389/fimmu.2022.1059098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Basophils have been implicated in type 2 inflammation and numerous disorders in the skin such as helminth infection, atopic dermatitis, and urticaria. Although similar in form and function to tissue-resident mast cells, classical studies on basophils have centered on those from the hematopoietic compartment. However, increasing studies in tissues like the skin demonstrate that basophils may take on particular characteristics by responding to unique developmental, chemotactic, and activation cues. Herein, we highlight how recent studies in barrier immunology suggest the presence of skin-homing basophils that harbor a unique identity in terms of phenotype, function, and motility. These concepts may uniquely inform how basophils contribute to diseases at multiple epithelial surfaces and our ability to therapeutically target the innate immune system in disease.
Collapse
Affiliation(s)
- Rintaro Shibuya
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,*Correspondence: Brian S. Kim,
| |
Collapse
|
2
|
Pizzolo F, Castagna A, Olivieri O, Girelli D, Friso S, Stefanoni F, Udali S, Munerotto V, Baroni M, Cetera V, Luciani GB, Faggian G, Bernardi F, Martinelli N. Basophil Blood Cell Count Is Associated With Enhanced Factor II Plasma Coagulant Activity and Increased Risk of Mortality in Patients With Stable Coronary Artery Disease: Not Only Neutrophils as Prognostic Marker in Ischemic Heart Disease. J Am Heart Assoc 2021; 10:e018243. [PMID: 33624506 PMCID: PMC8174269 DOI: 10.1161/jaha.120.018243] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background White blood cell count, which is inexpensive and widely available in clinical practice, has been proposed to provide prognostic information in coronary artery disease (CAD). Elevated levels of white blood cell subtypes may play different roles in atherothrombosis and predict cardiovascular outcomes. Methods and Results The association between white blood cell counts and mortality was evaluated in 823 subjects with angiographically demonstrated and clinically stable CAD in an observational-longitudinal study. The correlation among white blood cell counts and factor II plasma coagulant activity was analyzed in 750 subjects (554 CAD and 196 CAD-free) not taking anticoagulant drugs. Subjects with overt leukocytosis or leukopenia were excluded. In the longitudinal study after a median follow-up of 61 months, 160 (19.4%) subjects died, 107 (13.0%) of whom from cardiovascular causes. High levels of neutrophils, monocytes, eosinophils, and basophils were associated with an increased mortality rate. In multiadjusted Cox regression models, only neutrophils and basophils remained predictors of total and cardiovascular mortality. The associations remained significant after adjustment for traditional cardiovascular risk factors and by including D-dimer and the chemokine CXCL12 in the regression models. Neutrophils and basophils were also significant predictors of factor II plasma coagulant activity variability after adjustment for blood cell counts, age, sex, inflammatory markers, CAD diagnosis, and prothrombin G20210A polymorphism. Factor II plasma coagulant activity was similarly increased in subjects with high neutrophil and basophil counts and in carriers of the prothrombin 20210A allele. Conclusions Both high neutrophil and basophil blood counts may predict mortality in patients with clinically stable CAD and are associated with enhanced factor II plasma coagulant activity, thereby suggesting underlying prothrombotic mechanisms.
Collapse
Affiliation(s)
- Francesca Pizzolo
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| | - Annalisa Castagna
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| | - Oliviero Olivieri
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| | - Domenico Girelli
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| | - Simonetta Friso
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| | - Filippo Stefanoni
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| | - Silvia Udali
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| | - Veronica Munerotto
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| | - Vera Cetera
- Division of Cardiac Surgery Department of Surgery, Dentistry, Pediatrics and Gynecology University of Verona Verona Italy
| | - Giovanni Battista Luciani
- Division of Cardiac Surgery Department of Surgery, Dentistry, Pediatrics and Gynecology University of Verona Verona Italy
| | - Giuseppe Faggian
- Division of Cardiac Surgery Department of Surgery, Dentistry, Pediatrics and Gynecology University of Verona Verona Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology University of Ferrara Ferrara Italy
| | - Nicola Martinelli
- Department of Medicine Unit of Internal Medicine University of Verona Verona Italy
| |
Collapse
|
3
|
Bilbao A, Pérez-Garay R, Rius I, Irurzun A, Terrén I, Orrantia A, Astarloa-Pando G, Borrego F, Zenarruzabeitia O. Increased Frequency of CTLA-4 and PD-1 Expressing Regulatory T Cells and Basophils With an Activating Profile in Infants With Moderate-to-Severe Atopic Dermatitis Hypersensitized to Food Allergens. Front Pediatr 2021; 9:734645. [PMID: 34912758 PMCID: PMC8667617 DOI: 10.3389/fped.2021.734645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Infants with severe atopic dermatitis (AD) may be sensitized to foods that have not been introduced into their diet, posing a risk for developing an immediate hypersensitivity reaction on the first exposure to the food to which they are sensitized. The aim of this work was to perform an analysis of the sensitization profile in infants with moderate-to-severe AD and to identify cellular and molecular markers for food allergy (FA). Methods: Blood samples from healthy donors and children with moderate-to-severe AD were studied. Specific IgE to several allergens were determined using ImmunoCAP FEIA system and ISAC technology. Furthermore, using flow cytometry-based studies, basophils and regulatory T (Treg) cells were phenotypically characterized. Results: 90% of children with AD were sensitized to food antigens before introducing them into the diet, and 100% developed FA. Phenotypic analysis showed a significantly higher percentage of CTLA-4 and PD-1 expressing Treg cells in AD patients than in healthy controls. Basophils from patients exhibited a marked reduction in the expression of CD300a, higher expression of FcεRI and CXCR4, and to some extent higher expression of CD63 and CD300c. Conclusions: Infants with moderate-to-severe AD are at high risk of being sensitized to food allergens. Therefore, to avoid allergic reactions, broad-spectrum sensitization studies are necessary before introducing complementary diet. Increased expression of CTLA-4 and PD-1 suggests greater suppressive potential of Treg cells in infants with AD than healthy controls. Furthermore, our results suggest a role for CD300 molecules on circulating basophils as possible biomarkers for FA susceptibility.
