1
|
Wang Y, Chang L, Zhang H, Chen YQ, Chen W, Chen H. Characterization of Three Types of Elongases from Different Fungi and Site-Directed Mutagenesis. J Fungi (Basel) 2024; 10:129. [PMID: 38392800 PMCID: PMC10890106 DOI: 10.3390/jof10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Fatty acid elongases play crucial roles in synthesizing long-chain polyunsaturated fatty acids. Identifying more efficient elongases is essential for enhancing oleaginous microorganisms to produce high yields of target products. We characterized three elongases that were identified with distinct specificities: McELO from Mucor circinelloides, PrELO from Phytophthora ramorum, and PsELO from Phytophthora sojae. Heterologous expression in Saccharomyces cerevisiae showed that McELO preferentially elongates C16 to C18 fatty acids, PrELO targets Δ6 polyunsaturated fatty acids, and PsELO uses long chain saturated fatty acids as substrates. McELO and PrELO exhibited more homology, potentially enabling fatty acid composition remodeling and enhanced LC-PUFAs production in oleaginous microorganisms. Site-directed mutagenesis of conserved amino acids across elongase types identified residues essential for activity, supported by molecular docking. Alanine substitution of conserved polar residues led to enzyme inactivation, underscoring their importance in the condensation reaction. Our findings offer promising elongase candidates for polyunsaturated fatty acid production, contributing to the bioindustry's sustainable development.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Indelicato S, Di Stefano V, Avellone G, Piazzese D, Vazzana M, Mauro M, Arizza V, Bongiorno D. HPLC/HRMS and GC/MS for Triacylglycerols Characterization of Tuna Fish Oils Obtained from Green Extraction. Foods 2023; 12:foods12061193. [PMID: 36981119 PMCID: PMC10048091 DOI: 10.3390/foods12061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Fish oil is one of the most common lipidic substances that is consumed as a dietary supplement. The high omega-3 fatty acid content in fish oil is responsible for its numerous health benefits. Fish species such as mackerel, herring, tuna, and salmon are particularly rich in these lipids, which contain two essential omega-3 fatty acids, known as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Objectives: Due to the scarcity of information in the literature, this study aimed to conduct a qualitative and quantitative characterization of triglycerides (TAGs) in crude tuna fish oil using HPLC/HRMS. Fatty acid (FA) determination was also performed using GC/MS. The tuna fish oils analyzed were produced using a green, low-temperature process from the remnants of fish production, avoiding the use of any extraction solvents. Results: The analyses led to the tentative identification and semi-quantitation of 81 TAGs. In silico saponification and comparison with fatty acid methyl ester results helped to confirm the identified TAGs and their quantities. The study found that the produced oil is rich in EPA, DHA, and erucic acid, while the negligible isomerization of fatty acids to trans-derivatives was observed.
Collapse
Affiliation(s)
- Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniela Piazzese
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-09123891900
| |
Collapse
|
3
|
Rizzo G, Baroni L, Lombardo M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1683. [PMID: 36767052 PMCID: PMC9914036 DOI: 10.3390/ijerph20031683] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population's needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| |
Collapse
|
4
|
Venegas-Calerón M, Napier JA. New alternative sources of omega-3 fish oil. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516467 DOI: 10.1016/bs.afnr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acids play an important role in brain growth and development, as well as in the health of the body. These fatty acids are traditionally found in seafood, such as fish, fish oils, and algae. They can also be added to food or consumed through dietary supplements. Due to a lack of supply to meet current demand and the potential for adverse effects from excessive consumption of fish and seafood, new alternatives are being sought to achieve the recommended levels in a safe and sustainable manner. New sources have been studied and new production mechanisms have been developed. These new proposals, as well as the importance of these fatty acids, are discussed in this paper.
Collapse
|
5
|
Khaligh SF, Asoodeh A. Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech 2022; 12:260. [PMID: 36072963 PMCID: PMC9441132 DOI: 10.1007/s13205-022-03327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Microalgae are microscopic algae in sizes ranging from a few micrometers to several hundred micrometers. On average, half of the oxygen in the atmosphere is produced by the photosynthetic process of microalgae, so the role of these microorganisms in the life cycle of the planet is very significant. Pharmaceutical products derived from microalgae and commercial developments of a variety of supplements extracted from them originate from a variety of their specific secondary metabolites. Many of these microalgae are a reservoir of unique biological compounds including carotenoids, antioxidants, fatty acids, polysaccharides, enzymes, polymers, peptides, pigments, toxins and sterols with antimicrobial, antiviral, antifungal, antiparasitic, anticoagulant, and anticancer properties. The present work begins with an introduction of the importance of microalgae in renewable fuels and biodiesel production, the development of healthy food industry, and the creation of optimal conditions for efficient biomass yield. This paper provides the latest research related to microalgae-derived substances in the field of improving drug delivery, immunomodulatory, and anticancer attributes. Also, the latest advances in algal biocompounds to combat the COVID-19 pandemic are presented. In the subject of cultivation and growth of microalgae, the characteristics of different types of photobioreactors, especially their latest forms, are fully discussed along with their advantages and obstacles. Finally, the potential of microalgae biomass in biotechnological applications, biofuel production, as well as various biomass harvesting methods are described.
Collapse
Affiliation(s)
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Liao J, Liu T, Xie L, Mo C, Huang X, Cui S, Jia X, Lan F, Luo Z, Ma X. Plant Metabolic Engineering by Multigene Stacking: Synthesis of Diverse Mogrosides. Int J Mol Sci 2022; 23:ijms231810422. [PMID: 36142335 PMCID: PMC9499096 DOI: 10.3390/ijms231810422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mogrosides are a group of health-promoting natural products that extracted from Siraitia grosvenorii fruit (Luo-han-guo or monk fruit), which exhibited a promising practical application in natural sweeteners and pharmaceutical development. However, the production of mogrosides is inadequate to meet the need worldwide, and uneconomical synthetic chemistry methods are not generally recommended for structural complexity. To address this issue, an in-fusion based gene stacking strategy (IGS) for multigene stacking has been developed to assemble 6 mogrosides synthase genes in pCAMBIA1300. Metabolic engineering of Nicotiana benthamiana and Arabidopsis thaliana to produce mogrosides from 2,3-oxidosqualene was carried out. Moreover, a validated HPLC-MS/MS method was used for the quantitative analysis of mogrosides in transgenic plants. Herein, engineered Arabidopsis thaliana produced siamenoside I ranging from 29.65 to 1036.96 ng/g FW, and the content of mogroside III at 202.75 ng/g FW, respectively. The production of mogroside III was from 148.30 to 252.73 ng/g FW, and mogroside II-E with concentration between 339.27 and 5663.55 ng/g FW in the engineered tobacco, respectively. This study provides information potentially applicable to develop a powerful and green toolkit for the production of mogrosides.
