1
|
Nabi F, Ahmad O, Khan YA, Nabi A, Md Amiruddin H, Abul Qais F, Masroor A, Hisamuddin M, Uversky VN, Khan RH. Computational studies on phylogeny and drug designing using molecular simulations for COVID-19. J Biomol Struct Dyn 2022; 40:10753-10762. [PMID: 34278954 DOI: 10.1080/07391102.2021.1947895] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the first appearance of a novel coronavirus pneumonia (NCP) caused by a novel human coronavirus, and especially after the infection started its rapid spread over the world causing the COVID-19 (coronavirus disease 2019) pandemics, a very substantial part of the scientific community is engaged in the intensive research dedicated to finding of the potential therapeutics to cure this disease. As repurposing of existing drugs represents the only instant solution for those infected with the virus, we have been working on utilization of the structure-based virtual screening method to find some potential medications. In this study, we screened a library of 646 FDA approved drugs against the receptor-binding domain of the SARS-CoV-2 spike (S) protein and the main protease of this virus. Scoring functions revealed that some of the anticancer drugs (such as Pazopanib, Irinotecan, and Imatinib), antipsychotic drug (Risperidone), and antiviral drug (Raltegravir) have a potential to interact with both targets with high efficiency. Further we performed molecular dynamics simulations to understand the evolution in protein upon interaction with drug. Also, we have performed a phylogenetic analysis of 43 different coronavirus strains infecting 12 different mammalian species.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Yawar Ali Khan
- Department of Bioengeenering, Intergral University, Lucknow, India
| | - Anas Nabi
- Department of Computer Science, Vivekanand College of Technology and Management, Aligarh, India
| | - Hashmi Md Amiruddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia.,Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Panzera Y, Cortinas MN, Marandino A, Calleros L, Bormida V, Goñi N, Techera C, Grecco S, Williman J, Ramas V, Coppola L, Mogdasy C, Chiparelli H, Pérez R. Emergence and spreading of the largest SARS-CoV-2 deletion in the Delta AY.20 lineage from Uruguay. GENE REPORTS 2022; 29:101703. [PMID: 36338321 PMCID: PMC9617655 DOI: 10.1016/j.genrep.2022.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The genetic variability of SARS-CoV-2 (genus Betacoronavirus, family Coronaviridae) has been scrutinized since its first detection in December 2019. Although the role of structural variants, particularly deletions, in virus evolution is little explored, these genome changes are extremely frequent. They are associated with relevant processes, including immune escape and attenuation. Deletions commonly occur in accessory ORFs and might even lead to the complete loss of one or more ORFs. This scenario poses an interesting question about the origin and spreading of extreme structural rearrangements that persist without compromising virus viability. Here, we analyze the genome of SARS-CoV-2 in late 2021 in Uruguay and identify a Delta lineage (AY.20) that experienced a large deletion (872 nucleotides according to the reference Wuhan strain) that removes the 7a, 7b, and 8 ORFs. Deleted viruses coexist with wild-type (without deletion) AY.20 and AY.43 strains. The Uruguayan deletion is like those identified in Delta strains from Poland and Japan but occurs in a different Delta clade. Besides providing proof of the circulation of this large deletion in America, we infer that the 872-deletion arises by the consecutive occurrence of a 6-nucleotide deletion, characteristic of delta strains, and an 866-nucleotide deletion that arose independently in the AY.20 Uruguayan lineage. The largest deletion occurs adjacent to transcription regulatory sequences needed to synthesize the nested set of subgenomic mRNAs that serve as templates for transcription. Our findings support the role of transcription sequences as a hotspot for copy-choice recombination and highlight the remarkable dynamic of SARS-CoV-2 genomes.
Collapse
Affiliation(s)
- Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - María Noel Cortinas
- Genómica, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Lucía Calleros
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Victoria Bormida
- Genómica, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Natalia Goñi
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Claudia Techera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Joaquín Williman
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Viviana Ramas
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Leticia Coppola
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Cristina Mogdasy
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Héctor Chiparelli
- Centro Nacional de Referencia de Influenza y otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Alfredo Navarro 3051 (entrada N), 11600 Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
3
|
Wang YS, Cheng WH, Chen IL, Huang HC. Maternal psychological distress in the early postpartum period during COVID-19 pandemic: a pilot study. BMC Pregnancy Childbirth 2022; 22:833. [PMID: 36368949 PMCID: PMC9651096 DOI: 10.1186/s12884-022-05166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background The coronavirus disease 2019 infection (COVID-19) pandemic is a new global outbreak disease. According to the Taiwan Centers for Diseases Control statement, hospitals had to change their corresponding measures to prevent the spread of COVID-19. The frequency of parental visits to the special care nursery was reduced from three times to once daily. Visiting was not permitted from April 4 to May 10, 2020, and rooming-in with healthy neonates was discontinued, which could increase maternal postpartum distress. Therefore, this study was conducted to determine whether COVID-19 prevention increased maternal psychological distress. Methods This prospective study used convenience sampling to enroll healthy mothers who had just delivered via normal spontaneous delivery. Based on the neonates’ status and visiting times, mothers were grouped into no-rooming-in, rooming-in, no-visiting, and one-visit/day groups. Mothers’ baseline characteristics were compared using the Chi-square or Fisher's exact test and t-test. Salivary cortisol levels and scores of Chinese versions of the Perceived Stress Scale (PSS) and State-Trait Anxiety Inventory were evaluated on postpartum days 1 and 3 and analyzed by one-way analysis of variance and a paired t-test. Results There were 16, 58, 28, and 47 women categorized as no-rooming-in, rooming-in, no-visit, and one-visit/day groups, respectively. No significant differences were found between groups in mothers’ baseline characteristics and postpartum salivary cortisol levels. The PSS on day 3 was significantly higher than on day 1 in every group (p < 0.001). The PSS increasing trend in the no-rooming-in group was significantly greater than that in the no-visit group (p = 0.02) and significantly greater in the rooming-in group than that in the one-visit/day group (p = 0.001). Conclusion Postpartum stress increased for all mothers and was an even more significant response to the COVID-19 pandemic than the stress associated with neonates’ hospitalization.
Collapse
|
4
|
Tai JH, Sun HY, Tseng YC, Li G, Chang SY, Yeh SH, Chen PJ, Chaw SM, Wang HY. Contrasting patterns in the early stage of SARS-CoV-2 evolution between humans and minks. Mol Biol Evol 2022; 39:6658056. [PMID: 35934827 PMCID: PMC9384665 DOI: 10.1093/molbev/msac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the unique features of SARS-CoV-2 is its apparent neutral evolution during the early pandemic (before February 2020). This contrasts with the preceding SARS-CoV epidemics, where viruses evolved adaptively. SARS-CoV-2 may exhibit a unique or adaptive feature which deviates from other coronaviruses. Alternatively, the virus may have been cryptically circulating in humans for a sufficient time to have acquired adaptive changes before the onset of the current pandemic. To test the scenarios above, we analyzed the SARS-CoV-2 sequences from minks (Neovision vision) and parental humans. In the early phase of the mink epidemic (April to May 2020), nonsynonymous to synonymous mutation ratio per site in the spike protein is 2.93, indicating a selection process favoring adaptive amino acid changes. Mutations in the spike protein were concentrated within its receptor binding domain and receptor binding motif. An excess of high frequency derived variants produced by genetic hitchhiking was found during the middle (June to July 2020) and late phase I (August to September 2020) of the mink epidemic. In contrast, the site frequency spectra of early SARS-CoV-2 in humans only show an excess of low frequency mutations, consistent with the recent outbreak of the virus. Strong positive selection in the mink SARS-CoV-2 implies the virus may not be pre-adapted to a wide range of hosts and illustrates how a virus evolves to establish a continuous infection in a new host. Therefore, the lack of positive selection signal during the early pandemic in humans deserves further investigation.