Collapse
Affiliation(s)
- Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Raquel Pérez-Garay
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Analysis Service, Cruces University Hospital, Barakaldo, Spain
| | - Idoia Rius
- Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Alex Irurzun
- Pediatrics Service, Cruces University Hospital, Barakaldo, Spain
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
4
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
5
|
Marone G, Gambardella AR, Mattei F, Mancini J, Schiavoni G, Varricchi G. Basophils in Tumor Microenvironment and Surroundings. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:21-34. [PMID: 32036602 DOI: 10.1007/978-3-030-35723-8_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basophils represent approximately 1% of human peripheral blood leukocytes. Their effector functions were initially appreciated in the 1970s when basophils were shown to express the high-affinity receptor (FcεRI) for IgE and to release proinflammatory mediators (histamine and cysteinyl leukotriene C4) and immunoregulatory cytokines (i.e., IL-4 and IL-13). Basophils in the mouse were subsequently identified and immunologically characterized. There are many similarities but also several differences between human and mouse basophils. Basophil-deficient mice have enabled to examine the in vivo roles of basophils in several immune disorders and, more recently, in tumor immunity. Activated human basophils release several proangiogenic molecules such as vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor-B (VEGF-B), CXCL8, angiopoietin 1 (ANGPT1), and hepatocyte growth factor (HGF). On the other side, basophils can exert anti-tumorigenic effects by releasing granzyme B, TNF-α, and histamine. Circulating basophils have been associated with certain human hematologic (i.e., chronic myeloid leukemia) and solid tumors. Basophils have been found in tumor microenvironment (TME) of human lung adenocarcinoma and pancreatic cancer. Basophils played a role in melanoma rejection in basophil-deficient mouse model. By contrast, basophils appear to play a pro-tumorigenic role in experimental and human pancreatic cancer. In conclusion, the roles of basophils in experimental and human cancers have been little investigated and remain largely unknown. The elucidation of the roles of basophils in tumor immunity will demand studies on increasing complexity beyond those assessing basophil density and their microlocalization in TME. There are several fundamental questions to be addressed in experimental models and clinical studies before we understand whether basophils are an ally, adversary, or even innocent bystanders in cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Azienda Ospedaliera dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | | | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.
- WAO Center of Excellence, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| |
Collapse
|
6
|
Kayaba A, Itoh-Nakadai A, Niibe K, Shirota M, Funayama R, Sugahara-Tobinai A, Wong YL, Inui M, Nakayama K, Takai T. Bone marrow PDGFRα+Sca-1+-enriched mesenchymal stem cells support survival of and antibody production by plasma cells in vitro through IL-6. Int Immunol 2018. [DOI: 10.1093/intimm/dxy018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Atsuko Kayaba
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Sendai, Japan
| | - Ari Itoh-Nakadai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Sendai, Japan
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Seiryo-machi, Sendai, Japan
| | - Matsuyuki Shirota
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryo Funayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiko Sugahara-Tobinai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Sendai, Japan
| | - Yi Li Wong
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Sendai, Japan
| | - Masanori Inui
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Sendai, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Sendai, Japan
| |
Collapse
|
7
|
Pellefigues C, Dema B, Lamri Y, Saidoune F, Chavarot N, Lohéac C, Pacreau E, Dussiot M, Bidault C, Marquet F, Jablonski M, Chemouny JM, Jouan F, Dossier A, Chauveheid MP, Gobert D, Papo T, Karasuyama H, Sacré K, Daugas E, Charles N. Prostaglandin D 2 amplifies lupus disease through basophil accumulation in lymphoid organs. Nat Commun 2018; 9:725. [PMID: 29463843 PMCID: PMC5820278 DOI: 10.1038/s41467-018-03129-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
In systemic lupus erythematosus (SLE), autoantibody production can lead to kidney damage and failure, known as lupus nephritis. Basophils amplify the synthesis of autoantibodies by accumulating in secondary lymphoid organs. Here, we show a role for prostaglandin D2 (PGD2) in the pathophysiology of SLE. Patients with SLE have increased expression of PGD2 receptors (PTGDR) on blood basophils and increased concentration of PGD2 metabolites in plasma. Through an autocrine mechanism dependent on both PTGDRs, PGD2 induces the externalization of CXCR4 on basophils, both in humans and mice, driving accumulation in secondary lymphoid organs. Although PGD2 can accelerate basophil-dependent disease, antagonizing PTGDRs in mice reduces lupus-like disease in spontaneous and induced mouse models. Our study identifies the PGD2/PTGDR axis as a ready-to-use therapeutic modality in SLE.