Collapse
Affiliation(s)
- Jingjing Liao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tingyao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiyang Huang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Fusheng Lan
- Guilin GFS Monk Fruit Corp, Guilin 541006, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.L.); (X.M.); Tel.: +86-(010)-57833155 (X.M.)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.L.); (X.M.); Tel.: +86-(010)-57833155 (X.M.)
| |
Collapse
|
7
|
Belide S, Shrestha P, Kennedy Y, Leonforte A, Devine MD, Petrie JR, Singh SP, Zhou X. Engineering docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in Brassica juncea. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:19-21. [PMID: 34694688 PMCID: PMC8710832 DOI: 10.1111/pbi.13739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 05/20/2023]
Affiliation(s)
| | | | | | | | | | - James R. Petrie
- CSIRO Agriculture & FoodCanberraACTAustralia
- Present address:
Nourish Ingredients Pty Ltd.CanberraACTAustralia
| | | | | |
Collapse
|
8
|
Blasio M, Balzano S. Fatty Acids Derivatives From Eukaryotic Microalgae, Pathways and Potential Applications. Front Microbiol 2021; 12:718933. [PMID: 34659147 PMCID: PMC8511707 DOI: 10.3389/fmicb.2021.718933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The exploitation of petrochemical hydrocarbons is compromising ecosystem and human health and biotechnological research is increasingly focusing on sustainable materials from plants and, to a lesser extent, microalgae. Fatty acid derivatives include, among others, oxylipins, hydroxy fatty acids, diols, alkenones, and wax esters. They can occur as storage lipids or cell wall components and possess, in some cases, striking cosmeceutical, pharmaceutical, and nutraceutical properties. In addition, long chain (>20) fatty acid derivatives mostly contain highly reduced methylenic carbons and exhibit a combustion enthalpy higher than that of C14 - 20 fatty acids, being potentially suitable as biofuel candidates. Finally, being the building blocks of cell wall components, some fatty acid derivatives might also be used as starters for the industrial synthesis of different polymers. Within this context, microalgae can be a promising source of fatty acid derivatives and, in contrast with terrestrial plants, do not require arable land neither clean water for their growth. Microalgal mass culturing for the extraction and the exploitation of fatty acid derivatives, along with products that are relevant in nutraceutics (e.g., polyunsaturated fatty acids), might contribute in increasing the viability of microalgal biotechnologies. This review explores fatty acids derivatives from microalgae with applications in the field of renewable energies, biomaterials and pharmaceuticals. Nannochloropsis spp. (Eustigmatophyceae, Heterokontophyta) are particularly interesting for biotechnological applications since they grow at faster rates than many other species and possess hydroxy fatty acids and aliphatic cell wall polymers.
Collapse
Affiliation(s)
- Martina Blasio
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Sergio Balzano
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg (Texel), Netherlands
| |
Collapse
|
9
|
Diao J, Song X, Guo T, Wang F, Chen L, Zhang W. Cellular engineering strategies toward sustainable omega-3 long chain polyunsaturated fatty acids production: State of the art and perspectives. Biotechnol Adv 2020; 40:107497. [DOI: 10.1016/j.biotechadv.2019.107497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
|
10
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
11
|
Zhou XR, Li J, Wan X, Hua W, Singh S. Harnessing Biotechnology for the Development of New Seed Lipid Traits in Brassica. PLANT & CELL PHYSIOLOGY 2019; 60:1197-1204. [PMID: 31076774 DOI: 10.1093/pcp/pcz070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 05/12/2023]
Abstract
The seed oil quality of Brassica oilseed species has been improved in the last few decades, using conventional breeding approaches. Modern biotechnology has enabled the significant development of new seed lipid traits in many oil crops. Alternation of seed lipid component with gene knockout by RNAi gene silencing, artificial microRNA or gene editing within the crop is relative straightforward. Introducing a new pathway from an exogenous source via biotechnology enables the creation of a new trait, where the biosynthetic pathway for such a new trait is not available in the host crop. This review updates the recent development of new seed lipid traits in six major Brassica species and highlights the capability of biotechnology to improve the composition of important fatty acids for both industrial and nutritional purposes.
Collapse
Affiliation(s)
| | - Jun Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | | |
Collapse
|
12
|
Colgrave ML, Byrne K, Caine J, Kowalczyk L, Vibhakaran Pillai S, Dong B, Lovrecz G, MacIntosh S, Scoble JA, Petrie JR, Singh S, Zhou XR. Proteomics reveals the in vitro protein digestibility of seven transmembrane enzymes from the docosahexaenoic acid biosynthesis pathway. Food Chem Toxicol 2019; 130:89-98. [PMID: 31085220 DOI: 10.1016/j.fct.2019.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022]
Abstract
The measurement of protein digestibility is one of the key steps in determining the safety of a genetically modified crop that has been traditionally accomplished using antibodies. Membrane proteins are often extremely difficult to express with replicated authentic tertiary structure in heterologous systems. As a result raising antibodies for use in safety assessment may not be feasible. In this study, LC-MS based proteomics was used to characterise seven transmembrane enzymes from the docosahexaenoic acid biosynthetic pathway that had been introduced into canola. The application of a two-stage digestion strategy involving simulated gastric fluid followed by trypsin enabled the measurement of protein digestibility in vitro. Tryptic peptide markers that spanned the length of each desaturase protein were monitored and showed that these proteins were readily degraded (>95% within 5 min) and highlighted regions of the elongase enzymes that showed limited resistance to simulated gastric digestion. Traditional gel-based and Western blotting analysis of ω3-desaturase and Δ6-elongase revealed rapid hydrolysis of the intact proteins within seconds and no fragments (>3 kDa) remained after 60 min, complementing the novel approach described herein. The LC-MS approach was sensitive, selective and did not require the use of purified proteins.