Collapse
Affiliation(s)
- Jui Hung Tai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Hsiao Yu Sun
- Taipei Municipal Zhongshan Girls High School, Taipei 10490, Taiwan
| | - Yi Cheng Tseng
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guanghao Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sui Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shiou Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Pei Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan.,Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Shu Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hurng Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
5
|
Consecutive deletions in a unique Uruguayan SARS-CoV-2 lineage evidence the genetic variability potential of accessory genes. PLoS One 2022; 17:e0263563. [PMID: 35176063 PMCID: PMC8853529 DOI: 10.1371/journal.pone.0263563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Deletions frequently occur in the six accessory genes of SARS-CoV-2, but most genomes with deletions are sporadic and have limited spreading capability. Here, we analyze deletions in the ORF7a of the N.7 lineage, a unique Uruguayan clade from the Brazilian B.1.1.33 lineage. Thirteen samples collected during the early SARS-CoV-2 wave in Uruguay had deletions in the ORF7a. Complete genomes were obtained by Illumina next-generation sequencing, and deletions were confirmed by Sanger sequencing and capillary electrophoresis. The N.7 lineage includes several individuals with a 12-nucleotide deletion that removes four amino acids of the ORF7a. Notably, four individuals underwent an additional 68-nucleotide novel deletion that locates 44 nucleotides downstream in the terminal region of the same ORF7a. The simultaneous occurrence of the 12 and 68-nucleotide deletions fuses the ORF7a and ORF7b, two contiguous accessory genes that encode transmembrane proteins with immune-modulation activity. The fused ORF retains the signal peptide and the complete Ig-like fold of the 7a protein and the transmembrane domain of the 7b protein, suggesting that the fused protein plays similar functions to original proteins in a single format. Our findings evidence the remarkable dynamics of SARS-CoV-2 and the possibility that single and consecutive deletions occur in accessory genes and promote changes in the genomic organization that help the virus explore genetic variations and select for new, higher fit changes.
Collapse
|
6
|
Milagre ST, Pereira AA, de Oliveira Andrade A, de Andrade Palis A, Cabral AM, Barreto CGL, de Souza DB, de Paula Silva F, Santos FP, Silva GL, Guimarães JFV, de Araújo LAS, Nóbrega LR, Mendes LC, Brandão MR, de Lima Gonçalves V, de Freitas Morales VH, da Conceição Lima V. Effectiveness and quality analysis of methods in studies for the treatment of COVID-19. RESEARCH ON BIOMEDICAL ENGINEERING 2022. [PMCID: PMC7969148 DOI: 10.1007/s42600-021-00134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Selma Terezinha Milagre
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Adriano Alves Pereira
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Adriano de Oliveira Andrade
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Angélica de Andrade Palis
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ariana Moura Cabral
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Cassiana Gabriela Lima Barreto
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Daniel Baldoino de Souza
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Fernanda de Paula Silva
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Fernando Pasquini Santos
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gabriella Lelis Silva
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - José Flávio Viana Guimarães
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Laureane Almeida Santiago de Araújo
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Lígia Reis Nóbrega
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luanne Cardoso Mendes
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Mariana Ribeiro Brandão
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Verônica de Lima Gonçalves
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Viviane da Conceição Lima
- Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
7
|
Kang L, He G, Sharp AK, Wang X, Brown AM, Michalak P, Weger-Lucarelli J. A selective sweep in the Spike gene has driven SARS-CoV-2 human adaptation. Cell 2021; 184:4392-4400.e4. [PMID: 34289344 PMCID: PMC8260498 DOI: 10.1016/j.cell.2021.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/07/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underscores the need to better understand animal-to-human transmission of coronaviruses and adaptive evolution within new hosts. We scanned more than 182,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes for selective sweep signatures and found a distinct footprint of positive selection located around a non-synonymous change (A1114G; T372A) within the spike protein receptor-binding domain (RBD), predicted to remove glycosylation and increase binding to human ACE2 (hACE2), the cellular receptor. This change is present in all human SARS-CoV-2 sequences but not in closely related viruses from bats and pangolins. As predicted, T372A RBD bound hACE2 with higher affinity in experimental binding assays. We engineered the reversion mutant (A372T) and found that A372 (wild-type [WT]-SARS-CoV-2) enhanced replication in human lung cells relative to its putative ancestral variant (T372), an effect that was 20 times greater than the well-known D614G mutation. Our findings suggest that this mutation likely contributed to SARS-CoV-2 emergence from animal reservoirs or enabled sustained human-to-human transmission.
Collapse
Affiliation(s)
- Lin Kang
- Edward Via College of Osteopathic Medicine, Monroe, LA 71203, USA; Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guijuan He
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amanda K Sharp
- Program in Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne M Brown
- Program in Genetics, Bioinformatics, and Computational Biology (GBCB), Virginia Tech, Blacksburg, VA 24061, USA; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pawel Michalak
- Edward Via College of Osteopathic Medicine, Monroe, LA 71203, USA; Center for One Health Research, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA 24060, USA; Institute of Evolution, University of Haifa, Haifa 3498838, Israel.
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
8
|
Yang B, Yang KD. Immunopathogenesis of Different Emerging Viral Infections: Evasion, Fatal Mechanism, and Prevention. Front Immunol 2021; 12:690976. [PMID: 34335596 PMCID: PMC8320726 DOI: 10.3389/fimmu.2021.690976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Different emerging viral infections may emerge in different regions of the world and pose a global pandemic threat with high fatality. Clarification of the immunopathogenesis of different emerging viral infections can provide a plan for the crisis management and prevention of emerging infections. This perspective article describes how an emerging viral infection evolves from microbial mutation, zoonotic and/or vector-borne transmission that progresses to a fatal infection due to overt viremia, tissue-specific cytotropic damage or/and immunopathology. We classified immunopathogenesis of common emerging viral infections into 4 categories: 1) deficient immunity with disseminated viremia (e.g., Ebola); 2) pneumocytotropism with/without later hyperinflammation (e.g., COVID-19); 3) augmented immunopathology (e.g., Hanta); and 4) antibody-dependent enhancement of infection with altered immunity (e.g., Dengue). A practical guide to early blocking of viral evasion, limiting viral load and identifying the fatal mechanism of an emerging viral infection is provided to prevent and reduce the transmission, and to do rapid diagnoses followed by the early treatment of virus neutralization for reduction of morbidity and mortality of an emerging viral infection such as COVID-19.
Collapse
Affiliation(s)
- Betsy Yang
- Department of Medicine, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States
| | - Kuender D. Yang
- DIvision of Medical Research, Mackay Children’s Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Sjaarda CP, Guthrie JL, Mubareka S, Simpson JT, Hamelin B, Wong H, Mortimer L, Slinger R, McArthur AG, Desjardins M, McGeer A, Mazzulli T, Douchant K, Brabant-Kirwan D, Fattouh R, Campigotto A, Patel SN, Fittipaldi N, Colautti RI, Sheth PM. Temporal Dynamics and Evolution of SARS-CoV-2 Demonstrate the Necessity of Ongoing Viral Genome Sequencing in Ontario, Canada. mSphere 2021; 6:e00011-21. [PMID: 33952657 PMCID: PMC8103981 DOI: 10.1128/msphere.00011-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide variation in SARS-CoV-2 reveals evolution and transmission dynamics which are critical considerations for disease control and prevention decisions. Here, we review estimates of the genome-wide viral mutation rates, summarize current COVID-19 case load in the province of Ontario, Canada (5 January 2021), and analyze published SARS-CoV-2 genomes from Ontario (collected prior to 24 November 2020) to test for more infectious genetic variants or lineages. The reported mutation rate (∼10-6 nucleotide [nt]-1 cycle-1) for SARS-CoV-2 is typical for coronaviruses. Analysis of published SARS-CoV-2 genomes revealed that the G614 spike protein mutation has dominated infections in Ontario and that SARS-CoV-2 lineages present in Ontario have not differed significantly in their rate of spread. These results suggest that the SARS-CoV-2 population circulating in Ontario has not changed significantly to date. However, ongoing genome monitoring is essential for identification of new variants and lineages that may contribute to increased viral transmission.
Collapse
Affiliation(s)
- Calvin P Sjaarda
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Centre, Kingston, Ontario, Canada
| | | | - Samira Mubareka
- Sunnybrook Health Science Centre, Division of Infectious Diseases, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Henry Wong
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Leanne Mortimer
- Division of Microbiology, Eastern Ontario Regional Laboratories, Ottawa, Ontario, Canada
- Department of Laboratory Medicine and Pathology, CHEO, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Slinger
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Marc Desjardins
- Division of Microbiology, Eastern Ontario Regional Laboratories, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Allison McGeer
- Department of Microbiology, Mount Sinai Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Tony Mazzulli
- Public Health Ontario, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Mount Sinai Hospital, University Health Network, Toronto, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Ramzi Fattouh
- St. Michael's Unity Health, Toronto, Ontario, Canada
| | - Aaron Campigotto
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samir N Patel
- Public Health Ontario, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Prameet M Sheth
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Mallory JD, Mallory XF, Kolomeisky AB, Igoshin OA. Theoretical Analysis Reveals the Cost and Benefit of Proofreading in Coronavirus Genome Replication. J Phys Chem Lett 2021; 12:2691-2698. [PMID: 33689357 DOI: 10.1021/acs.jpclett.1c00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Severe acute respiratory syndrome coronaviruses have unusually large RNA genomes replicated by a multiprotein complex containing an RNA-dependent RNA polymerase (RdRp). Exonuclease activity enables the RdRp complex to remove wrongly incorporated bases via proofreading, a process not utilized by other RNA viruses. However, it is unclear why the RdRp complex needs proofreading and what the associated trade-offs are. Here we investigate the interplay among the accuracy, speed, and energetic cost of proofreading in the RdRp complex using a kinetic model and bioinformatics analysis. We find that proofreading nearly optimizes the rate of functional virus production. However, we find that further optimization would lead to a significant increase in the proofreading cost. Unexpected importance of the cost minimization is further supported by other global analyses. We speculate that cost optimization could help avoid cell defense responses. Thus, proofreading is essential for the production of functional viruses, but its rate is limited by energy costs.