Collapse
MESH Headings
- Adult
- Animals
- Basophils/immunology
- Female
- Humans
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/immunology
- Lymphatic System/immunology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Prostaglandin D2/blood
- Prostaglandin D2/immunology
- Receptors, CXCR4/blood
- Receptors, CXCR4/immunology
- Receptors, Immunologic/blood
- Receptors, Immunologic/immunology
- Receptors, Prostaglandin/blood
- Receptors, Prostaglandin/immunology
- Signal Transduction/immunology
- Young Adult
Collapse
Affiliation(s)
- Christophe Pellefigues
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Barbara Dema
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Yasmine Lamri
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Fanny Saidoune
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Nathalie Chavarot
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Charlotte Lohéac
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Emeline Pacreau
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Michael Dussiot
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Caroline Bidault
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Florian Marquet
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
| | - Mathieu Jablonski
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Jonathan M Chemouny
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Fanny Jouan
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
- Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Antoine Dossier
- Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Marie-Paule Chauveheid
- Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Delphine Gobert
- Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Thomas Papo
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
- Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Karim Sacré
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
- Department of Internal Medicine, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Eric Daugas
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine site Bichat, DHU FIRE, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| | - Nicolas Charles
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Université Paris Diderot, 16 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
8
|
Mo XM, Sun HX. The Anti-inflammatory Effect of the CXCR4 Antagonist-N15P Peptide and Its Modulation on Inflammation-Associated Mediators in LPS-Induced PBMC. Inflammation 2016; 38:1374-83. [PMID: 25676435 DOI: 10.1007/s10753-015-0109-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation was the important pathological process of many disease developments, but current therapeutic means for inflammatory diseases are not satisfactory. Chemokines and their receptors represent valuable targets for anti-inflammatory drug discovery. The N15P polypeptide (sequence: LGASWHRPDKCCLGY) is independently developed by our research group, it is a new CXCR4 antagonist drug derived from viral macrophage inflammatory protein-II (vMIP-II). This study aims to clarify the anti-inflammatory potency of N15P polypeptide on the lipopolysaccharide (LPS)-induced inflammation in vitro. In this study, we evaluated the anti-inflammatory effects of N15P polypeptide by the LPS-induced peripheral blood mononuclear cell (PBMC) model and measured the level of inflammatory factors (tumor necrosis factor alpha (TNF-α), IL-6, IL-8, nuclear factor kappaB (NF-κB), cyclooxygenase-2 (COX-2), Toll-like receptor 4 (TLR4), MyD88, phosphoinositide 3-kinase (PI3K), and Akt). The messenger RNA (mRNA) expressions of inflammatory factors were analyzed by real-time PCR (RT-PCR) microarray analysis, and the production of inflammatory factors was measured further by enzyme-linked immunosorbent assay (ELISA) and Western blot. The results showed that the expression of inflammatory factors (TNF-α, IL-6, IL-8, NF-κB, COX-2, TLR4, MyD88, PI3K, and Akt) was downregulated by N15P peptide, suggesting that N15P peptide has a strong inhibitory effect on the inflammatory responses induced by LPS.
Collapse
Affiliation(s)
- Xue-mei Mo
- School of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China,
| | | |
Collapse
|
9
|
Baser G, Sivrikoz ON, Karahan E, Un ES, Yildirim H. The Influence of Chemokine CXCR4 and Cyclooxygenase-2 in the Recurrence of Pterygium. Ocul Immunol Inflamm 2016; 25:328-332. [PMID: 26903201 DOI: 10.3109/09273948.2015.1116588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate the role of CXCR4 and cyclooxygenase-2 in pterygium recurrence. METHODS A total of 18 primary and 9 recurrent pterygium samples were analyzed. Immunohistochemical staining using primary antibodies against cyclooxygenase-2 and CXCR4 was performed. The cyclooxygenase-2 and CXCR4 expressing cells were calculated separately on the epithelium and stroma. In addition, a correlation between the area of pterygium and CXCR4 and cyclooxygenase-2 levels was investigated. RESULTS In the primary pterygium group, cyclooxygenase-2 staining was more intense in the epithelium and more dominant in the stroma of the recurrence samples. The CXCR4 expression was more intense in the stroma of both groups. The highest CXCR4 expression was observed in the recurrent pterygium group. There was a strong correlation between the area of pterygium and CXCR4 and cyclooxygenase-2 of stroma. CONCLUSIONS CXCR4 and cyclooxygenase-2 may play an important role in the recurrence of pterygium.
Collapse
Affiliation(s)
- Gonen Baser
- a Department of Ophthalmology , Ozel Deniz Hospital , Izmir , Turkey
| | | | - Eyyup Karahan
- c Department of Ophthalmology , Sifa University , Izmir , Turkey
| | - Emine Seker Un
- d Department of Ophthalmology , Sifa University , Izmir , Turkey
| | - Hakan Yildirim
- d Department of Ophthalmology , Sifa University , Izmir , Turkey
| |
Collapse
|
10
|
Innate immune cells in liver inflammation. Mediators Inflamm 2012; 2012:949157. [PMID: 22933833 PMCID: PMC3425885 DOI: 10.1155/2012/949157] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/17/2012] [Indexed: 12/20/2022] Open
Abstract
Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair.