Collapse
Affiliation(s)
| | - Keren Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| | - Joanne Caine
- CSIRO Manufacturing, 343 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lukasz Kowalczyk
- CSIRO Manufacturing, 343 Royal Parade, Parkville, VIC, 3052, Australia
| | | | - Bei Dong
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - George Lovrecz
- CSIRO Manufacturing, 343 Royal Parade, Parkville, VIC, 3052, Australia
| | - Susan MacIntosh
- Nuseed Americas, 11901 S. Austin Avenue, Alsip, IL, 60803, USA
| | - Judith A Scoble
- CSIRO Manufacturing, 343 Royal Parade, Parkville, VIC, 3052, Australia
| | - James R Petrie
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Surinder Singh
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
13
|
Holland CK, Jez JM. Arabidopsis: the original plant chassis organism. PLANT CELL REPORTS 2018; 37:1359-1366. [PMID: 29663032 DOI: 10.1007/s00299-018-2286-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana (thale cress) has a past, current, and future role in the era of synthetic biology. Arabidopsis is one of the most well-studied plants with a wealth of genomics, genetics, and biochemical resources available for the metabolic engineer and synthetic biologist. Here we discuss the tools and resources that enable the identification of target genes and pathways in Arabidopsis and heterologous expression in this model plant. While there are numerous examples of engineering Arabidopsis for decreased lignin, increased seed oil, increased vitamins, and environmental remediation, this plant has provided biochemical tools for introducing Arabidopsis genes, pathways, and/or regulatory elements into other plants and microorganisms. Arabidopsis is not a vegetative or oilseed crop, but it is as an excellent model chassis for proof-of-concept metabolic engineering and synthetic biology experiments in plants.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
14
|
Venkateshwari V, Vijayakumar A, Vijayakumar AK, Reddy LPA, Srinivasan M, Rajasekharan R. Leaf lipidome and transcriptome profiling of Portulaca oleracea: characterization of lysophosphatidylcholine acyltransferase. PLANTA 2018; 248:347-367. [PMID: 29736624 DOI: 10.1007/s00425-018-2908-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Portulaca leaves serve as an alternative bioresource for edible PUFAs. Transcriptome data provide information to explore Portulaca as a model system for galactolipids, leaf lipid metabolism, and PUFA-rich designer lipids. Poly-unsaturated fatty acids (PUFAs) are gaining importance due to their innumerable health benefits, and hence, understanding their biosynthesis in plants has attained prominence in recent years. The most common source of PUFAs is of marine origin. Although reports have identified Portulaca oleracea (purslane) as a leaf source of omega-3 fatty acids in the form of alpha-linolenic acid (ALA), the mechanism of ALA accumulation and its distribution into various lipids has not been elucidated. Here, we present the lipid profiles of leaves and seeds of several accessions of P. oleracea. Among the nineteen distinct accessions, the RR04 accession has the highest amount of ALA and is primarily associated with galactolipids. In addition, we report the transcriptome of RR04, and we have mapped the potential genes involved in lipid metabolism. Phosphatidylcholine (PC) is the major site of acyl editing, which is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), an integral membrane protein that plays a major role in supplying oleate to the PC pool for further unsaturation. Our investigations using mass spectrometric analysis of leaf microsomal fractions identified LPCAT as part of a membrane protein complex. Both native and recombinant LPCAT showed strong acyltransferase activity with various acyl-CoA substrates. Altogether, the results suggest that ALA-rich glycerolipid biosynthetic machinery is highly active in nutritionally important Portulaca leaves. Furthermore, lipidome, transcriptome, and mass spectrometric analyses of RR04 provide novel information for exploring Portulaca as a potential resource and a model system for studying leaf lipid metabolism.
Collapse
Affiliation(s)
- Varadarajan Venkateshwari
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anitha Vijayakumar
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - Arun Kumar Vijayakumar
- Food Safety and Analytical Quality Control Department, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - L Prasanna Anjaneya Reddy
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - Malathi Srinivasan
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ram Rajasekharan
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
15
|
Shanab SM, Hafez RM, Fouad AS. A review on algae and plants as potential source of arachidonic acid. J Adv Res 2018; 11:3-13. [PMID: 30034871 PMCID: PMC6052662 DOI: 10.1016/j.jare.2018.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/22/2023] Open
Abstract
Some of the essential polyunsaturated fatty acids (PUFAs) as ARA (arachidonic acid, n-6), EPA (eicosapentaenoic acid, n-3) and DHA (Docosahexaenoic acid, n-3) cannot be synthesized by mammals and it must be provided as food supplement. ARA and DHA are the major PUFAs that constitute the brain membrane phospholipid. n-3 PUFAs are contained in fish oil and animal sources, while the n-6 PUFAs are mostly provided by vegetable oils. Inappropriate fatty acids consumption from the n-6 and n-3 families is the major cause of chronic diseases as cancer, cardiovascular diseases and diabetes. The n-6: n-3 ratio (lower than 10) recommended by the WHO can be achieved by consuming certain edible sources rich in n-3 and n-6 in daily food meal. Many researches have been screened for alternative sources of n-3 and n-6 PUFAs of plant origin, microbes, algae, lower and higher plants, which biosynthesize these valuable PUFAs needed for our body health. Biosynthesis of C18 PUFAs, in entire plant kingdom, takes place through certain pathways using elongases and desaturases to synthesize their needs of ARA (C20-PUFAs). This review is an attempt to highlight the importance and function of PUFAs mainly ARA, its occurrence throughout the plant kingdom (and others), its biosynthetic pathways and the enzymes involved. The methods used to enhance ARA productions through environmental factors and metabolic engineering are also presented. It also deals with advising people that healthy life is affected by their dietary intake of both n-3 and n-6 FAs. The review also addresses the scientist to carry on their work to enrich organisms with ARA.
