1
|
Gao M, Wu X, Jiao X, Hu Y, Wang Y, Zhuo N, Dong F, Wang Y, Wang F, Cao Y, Liu C, Li J, Shen L, Zhang H, Lu Z. Prognostic and predictive value of angiogenesis-associated serum proteins for immunotherapy in esophageal cancer. J Immunother Cancer 2024; 12:e006616. [PMID: 38302415 PMCID: PMC10836376 DOI: 10.1136/jitc-2022-006616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have significantly improved patient survival in multiple cancers. However, therapy response in esophageal cancer is limited to subgroups of patients and clinically useful predictive biomarkers are lacking. METHODS We collected a series of plasma samples from 91 patients with esophageal cancer before and after ICI treatment. The Olink Immuno-Oncology panel (92 proteins) with proximity extension assays was used to detect the dynamic changes in plasma and potential biomarkers associated with treatment outcomes. We screened all survival-related proteins and established a risk score model to better predict the prognosis and treatment response in patients with esophageal cancer immunotherapy. RESULTS We found that 47 out of 92 quantified proteins had significant changes in plasma levels during ICI treatment (p<0.050), and these changed proteins were involved in immune-related reactions, such as intercellular adhesion and T-cell activation. Notably, the baseline levels of three angiogenesis-related proteins (IL-8, TIE2, and HGF) were significantly associated with the survival outcomes of patients treated with ICIs (p<0.050). According to these prognostic proteins, we established an angiogenesis-related risk score, which could be a superior biomarker for ICI response prediction. In addition, antiangiogenic therapy combined with ICIs significantly improved overall survival compared with ICI monotherapy (p=0.044). CONCLUSIONS An angiogenesis-related risk score based on three proteins (IL-8, TIE2, and HGF) could predict ICI response and prognosis in patients with esophageal cancer, which warrants verification in the future. Our study highlights the potential application of combining ICIs and antiangiogenic therapy and supports Olink plasma protein sequencing as a liquid biopsy method for biomarker exploration.
Collapse
Affiliation(s)
- Mengting Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xueying Wu
- Biomedical Innovation Center, Beijing Shijitan Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital Capital Medical University, Beijing, China
| | - Xi Jiao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ying Hu
- Biomedical Innovation Center, Beijing Shijitan Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital Capital Medical University, Beijing, China
| | - Yanni Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Na Zhuo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fengxiao Dong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yujiao Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fengyuan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanshuo Cao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chang Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Henghui Zhang
- Biomedical Innovation Center, Beijing Shijitan Hospital Capital Medical University, Beijing, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunocellular therapy, Beijing, China
| | - Zhihao Lu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
2
|
Wang X, Wu DH, Senyo SE. mRNA therapy for myocardial infarction: A review of targets and delivery vehicles. Front Bioeng Biotechnol 2022; 10:1037051. [PMID: 36507276 PMCID: PMC9732118 DOI: 10.3389/fbioe.2022.1037051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death in the world. This is partly due to the low regenerative capacity of adult hearts. mRNA therapy is a promising approach under development for cardiac diseases. In mRNA therapy, expression of the target protein is modulated by delivering synthetic mRNA. mRNA therapy benefits cardiac regeneration by increasing cardiomyocyte proliferation, reducing fibrosis, and promoting angiogenesis. Because mRNA is translated in the cytoplasm, the delivery efficiency of mRNA into the cytoplasm and nucleus significantly affects its therapeutic efficacy. To improve delivery efficiency, non-viral vehicles such as lipid nanoparticles have been developed. Non-viral vehicles can protect mRNA from enzymatic degradation and facilitate the cellular internalization of mRNA. In addition to non-viral vehicles, viral vectors have been designed to deliver mRNA templates into cardiac cells. This article reviews lipid nanoparticles, polymer nanoparticles, and viral vectors that have been utilized to deliver mRNA into the heart. Because of the growing interest in lipid nanoparticles, recent advances in lipid nanoparticles designed for cardiac mRNA delivery are discussed. Besides, potential targets of mRNA therapy for myocardial infarction are discussed. Gene therapies that have been investigated in patients with cardiac diseases are analyzed. Reviewing mRNA therapy from a clinically relevant perspective can reveal needs for future investigations.