Collapse
|
11
|
González-de-Olano D, Alvarez-Twose I, Morgado JM, Esteban López MI, Vega Castro A, Díaz de Durana MDA, Sánchez-Muñoz L, Matito A, de la Hoz Caballer B, Sanz ML, Orfao A, Escribano L. Evaluation of basophil activation in mastocytosis with Hymenoptera venom anaphylaxis. CYTOMETRY PART B-CLINICAL CYTOMETRY 2010; 80:167-75. [PMID: 21520404 DOI: 10.1002/cyto.b.20577] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/01/2010] [Accepted: 09/30/2010] [Indexed: 11/08/2022]
Abstract
BACKGROUND Basophil activation tests (BATs) have been demonstrated to be useful in detecting IgE-mediated sensitization by measuring basophil activation surface markers (CD63 and CD203c). Hymenoptera venom is one of the best known mediators-release trigger in patients with systemic mastocytosis (SM). The aim of this study was to investigate the use of BATs as an additional diagnostic tool in patients with mastocytosis suffering from hymenoptera venom anaphylaxis (HVA). METHODS A total of 22 patients with history of HVA and SM, together with a group of 11 patients with HVA in whom SM was ruled out after a complete bone marrow study, were analyzed. RESULTS Among 11 SM patients who had specific serum IgE (sIgE) against hymenoptera venom and an evaluable BAT, a positive BAT was found in nine. Additionally, a positive BAT was detected in three of seven patients who had no sIgE. These three patients had low levels of total IgE compared with control population (mean of 20 vs. 78 IU/mL); one had discontinued immunotherapy after 5 years, when sIgE levels had turned negative, and, in the other two patients, BAT identified the culprit insect. CONCLUSIONS BAT is a useful complementary diagnostic tool to sIgE in mastocytosis patients with HVA, and it may contribute to predict or confirm these nearly fatal reactions, especially before discontinuing venom immunotherapy in patients who are negative for skin tests or sIgE or display low total IgE levels; in such cases, it also provides evidence on the culprit insect prompting HVA.
Collapse
|
12
|
Rodriguez Gomez M, Talke Y, Goebel N, Hermann F, Reich B, Mack M. Basophils support the survival of plasma cells in mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:7180-5. [PMID: 21068399 DOI: 10.4049/jimmunol.1002319] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that basophils support humoral memory immune responses by increasing B cell proliferation and Ig production as well as inducing a Th2 and B helper phenotype in T cells. Based on the high frequency of basophils in spleen and bone marrow, in this study we investigated whether basophils also support plasma cell survival and Ig production. In the absence of basophils, plasma cells of naive or immunized mice rapidly undergo apoptosis in vitro and produce only low amounts of Igs. In contrast, in the presence of basophils and even more in the presence of activated basophils, the survival of plasma cells is markedly increased and continuous production of Igs enabled. This effect is partially dependent on IL-4 and IL-6 released from basophils. Similar results were obtained when total bone marrow cells or bone marrow cells depleted of basophils were cultured in the presence or absence of substances activating basophils. When basophils were depleted in vivo 6 mo after immunization with an Ag, specific Ig production in subsequent bone marrow cultures was significantly reduced. In addition, depletion of basophils for 18 d in naive mice significantly reduced the number of plasma cells in the spleen. These data indicate that basophils are important for survival of plasma cells in vitro and in vivo.
Collapse
|
13
|
Bobick BE, Tuan RS, Chen FH. The intermediate filament vimentin regulates chondrogenesis of adult human bone marrow-derived multipotent progenitor cells. J Cell Biochem 2010; 109:265-76. [PMID: 19937731 DOI: 10.1002/jcb.22419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytoskeletal proteins play important regulatory roles in a variety of cellular processes, including proliferation, migration, and differentiation. However, whereas actin and tubulin have established roles regulating developmental chondrogenesis, there is no evidence supporting a function for the intermediate filament vimentin in embryonic cartilage formation. We hypothesized that vimentin may regulate the chondrogenic differentiation of adult multipotent progenitor cells (MPCs), such as those involved in cartilage formation during bone fracture repair. As our model of adult progenitor cell chondrogenesis, we employed high-density pellet cultures of human bone marrow-derived MPCs. siRNA-mediated knockdown of vimentin mRNA and protein triggered a reduction in the extent of MPC cartilage formation, as evidenced by depressed accumulation of mRNAs for the cartilage-specific marker genes aggrecan and collagen type II, as well as reduced levels of Alcian blue-stainable proteoglycan and collagen II protein in the extracellular matrix. Moreover, mRNA and protein levels for the chondro-regulatory transcription factors SOX5, SOX6, and SOX9 were diminished by vimentin knockdown. Depleted cellular vimentin also induced a drastic reduction in PKA phosphorylation levels but did not affect the phosphorylation of multiple other chondro-regulatory kinases and transcription factors, including ERK1/2, p38, Smad2, and Smad1/5/8. Importantly, siRNA-mediated knockdown of PKA C-alpha mRNA and protein mimicked the reduction in chondrogenesis caused by diminished cellular vimentin. Finally, overexpression of vimentin in MPCs significantly enhanced the activity of a transfected collagen II promoter-luciferase reporter gene. In conclusion, we describe a novel role for the intermediate filament vimentin as a positive regulator of adult human bone marrow-derived MPC chondrogenesis.