Collapse
Affiliation(s)
- Joel D Mallory
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Xian F Mallory
- Department of Computer Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Tan Y, Schneider T, Shukla PK, Chandrasekharan MB, Aravind L, Zhang D. Unification and extensive diversification of M/Orf3-related ion channel proteins in coronaviruses and other nidoviruses. Virus Evol 2021; 7:veab014. [PMID: 33692906 PMCID: PMC7928690 DOI: 10.1093/ve/veab014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coronavirus, Severe Acute Respiratory Syndrome (SARS)-CoV-2, responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, has emphasized the need for a better understanding of the evolution of virus-host interactions. ORF3a in both SARS-CoV-1 and SARS-CoV-2 are ion channels (viroporins) implicated in virion assembly and membrane budding. Using sensitive profile-based homology detection methods, we unify the SARS-CoV ORF3a family with several families of viral proteins, including ORF5 from MERS-CoVs, proteins from beta-CoVs (ORF3c), alpha-CoVs (ORF3b), most importantly, the Matrix (M) proteins from CoVs, and more distant homologs from other nidoviruses. We present computational evidence that these viral families might utilize specific conserved polar residues to constitute an aqueous pore within the membrane-spanning region. We reconstruct an evolutionary history of these families and objectively establish the common origin of the M proteins of CoVs and Toroviruses. We also show that the divergent ORF3 clade (ORF3a/ORF3b/ORF3c/ORF5 families) represents a duplication stemming from the M protein in alpha- and beta-CoVs. By phyletic profiling of major structural components of primary nidoviruses, we present a hypothesis for their role in virion assembly of CoVs, ToroVs, and Arteriviruses. The unification of diverse M/ORF3 ion channel families in a wide range of nidoviruses, especially the typical M protein in CoVs, reveal a conserved, previously under-appreciated role of ion channels in virion assembly and membrane budding. We show that M and ORF3 are under different evolutionary pressures; in contrast to the slow evolution of M as core structural component, the ORF3 clade is under selection for diversification, which suggests it might act at the interface with host molecules and/or immune attack.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
| | - Theresa Schneider
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
| | - Prakash K Shukla
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
12
|
Fouladirad S, Bach H. Development of Coronavirus Treatments Using Neutralizing Antibodies. Microorganisms 2021; 9:microorganisms9010165. [PMID: 33451069 PMCID: PMC7828509 DOI: 10.3390/microorganisms9010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2, was first reported in December 2019 in Wuhan, Hubei province, China. This virus has led to 61.8 million cases worldwide being reported as of December 1st, 2020. Currently, there are no definite approved therapies endorsed by the World Health Organization for COVID-19, focusing only on supportive care. Treatment centers around symptom management, including oxygen therapy or invasive mechanical ventilation. Immunotherapy has the potential to play a role in the treatment of SARS-CoV-2. Monoclonal antibodies (mAbs), in particular, is a relatively new approach in the world of infectious diseases and has the benefit of overcoming challenges with serum therapy and intravenous immunoglobulins preparations. Here, we reviewed the articles published in PubMed with the purpose of summarizing the currently available evidence for the use of neutralizing antibodies as a potential treatment for coronaviruses. Studies reporting in vivo results were summarized and analyzed. Despite promising data from some studies, none of them progressed to clinical trials. It is expected that neutralizing antibodies might offer an alternative for COVID-19 treatment. Thus, there is a need for randomized trials to understand the potential use of this treatment.
Collapse
Affiliation(s)
- Saman Fouladirad
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
| | - Horacio Bach
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
- Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6T 1Z, Canada
- Correspondence: ; Tel.: +1-604-727-9719; Fax: +1-604-875-4013
| |
Collapse
|
13
|
McClenaghan C, Hanson A, Lee SJ, Nichols CG. Coronavirus Proteins as Ion Channels: Current and Potential Research. Front Immunol 2020; 11:573339. [PMID: 33154751 PMCID: PMC7586316 DOI: 10.3389/fimmu.2020.573339] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023] Open
Abstract
Coronavirus (CoV) outbreaks have recently emerged as a global public health threat due to their exceptional zoonotic potential — a feature arising from their ability to infect a diverse range of potential hosts combined with their high capacity for mutation and recombination. After Severe Acute Respiratory Syndrome (SARS) CoV-1 in 2003 and Middle East Respiratory Syndrome (MERS) CoV in 2012, with the current SARS-CoV-2 pandemic we are now in the midst of the third deadly international CoV outbreak in less than 20 years. Coronavirus outbreaks present a critical threat to global public health and an urgent necessity for therapeutic options. Here, we critically examine the current evidence for ion channel activity in CoV proteins and the potential for modulation as a therapeutic approach.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Alex Hanson
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sun-Joo Lee
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Colin G Nichols
- Center for Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Lam SD, Bordin N, Waman VP, Scholes HM, Ashford P, Sen N, van Dorp L, Rauer C, Dawson NL, Pang CSM, Abbasian M, Sillitoe I, Edwards SJL, Fraternali F, Lees JG, Santini JM, Orengo CA. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals. Sci Rep 2020; 10:16471. [PMID: 33020502 PMCID: PMC7536205 DOI: 10.1038/s41598-020-71936-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
SARS-CoV-2 has a zoonotic origin and was transmitted to humans via an undetermined intermediate host, leading to infections in humans and other mammals. To enter host cells, the viral spike protein (S-protein) binds to its receptor, ACE2, and is then processed by TMPRSS2. Whilst receptor binding contributes to the viral host range, S-protein:ACE2 complexes from other animals have not been investigated widely. To predict infection risks, we modelled S-protein:ACE2 complexes from 215 vertebrate species, calculated changes in the energy of the complex caused by mutations in each species, relative to human ACE2, and correlated these changes with COVID-19 infection data. We also analysed structural interactions to better understand the key residues contributing to affinity. We predict that mutations are more detrimental in ACE2 than TMPRSS2. Finally, we demonstrate phylogenetically that human SARS-CoV-2 strains have been isolated in animals. Our results suggest that SARS-CoV-2 can infect a broad range of mammals, but few fish, birds or reptiles. Susceptible animals could serve as reservoirs of the virus, necessitating careful ongoing animal management and surveillance.
Collapse
Affiliation(s)
- S D Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - N Bordin
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - V P Waman
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - H M Scholes
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - P Ashford
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - N Sen
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
- Indian Institute of Science Education and Research, Pune, 411008, India
| | - L van Dorp
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - C Rauer
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - N L Dawson
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - C S M Pang
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - M Abbasian
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - I Sillitoe
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - S J L Edwards
- Department of Science and Technology Studies, University College London, London, WC1E 6BT, UK
| | - F Fraternali
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - J G Lees
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 OBP, UK
| | - J M Santini
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - C A Orengo
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Chen CF, Tsai TY, Yu CH, Cheng HL, Yeh TY. Prolonged viral shedding and new mutations of COVID-19 could complicate the control of the pandemic. Access Microbiol 2020; 2:acmi000133. [PMID: 32974596 PMCID: PMC7497832 DOI: 10.1099/acmi.0.000133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The studies of coronavirus disease 2019 (COVID-19) have mainly focused on epidemiological and clinical features of patients, but transmission dynamics of SARS-CoV-2 virus after patients have recovered is still poorly understood. Here we report a case with prolonged viral shedding of COVID-19 in Kaohsiung, Taiwan. This patient started to show myalgia and malaise in Wuhan, and the onset of the fever was on days 7–14 of the illness. All clinical and radiological results returned to normal after day 26, however, viral shedding was still evident 14 days later. Sequence analysis of the genome of the Taiwanese SARS-CoV-2 isolate from this patient reveals new mutations in viral replicase and ORF3a, indicating that COVID-19 evolves very quickly. Prolonged viral shedding and new mutations in the viral genome could potentially complicate the control of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Chieh-Fan Chen
- Department of Emergency, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan, ROC.,Faculty of Medicine, Kaohsiung Medical University, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Tung-Yuan Tsai
- Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan, ROC
| | - Chen-Hui Yu
- Department of Infection Control, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan, ROC.,Cheng Shiu University, Kaohsiung, Taiwan, ROC
| | - Hsiang-Lan Cheng
- Centers for Disease Control Ministry of Health and Welfare, The Executive Yuan, Kaohsiung, Taiwan, ROC
| | - Ting-Yu Yeh
- Agricultural Biotechnology Laboratory, Auxergen Inc. and GreenWave Bioscience, Columbus Center, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Lam TTY, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, Tong YG, Shi YX, Ni XB, Liao YS, Li WJ, Jiang BG, Wei W, Yuan TT, Zheng K, Cui XM, Li J, Pei GQ, Qiang X, Cheung WYM, Li LF, Sun FF, Qin S, Huang JC, Leung GM, Holmes EC, Hu YL, Guan Y, Cao WC. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583:282-285. [PMID: 32218527 DOI: 10.1101/2020.02.13.945485] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
Collapse
Affiliation(s)
- Tommy Tsan-Yuk Lam
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ya-Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hua-Chen Zhu
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Yi-Gang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yong-Xia Shi
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Wen-Juan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Wei Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, P. R. China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Kui Zheng
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Guang-Qian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xin Qiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - William Yiu-Man Cheung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Lian-Feng Li
- School of Information and Management, Guangxi Medical University, Nanning, P. R. China
| | - Fang-Fang Sun
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ji-Cheng Huang
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Gabriel M Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, P. R. China.