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas H. Wu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Yoshizawa R, Umeki N, Yamamoto A, Okada M, Murata M, Sako Y. p52Shc regulates the sustainability of ERK activation in a RAF-independent manner. Mol Biol Cell 2021; 32:1838-1848. [PMID: 34260260 PMCID: PMC8684710 DOI: 10.1091/mbc.e21-01-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p52SHC (SHC) and GRB2 are adaptor proteins involved in the RAS/MAPK (ERK) pathway mediating signals from cell-surface receptors to various cytoplasmic proteins. To further examine their roles in signal transduction, we studied the translocation of fluorescently labeled SHC and GRB2 to the cell surface, caused by the activation of ERBB receptors by heregulin (HRG). We simultaneously evaluated activated ERK translocation to the nucleus. Unexpectedly, the translocation dynamics of SHC were sustained when those of GRB2 were transient. The sustained localization of SHC positively correlated with the sustained nuclear localization of ERK, which became more transient after SHC knockdown. SHC-mediated PI3K activation was required to maintain the sustainability of the ERK translocation regulating MEK but not RAF. In cells overexpressing ERBB1, SHC translocation became transient, and the HRG-induced cell fate shifted from a differentiation to a proliferation bias. Our results indicate that SHC and GRB2 functions are not redundant but that SHC plays the critical role in the temporal regulation of ERK activation.
Collapse
Affiliation(s)
- Ryo Yoshizawa
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Yasushi Sako
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Sukrithan V, Husain M, Kirschner L, Shah MH, Konda B. Emerging drugs for the treatment of adrenocortical carcinoma. Expert Opin Emerg Drugs 2021; 26:165-178. [PMID: 33896321 DOI: 10.1080/14728214.2021.1920922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Adrenocortical cancer (ACC) is a rare and aggressive disease with a median survival of 14-17 months and 5-year survival of around 20% for advanced disease. Emerging evidence of sub-groups of ACC with specific molecular drivers indicate ACC may be amenable to inhibition of receptor tyrosine kinases involved in growth and angiogenic signaling. A significant subset of patients may also be responsive to immune strategies.Areas covered: This review outlines approaches of targeting upregulated growth pathways including Insulin-like Growth Factor, Vascular Endothelial Growth Factor, Fibroblast Growth Factor and Epidermal Growth Factor Receptor in ACC. Data of immune checkpoint blockade with nivolumab, ipilimumab, pembrolizumab and avelumab is explored in detail. Genomic studies indicate that up to 40% of ACC are driven by dysregulated WNT and glucocorticoid signaling, special focus is placed on emerging drugs in these pathways.Expert opinion: Progress in the treatment of ACC has faced challenges stemming from the rarity of the disease. Given recent advances in the understanding of the molecular pathogenesis of ACC, a window of opportunity has now opened to make significant progress in developing therapeutic options that target key pathways such as excessive glucocorticoid signaling, WNT signaling, cell cycle and immune checkpoints.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Marium Husain
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Lawrence Kirschner
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Manisha H Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Bhavana Konda
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
5
|
Liu L, Xing L, Chen R, Zhang J, Huang Y, Huang L, Xie B, Ren X, Wang S, Kuang H, Lin X, Kumar A, Kim JK, Lee C, Li X. Mitogen-Inducible Gene 6 Inhibits Angiogenesis by Binding to SHC1 and Suppressing Its Phosphorylation. Front Cell Dev Biol 2021; 9:634242. [PMID: 33693003 PMCID: PMC7937727 DOI: 10.3389/fcell.2021.634242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