Collapse
Affiliation(s)
- Brent E Bobick
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
14
|
Matsuura J, Sakanaka M, Sato N, Ichikawa A, Tanaka S. Suppression of CXCR4 expression in mast cells upon IgE-mediated antigen stimulation. Inflamm Res 2009; 59:123-7. [PMID: 19696965 DOI: 10.1007/s00011-009-0078-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 07/14/2009] [Accepted: 08/02/2009] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Recent studies have demonstrated that a variety of chemokine receptors are expressed in mast cells. We investigated the changes in mRNA expression of CXCRs in murine IL-3-dependent bone marrow-derived mast cells (BMMCs) to clarify how the CXCR expression is regulated in mast cells. METHODS Expression of CXCR mRNA was measured by RNase protection assay. Functional expression of CXCRs was confirmed by monitoring intracellular Ca(2+) mobilization. RESULTS CXCR4 mRNA expression was transiently induced in BMMCs in serum-dependent fashion and was completely suppressed upon IgE-mediated antigen stimulation. In contrast, CXCR5 mRNA expression was induced upon IgE-mediated antigen stimulation. Changes in the intracellular Ca(2+) mobilization induced by CXCL12 strongly indicated the functional expression of CXCR4. The decrease in CXCR4 and the increase in CXCR5 mRNA expression was also observed in BMMCs stimulated with thapsigargin, a phorbol ester, and stem cell factor. CONCLUSION The mRNA expression of CXCR4 is differentially regulated in BMMCs upon various stimuli including IgE-mediated antigen stimulation.
Collapse
Affiliation(s)
- Junji Matsuura
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
15
|
Yamaguchi M, Koketsu R, Suzukawa M, Kawakami A, Iikura M. Human basophils and cytokines/chemokines. Allergol Int 2009; 58:1-10. [PMID: 19153531 DOI: 10.2332/allergolint.08-rai-0056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Indexed: 01/08/2023] Open
Abstract
Basophils comprise the smallest population in human peripheral blood leukocytes. The role of basophils in the pathogenesis of allergic diseases has long been obscure, although their accumulation and activation in tissues have suggested their potential importance. Recent advances in the field of basophil biology have indicated that cytokines and chemokines are the primary regulators of basophil functions. In addition, various functions of these cells seem differently modulated. The evidence strongly supports the notion that basophils exposed to these substances and allergens will behave as unique effector cells that presumably play proinflammatory roles in type I allergic reactions.
Collapse
Affiliation(s)
- Masao Yamaguchi
- Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
Basophils, the least abundant granulocytes, have poorly understood functions. They have been linked to the development of T helper type 2 immunity during parasite infection and allergic inflammation. Emerging evidence has not only shown the critical involvement of basophils in the development of T helper type 2 immunity but also provided useful animal models with which basophil functions can be further examined. However, distinctions must be made between what basophils 'can do' after in vitro manipulation and what they 'actually do' during in vivo immune responses; these may be very different. In this review, the functions of basophils determined on the basis of analysis of in vitro and in vivo systems and their potential involvement in clinical settings are discussed.
Collapse
Affiliation(s)
- Booki Min
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| |
Collapse
|
18
|
Immunology. PEDIATRIC ALLERGY, ASTHMA AND IMMUNOLOGY 2008. [PMCID: PMC7122665 DOI: 10.1007/978-3-540-33395-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The concept of forbidden foods that should not be eaten goes back to the Garden of Eden and apart from its religious meanings it may also have foreshadowed the concept of foods that can provoke adverse reactions. Thus we could say that allergic diseases have plagued mankind since the beginning of life on earth. The prophet Job was affected by a condition that following the rare symptoms described by the Holy Bible might be identified as a severe form of atopic dermatitis (AD). The earliest record of an apparently allergic reaction is 2621 B.C., when death from stinging insects was first described by hieroglyphics carved into the walls of the tomb of Pharaoh Menes depicting his death following the sting of a wasp. In 79 A.D., the death of the Roman admiral Pliny the Elder was ascribed to the SO2-rich gases emanating from the eruption of Mount Vesuvius. Hippocrates (460–377 B.C.) was probably the first to describe how cow’s milk (CM) could cause gastric upset and hives, proposing dietetic measures including both treatment and prevention for CM allergy.
Collapse
|
19
|
Sela U, Hershkoviz R, Cahalon L, Lider O, Mozes E. Down-regulation of stromal cell-derived factor-1alpha-induced T cell chemotaxis by a peptide based on the complementarity-determining region 1 of an anti-DNA autoantibody via up-regulation of TGF-beta secretion. THE JOURNAL OF IMMUNOLOGY 2005; 174:302-9. [PMID: 15611253 DOI: 10.4049/jimmunol.174.1.302] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) can be induced in mice by immunizing them with a monoclonal human anti-DNA Ab that expresses a major Id, designated 16/6Id. In addition, a peptide based on the sequence of the CDR 1 (hCDR1) of the 16/6Id ameliorated the clinical manifestations of SLE in experimental models. In this study we examined the effects of treating mice with human complementary-determining region 1 (hCDR1) on the subsequent chemotaxis of T cells derived from 16/6Id-primed mice. First we demonstrated elevated levels of stromal cell-derived factor-1alpha (SDF-1alpha) in the sera of SLE-afflicted mice and in the sera and lymphoid tissues of 16/6Id-immunized BALB/c mice shortly after the immunization. We then found that administration of hCDR1 to 16/6Id-immunized mice specifically down-regulated SDF1alpha-induced T cell chemotaxis through fibronectin and collagen type I. This was accompanied by diminished SDF1-alpha-induced T cell adhesion and ERK phosphorylation. Treatment with hCDR1 up-regulated TGF-beta secretion, which, in turn, inhibited the murine T cell adhesion to and chemotaxis through fibronectin as well as their ERK phosphorylation. Thus, the secretion of TGF-beta after treatment of 16/6Id-immunized mice with hCDR1 plays an important role in the down-regulation of SDF-1alpha-mediated T cell activation and the interactions with extracellular matrix moieties observed in the present study.