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, P. R. China.
| | - Yi Guan
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China.
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
| |
Collapse
|
17
|
Chaw SM, Tai JH, Chen SL, Hsieh CH, Chang SY, Yeh SH, Yang WS, Chen PJ, Wang HY. The origin and underlying driving forces of the SARS-CoV-2 outbreak. J Biomed Sci 2020; 27:73. [PMID: 32507105 PMCID: PMC7276232 DOI: 10.1186/s12929-020-00665-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND SARS-CoV-2 began spreading in December 2019 and has since become a pandemic that has impacted many aspects of human society. Several issues concerning the origin, time of introduction to humans, evolutionary patterns, and underlying force driving the SARS-CoV-2 outbreak remain unclear. METHOD Genetic variation in 137 SARS-CoV-2 genomes and related coronaviruses as of 2/23/2020 was analyzed. RESULT After correcting for mutational bias, the excess of low frequency mutations on both synonymous and nonsynonymous sites was revealed which is consistent with the recent outbreak of the virus. In contrast to adaptive evolution previously reported for SARS-CoV during its brief epidemic in 2003, our analysis of SARS-CoV-2 genomes shows signs of relaxation. The sequence similarity in the spike receptor binding domain between SARS-CoV-2 and a sequence from pangolin is probably due to an ancient intergenomic introgression that occurred approximately 40 years ago. The current outbreak of SARS-CoV-2 was estimated to have originated on 12/11/2019 (95% HPD 11/13/2019-12/23/2019). The effective population size of the virus showed an approximately 20-fold increase from the onset of the outbreak to the lockdown of Wuhan (1/23/2020) and ceased to increase afterwards, demonstrating the effectiveness of social distancing in preventing its spread. Two mutations, 84S in orf8 protein and 251 V in orf3 protein, occurred coincidentally with human intervention. The former first appeared on 1/5/2020 and plateaued around 1/23/2020. The latter rapidly increased in frequency after 1/23/2020. Thus, the roles of these mutations on infectivity need to be elucidated. Genetic diversity of SARS-CoV-2 collected from China is two times higher than those derived from the rest of the world. A network analysis found that haplotypes collected from Wuhan were interior and had more mutational connections, both of which are consistent with the observation that the SARS-CoV-2 outbreak originated in China. CONCLUSION SARS-CoV-2 might have cryptically circulated within humans for years before being discovered. Data from the early outbreak and hospital archives are needed to trace its evolutionary path and determine the critical steps required for effective spreading.
Collapse
Affiliation(s)
- Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Hung Tai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shi-Lun Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Hung Hsieh
- Department of Forestry and Nature Conservation, Chinese Culture University, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Ruffell D. Coronavirus SARS-CoV-2: filtering fact from fiction in the infodemic: Q&A with virologist Professor Urs Greber. FEBS Lett 2020; 594:1127-1131. [PMID: 32246722 PMCID: PMC7164109 DOI: 10.1002/1873-3468.13784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Ruffell
- FEBS Letters Editorial OfficeHeidelberg University Biochemistry CenterGermany
| |
Collapse
|
19
|
Lam TTY, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, Tong YG, Shi YX, Ni XB, Liao YS, Li WJ, Jiang BG, Wei W, Yuan TT, Zheng K, Cui XM, Li J, Pei GQ, Qiang X, Cheung WYM, Li LF, Sun FF, Qin S, Huang JC, Leung GM, Holmes EC, Hu YL, Guan Y, Cao WC. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020. [DOI: 10.1038/s41586-020-2169-0 10.1101/2020.02.13.945485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Lam TTY, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, Tong YG, Shi YX, Ni XB, Liao YS, Li WJ, Jiang BG, Wei W, Yuan TT, Zheng K, Cui XM, Li J, Pei GQ, Qiang X, Cheung WYM, Li LF, Sun FF, Qin S, Huang JC, Leung GM, Holmes EC, Hu YL, Guan Y, Cao WC. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583:282-285. [PMID: 32218527 DOI: 10.1038/s41586-020-2169-0] [Citation(s) in RCA: 1193] [Impact Index Per Article: 238.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/17/2020] [Indexed: 11/09/2022]
Abstract
The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
Collapse
Affiliation(s)
- Tommy Tsan-Yuk Lam
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China.,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ya-Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hua-Chen Zhu
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China.,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Yi-Gang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yong-Xia Shi
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Wen-Juan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Wei Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, P. R. China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Kui Zheng
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Guang-Qian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xin Qiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - William Yiu-Man Cheung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Lian-Feng Li
- School of Information and Management, Guangxi Medical University, Nanning, P. R. China
| | - Fang-Fang Sun
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ji-Cheng Huang
- Guangzhou Customs Technology Center, Guangzhou, P. R. China
| | - Gabriel M Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, P. R. China. .,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, P. R. China.
| | - Yi Guan
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China. .,State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, P. R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
| |
Collapse
|
21
|
Abstract
Since the identification of the first patients with Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, over 1,600 cases have been reported as of February 2016. Most cases have occurred in Saudi Arabia or in other countries on or near the Arabian Peninsula, but travel-associated cases have also been seen in countries outside the Arabian Peninsula. MERS-CoV causes a severe respiratory illness in many patients, with a case fatality rate as high as 40%, although when contacts are investigated, a significant proportion of patients are asymptomatic or only have mild symptoms. At this time, no vaccines or treatments are available. Epidemiological and other data suggest that the source of most primary cases is exposure to camels. Person-to-person transmission occurs in household and health care settings, although sustained and efficient person-to-person transmission has not been observed. Strict adherence to infection control recommendations has been associated with control of previous outbreaks. Vigilance is needed because genomic changes in MERS-CoV could result in increased transmissibility, similar to what was seen in severe acute respiratory syndrome coronavirus (SARS-CoV).
Collapse
|
22
|
Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. J Virol 2014; 89:3076-92. [PMID: 25552712 DOI: 10.1128/jvi.02420-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED We discovered a novel Betacoronavirus lineage A coronavirus, China Rattus coronavirus (ChRCoV) HKU24, from Norway rats in China. ChRCoV HKU24 occupied a deep branch at the root of members of Betacoronavirus 1, being distinct from murine coronavirus and human coronavirus HKU1. Its unique putative cleavage sites between nonstructural proteins 1 and 2 and in the spike (S) protein and low sequence identities to other lineage A betacoronaviruses (βCoVs) in conserved replicase domains support ChRCoV HKU24 as a separate species. ChRCoV HKU24 possessed genome features that resemble those of both Betacoronavirus 1 and murine coronavirus, being closer to Betacoronavirus 1 in most predicted proteins but closer to murine coronavirus by G+C content, the presence of a single nonstructural protein (NS4), and an absent transcription regulatory sequence for the envelope (E) protein. Its N-terminal domain (NTD) demonstrated higher sequence identity to the bovine coronavirus (BCoV) NTD than to the mouse hepatitis virus (MHV) NTD, with 3 of 4 critical sugar-binding residues in BCoV and 2 of 14 contact residues at the MHV NTD/murine CEACAM1a interface being conserved. Molecular clock analysis dated the time of the most recent common ancestor of ChRCoV HKU24, Betacoronavirus 1, and rabbit coronavirus HKU14 to about the year 1400. Cross-reactivities between other lineage A and B βCoVs and ChRCoV HKU24 nucleocapsid but not spike polypeptide were demonstrated. Using the spike polypeptide-based Western blot assay, we showed that only Norway rats and two oriental house rats from Guangzhou, China, were infected by ChRCoV HKU24. Other rats, including Norway rats from Hong Kong, possessed antibodies only against N protein and not against the spike polypeptide, suggesting infection by βCoVs different from ChRCoV HKU24. ChRCoV HKU24 may represent the murine origin of Betacoronavirus 1, and rodents are likely an important reservoir for ancestors of lineage A βCoVs. IMPORTANCE While bats and birds are hosts for ancestors of most coronaviruses (CoVs), lineage A βCoVs have never been found in these animals and the origin of Betacoronavirus lineage A remains obscure. We discovered a novel lineage A βCoV, China Rattus coronavirus HKU24 (ChRCoV HKU24), from Norway rats in China with a high seroprevalence. The unique genome features and phylogenetic analysis supported the suggestion that ChRCoV HKU24 represents a novel CoV species, occupying a deep branch at the root of members of Betacoronavirus 1 and being distinct from murine coronavirus. Nevertheless, ChRCoV HKU24 possessed genome characteristics that resemble those of both Betacoronavirus 1 and murine coronavirus. Our data suggest that ChRCoV HKU24 represents the murine origin of Betacoronavirus 1, with interspecies transmission from rodents to other mammals having occurred centuries ago, before the emergence of human coronavirus (HCoV) OC43 in the late 1800s. Rodents are likely an important reservoir for ancestors of lineage A βCoVs.