The mitogen-inducible gene 6 (MIG6) is an adaptor protein widely expressed in vascular endothelial cells. However, it remains unknown thus far whether it plays a role in angiogenesis. Here, using comprehensive in vitro and in vivo model systems, we unveil a potent anti-angiogenic effect of MIG6 in retinal development and neovascularization and the underlying molecular and cellular mechanisms. Loss of function assays using genetic deletion of Mig6 or siRNA knockdown increased angiogenesis in vivo and in vitro, while MIG6 overexpression suppressed pathological angiogenesis. Moreover, we identified the cellular target of MIG6 by revealing its direct inhibitory effect on vascular endothelial cells (ECs). Mechanistically, we found that the anti-angiogenic effect of MIG6 is fulfilled by binding to SHC1 and inhibiting its phosphorylation. Indeed, SHC1 knockdown markedly diminished the effect of MIG6 on ECs. Thus, our findings show that MIG6 is a potent endogenous inhibitor of angiogenesis that may have therapeutic value in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Lixian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuye Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jong Kyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Yoshizawa R, Umeki N, Yamamoto A, Murata M, Sako Y. Biphasic spatiotemporal regulation of GRB2 dynamics by p52SHC for transient RAS activation. Biophys Physicobiol 2021; 18:1-12. [PMID: 33665062 PMCID: PMC7902154 DOI: 10.2142/biophysico.bppb-v18.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
RTK-RAS-MAPK systems are major signaling pathways for cell fate decisions. Among the several RTK species, it is known that the transient activation of ERK (MAPK) stimulates cell proliferation, whereas its sustained activation induces cell differentiation. In both instances however, RAS activation is transient, suggesting that the strict temporal regulation of its activity is critical in normal cells. RAS on the cytoplasmic side of the plasma membrane is activated by SOS through the recruitment of GRB2/SOS complex to the RTKs that are phosphorylated after stimulation with growth factors. The adaptor protein GRB2 recognizes phospho-RTKs both directly and indirectly via another adaptor protein, SHC. We here studied the regulation of GRB2 recruitment under the SHC pathway using single-molecule imaging and fluorescence correlation spectroscopy in living cells. We stimulated MCF7 cells with a differentiation factor, heregulin, and observed the translocation, complex formation, and phosphorylation of cell signaling molecules including GRB2 and SHC. Our results suggest a biphasic regulation of the GRB2/SOS-RAS pathway by SHC: At the early stage (<10 min) of stimulation, SHC increased the amplitude of RAS activity by increasing the association sites for the GRB2/SOS complex on the plasma membrane. At the later stage however, SHC suppressed RAS activation and sequestered GRB2 molecules from the membrane through the complex formation in the cytoplasm. The latter mechanism functions additively to other mechanisms of negative feedback regulation of RAS from MEK and/or ERK to complete the transient activation dynamics of RAS.
Collapse
Affiliation(s)
- Ryo Yoshizawa
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Yasushi Sako
- Cellular Informatics Lab, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Saraon P, Snider J, Kalaidzidis Y, Wybenga-Groot LE, Weiss K, Rai A, Radulovich N, Drecun L, Vučković N, Vučetić A, Wong V, Thériault B, Pham NA, Park JH, Datti A, Wang J, Pathmanathan S, Aboualizadeh F, Lyakisheva A, Yao Z, Wang Y, Joseph B, Aman A, Moran MF, Prakesch M, Poda G, Marcellus R, Uehling D, Samaržija M, Jakopović M, Tsao MS, Shepherd FA, Sacher A, Leighl N, Akhmanova A, Al-Awar R, Zerial M, Stagljar I. A drug discovery platform to identify compounds that inhibit EGFR triple mutants. Nat Chem Biol 2020; 16:577-586. [PMID: 32094923 DOI: 10.1038/s41589-020-0484-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease. Historically, therapeutics targeting RTKs have been identified using in vitro kinase assays. Due to frequent development of drug resistance, however, there is a need to identify more diverse compounds that inhibit mutated but not wild-type RTKs. Here, we describe MaMTH-DS (mammalian membrane two-hybrid drug screening), a live-cell platform for high-throughput identification of small molecules targeting functional protein-protein interactions of RTKs. We applied MaMTH-DS to an oncogenic epidermal growth factor receptor (EGFR) mutant resistant to the latest generation of clinically approved tyrosine kinase inhibitors (TKIs). We identified four mutant-specific compounds, including two that would not have been detected by conventional in vitro kinase assays. One of these targets mutant EGFR via a new mechanism of action, distinct from classical TKI inhibition. Our results demonstrate how MaMTH-DS is a powerful complement to traditional drug screening approaches.