Collapse
Affiliation(s)
- Uri Sela
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
20
|
de Paulis A, Montuori N, Prevete N, Fiorentino I, Rossi FW, Visconte V, Rossi G, Marone G, Ragno P. Urokinase induces basophil chemotaxis through a urokinase receptor epitope that is an endogenous ligand for formyl peptide receptor-like 1 and -like 2. THE JOURNAL OF IMMUNOLOGY 2004; 173:5739-48. [PMID: 15494526 DOI: 10.4049/jimmunol.173.9.5739] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Basophils circulate in the blood and are able to migrate into tissues at sites of inflammation. Urokinase plasminogen activator (uPA) binds a specific high affinity surface receptor (uPAR). The uPA-uPAR system is crucial for cell adhesion and migration, and tissue repair. We have investigated the presence and function of the uPA-uPAR system in human basophils. The expression of uPAR was found at both mRNA and protein levels. The receptor was expressed on the cell surface of basophils, in the intact and cleaved forms. Basophils did not express uPA at either the protein or mRNA level. uPA (10(-12)-10(-9) M) and its uPAR-binding N-terminal fragment (ATF) were potent chemoattractants for basophils, but did not induce histamine or cytokine release. Inactivation of uPA enzymatic activity by di-isopropyl fluorophosphate did not affect its chemotactic activity. A polyclonal Ab against uPAR inhibited uPA-dependent basophil chemotaxis. The uPAR-derived peptide 84-95 (uPAR84-95) induced basophil chemotaxis. Basophils expressed mRNA for the formyl peptide receptors formyl peptide receptor (FPR), FPR-like 1 (FPRL1), and FPRL2. The FPR antagonist cyclosporin H prevented chemotaxis induced by FMLP, but not that induced by uPA and uPAR84-95. Incubation of basophils with low and high concentrations of FMLP, which desensitize FPR and FPRL1, respectively, but not FPRL2, slightly reduced the chemotactic response to uPA and uPAR84-95. In contrast, desensitization with WKYMVm, which also binds FPRL2, markedly inhibited the response to both molecules. Thus, uPA is a potent chemoattractant for basophils that seems to act through exposure of the chemotactic uPAR epitope uPAR84-95, which is an endogenous ligand for FPRL2 and FPRL1.
Collapse
MESH Headings
- Adult
- Basophils/cytology
- Basophils/enzymology
- Basophils/metabolism
- Cell Line, Tumor
- Chemotaxis, Leukocyte/immunology
- Cytokines/metabolism
- Enzyme Inhibitors/pharmacology
- Epitopes/metabolism
- Epitopes/physiology
- Histamine Release/drug effects
- Histamine Release/immunology
- Humans
- Hydrolysis
- Isoflurophate/pharmacology
- Ligands
- Peptide Fragments/physiology
- Protein Structure, Tertiary
- RNA, Messenger/biosynthesis
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Formyl Peptide/biosynthesis
- Receptors, Formyl Peptide/metabolism
- Receptors, Lipoxin/biosynthesis
- Receptors, Lipoxin/metabolism
- Receptors, Urokinase Plasminogen Activator
- Urokinase-Type Plasminogen Activator/antagonists & inhibitors
- Urokinase-Type Plasminogen Activator/biosynthesis
- Urokinase-Type Plasminogen Activator/physiology
Collapse
Affiliation(s)
- Amato de Paulis
- Divisione di Immunologia Clinica ed Allergologia, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wuyts WA, Vanaudenaerde BM, Dupont LJ, Demedts MG, Verleden GM. Involvement of p38 MAPK, JNK, p42/p44 ERK and NF-kappaB in IL-1beta-induced chemokine release in human airway smooth muscle cells. Respir Med 2003; 97:811-7. [PMID: 12854631 DOI: 10.1016/s0954-6111(03)00036-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Asthma is an inflammatory disease, in which eotaxin, MCP-1 and MCP-3 play a crucial role. These chemokines have been shown to be expressed and produced by IL-1beta-stimulated human airway smooth muscle cells (HASMC) in culture. In the present study we were interested to unravel the IL-1beta-induced signal transduction leading to chemokine production. Using Western blot, we observed an activation of p38 MAPK, JNK kinase and p42/p44 ERK when HASMC were stimulated with IL-1beta. We also observed a significant decrease in the expression and the release of eotaxin, MCP-1 and MCP-3 in the presence of SB203580, an inhibitor of p38 MAPK (71 +/- 6%, P < 0.05, n = 8 and 39 +/- 10% P < 0.01, n = 10 respectively), curcumin, an inhibitor of JNK kinase (83 +/- 4.9% and 88 +/- 3.4% respectively, P < 0.01, n = 4). U0126, an inhibitor of p42/p44 ERK, also produced a significant decrease in chemokine production (46.3 +/- 9%, P < 0.01 n = 10 and 67.8 +/- 12%, P < 0.01, n = 12). Pyrrolydine dithiocarbamate, an inhibitor of NF-kappaB was also able to reduce the eotaxin, MCP-1 and MCP-3 expression and production (50 +/- 13%, P < 0.05, n = 10 and 23 +/- 7%, P < 0.05, n = 12). We conclude that p38 MAPK, JNK kinase, ERK and NF-kappaB are involved in the IL-1beta-induced eotaxin, MCP-1, and MCP-3 expression and release in HASMC.