Collapse
|
23
|
Wang SI, Yaung CL, Liao HE, Chiang HC. Media: A Double-Edged Sword in the Disease Control. Content Analysis of News Report on SARS Event in Taiwan. Health (London) 2014. [DOI: 10.4236/health.2014.614208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Y Waye M, W Law P, Wong CH, C Au T, Chuck CP, Kong SK, S Chan P, To KF, I Lo A, W Chan J, Suen YK, Edwin Chan HY, Fung KP, Y Sung J, Lo YM, W Tsui S. The 3a Protein of SARS-coronavirus Induces Apoptosis in Vero E6 Cells. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2005:7482-5. [PMID: 17282011 DOI: 10.1109/iembs.2005.1616242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An outbreak of severe acute respiratory syndrome (SARS) occurred in China and the first case emerged in mid November 2002. The etiologic agent of this disease was found to be a previously unknown coronavirus, SARS-CoV. The detailed pathology of SARS-CoV infection and the host response to the viral infection are still not known. The 3a gene encodes a non-structural viral protein which is predicted to be a transmembrane protein. In this study, we showed that the 3a protein was localized to the endoplasmic reticulum (ER) in 3a-transfected monkey kidney Vero E6 cells. In vitro experiments of chromatin condensation and DNA fragmentation suggest that the 3a protein may trigger apoptosis. Our data show that over-expression of a single SARS-CoV protein can induce apoptosis in vitro. Thus GFP-3a fusion protein could also be used as a biosensor for monitoring the cytopathic features of SARS infection, e.g. lymphopenia, in animal model systems, similar to nucleocapsid and 7a proteins.
Collapse
Affiliation(s)
- Mary Y Waye
- Department of Biochemistry, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol 2012; 86:11906-18. [PMID: 22933277 DOI: 10.1128/jvi.01305-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault's rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault's rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ~40% amino acid divergence after recent interspecies transmission was even greater than the ~20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of different suborders.
Collapse
|
26
|
Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Boron containing compounds as protease inhibitors. Chem Rev 2012; 112:4156-220. [PMID: 22519511 DOI: 10.1021/cr608202m] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reem Smoum
- The School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| | | | | | | |
Collapse
|
27
|
Sanjuán R, Lázaro E, Vignuzzi M. Biomedical implications of viral mutation and evolution. Future Virol 2012. [DOI: 10.2217/fvl.12.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mutation rates vary hugely across viruses and strongly determine their evolution. In addition, viral mutation and evolution are biomedically relevant because they can determine pathogenesis, vaccine efficacy and antiviral resistance. We review experimental methods for estimating viral mutation rates and how these estimates vary across viral groups, paying special attention to the more general trends. Recent advances positing a direct association between viral mutation rates and virulence, or the use of high-fidelity variants as attenuated vaccines, are also discussed. Finally, we review the implications of viral mutation and evolution for the design of rational antiviral therapies and for efficient epidemiological surveillance.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Ester Lázaro
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations & Pathogenesis Laboratory, Paris, France
| |
Collapse
|
28
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
29
|
Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 2011; 8:270-9. [PMID: 21593585 PMCID: PMC3127101 DOI: 10.4161/rna.8.2.15013] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/18/2022] Open
Abstract
In order to survive and propagate, RNA viruses must achieve a balance between the capacity for adaptation to new environmental conditions or host cells with the need to maintain an intact and replication competent genome. Several virus families in the order Nidovirales, such as the coronaviruses (CoVs) must achieve these objectives with the largest and most complex replicating RNA genomes known, up to 32 kb of positive-sense RNA. The CoVs encode sixteen nonstructural proteins (nsp 1-16) with known or predicted RNA synthesis and modification activities, and it has been proposed that they are also responsible for the evolution of large genomes. The CoVs, including murine hepatitis virus (MHV) and SARS-CoV, encode a 3'-to-5' exoribonuclease activity (ExoN) in nsp14. Genetic inactivation of ExoN activity in engineered SARS-CoV and MHV genomes by alanine substitution at conserved DE-D-D active site residues results in viable mutants that demonstrate 15- to 20-fold increases in mutation rates, up to 18 times greater than those tolerated for fidelity mutants of other RNA viruses. Thus nsp14-ExoN is essential for replication fidelity, and likely serves either as a direct mediator or regulator of a more complex RNA proofreading machine, a process previously unprecedented in RNA virus biology. Elucidation of the mechanisms of nsp14-mediated proofreading will have major implications for our understanding of the evolution of RNA viruses, and also will provide a robust model to investigate the balance between fidelity, diversity and pathogenesis. The discovery of a protein distinct from a viral RdRp that regulates replication fidelity also raises the possibility that RNA genome replication fidelity may be adaptable to differing replication environments and selective pressures, rather than being a fixed determinant.
Collapse
Affiliation(s)
- Mark R Denison
- Department of Pediatrics and Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
31
|
Tsai MT, Sen PK. Entropy based constrained inference for some HDLSS genomic models: UI tests in a Chen–Stein perspective. J MULTIVARIATE ANAL 2010. [DOI: 10.1016/j.jmva.2010.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Lam TTY, Hon CC, Tang JW. Use of phylogenetics in the molecular epidemiology and evolutionary studies of viral infections. Crit Rev Clin Lab Sci 2010; 47:5-49. [PMID: 20367503 DOI: 10.3109/10408361003633318] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since DNA sequencing techniques first became available almost 30 years ago, the amount of nucleic acid sequence data has increased enormously. Phylogenetics, which is widely applied to compare and analyze such data, is particularly useful for the analysis of genes from rapidly evolving viruses. It has been used extensively to describe the molecular epidemiology and transmission of the human immunodeficiency virus (HIV), the origins and subsequent evolution of the severe acute respiratory syndrome (SARS)-associated coronavirus (SCoV), and, more recently, the evolving epidemiology of avian influenza as well as seasonal and pandemic human influenza viruses. Recent advances in phylogenetic methods can infer more in-depth information about the patterns of virus emergence, adding to the conventional approaches in viral epidemiology. Examples of this information include estimations (with confidence limits) of the actual time of the origin of a new viral strain or its emergence in a new species, viral recombination and reassortment events, the rate of population size change in a viral epidemic, and how the virus spreads and evolves within a specific population and geographical region. Such sequence-derived information obtained from the phylogenetic tree can assist in the design and implementation of public health and therapeutic interventions. However, application of many of these advanced phylogenetic methods are currently limited to specialized phylogeneticists and statisticians, mainly because of their mathematical basis and their dependence on the use of a large number of computer programs. This review attempts to bridge this gap by presenting conceptual, technical, and practical aspects of applying phylogenetic methods in studies of influenza, HIV, and SCoV. It aims to provide, with minimal mathematics and statistics, a practical overview of how phylogenetic methods can be incorporated into virological studies by clinical and laboratory specialists.