Collapse
Affiliation(s)
- Punit Saraon
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Konstantin Weiss
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nika Vučković
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adriana Vučetić
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Brigitte Thériault
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jin H Park
- Department of Pharmacology and Cancer Biology Institute, Yale University, New Haven, CT, USA.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Alessandro Datti
- Network Biology Collaborative Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jenny Wang
- Network Biology Collaborative Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shivanthy Pathmanathan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna Lyakisheva
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yuhui Wang
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael F Moran
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Miroslav Samaržija
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Natasha Leighl
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. .,Mediterranean Institute for Life Sciences, Split, Croatia.
| |
Collapse
|
8
|
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z, Yu Z. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:55. [PMID: 32117981 PMCID: PMC7018668 DOI: 10.3389/fcell.2020.00055] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, leading to a large global cancer burden. Hepatocyte growth factor (HGF) and its high-affinity receptor, mesenchymal epithelial transition factor (c-Met), are closely related to the onset, progression, and metastasis of multiple tumors. The HGF/c-Met axis is involved in cell proliferation, movement, differentiation, invasion, angiogenesis, and apoptosis by activating multiple downstream signaling pathways. In this review, we focus on the function of the HGF/c-Met axis in HCC. The HGF/c-Met axis promotes the onset, proliferation, invasion, and metastasis of HCC. Moreover, it can serve as a biomarker for diagnosis and prognosis, as well as a therapeutic target for HCC. In addition, it is closely related to drug resistance during HCC treatment.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Adrenocortical carcinoma (ACC) is a rare endocrine malignancy typically with poor prognosis. This review aims to summarize the current knowledge regarding the clinical management of ACC. RECENT FINDINGS Surgery remains the cornerstone for localized ACC management. In more advanced cases, debulking surgery when feasible can help with hormonal control and may allow the initiation of systemic therapy. Over the last few years, our understanding of ACC molecular pathogenesis has expanded with no significant change in treatment options. Platinum-based chemotherapy is the gold standard in metastatic ACC despite suboptimal efficacy. Tyrosine kinase inhibitor use did not result in meaningful benefit in ACC patients. Multiple clinical trials are currently exploring the role of immunotherapy in ACC. Despite the remarkable improvement in our understanding of the molecular signature and pathways in ACC, this knowledge did not yield a major breakthrough in management of advanced ACC. Multi-institutional and international collaborations are needed to identify promising treatments and new therapeutic targets to improve the care of ACC patients.
Collapse
Affiliation(s)
- Sina Jasim
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, in St. Louis, School of Medicine, 660 S. Euclid Ave., Campus Box 8127, St. Louis, MO, 63110, USA
| | - Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1461, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
García-Vilas JA, Medina MÁ. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol 2018; 24:3695-3708. [PMID: 30197476 PMCID: PMC6127652 DOI: 10.3748/wjg.v24.i33.3695] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of development. Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition receptor (c-Met) axis is a key signaling pathway in HCC, either via canonical or non-canonical pathways. Available treatments against HCC based upon HGF/c-Met inhibition can increase patient lifespan, but do not reach the expected therapeutic benefits. In HCC, c-Met monomers can bind other receptor monomers, activating several noncanonical signaling pathways, leading to increased cell proliferation, invasion, motility, and drug resistance. All of these processes are enhanced by the tumor microenvironment, with stromal cells contributing to boost tumor progression through oxidative stress, angiogenesis, lymphangiogenesis, inflammation, and fibrosis. Novel treatments against HCC are being explored to modulate other targets such as microRNAs, methyltransferases, and acetyltransferases, which are all involved in the regulation of gene expression in cancer. This review compiles basic knowledge regarding signaling pathways in HCC, and compounds already used or showing potential to be used in clinical trials.