Collapse
Affiliation(s)
- Wim A Wuyts
- Lung Transplantation Unit, Department of Respiratory Diseases, University Hospital Gasthuisberg, 49 Herestraat, Leuven B-3000, Belgium
| | | | | | | | | |
Collapse
|
22
|
Schmitt N, Chêne L, Boutolleau D, Nugeyre MT, Guillemard E, Versmisse P, Jacquemot C, Barré-Sinoussi F, Israël N. Positive regulation of CXCR4 expression and signaling by interleukin-7 in CD4+ mature thymocytes correlates with their capacity to favor human immunodeficiency X4 virus replication. J Virol 2003; 77:5784-93. [PMID: 12719571 PMCID: PMC154045 DOI: 10.1128/jvi.77.10.5784-5793.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence of X4 human immunodeficiency virus type 1 (HIV-1) variants in infected individuals is associated with poor prognosis. One of the possible causes of this emergence might be the selection of X4 variants in some specific tissue compartment. We demonstrate that the thymic microenvironment favors the replication of X4 variants by positively modulating the expression and signaling of CXCR4 in mature CD4(+) CD8(-) CD3(+) thymocytes. Here, we show that the interaction of thymic epithelial cells (TEC) with these thymocytes in culture induces an upregulation of CXCR4 expression. The cytokine secreted by TEC, interleukin-7 (IL-7), increases cell surface expression of CXCR4 and efficiently overcomes the downregulation induced by SDF-1 alpha, also produced by TEC. IL-7 also potentiates CXCR4 signaling, leading to actin polymerization, a process necessary for virus entry. In contrast, in intermediate CD4(+) CD8(-) CD3(-) thymocytes, the other subpopulation known to allow virus replication, TEC or IL-7 has little or no effect on CXCR4 expression and signaling. CCR5 is expressed at similarly low levels in the two thymocyte subpopulations, and neither its expression nor its signaling was modified by the cytokines tested. This positive regulation of CXCR4 by IL-7 in mature CD4(+) thymocytes correlates with their high capacity to favor X4 virus replication compared with intermediate thymocytes or peripheral blood mononuclear cells. Indeed, we observed an enrichment of X4 viruses after replication in thymocytes initially infected with a mixture of X4 (NL4-3) and R5 (NLAD8) HIV strains and after the emergence of X4 variants from an R5 primary isolate during culture in mature thymocytes.
Collapse
Affiliation(s)
- Nathalie Schmitt
- Unité de Biologie des Rétrovirus, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ. AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1353-60. [PMID: 11943720 PMCID: PMC1867206 DOI: 10.1016/s0002-9440(10)62562-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of specific chemokine receptors during allergic asthmatic responses has been relatively undefined. A number of receptors are preferentially expressed on Th2 cells, including CCR4, CCR8, and CxCR4. In the present study, we have examined the role of CxCR4 in the development of cockroach allergen-induced inflammation and airway hyperreactivity in a mouse model of asthma. Using a specific inhibitor of CxCR4, AMD3100, our results indicate that blocking this receptor has a significant effect in down-regulating the inflammation and pathophysiology of the allergen-induced response. Treatment of allergic mice with AMD3100 significantly reduced airway hyperreactivity, peribronchial eosinophilia, and the overall inflammatory responses. In addition, there was a shift in the cytokine profile that was observed in the AMD3100-treated animals. Specifically, there was a significant reduction in interleukin-4 and interleukin-5 levels and a significant increase in interleukin-12 and interferon-gamma levels within the lungs of treated allergic mice. Furthermore, there was a significant alteration in the local chemokine production of CCL22 (MDC) and CCL17 (TARC), two chemokines previously shown to be important in Th2-type allergen responses. Overall, specifically blocking CxCR4 using AMD3100 reduced a number of pathological parameters related to asthmatic-type inflammation.
Collapse
Affiliation(s)
- Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0602, USA.