Collapse
Affiliation(s)
| | - Rehab M. Hafez
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
16
|
Nguyen DV, Malau-Aduli BS, Nichols PD, Malau-Aduli AEO. Growth performance and carcass characteristics of Australian prime lambs supplemented with pellets containing canola oil or flaxseed oil. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of this study was to investigate the effects of enriched omega-3 oil supplemental pellets, breed and gender on lamb liveweight (LWT), body conformation and carcass characteristics, and to assess the relationships between body conformation and growth under an intensive finishing condition. Sixty ewe and wether prime lambs 7 months old were randomly allocated to one of five dietary treatments: no oil inclusion (Control); 2.5% canola oil; 5% canola oil; 2.5% flaxseed oil and 5% flaxseed oil, balanced by breed (purebred Merinos (M × M) and Corriedale × Merino (C × M) and White Suffolk × Corriedale (W × C) first crosses). Lambs were individually supplemented with 1 kg pellets per day and had free access to lucerne hay and water throughout the 7-week feeding trial, after a 3-week adaptation. Dietary oil inclusion did not cause significant differences in daily feed intake, growth performance and carcass characteristics (P > 0.05). However, first-cross W × C lambs had significantly higher feed intake, chest girth and body conformation score (P < 0.05) than M × M and C × M lambs. Carcass weight, dressing percentage and fat depth of crossbred lambs were significantly higher than those of M × M (P < 0.05). Significant interactions between oil inclusion and breed on average daily gain (ADG) and feed conversion ratio were observed. There were positive and highly significant correlations among LWT, ADG and body conformation measurements (P < 0.01). These findings suggest that prime lamb producers can better manage and match their breeding goals with feed resources by supplementing first-cross C × M lambs with pellets containing 5% canola oil or feeding first-cross W × C lambs with 5% flaxseed oil pellets during the 10-week intensive finishing period.
Collapse
|
17
|
|
18
|
Amjad Khan W, Chun-Mei H, Khan N, Iqbal A, Lyu SW, Shah F. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7348919. [PMID: 28316988 PMCID: PMC5339522 DOI: 10.1155/2017/7348919] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/17/2017] [Indexed: 11/21/2022]
Abstract
Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hu Chun-Mei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Nadeem Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Amjad Iqbal
- Laboratory of Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan 571339, China
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Shan-Wu Lyu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Farooq Shah
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
19
|
Finco AMDO, Mamani LDG, Carvalho JCD, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 2016; 37:656-671. [PMID: 27653190 DOI: 10.1080/07388551.2016.1213221] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.
Collapse
Affiliation(s)
- Ana Maria de Oliveira Finco
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Luis Daniel Goyzueta Mamani
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Júlio Cesar de Carvalho
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | | | - Vanete Thomaz-Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Carlos Ricardo Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| |
Collapse
|
20
|
Kim SH, Roh KH, Park JS, Kim KS, Kim HU, Lee KR, Kang HC, Kim JB. Heterologous Reconstitution of Omega-3 Polyunsaturated Fatty Acids in Arabidopsis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:768478. [PMID: 26339641 PMCID: PMC4538586 DOI: 10.1155/2015/768478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/31/2014] [Accepted: 12/31/2014] [Indexed: 11/24/2022]
Abstract
Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA) biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ(6)-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ(5)-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES) under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3) and docosatetraenoic acid (22:4 n-6) as well as eicosapentaenoic acid (20:5 n-3) and arachidonic acid (20:4 n-6) in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3) could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible.
Collapse
Affiliation(s)
- Sun Hee Kim
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Kyung Hee Roh
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Jong-Sug Park
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Kwang-Soo Kim
- National Institute of Crop Science, Rural Development Administration, Seodun-dong, Suwon 441-707, Republic of Korea
| | - Hyun Uk Kim
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Kyeong-Ryeol Lee
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Han-Chul Kang
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| | - Jong-Bum Kim
- National Academy of Agricultural Science, Rural Development Administration, 370 Nongsaengnyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Republic of Korea
| |
Collapse
|
21
|
Ruiz-Lopez N, Usher S, Sayanova OV, Napier JA, Haslam RP. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol 2015; 99:143-54. [PMID: 25417743 PMCID: PMC4286622 DOI: 10.1007/s00253-014-6217-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/05/2023]
Abstract
Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain. Latterly, long chain polyunsaturated omega-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexanoic acid (DHA; 22:6 Δ4,7,10,13,16,19), which typically only enter the human diet via the consumption of oily fish, have attracted much attention. The health benefits of the omega-3 LC-PUFAs EPA and DHA are now well established. Given the desire for a sustainable supply of omega-LC-PUFA, efforts have focused on enhancing the composition of vegetable oils to include these important fatty acids. Specifically, EPA and DHA have been the focus of much study, with the ultimate goal of producing a terrestrial plant-based source of these so-called fish oils. Over the last decade, many genes encoding the primary LC-PUFA biosynthetic activities have been identified and characterized. This has allowed the reconstitution of the LC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate omega-3 LC-PUFA to levels similar to that found in fish oil. In this review, we will describe the most recent developments in this field and the challenges of overwriting endogenous seed lipid metabolism to maximize the accumulation of these important fatty acids.
Collapse
Affiliation(s)
- Noemi Ruiz-Lopez
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Sarah Usher
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Olga V. Sayanova
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Johnathan A. Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Richard P. Haslam
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| |
Collapse
|
22
|
Zhou XR, Callahan DL, Shrestha P, Liu Q, Petrie JR, Singh SP. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. FRONTIERS IN PLANT SCIENCE 2014; 5:419. [PMID: 25225497 PMCID: PMC4150447 DOI: 10.3389/fpls.2014.00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/05/2014] [Indexed: 05/10/2023]
Abstract
Metabolic engineering of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) in oilseeds has been one of the key targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA) from endogenous α-linolenic acid (ALA), we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS) was used to characterize the triacylglycerol (TAG), diacylglycerol (DAG) and phospholipid (PL) lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC), DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG, and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provided insights into where DHA accumulated and combined with other fatty acids of neutral and phospholipids from the developing and mature seeds.
Collapse
Affiliation(s)
- Xue-Rong Zhou
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
- Plant Industry, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Damien L. Callahan
- Metabolomics Australia, School of Botany, University of MelbourneMelbourne, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin UniversityMelbourne, VIC, Australia
| | - Pushkar Shrestha
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Qing Liu
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - James R. Petrie
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Surinder P. Singh
- Food Futures National Research Flagship, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| |
Collapse
|
23
|
Kitessa SM, Abeywardena M, Wijesundera C, Nichols PD. DHA-containing oilseed: a timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. Nutrients 2014; 6:2035-58. [PMID: 24858407 PMCID: PMC4042577 DOI: 10.3390/nu6052035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 11/17/2022] Open
Abstract
Benefits of long-chain (≥C20) omega-3 oils (LC omega-3 oils) for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3). However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA.