Collapse
Affiliation(s)
- Tommy Tsan-Yuk Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | |
Collapse
|
33
|
Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL, Baric RS, Stockwell TB, Spiro DJ, Denison MR. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 2010; 6:e1000896. [PMID: 20463816 PMCID: PMC2865531 DOI: 10.1371/journal.ppat.1000896] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/05/2010] [Indexed: 01/30/2023] Open
Abstract
Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Lance D. Eckerle
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle M. Becker
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rebecca A. Halpin
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kelvin Li
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eli Venter
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Xiaotao Lu
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sana Scherbakova
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rachel L. Graham
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - David J. Spiro
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Mark R. Denison
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
34
|
Yang Z, Wang S, Li Q, Li Y, Wei M, Gao H, Donovan C, Wang PP. Determining SARS sub-clinical infection: a longitudinal seroepidemiological study in recovered SARS patients and controls after an outbreak in a general hospital. ACTA ACUST UNITED AC 2010; 41:507-10. [PMID: 19396666 DOI: 10.1080/00365540902919384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A cohort of 67 confirmed SARS patients were prospectively followed for 16 months and were compared with a control population. Serum samples taken at various times were tested for IgG and IgM; dynamic serological changes in these antibodies were described. The positive responses of IgM and IgG antibodies in sera against SARS virus from the first week to the sixth week after onset of the illness in patients with SARS were measured. The ELISA test of IgG antibody was negative in 200 community controls. The positive rate in the SARS high-risk population was 0.61% tested by ELISA and 0.21% by IFA. The high-risk population in this study was defined as those who provided health care and other services to SARS patients during the outbreak. IgG antibody in convalescent serum of patients with SARS revealed an increasing trend, peaking at the 22nd week after onset of illness followed by a slow decline. IgM appeared earlier than IgG and can be better used for early detection. IgG remained at a high level for a much longer period, serving as a good indicator for follow-up and for assessing past exposure. Our results also suggest that sub-clinical infection, if it exists, is very rare.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Science Research, Medical College of Chinese People's Armed Police Force, Tianjin
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 2009; 84:3134-46. [PMID: 19906932 DOI: 10.1128/jvi.01394-09] [Citation(s) in RCA: 501] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the past 30 years, several cross-species transmission events, as well as changes in virus tropism, have mediated significant animal and human diseases. Most notable is severe acute respiratory syndrome (SARS), a lower respiratory tract disease of humans that was first reported in late 2002 in Guangdong Province, China. The disease, which quickly spread worldwide over a period of 4 months spanning late 2002 and early 2003, infected over 8,000 individuals and killed nearly 800 before it was successfully contained by aggressive public health intervention strategies. A coronavirus (SARS-CoV) was identified as the etiological agent of SARS, and initial assessments determined that the virus crossed to human hosts from zoonotic reservoirs, including bats, Himalayan palm civets (Paguma larvata), and raccoon dogs (Nyctereutes procyonoides), sold in exotic animal markets in Guangdong Province. In this review, we discuss the molecular mechanisms that govern coronavirus cross-species transmission both in vitro and in vivo, using the emergence of SARS-CoV as a model. We pay particular attention to how changes in the Spike attachment protein, both within and outside of the receptor binding domain, mediate the emergence of coronaviruses in new host populations.
Collapse
|
36
|
Yip CW, Hon CC, Shi M, Lam TTY, Chow KYC, Zeng F, Leung FCC. Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses. INFECTION GENETICS AND EVOLUTION 2009; 9:1185-96. [PMID: 19800030 PMCID: PMC7106296 DOI: 10.1016/j.meegid.2009.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 08/09/2009] [Accepted: 09/24/2009] [Indexed: 11/24/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) is a respiratory disease caused by a zoonotic coronavirus (CoV) named SARS-CoV (SCoV), which rapidly swept the globe after its emergence in rural China during late 2002. The origins of SCoV have been mysterious and controversial, until the recent discovery of SARS-like CoV (SLCoV) in bats and the proposal of bats as the natural reservior of the Coronaviridae family. In this article, we focused on discussing how phylogenetics contributed to our understanding towards the emergence and transmission of SCoV. We first reviewed the epidemiology of SCoV from a phylogenetic perspective and discussed the controversies over its phylogenetic origins. Then, we summarized the phylogenetic findings in relation to its zoonotic origins and the proposed inter-species viral transmission events. Finally, we also discussed how the discoveries of SCoV and SLCoV expanded our knowledge on the evolution of the Coronaviridae family as well as its implications on the possible future re-emergence of SCoV.
Collapse
Affiliation(s)
- Chi Wai Yip
- The School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
In this work, severe acute respiratory syndrome associated coronavirus (SARS-CoV) genome BJ202 (AY864806) was completely sequenced. The genome was directly accessed from the stool sample of a patient in Beijing. Comparative genomics methods were used to analyze the sequence variations of 116 SARS-CoV genomes (including BJ202) available in the NCBI Gen-Bank. With the genome sequence of GZ02 as the reference, there were 41 polymorphic sites identified in BJ202 and a total of 278 polymorphic sites present in at least two of the 116 genomes. The distribution of the polymorphic sites was biased over the whole genome. Nearly half of the variations (50.4%, 140/278) clustered in the one third of the whole genome at the 3′ end (19.0 kb-29.7 kb). Regions encoding Orf10–11, Orf3/4, E, M and S protein had the highest mutation rates. A total of 15 PCR products (about 6.0 kb of the genome) including 11 fragments containing 12 known polymorphic sites and 4 fragments without identified polymorphic sites were cloned and sequenced. Results showed that 3 unique polymorphic sites of BJ202 (positions 13 804, 15 031 and 20 792) along with 3 other polymorphic sites (26 428, 26 477 and 27 243) all contained 2 kinds of nucleotides. It is interesting to find that position 18379 which has not been identified to be polymorphic in any of the other 115 published SARS-CoV genomes is actually a polymorphic site. The nucleotide composition of this site is A (8) to G (6). Among 116 SARS-CoV genomes, 18 types of deletions and 2 insertions were identified. Most of them were related to a 300 bp region (27 700–28 000) which encodes parts of the putative ORF9 and ORF10–11. A phylogenetic tree illustrating the divergence of whole BJ202 genome from 115 other completely sequenced SARS-CoVs was also constructed. BJ202 was phylogeneticly closer to BJ01 and LLJ-2004.
Collapse
Affiliation(s)
- Lei Shang
- James D Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Fang HJ, Chen YZ, Li MS, Wu MC, Chang CL, Chang CK, Hsu YL, Huang TH, Chen HM, Tsong TY, Hu CK. Thermostability of the N-terminal RNA-binding domain of the SARS-CoV nucleocapsid protein: experiments and numerical simulations. Biophys J 2009; 96:1892-901. [PMID: 19254548 PMCID: PMC2717332 DOI: 10.1016/j.bpj.2008.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 10/15/2008] [Indexed: 10/25/2022] Open
Abstract
Differential scanning calorimetry, circular dichroism spectroscopy, nuclear magnetic resonance spectroscopy, and numerical simulations were used to study the thermostability of the N-terminal RNA-binding domain (RBD) of the SARS-CoV nucleocapsid protein. The transition temperature of the RBD in a mixing buffer, composed of glycine, sodium acetate, and sodium phosphate with 100 mM sodium chloride, at pH 6.8, determined by differential scanning calorimetry and circular dichroism, is 48.74 degrees C. Experimental results showed that the thermal-induced unfolding-folding transition of the RBD follows a two-state model with a reversibility >90%. Using a simple Gō-like model and Langevin dynamics we have shown that, in agreement with our experiments, the folding of the RBD is two-state. Theoretical estimates of thermodynamic quantities are in reasonable agreement with the experiments. Folding and thermal unfolding pathways of the RBD also were experimentally and numerically studied in detail. It was shown that the strand beta(1) from the N-terminal folds last and unfolds first, while the remaining beta-strands fold/unfold cooperatively.