| | | | | | | | | |
Collapse
|
24
|
Arock M, Schneider E, Boissan M, Tricottet V, Dy M. Differentiation of human basophils: an overview of recent advances and pending questions. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.4.557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Michel Arock
- Department of Cellular and Molecular Hematology, UPRES‐EA 2509, Faculty of Pharmacy, Paris, France; and
| | | | - Mathieu Boissan
- Department of Cellular and Molecular Hematology, UPRES‐EA 2509, Faculty of Pharmacy, Paris, France; and
| | - Viviane Tricottet
- Department of Cellular and Molecular Hematology, UPRES‐EA 2509, Faculty of Pharmacy, Paris, France; and
| | - Michel Dy
- CNRS UMR 8603, Hôpital Necker, Paris Cedex, France
| |
Collapse
|
25
|
Iikura M, Miyamasu M, Yamaguchi M, Kawasaki H, Matsushima K, Kitaura M, Morita Y, Yoshie O, Yamamoto K, Hirai K. Chemokine receptors in human basophils: inducible expression of functional CXCR4. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.1.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Motoyasu Iikura
- Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Misato Miyamasu
- Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masao Yamaguchi
- Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Kawasaki
- Department of Clinical Immunology and AIDS Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan;
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine and CREST, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Motoji Kitaura
- Shionogi Institute for Medical Science, Osaka, Japan; and
| | - Yutaka Morita
- Department of Respiratory Medicine, and University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Osamu Yoshie
- Department of Bacteriology, Kinki University, Osaka, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Koichi Hirai
- Department of Bioregulatory Function, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Li Y, Li L, Wadley R, Reddel SW, Qi JC, Archis C, Collins A, Clark E, Cooley M, Kouts S, Naif HM, Alali M, Cunningham A, Wong GW, Stevens RL, Krilis SA. Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood 2001; 97:3484-90. [PMID: 11369641 DOI: 10.1182/blood.v97.11.3484] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A population of metachromatic cells with mast cell (MC) and basophil features was identified recently in the peripheral blood of patients with several allergic disorders. This study now shows that these metachromatic cells express on their surface the high-affinity IgE receptor (FcepsilonRI), CD4, and the chemokine receptors CCR3, CCR5, and CXCR4, but not the T-cell surface protein CD3 and the monocyte/macrophage surface protein CD68. This population of MCs/basophils can be maintained ex vivo for at least 2 weeks, and a comparable population of cells can be generated in vitro from nongranulated hematopoietic CD3(-)/CD4(+)/CD117(-) progenitors. Both populations of MCs/basophils are susceptible to an M-tropic strain of human immunodeficiency virus 1 (HIV-1). Finally, many patients with acquired immunodeficiency syndrome have HIV-1-infected MCs/basophils in their peripheral blood. Although it is well known that HIV-1 can infect CD4(+) T cells and monocytes, this finding is the first example of a human MC or basophil shown to be susceptible to the retrovirus. (Blood. 2001;97:3484-3490)
Collapse
Affiliation(s)
- Y Li
- Department of Medicine, University of New South Wales, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Marone G, de Paulis A, Florio G, Petraroli A, Rossi FW, Triggiani M. Are mast cells MASTers in HIV-1 infection? Int Arch Allergy Immunol 2001; 125:89-95. [PMID: 11435725 DOI: 10.1159/000053802] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV-1 gp120 interacts with IgE V(H)3(+) on the surface of human basophils and mast cells (Fc epsilon RI(+) cells), acting as a viral immunoglobulin superantigen. gp120 from different clades induces mediator release from Fc epsilon RI(+) cells. gp120 also induces IL-4 and IL-13 synthesis in human basophils. The chemokine receptors CCR3 and CXCR4, which are coreceptors of HIV-1 infection, are expressed by human Fc epsilon RI(+) cells. HIV-1 Tat protein is a potent chemoattractant for basophils and lung mast cells, interacting with CCR3. Incubation of basophils with Tat protein upregulates the surface expression of the CCR3 receptor. There is evidence that human Fc epsilon RI(+) cells could be infected in vitro by M-tropic HIV-1 strains.
Collapse
MESH Headings
- Basophils/metabolism
- Basophils/virology
- Chemotaxis
- Gene Expression Regulation, Viral
- Gene Products, tat/pharmacology
- Gene Products, tat/physiology
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp120/physiology
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/immunology
- HIV-1/physiology
- Histamine Release
- Humans
- Immunoglobulin E/biosynthesis
- Immunoglobulin E/genetics
- Interleukin-13/biosynthesis
- Interleukin-4/biosynthesis
- Macromolecular Substances
- Mast Cells/metabolism
- Mast Cells/virology
- Receptors, CCR3
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/genetics
- Receptors, CXCR4/physiology
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/physiology
- Receptors, IgE/physiology
- Superantigens/immunology
- Th1 Cells/immunology
- Th2 Cells/immunology
- Virus Replication
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- G Marone
- Division of Clinical Immunology and Allergy, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Marone G, Florio G, Petraroli A, Triggiani M, de Paulis A. Human mast cells and basophils in HIV-1 infection. Trends Immunol 2001; 22:229-32. [PMID: 11323269 DOI: 10.1016/s1471-4906(01)01903-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mast cells and basophils (FcvarepsilonRI(+) cells) are classically involved in allergic disorders. HIV-1 glycoprotein gp120 acts as a viral superantigen by interacting with the heavy chain, variable 3 (V(H)3) region of IgE to induce cytokine release from FcvarepsilonRI(+) cells. The chemokine receptors CCR3 and CXCR4, co-receptors for HIV-1, are expressed by FcvarepsilonRI(+) cells. Via its interaction with CCR3, HIV-1 transactivation (Tat) protein is a potent chemoattractant for FcvarepsilonRI(+) cells. Incubation of basophils with Tat protein upregulates the surface expression of the CCR3 receptor. There is some evidence that human FcvarepsilonRI(+) cells could be infected in vitro by M-tropic HIV-1 strains.
Collapse
Affiliation(s)
- G Marone
- Division of Clinical Immunology and Allergy, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | | | | | | | | |
Collapse
|