Collapse
Affiliation(s)
- Soressa M Kitessa
- CSIRO Animal, Foods and Health Sciences, P.O. Box 10041, Adelaide BC, SA 5000, Australia.
| | - Mahinda Abeywardena
- CSIRO Animal, Foods and Health Sciences, P.O. Box 10041, Adelaide BC, SA 5000, Australia.
| | - Chakra Wijesundera
- CSIRO Animal, Foods and Health Sciences, Werribee, Victoria, VIC 3030, Australia.
| | - Peter D Nichols
- Food Futures Flagship, Division of Marine and Atmospheric Research, Hobart, TAS 7000, Australia.
| |
Collapse
|
24
|
Petrie JR, Shrestha P, Belide S, Kennedy Y, Lester G, Liu Q, Divi UK, Mulder RJ, Mansour MP, Nichols PD, Singh SP. Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS One 2014; 9:e85061. [PMID: 24465476 PMCID: PMC3897407 DOI: 10.1371/journal.pone.0085061] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are critical for human health and development [corrected].. Numerous studies have indicated that deficiencies in these fatty acids can increase the risk or severity of cardiovascular, inflammatory and other diseases or disorders. EPA and DHA are predominantly sourced from marine fish although the primary producers are microalgae. Much work has been done to engineer a sustainable land-based source of EPA and DHA to reduce pressure on fish stocks in meeting future demand, with previous studies describing the production of fish oil-like levels of DHA in the model plant species, Arabidopsis thaliana. PRINCIPAL FINDINGS In this study we describe the production of fish oil-like levels (>12%) of DHA in the oilseed crop species Camelina sativa achieving a high ω3/ω6 ratio. The construct previously transformed in Arabidopsis as well as two modified construct versions designed to increase DHA production were used. DHA was found to be stable to at least the T5 generation and the EPA and DHA were found to be predominantly at the sn-1,3 positions of triacylglycerols. Transgenic and parental lines did not have different germination or seedling establishment rates. CONCLUSIONS DHA can be produced at fish oil-like levels in industrially-relevant oilseed crop species using multi-gene construct designs which are stable over multiple generations. This study has implications for the future of sustainable EPA and DHA production from land-based sources.
Collapse
Affiliation(s)
- James R. Petrie
- CSIRO Food Futures National Research Flagship, Canberra, Australian Capital Territory, Australia
| | - Pushkar Shrestha
- CSIRO Food Futures National Research Flagship, Canberra, Australian Capital Territory, Australia
| | - Srinivas Belide
- CSIRO Food Futures National Research Flagship, Canberra, Australian Capital Territory, Australia
| | - Yoko Kennedy
- CSIRO Food Futures National Research Flagship, Canberra, Australian Capital Territory, Australia
| | - Geraldine Lester
- CSIRO Food Futures National Research Flagship, Canberra, Australian Capital Territory, Australia
| | - Qing Liu
- CSIRO Food Futures National Research Flagship, Canberra, Australian Capital Territory, Australia
| | - Uday K. Divi
- CSIRO Food Futures National Research Flagship, Canberra, Australian Capital Territory, Australia
| | - Roger J. Mulder
- CSIRO Materials Science and Engineering, Clayton, Victoria, Australia
| | - Maged P. Mansour
- CSIRO Food Futures National Research Flagship, Hobart, Tasmania, Australia
| | - Peter D. Nichols
- CSIRO Food Futures National Research Flagship, Hobart, Tasmania, Australia
| | - Surinder P. Singh
- CSIRO Food Futures National Research Flagship, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
25
|
Chen Y, Meesapyodsuk D, Qiu X. Transgenic production of omega-3 very long chain polyunsaturated fatty acids in plants: Accomplishment and challenge. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Kimura K, Kamisaka Y, Uemura H, Yamaoka M. Increase in stearidonic acid by increasing the supply of histidine to oleaginous Saccharomyces cerevisiae. J Biosci Bioeng 2013; 117:53-6. [PMID: 23932357 DOI: 10.1016/j.jbiosc.2013.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 06/04/2013] [Indexed: 11/17/2022]
Abstract
Increasing concentration of histidine significantly increased stearidonic acid production and cell growth in oleaginous Saccharomyces cerevisiae that has been genetically modified by Δsnf2 disruption, DGA1 and Δ6 desaturase gene overexpression, and LEU2 expression. High concentration of histidine in wild-type transformant and HIS3 expression in Δsnf2 transformant also increased stearidonic acid.
Collapse
Affiliation(s)
- Kazuyoshi Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yasushi Kamisaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroshi Uemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Masakazu Yamaoka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
27
|
Fahy D, Scheer B, Wallis JG, Browse J. Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0-specific desaturase. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:480-489. [PMID: 23279079 DOI: 10.1111/pbi.12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT-5, a membrane-bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed-specific promoter. The FAT-5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1∆9; expression of fat-5 reduced the 16:0 content of the seed by two-thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn-1 position. Seeds from a plant line homozygous for FAT-5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.
Collapse
Affiliation(s)
- Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | | | | | |
Collapse
|
28
|
Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O. Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab Eng 2013; 17:30-41. [PMID: 23500000 PMCID: PMC3650579 DOI: 10.1016/j.ymben.2013.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/21/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022]
Abstract
An iterative approach to optimising the accumulation of non-native long chain polyunsaturated fatty acids in transgenic plants was undertaken in Arabidopsis thaliana. The contribution of a number of different transgene enzyme activities was systematically determined, as was the contribution of endogenous fatty acid metabolism. Successive iterations were informed by lipidomic analysis of neutral, polar and acyl-CoA pools. This approach allowed for a four-fold improvement on levels previously reported for the accumulation of eicosapentaenoic acid in Arabidopsis seeds and also facilitated the successful engineering of the high value polyunsaturated fatty acid docosahexaenoic acid to 10-fold higher levels. Our studies identify the minimal gene set required to direct the efficient synthesis of these fatty acids in transgenic seed oil.