Collapse
Affiliation(s)
- Huey-Jen Fang
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu CH, Yeh SH, Tsay YG, Shieh YH, Kao CL, Chen YS, Wang SH, Kuo TJ, Chen DS, Chen PJ. Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. J Biol Chem 2008; 284:5229-39. [PMID: 19106108 PMCID: PMC8011290 DOI: 10.1074/jbc.m805747200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronavirus (CoV) nucleocapsid (N) protein is a highly phosphorylated protein required for viral replication, but whether its phosphorylation and the related kinases are involved in the viral life cycle is unknown. We found the severe acute respiratory syndrome CoV N protein to be an appropriate system to address this issue. Using high resolution PAGE analysis, this protein could be separated into phosphorylated and unphosphorylated isoforms. Mass spectrometric analysis and deletion mapping showed that the major phosphorylation sites were located at the central serine-arginine (SR)-rich motif that contains several glycogen synthase kinase (GSK)-3 substrate consensus sequences. GSK-3-specific inhibitor treatment dephosphorylated the N protein, and this could be recovered by the constitutively active GSK-3 kinase. Immunoprecipitation brought down both N and GSK-3 proteins in the same complex, and the N protein could be phosphorylated directly at its SR-rich motif by GSK-3 using an in vitro kinase assay. Mutation of the two priming sites critical for GSK-3 phosphorylation in the SR-rich motif abolished N protein phosphorylation. Finally, GSK-3 inhibitor was found to reduce N phosphorylation in the severe acute respiratory syndrome CoV-infected VeroE6 cells and decrease the viral titer and cytopathic effects. The effect of GSK-3 inhibitor was reproduced in another coronavirus, the neurotropic JHM strain of mouse hepatitis virus. Our results indicate that GSK-3 is critical for CoV N protein phosphorylation and suggest that it plays a role in regulating the viral life cycle. This study, thus, provides new avenues to further investigate the specific role of N protein phosphorylation in CoV replication.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Understanding the evolutionary history of human viruses, along with the factors that have shaped their spatial distributions, is one of the most active areas of study in the field of microbial evolution. I give an overview of our current knowledge of the genetic diversity of human viruses using comparative studies of viral populations, particularly those with RNA genomes, to highlight important generalities in the patterns and processes of viral evolution. Special emphasis is given to the major dichotomy between RNA and DNA viruses in their epidemiological dynamics and the different types of phylogeographic pattern exhibited by human viruses. I also consider a central paradox in studies of viral evolution: Although epidemiological theory predicts that RNA viruses have ancestries dating back millennia, with major ecological transitions facilitating their emergence, the genetic diversity in currently circulating viral populations has a far more recent ancestry, indicative of continual lineage turnover.
Collapse
Affiliation(s)
- Edward C Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
41
|
Chen YC, Chang SC, Tsai KS, Lin FY. Certainties and uncertainties facing emerging respiratory infectious diseases: lessons from SARS. J Formos Med Assoc 2008; 107:432-42. [PMID: 18583213 PMCID: PMC7135137 DOI: 10.1016/s0929-6646(08)60150-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/24/2008] [Accepted: 03/31/2008] [Indexed: 01/13/2023] Open
Abstract
Every emerging infectious disease is a challenge to the whole of mankind. There are uncertainties regarding whether there will be a pandemic, if it will be caused by the highly pathogenic H5N1 influenza virus, when or where it will occur, how imminent or how severe it will be. No one can accurately predict if and when a given virus will become a pandemic virus. Pandemic prevention strategies must be based on preparing for the unexpected and being capable of reacting accordingly. There is growing evidence that infection control measures were helpful in containment of severe acute respiratory syndrome (SARS) as well as avian influenza. Compliance of standard infection control measures, intensive promotion of hand and respiratory hygiene, vigilance and triage of patients with febrile illness, and specific infection control measures are key components to contain a highly contagious disease in hospital and to protect healthcare workers, patients and visitors. The importance of standard precautions for any patient and cleaning and disinfection for the healthcare environment cannot be overemphasized. SARS illustrated dramatically the potential of air travel and globalization for the dissemination of an emerging infectious disease. To prevent the potential serious consequences of pandemic influenza, timely implementation of pharmaceutical and non-pharmaceutical interventions locally within the outbreak area is the key to minimizing global spread. Herein, we relate our perspective on useful lessons derived from a review of the SARS epidemic that may be useful to physicians, especially when looking ahead to the next epidemic.
Collapse
Affiliation(s)
- Yee-Chun Chen
- Department of Internal Medicine, and Center for Infection Control, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan.
| | | | | | | |
Collapse
|
42
|
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20:660-94. [PMID: 17934078 DOI: 10.1128/cmr.00023-07] [Citation(s) in RCA: 681] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections.
Collapse
|
43
|
Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol 2007; 81:12135-44. [PMID: 17804504 PMCID: PMC2169014 DOI: 10.1128/jvi.01296-07] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Replication fidelity of RNA virus genomes is constrained by the opposing necessities of generating sufficient diversity for adaptation and maintaining genetic stability, but it is unclear how the largest viral RNA genomes have evolved and are maintained under these constraints. A coronavirus (CoV) nonstructural protein, nsp14, contains conserved active-site motifs of cellular exonucleases, including DNA proofreading enzymes, and the severe acute respiratory syndrome CoV (SARS-CoV) nsp14 has 3'-to-5' exoribonuclease (ExoN) activity in vitro. Here, we show that nsp14 ExoN remarkably increases replication fidelity of the CoV murine hepatitis virus (MHV). Replacement of conserved MHV ExoN active-site residues with alanines resulted in viable mutant viruses with growth and RNA synthesis defects that during passage accumulated 15-fold more mutations than wild-type virus without changes in growth fitness. The estimated mutation rate for ExoN mutants was similar to that reported for other RNA viruses, whereas that of wild-type MHV was less than the established rates for RNA viruses in general, suggesting that CoVs with intact ExoN replicate with unusually high fidelity. Our results indicate that nsp14 ExoN plays a critical role in prevention or repair of nucleotide incorporation errors during genome replication. The established mutants are unique tools to test the hypothesis that high replication fidelity is required for the evolution and stability of large RNA genomes.
Collapse
Affiliation(s)
- Lance D Eckerle
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-2581, USA
| | | | | | | | | |
Collapse
|
44
|
Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res 2007; 133:74-87. [PMID: 17451830 PMCID: PMC7114516 DOI: 10.1016/j.virusres.2007.03.012] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 03/04/2007] [Accepted: 03/15/2007] [Indexed: 12/02/2022]
Abstract
In this review, we summarize the researches on animal reservoirs of the SARS coronavirus (SARS-CoV). Masked palm civets were suspected as the origin of the SARS outbreak in 2003 and was confirmed as the direct origin of SARS cases with mild symptom in 2004. Sequence analysis of the SARS-CoV-like virus in masked palm civets indicated that they were highly homologous to human SARS-CoV with nt identity over 99.6%, indicating the virus has not been circulating in the population of masked palm civets for a very long time. Alignment of 10 complete viral genome sequences from masked palm civets with those of human SARS-CoVs revealed 26 conserved single-nucleotide variations (SNVs) in the viruses from masked palm civets. These conserved SNVs were gradually lost from the genomes of viruses isolated from the early phase to late phase human patients of the 2003 SARS epidemic. In 2005, horseshoe bats were identified as the natural reservoir of a group of coronaviruses that are distantly related to SARS-CoV. The genome sequences of bat SARS-like coronavirus had about 88–92% nt identity with that of the SARS-CoV. The prevalence of antibodies and viral RNA in different bat species and the characteristics of the bat SARS-like coronavirus were elucidated. Apart from masked palm civets and bats, 29 other animal species had been tested for the SARS-CoV, and the results are summarized in this paper.
Collapse
Affiliation(s)
- Zhengli Shi
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | |
Collapse
|
45
|
Tomitaka Y, Ohshima K. A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an 'emergent' lineage in Japan. Mol Ecol 2007; 15:4437-57. [PMID: 17107475 PMCID: PMC7201873 DOI: 10.1111/j.1365-294x.2006.03094.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genetic structure of populations of Turnip mosaic virus (TuMV) in East Asia was assessed by making host range and gene sequence comparisons of 118 isolates utilizing a population genetic approach. Most, but not all, isolates collected from Brassica plants in China infected only Brassica plants, whereas those from Japan infected both Brassica and Raphanus (BR) plants. Analyses of the positions of recombination sites in five regions of the genomes (one third of the full sequence) of the many recombinant isolates were fully congruent with the results of phylogenetic analysis, and at least one recombination type pattern was shared between Chinese and Japanese populations. One lineage of nonrecombinant isolates from the basal‐BR lineage was found in 2000 in Kyushu, Japan but none in China, and have since been found over the whole island. The sudden expansion of this basal‐BR population was strongly supported by calculations showing the deviations from the neutral equilibrium model for the individual geographical lineages with overall lack of nucleotide diversity, and by analysis of mismatch distribution. Our study shows that the recent Chinese and Japanese TuMV isolates are part of the same population but are discrete lineages.
Collapse
Affiliation(s)
- Yasuhiro Tomitaka
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | | |
Collapse
|
46
|
Abstract
Despite the wealth of data describing the ecological factors that underpin viral emergence, little is known about the evolutionary processes that allow viruses to jump species barriers and establish productive infections in new hosts. Understanding the evolutionary basis to virus emergence is therefore a key research goal and many of the debates in this area can be considered within the rigorous theoretical framework established by evolutionary genetics. In particular, the respective roles played by natural selection and genetic drift in shaping genetic diversity are also of fundamental importance for understanding the nature of viral emergence. Herein, we discuss whether there are evolutionary rules to viral emergence, and especially whether certain types of virus, or those that infect a particular type of host species, are more likely to emerge than others. We stress the complex interplay between rates of viral evolution and the ability to recognize cell receptors from phylogenetically divergent host species. We also emphasize the current lack of convincing data as to whether viral emergence requires adaptation to the new host species during the early stages of infection, or whether it is largely a chance process involving the transmission of a viral strain with the necessary genetic characteristics.