Collapse
Affiliation(s)
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, Málaga 29071, Spain
- Unidad 741 de CIBER “de Enfermedades Raras” (CIBERER), Málaga 29071, Spain
- Institute of Biomedical Research in Málaga, Málaga 29071, Spain
| |
Collapse
|
11
|
Peng C, Zhao H, Chen W, Song Y, Wang X, Li J, Qiao Y, Wu D, Ma S, Wang X, Gao C. Identification of SHCBP1 as a novel downstream target gene of SS18-SSX1 and its functional analysis in progression of synovial sarcoma. Oncotarget 2018; 7:66822-66834. [PMID: 27572315 PMCID: PMC5341840 DOI: 10.18632/oncotarget.11651] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/21/2016] [Indexed: 01/10/2023] Open
Abstract
The SS18-SSX1 fusion gene has been shown to play important roles in the development of synovial sarcoma (SS), but the underlying molecular mechanisms and its downstream target genes are still not clear. Here SHC SH2-domain binding protein 1 (SHCBP1) was identified and validated to be a novel downstream target gene of SS18-SSX1 by using microarray assay, quantitative real-time (qPCR) and western blot. Expression of SHCBP1 was firstly confirmed in SS cell line and SS tissues. The effects of SHCBP1 overexpression or knockdown on SS cell proliferation and tumorigenicity were then studied by cell proliferation, DNA replication, colony formation, flow cytometric assays, and its in vivo tumorigenesis was determined in the nude mice. Meanwhile, the related signaling pathways of SHCBP1 were also examined in SS cells. The results indicated that SHCBP1 was significantly increased in SS cells and SS tissues compared with adjacent noncancerous tissues. The expression of SHCBP1 was demonstrated to be positively correlated with the SS18-SSX1 level. Overexpression and ablation of SHCBP1 promoted and inhibited, respectively, the proliferation and tumorigenicity of SS cells in vitro. SHCBP1 knockdown also significantly inhibited SS cell growth in nude mice, and lowered the MAPK/ERK and PI3K/AKT/mTOR signaling pathways and cyclin D1 expression. Our findings disclose that SHCBP1 is a novel downstream target gene of SS18-SSX1, and demonstrate that the oncogene SS18-SSX1 promotes tumorigenesis by increasing the expression of SHCBP1, which normally acts as a tumor promoting factor.
Collapse
Affiliation(s)
- Changliang Peng
- Department of Orthopaedics, Shandong University Second Hospital, Jinan, China
| | - Hui Zhao
- Department of Orthopaedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yan Song
- Nephrology Research Institute, Shandong University Second Hospital, Jinan, China
| | - Xiaoying Wang
- Department of Pathology, Shandong University Second Hospital, Jinan, China
| | - Ji Li
- Department of Orthopaedics, Shandong University Second Hospital, Jinan, China
| | - Yong Qiao
- Department of Orthopaedics, Shandong University Second Hospital, Jinan, China
| | - Dongjin Wu
- Department of Orthopaedics, Shandong University Second Hospital, Jinan, China
| | - Shengzhong Ma
- Department of Orthopaedics, Shandong University Second Hospital, Jinan, China
| | - Xiuwen Wang
- Department of Orthopaedics, Shandong University Second Hospital, Jinan, China
| | - Chunzheng Gao
- Department of Orthopaedics, Shandong University Second Hospital, Jinan, China
| |
Collapse
|
12
|
McManus S, Chababi W, Arsenault D, Dubois CM, Saucier C. Dissecting Oncogenic RTK Pathways in Colorectal Cancer Initiation and Progression. Methods Mol Biol 2018; 1765:27-42. [PMID: 29589299 DOI: 10.1007/978-1-4939-7765-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colorectal cancer (CRC) is a progressive disorder associated with an accumulation of multiple heterogeneous genetic alterations in intestinal epithelial cells (IEC). However, when these cells undergo neoplastic transformation and become cancerous and metastatic, they invariably acquire hallmarks conferring them the ability to hyperproliferate, escape growth-inhibitory and death-inducing cues, and promote angiogenesis as well as epithelial-to-mesenchymal transformation (EMT), fostering their invasive dissemination from primary tumor into distant tissues. Compelling clinical and experimental evidence suggest that aberrant engagement of cell surface growth factor receptor tyrosine kinase (RTK) signaling, like that of the hepatocyte growth factor (HGF)/MET receptor, underlies CRC metastatic progression by promoting these cancer hallmarks. To date, though, the use of RTK-targeting agents has been viewed as a promising approach for the treatment of metastatic CRC, clinical success has been modest.Our vision is that the prospect of designing RTK-based, improved and innovative CRC therapies and prognostic markers likely rests on a comprehensive understanding of the biological processes and underlying regulatory molecular mechanisms by which deregulation of RTK signaling governs IEC's neoplastic transformation and their transition from noninvasive to metastatic and malignant cells. Herein, we describe our scheme for defining the full scope of oncogenic MET-driven cancer biological processes, in cellulo and in vivo, as well as the individual contribution of MET-binding effectors in a nontransformed IEC model, the IEC-6 cell line.