Collapse
Key Words
- ala, α-linolenic acid
- ara, arachidonic acid
- dag, diacylglycerol
- dha, docosahexaenoic acid
- dpa, docosapentaenoic acid
- epa, eicosapentaenoic acid
- gla, γ-linolenic acid
- la, linoleic acid
- lc-pufa, long chain polyunsaturated fatty acid
- pc, phosphatidylcholine
- pe, phosphatidylethanolamine
- pi, phosphatidylinositol
- ps, phosphatidylserine
- sda, stearidonic acid
- tag, triacylglycerol
- desaturase
- elongase
- nutritional enhancement
- omega-3 long chain polyunsaturated fatty acids
- transgenic plants
Collapse
Affiliation(s)
| | | | | | - Johnathan A. Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | |
Collapse
|
29
|
Chen Y, Chi HY, Meesapyodsuk D, Qiu X. Phytophthora infestans cholinephosphotransferase with substrate specificity for very-long-chain polyunsaturated fatty acids. Appl Environ Microbiol 2013; 79:1573-9. [PMID: 23275500 PMCID: PMC3591934 DOI: 10.1128/aem.03250-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/18/2012] [Indexed: 11/20/2022] Open
Abstract
The effective flux between phospholipids and neutral lipids is critical for a high level of biosynthesis and accumulation of very-long-chain polyunsaturated fatty acids (VLCPUFAs), such as arachidonic acid (ARA; 20:4n-6), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3). Here we describe a cDNA (PiCPT1) from Phytophthora infestans, a VLCPUFA-producing oomycete, that may have a role in acyl trafficking between diacylglycerol (DAG) and phosphatidylcholine (PC) during the biosynthesis of VLCPUFAs. The cDNA encodes a polypeptide of 393 amino acids with a conserved CDP-alcohol phosphotransferase motif and approximately 27% amino acid identity to the Saccharomyces cerevisiae cholinephosphotransferase (ScCPT1). In vitro assays indicate that PiCPT1 has high cholinephosphotransferase (CPT) activity but no ethanolaminephosphotransferase (EPT) activity. Substrate specificity assays show that it prefers VLCPUFA-containing DAGs, such as ARA DAG and DHA DAG, as substrates. Real-time PCR analysis reveals that expression of PiCPT1 was upregulated in P. infestans organisms fed with exogenous VLCPUFAs. These results lead us to conclude that PiCPT1 is a VLCPUFA-specific CPT which may play an important role in shuffling VLCPUFAs from DAG to PC in the biosynthesis of VLCPUFAs in P. infestans.
Collapse
Affiliation(s)
- Yan Chen
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hsiang-yun Chi
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Xiao Qiu
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
30
|
Jiao J, Zhang Y. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals. Chem Rev 2013; 113:3799-814. [DOI: 10.1021/cr300007p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Jiao
- Chronic Disease Research Institute,
Department of Nutrition and Food Hygiene, School of Public Health,
Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Food Science and
Nutrition, School of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
31
|
Haslam RP, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier JA. The modification of plant oil composition via metabolic engineering--better nutrition by design. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:157-68. [PMID: 23066823 DOI: 10.1111/pbi.12012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 05/08/2023]
Abstract
This article will focus on the modification of plant seed oils to enhance their nutritional composition. Such modifications will include C18 Δ6-desaturated fatty acids such as γ-linolenic and stearidonic acid, omega-6 long-chain polyunsaturated fatty acids such as arachidonic acid, as well as the omega-3 long-chain polyunsaturated fatty acids (often named 'fish oils') such as eicosapentaenoic acid and docosahexaenoic acid. We will consider how new technologies (such as synthetic biology, next-generation sequencing and lipidomics) can help speed up and direct the development of desired traits in transgenic oilseeds. We will also discuss how manipulating triacylglycerol structure can further enhance the nutritional value of 'designer' oils. We will also consider how advances in model systems have translated into crops and the potential end-users for such novel oils (e.g. aquaculture, animal feed, human nutrition).
Collapse
Affiliation(s)
- Richard P Haslam
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, UK
| | | | | | | | | | | |
Collapse
|
32
|
Vrinten P, Mavraganis I, Qiu X, Senger T. Biosynthesis of long chain polyunsaturated fatty acids in the marine ichthyosporean Sphaeroforma arctica. Lipids 2012; 48:263-74. [PMID: 23239113 DOI: 10.1007/s11745-012-3738-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/22/2012] [Indexed: 01/16/2023]
Abstract
Sphaeroforma arctica is a unique, recently discovered marine protist belonging to a group falling close to the yeast/animal border. S. arctica is found in cold environments, and accordingly has a fatty acid composition containing a high proportion of very long chain polyunsaturated fatty acids, including the ω3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). Two elongases and five desaturases, representing the complete set of enzymes necessary for the synthesis of DHA from oleic acid, were isolated from this species and characterized in yeast. One elongase showed high conversion rates on a wide range of 18 and 20 carbon substrates, and was capable of sequential elongation reactions. The second elongase had a strong preference for the 20-carbon fatty acids EPA and arachidonic acid, with over 80 % of EPA converted to docosapentaenoic acid (DPA) in the heterologous yeast host. The isolation of a Δ8-desaturase, along with the detection of eicosadienoic acid in S. arctica cultures indicated that this species uses the alternate Δ8-pathway for the synthesis of long-chain polyunsaturated fatty acids. S. arctica also carried a Δ4-desaturase that proved to be very active in the production of DHA from DPA. Finally, a long chain acyl-CoA synthetase from S. arctica improved DHA uptake in the heterologous yeast host and led to an improvement in desaturation and elongation efficiencies.
Collapse
|
33
|
Turchini GM, Nichols PD, Barrow C, Sinclair AJ. Jumping on the omega-3 bandwagon: distinguishing the role of long-chain and short-chain omega-3 fatty acids. Crit Rev Food Sci Nutr 2012; 52:795-803. [PMID: 22698270 DOI: 10.1080/10408398.2010.509553] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are almost unanimously recognized for their health benefits, while only limited evidence of any health benefit is currently available specifically for the main precursor of these fatty acids, namely α-linolenic acid (ALA, 18:3n-3). However, both the n-3 LC-PUFA and the short-chain C₁₈ PUFA (i.e., ALA) are commonly referred to as "omega-3" fatty acids, and it is difficult for consumers to recognize this difference. A current gap of many food labelling legislations worldwide allow products containing only ALA and without n-3 LC-PUFA to be marketed as "omega-3 source" and this misleading information can negatively impact the ability of consumers to choose more healthy diets. Within the context of the documented nutritional and health promoting roles of omega-3 fatty acids, we briefly review the different metabolic fates of dietary ALA and n-3 LC-PUFA. We also review food sources rich in n-3 LC-PUFA, some characteristics of LC-PUFA and current industry and regulatory trends. A further objective is to present a case for regulatory bodies to clearly distinguish food products containing only ALA from foods containing n-3 LC-PUFA. Such information, when available, would then avoid misleading information and empower consumers to make a more informed choice in their food purchasing behavior.