Collapse
Affiliation(s)
- James E. Childs
- Department of Epidemiology and Public Health and Center for Eco-Epidemiolog, Yale University School of Medicine, 60 College St, 208034, 06520-8034 New Haven, CT USA
| | - John S. Mackenzie
- Centre for Emerging Infectious Diseases, Australian Biosecurity Cooperative Research Centre, Curtin University of Technology, U1987, 6845 Perth, WA Australia
| | - Jürgen A. Richt
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center USDA, 2300 Dayton Ave Ames, 50010 IA USA
| |
Collapse
|
47
|
Abstract
Severe acute respiratory syndrome (SARS) is caused by a coronavirus (CoV), SARSCoV. SARS-CoV belongs to the family Coronaviridae, which are enveloped RNA viruses in the order Nidovirales. Global research efforts are continuing to increase the understanding of the virus, the pathogenesis of the disease it causes (SARS), and the “heterogeneity of individual infectiousness” as well as shedding light on how to prepare for other emerging viral diseases. Promising drugs and vaccines have been identified. The milestones achieved have resulted from a truly international effort. Molecular studies dissected the adaptation of this virus as it jumped from an intermediary animal, the civet, to humans, thus providing valuable insights into processes of molecular emergence.
Collapse
Affiliation(s)
- Tommy R Tong
- Department of Pathology, Princess Margaret Hospital, Laichikok, Kowloon, Hong Kong, China
| |
Collapse
|
48
|
Tang JW, Cheung JL, Chu IM, Ip M, Hui M, Peiris M, Chan PK. Characterizing 56 complete SARS-CoV S-gene sequences from Hong Kong. J Clin Virol 2006; 38:19-26. [PMID: 17112780 PMCID: PMC7108452 DOI: 10.1016/j.jcv.2006.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/18/2006] [Accepted: 10/06/2006] [Indexed: 02/07/2023]
Abstract
Background The spike glycoprotein (S) gene of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) has been useful in analyzing the molecular epidemiology of the 2003 SARS outbreaks. Objectives To characterize complete SARS-CoV S-gene sequences from Hong Kong. Study design Fifty-six SARS-CoV S-gene sequences, obtained from patients who presented with SARS to the Prince of Wales Hospital during March–May 2003, were analysed using a maximum likelihood (ML) approach, together with 138 other (both human and animal) S-gene sequences downloaded from GenBank. Results The maximum-likelihood (ML) trees showed little evolution occurring within these 56 sequences. Analysis with the other sequences, showed three distinct SARS clusters, closely correlated to previously defined early, middle and late phases of the 2003 international SARS outbreaks. In addition, two new single nucleotide variations (SNVs), T21615A and T21901A, were discovered, not previously reported elsewhere. Conclusions The ML approach to the reconstruction of tree phylogenies is known to be superior to the more popular, less computationally and time-demanding neighbour-joining (NJ) approach. The ML analysis in this study confirms the previously reported SARS epidemiology analysed mostly using the NJ approach. The two new SNVs reported here are most likely due to the tissue-culture passaging of the clinical samples.
Collapse
Affiliation(s)
- Julian W. Tang
- Department of Microbiology, School of Public Health, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Jo L.K. Cheung
- Department of Microbiology, School of Public Health, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Ida M.T. Chu
- Department of Microbiology, School of Public Health, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, School of Public Health, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Mamie Hui
- Department of Microbiology, School of Public Health, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Malik Peiris
- Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Paul K.S. Chan
- Department of Microbiology, School of Public Health, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, School of Public Health, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Corresponding author at: Department of Microbiology, School of Public Health, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China. Tel.: +852 2632 3333; fax: +852 2647 3227.
| |
Collapse
|
49
|
Zhang CY, Wei JF, He SH. Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups. BMC Microbiol 2006; 6:88. [PMID: 17020602 PMCID: PMC1609170 DOI: 10.1186/1471-2180-6-88] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Accepted: 10/04/2006] [Indexed: 12/28/2022] Open
Abstract
Background It is believed that animal-to-human transmission of severe acute respiratory syndrome (SARS) coronavirus (CoV) is the cause of the SARS outbreak worldwide. The spike (S) protein is one of the best characterized proteins of SARS-CoV, which plays a key role in SARS-CoV overcoming species barrier and accomplishing interspecies transmission from animals to humans, suggesting that it may be the major target of selective pressure. However, the process of adaptive evolution of S protein and the exact positively selected sites associated with this process remain unknown. Results By investigating the adaptive evolution of S protein, we identified twelve amino acid sites (75, 239, 244, 311, 479, 609, 613, 743, 765, 778, 1148, and 1163) in the S protein under positive selective pressure. Based on phylogenetic tree and epidemiological investigation, SARS outbreak was divided into three epidemic groups: 02–04 interspecies, 03-early-mid, and 03-late epidemic groups in the present study. Positive selection was detected in the first two groups, which represent the course of SARS-CoV interspecies transmission and of viral adaptation to human host, respectively. In contrast, purifying selection was detected in 03-late group. These indicate that S protein experiences variable positive selective pressures before reaching stabilization. A total of 25 sites in 02–04 interspecies epidemic group and 16 sites in 03-early-mid epidemic group were identified under positive selection. The identified sites were different between these two groups except for site 239, which suggests that positively selected sites are changeable between groups. Moreover, it was showed that a larger proportion (24%) of positively selected sites was located in receptor-binding domain (RBD) than in heptad repeat (HR)1-HR2 region in 02–04 interspecies epidemic group (p = 0.0208), and a greater percentage (25%) of these sites occurred in HR1–HR2 region than in RBD in 03-early-mid epidemic group (p = 0.0721). These suggest that functionally different domains of S protein may not experience same positive selection in each epidemic group. In addition, three specific replacements (F360S, T487S and L665S) were only found between 03-human SARS-CoVs and strains from 02–04 interspecies epidemic group, which reveals that selective sweep may also force the evolution of S genes before the jump of SARS-CoVs into human hosts. Since certain residues at these positively selected sites are associated with receptor recognition and/or membrane fusion, they are likely to be the crucial residues for animal-to-human transmission of SARS-CoVs, and subsequent adaptation to human hosts. Conclusion The variation of positive selective pressures and positively selected sites are likely to contribute to the adaptive evolution of S protein from animals to humans.
Collapse
Affiliation(s)
- Chi-Yu Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medical Technology, Zhenjiang, Jiangsu 212001, China
| | - Ji-Fu Wei
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210026, China
| | - Shao-Heng He
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210026, China
| |
Collapse
|
50
|
Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH, Yu J. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci U S A 2006; 103:9530-5. [PMID: 16772384 PMCID: PMC1480441 DOI: 10.1073/pnas.0510232103] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, we report a serum-free culture system for primary neonatal pulmonary cells that can support the growth of octamer-binding transcription factor 4+ (Oct-4+) epithelial colonies with a surrounding mesenchymal stroma. In addition to Oct-4, these cells also express other stem cell markers such as stage-specific embryonic antigen 1 (SSEA-1), stem cell antigen 1 (Sca-1), and Clara cell secretion protein (CCSP) but not c-Kit, CD34, and p63, indicating that they represent a subpopulation of Clara cells that have been implicated as lung stem/progenitor cells in lung injury models. These colony cells can be kept for weeks in primary cultures and undergo terminal differentiation to alveolar type-2- and type-1-like pneumocytes sequentially when removed from the stroma. In addition, we have demonstrated the presence of Oct-4+ long-term BrdU label-retaining cells at the bronchoalveolar junction of neonatal lung, providing a link between the Oct-4+ cells in vivo and in vitro and strengthening their identity as putative neonatal lung stem/progenitor cells. Lastly, these Oct-4+ epithelial colony cells, which also express angiotensin-converting enzyme 2, are the target cells for severe acute respiratory syndrome coronavirus infection in primary cultures and support active virus replication leading to their own destruction. These observations imply the possible involvement of lung stem/progenitor cells, in addition to pneumocytes, in severe acute respiratory syndrome coronavirus infection, accounting for the continued deterioration of lung tissues and apparent loss of capacity for lung repair.
Collapse
Affiliation(s)
- Thai-Yen Ling
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Der Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 114, Taiwan; and
| | - Chung-Leung Li
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Alice L. Yu
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
| | - Yen-Hua Huang
- Department of Biochemistry, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Jung Wu
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
| | - You-Chin Lin
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
| | - Shu-Hwa Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - John Yu
- *Stem Cell Program, Cellular and Molecular Medicine Division, Genomics Research Center, and
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|