Collapse
Affiliation(s)
- Stephen McManus
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Walid Chababi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Arsenault
- Department of Pediatrics, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Immunology Division, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire M Dubois
- Department of Pediatrics, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Immunology Division, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
13
|
Thewke DP, Kou J, Fulmer ML, Xie Q. The HGF/MET Signaling and Therapeutics in Cancer. CURRENT HUMAN CELL RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-981-10-7296-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
The Inhibitory Effect of Mesenchymal Stem Cells with rAd-NK4 on Liver Cancer. Appl Biochem Biotechnol 2017; 183:444-459. [DOI: 10.1007/s12010-017-2456-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/12/2017] [Indexed: 12/18/2022]
|
15
|
Tobelaim WS, Beaurivage C, Champagne A, Pomerleau V, Simoneau A, Chababi W, Yeganeh M, Thibault P, Klinck R, Carrier JC, Ferbeyre G, Ilangumaran S, Saucier C. Tumour-promoting role of SOCS1 in colorectal cancer cells. Sci Rep 2015; 5:14301. [PMID: 26391193 PMCID: PMC4585755 DOI: 10.1038/srep14301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
The SOCS1 (Suppressor Of Cytokine Signalling 1) protein is considered a tumour suppressor. Notably, the SOCS1 gene is frequently silenced in cancer by hypermethylation of its promoter. Besides blocking inflammation, SOCS1 tumour suppressor activity involves Met receptor inhibition and enhancement of p53 tumour suppressor activity. However, the role of SOCS1 in colorectal cancer (CRC) remains understudied and controversial. Here, we investigated SOCS1 relevance for CRC by querying gene expression datasets of human CRC specimens from The Cancer Genome Atlas (TCGA), and by SOCS1 gain/loss-of-function analyses in murine and human colon carcinoma cells. Our results show that SOCS1 mRNA levels in tumours were more often elevated than reduced with respect to matched adjacent normal tissue of CRC specimens (n = 41). The analysis of TCGA dataset of 431 CRC patients revealed no correlation between SOCS1 expression and overall survival. Overexpression of SOCS1 in CRC cells triggered cell growth enhancement, anchorage-independent growth and resistance to death stimuli, whereas knockdown of SOCS1 reduced these oncogenic features. Moreover, SOCS1 overexpression in mouse CT26 cells increased tumourigenesis in vivo. Biochemical analyses showed that SOCS1 pro-oncogenic activity correlated with the down-modulation of STAT1 expression. Collectively, these results suggest that SOCS1 may work as an oncogene in CRC.
Collapse
Affiliation(s)
- William S Tobelaim
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Claudia Beaurivage
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Audrey Champagne
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Véronique Pomerleau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Aline Simoneau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Walid Chababi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Mehdi Yeganeh
- Department of Pediatrics and Immunology division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Philippe Thibault
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Roscoe Klinck
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Julie C Carrier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| | - Subburaj Ilangumaran
- Department of Pediatrics and Immunology division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| |
Collapse
|
16
|
Phan LM, Fuentes-Mattei E, Wu W, Velazquez-Torres G, Sircar K, Wood CG, Hai T, Jimenez C, Cote GJ, Ozsari L, Hofmann MC, Zheng S, Verhaak R, Pagliaro L, Cortez MA, Lee MH, Yeung SCJ, Habra MA. Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma. Cancer Res 2015; 75:4131-42. [PMID: 26282167 DOI: 10.1158/0008-5472.can-14-3707] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 07/06/2015] [Indexed: 12/24/2022]
Abstract
Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited response to chemotherapy. Hepatocyte growth factor (HGF) and its receptor cMET augment cancer growth and resistance to chemotherapy, but their role in adrenocortical carcinoma has not been examined. In this study, we investigated the association between HGF/cMET expression and cancer hallmarks of adrenocortical carcinoma. Transcriptomic and immunohistochemical analyses indicated that increased HGF/cMET expression in human adrenocortical carcinoma samples was positively associated with cancer-related biologic processes, including proliferation and angiogenesis, and negatively correlated with apoptosis. Accordingly, treatment of adrenocortical carcinoma cells with exogenous HGF resulted in increased cell proliferation in vitro and in vivo while short hairpin RNA-mediated knockdown or pharmacologic inhibition of cMET suppressed cell proliferation and tumor growth. Moreover, exposure of cells to mitotane, cisplatin, or radiation rapidly induced pro-cMET expression and was associated with an enrichment of genes (e.g., CYP450 family) related to therapy resistance, further implicating cMET in the anticancer drug response. Together, these data suggest an important role for HGF/cMET signaling in adrenocortical carcinoma growth and resistance to commonly used treatments. Targeting cMET, alone or in combination with other drugs, could provide a breakthrough in the management of this aggressive cancer.