Collapse
Affiliation(s)
- Giovanni M Turchini
- School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia.
| | | | | | | |
Collapse
|
34
|
Sakaguchi K, Matsuda T, Kobayashi T, Ohara JI, Hamaguchi R, Abe E, Nagano N, Hayashi M, Ueda M, Honda D, Okita Y, Taoka Y, Sugimoto S, Okino N, Ito M. Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. Appl Environ Microbiol 2012; 78:3193-202. [PMID: 22344656 PMCID: PMC3346472 DOI: 10.1128/aem.07129-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/08/2012] [Indexed: 12/30/2022] Open
Abstract
A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neo(r)), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neo(r) marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neo(r) mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C(20:3n-6)) and eicosatetraenoic acid (C(20:4n-3)), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C(20:4n-6)) and eicosapentaenoic acid (C(20:5n-3)), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids.
Collapse
Affiliation(s)
- Keishi Sakaguchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takanori Matsuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takumi Kobayashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-ichiro Ohara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Rie Hamaguchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Abe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Nagano
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mayumi Ueda
- Graduate School of Natural Science, Konan University, Higashinada, Kobe, Hyogo, Japan
| | - Daiske Honda
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yuji Okita
- Nippon Suisan Kaisha, Ltd., Tokyo, Japan
| | | | | | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Bio-Architecture Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Ruiz-López N, Sayanova O, Napier JA, Haslam RP. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2397-410. [PMID: 22291131 DOI: 10.1093/jxb/err454] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.
Collapse
Affiliation(s)
- Noemi Ruiz-López
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- M. K. Morell
- CSIRO Food Futures Flagship, Canberra, ACT, Australia
| |
Collapse
|
37
|
Sayanova O, Ruiz-Lopez N, Haslam RP, Napier JA. The role of Δ6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:195-206. [PMID: 21902798 DOI: 10.1111/j.1467-7652.2011.00653.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of acyl-CoA-dependent Δ6-desaturation in the heterologous synthesis of omega-3 long-chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl-CoA Δ6-desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6-desaturated acyl-CoAs, in contrast to the phospholipid-dependent Δ6-desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl-CoA Δ6-desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid-dependent Δ6-desaturase. The use of acyl-CoA-dependent Δ6-desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ-linolenic acid in total seed lipids. Expression of acyl-CoA Δ6-desaturases resulted in increased distribution of long-chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6-desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6-desaturated fatty acids. This study provides evidence for the efficacy of using acyl-CoA-dependent Δ6-desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega-3 LC-PUFAs.
Collapse
Affiliation(s)
- Olga Sayanova
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, UK
| | | | | | | |
Collapse
|
38
|
Kitessa SM, Young P. Enriching milk fat with n−3 polyunsaturated fatty acids by supplementing grazing dairy cows with ruminally protected Echium oil. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Abstract
Growing evidence suggests that omega-3 long chain polyunsaturated fatty acids (VLC-PUFAs), especially eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6Δ4,7,10,13,16,19) play critical roles in human health and development. VLC-PUFAs are mainly found in fish, some fungi, marine bacteria and microalgae. Currently, the predominant dietary sources of VLC-PUFAs are marine fish and seafood. However, the increasing demand for fish and fish oils is putting enormous pressure on marine ecosystems leading to a depletion of fish stocks while commercial cultivation of marine microorganisms and aquaculture are not sustainable and cannot compensate for the shortage in fish supply. Therefore, there is an obvious requirement for an alternative and sustainable source for VLC-PUFAs. Over the last decade, many genes encoding the primary VLC-PUFAs biosynthetic activities became available providing a toolkit for the "reverse-engineering" of transgenic plants to produce fish oils. In this review, we will describe the recent advances in this field and the insights they give us into the complexities of metabolic engineering of oil-seed crops producing VLC-PUFAs.
Collapse
Affiliation(s)
- Olga Sayanova
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | | |
Collapse
|
40
|
The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 2011; 47:227-37. [PMID: 22009657 DOI: 10.1007/s11745-011-3617-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/26/2011] [Indexed: 10/16/2022]
Abstract
Very long chain polyunsaturated fatty acids such as arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are essential components of cell membranes, and are precursors for a group of hormone-like bioactive compounds (eicosanoids and docosanoids) involved in regulation of various physiological activities in animals and humans. The biosynthesis of these fatty acids involves an alternating process of fatty acid desaturation and elongation. The desaturation is catalyzed by a unique class of oxygenases called front-end desaturases that introduce double bonds between the pre-existing double bond and the carboxyl end of polyunsaturated fatty acids. The first gene encoding a front-end desaturase was cloned in 1993 from cyanobacteria. Since then, front-end desaturases have been identified and characterized from a wide range of eukaryotic species including algae, protozoa, fungi, plants and animals including humans. Unlike front-end desaturases from bacteria, those from eukaryotes are structurally characterized by the presence of an N-terminal cytochrome b₅-like domain fused to the main desaturation domain. Understanding the structure, function and evolution of front-end desaturases, as well as their roles in the biosynthesis of very long chain polyunsaturated fatty acids offers the opportunity to engineer production of these fatty acids in transgenic oilseed plants for nutraceutical markets.
Collapse
|
41
|
Metabolic Engineering and Oil Supplementation of Physcomitrella patens for Activation of C22 Polyunsaturated Fatty Acid Production. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Pilkington SM, Watson REB, Nicolaou A, Rhodes LE. Omega-3 polyunsaturated fatty acids: photoprotective macronutrients. Exp Dermatol 2011; 20:537-43. [PMID: 21569104 DOI: 10.1111/j.1600-0625.2011.01294.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultraviolet radiation (UVR) in sunlight has deleterious effects on skin, while behavioural changes have resulted in people gaining more sun exposure. The clinical impact includes a year-on-year increase in skin cancer incidence, and topical sunscreens alone provide an inadequate measure to combat overexposure to UVR. Novel methods of photoprotection are being targeted as additional measures, with growing interest in the potential for systemic photoprotection through naturally sourced nutrients. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are promising candidates, showing potential to protect the skin from UVR injury through a range of mechanisms. In this review, we discuss the biological actions of n-3 PUFA in the context of skin protection from acute and chronic UVR overexposure and describe how emerging new technologies such as nutrigenomics and lipidomics assist our understanding of the contribution of such nutrients to skin health.
Collapse
Affiliation(s)
- Suzanne M Pilkington
- Dermatological Sciences, Inflammation Sciences Research Group, School of Translational Medicine, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Hospital, Manchester, UK
| | | | | | | |
Collapse
|
43
|
Petrie JR, Singh SP. Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants. AOB PLANTS 2011; 2011:plr011. [PMID: 22476481 PMCID: PMC3114564 DOI: 10.1093/aobpla/plr011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/17/2011] [Accepted: 04/07/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND Algae are becoming an increasingly important component of land plant metabolic engineering projects. Land plants and algae have similar enough genetics to allow relatively straightforward gene transfer and they also share enough metabolic similarities that algal enzymes often function in a plant cell environment. Understanding metabolic systems in algae can provide insights into homologous systems in land plants. As examples, algal models are currently being used by several groups to better understand starch and lipid metabolism and catabolism, fields which have relevance in land plants. Importantly, land plants and algae also have enough metabolic divergence that algal genes can often provide new metabolic traits to plants. Furthermore, many algal genomes have now been sequenced, with many more in progress, and this easy access to genome-wide information has revealed that algal genomes are often relatively simple when compared with plants. SCOPE One example of the importance of algal, and in particular microalgal, resources to land plant research is the metabolic engineering of long-chain polyunsaturated fatty acids into oilseed crops which typically uses microalgal genes to extend existing natural plant biosynthetic pathways. This review describes both recent progress and remaining challenges in this field.
Collapse
Affiliation(s)
| | - Surinder P. Singh
- Food Futures National Research Flagship, CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
44
|
Cox D, Evans G, Lease H. The influence of product attributes, consumer attitudes and characteristics on the acceptance of: (1) Novel bread and milk, and dietary supplements and (2) fish and novel meats as dietary vehicles of long chain omega 3 fatty acids. Food Qual Prefer 2011. [DOI: 10.1016/j.foodqual.2010.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Nichols PD, Petrie J, Singh S. Long-chain omega-3 oils-an update on sustainable sources. Nutrients 2010; 2:572-85. [PMID: 22254042 PMCID: PMC3257669 DOI: 10.3390/nu2060572] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/30/2010] [Accepted: 05/20/2010] [Indexed: 11/17/2022] Open
Abstract
Seafood is currently the best and generally a safe source of long-chain (LC, (≥C(20)) omega-3 oils amongst the common food groups. LC omega-3 oils are also obtained in lower amounts per serve from red meat, egg and selected other foods. As global population increases the opportunities to increase seafood harvest are limited, therefore new alternate sources are required. Emerging sources include microalgae and under-utilized resources such as Southern Ocean krill. Prospects for new land plant sources of these unique and health-benefiting oils are also particularly promising, offering hope for alternate and sustainable supplies of these key oils, with resulting health, social, economic and environmental benefits.
Collapse
Affiliation(s)
- Peter D. Nichols
- CSIRO Food Futures Flagship, Division of Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7000, Australia
| | - James Petrie
- CSIRO Food Futures Flagship, Division of Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia; (J.P.); (S.S)
| | - Surinder Singh
- CSIRO Food Futures Flagship, Division of Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia; (J.P.); (S.S)
| |
Collapse
|
46
|
Vrinten PL, Hoffman T, Bauer J, Qiu X. Specific protein regions influence substrate specificity and product length in polyunsaturated fatty acid condensing enzymes. Biochemistry 2010; 49:3879-86. [PMID: 20397628 DOI: 10.1021/bi902028w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a condensing enzyme from Pythium irregulare (PirELO) that shows highest activity on the 18-carbon, Delta-6 desaturated fatty acids, stearidonic acid and gamma-linolenic acid. However, this enzyme is also capable of elongating a number of other fatty acids including the 20-carbon, Delta-5 desaturated fatty acid eicosapentaenoic acid. Surprisingly, a Phytophthora infestans condensing enzyme (PinELO) with very high homology to PirELO did not show activity with 20-carbon fatty acids. A series of chimeric proteins for these two enzymes were constructed to investigate the influence of different regions on substrate and product length. The substitution of a region from near the center of PirELO into PinELO resulted in an enzyme having EPA-elongating activity similar to that of PirELO. Only eight amino acids differed between the two proteins in this region; however, substitution of the same region from PinELO into PirELO produced a protein which was almost inactive. The addition of a small region from near the N-terminus of PinELO was sufficient to restore activity with GLA, indicating that amino acids from these two regions interact to determine protein structure or function. Predicted topology models for PirELO and PinELO placed the two regions described here near the luminal-proximal ends of the first and fourth/fifth transmembrane helixes, at the opposite end of the condensing enzyme from four conserved regions thought to form a catalytic ring. Thus, protein characteristics determined by specific luminal-proximal regions of fatty acid condensing enzymes have a major influence on substrate specificity and final product length.
Collapse
Affiliation(s)
- Patricia L Vrinten
- Bioriginal Food and Science Corporation, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N0W9.
| | | | | | | |
Collapse
|
47
|
Venegas-Calerón M, Sayanova O, Napier JA. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 2010; 49:108-19. [DOI: 10.1016/j.plipres.2009.10.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/13/2009] [Accepted: 10/20/2009] [Indexed: 12/14/2022]
|
48
|
Petrie JR, Shrestha P, Liu Q, Mansour MP, Wood CC, Zhou XR, Nichols PD, Green AG, Singh SP. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production. PLANT METHODS 2010; 6:8. [PMID: 20222981 PMCID: PMC2845569 DOI: 10.1186/1746-4811-6-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/11/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. RESULTS In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2) gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV) 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. CONCLUSIONS The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.
Collapse
Affiliation(s)
- James R Petrie
- CSIRO Food Futures National Research Flagship, PO Box 1600, Canberra, ACT 2601, Australia
| | - Pushkar Shrestha
- CSIRO Food Futures National Research Flagship, PO Box 1600, Canberra, ACT 2601, Australia
| | - Qing Liu
- CSIRO Food Futures National Research Flagship, PO Box 1600, Canberra, ACT 2601, Australia
| | - Maged P Mansour
- CSIRO Food Futures National Research Flagship, PO Box 1600, Canberra, ACT 2601, Australia
| | - Craig C Wood
- CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia
| | - Xue-Rong Zhou
- CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia
| | - Peter D Nichols
- CSIRO Food Futures National Research Flagship, PO Box 1600, Canberra, ACT 2601, Australia
| | - Allan G Green
- CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia
| | - Surinder P Singh
- CSIRO Food Futures National Research Flagship, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
49
|
|
50
|
Kim SH, Kim SY, Kim JB, Roh KH, Kim YM, Park JS. Biosynthesis of Polyunsaturated Fatty Acids: Metabolic Engineering in Plants. ACTA ACUST UNITED AC 2009. [DOI: 10.3839/jabc.2009.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|