Collapse
Affiliation(s)
- Liem M Phan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Enrique Fuentes-Mattei
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weixin Wu
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guermarie Velazquez-Torres
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kanishka Sircar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Hai
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gilbert J Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Levent Ozsari
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siyuan Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roeland Verhaak
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lance Pagliaro
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Angelica Cortez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sai-Ching J Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Petrini I. Biology of MET: a double life between normal tissue repair and tumor progression. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:82. [PMID: 25992381 DOI: 10.3978/j.issn.2305-5839.2015.03.58] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 01/30/2023]
Abstract
MNNG HOS transforming gene (MET) is a class IV receptor tyrosine kinase, expressed on the surface of epithelial cells. The interaction with the hepatocyte grow factor (HGF) induces MET dimerization and the activation of multiple intracellular pathways leading to cell proliferation, anti-apoptosis, morphogenic differentiation, motility, invasion, and angiogenesis. Knock out mice have demonstrated that MET is necessary for normal embryogenesis including the formation of striate muscles, liver and trophoblastic structures. The overexpression of MET and HGF are common in solid tumors and contribute to determine their growth. Indeed, MET has been cloned as a transforming gene from a chemically induced human osteosarcoma cell line and therefore is considered a proto-oncogene. Germline MET mutations are characteristic of hereditary papillary kidney cancers and MET amplification is observed in tumors including lung and gastric adenocarcinomas. The inhibition of MET signaling is the target for specific drugs that are raising exciting expectation for medical treatment of cancer.
Collapse
|
18
|
Gambella M, Palumbo A, Rocci A. MET/HGF pathway in multiple myeloma: from diagnosis to targeted therapy? Expert Rev Mol Diagn 2015; 15:881-93. [PMID: 25967746 DOI: 10.1586/14737159.2015.1046436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interaction between neoplastic cells and the microenvironment is critical in several cancers and plays a central role in multiple myeloma. Microenvironmental stimuli support plasma cell proliferation, survival, motility and can determine drug resistance. The network between plasma cells and surrounding cells is also responsible for increasing angiogenesis, unbalancing bone formation and bony lesions. The MET/HGF pathway is a key player in this interaction and has been found to be abnormally active in both malignant plasma cells and surrounding cells. Patients with abnormal MET and/or HGF levels usually have a poor outcome even when treated with novel drugs. This review addresses the role of MET/HGF in the pathogenesis of myeloma and describes the role of MET/HGF signaling as a prognostic factor. The different techniques to detect MET/HGF abnormalities are examined and a description of compounds targeting MET/HGF is also provided.
Collapse
Affiliation(s)
- Manuela Gambella
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | | | | |
Collapse
|
19
|
Bowles DW, McDermott JD, Jimeno A. Novel treatments for head and neck squamous cell carcinoma: preclinical identification and clinical investigation. Future Oncol 2015; 10:1065-80. [PMID: 24941990 DOI: 10.2217/fon.14.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common cancer worldwide. Classically, it is a disease related to tobacco and alcohol use; an increasing number of patients are being diagnosed with HNSCC caused by infection with the human papillomavirus. New deep-sequencing techniques have confirmed the importance of p53 and EGF receptor in HNSCC development, and have identified pathways of critical importance, such as PI3K/mTOR and NOTCH. Increasing knowledge of key molecular features has lead to new therapeutic avenues for HNSCC. Novel therapies under investigation in HNSCC include antibody and small molecule inhibitors of EGF receptor and its family members, PI3K inhibitors, antiangiogenic agents, immunotherapies and agents interacting with early developmental pathways such as Hedgehog.
Collapse
Affiliation(s)
- Daniel W Bowles
- Division of Medical Oncology, University of Colorado School of Medicine, CO, USA
| | | | | |
Collapse
|
20
|
HGF/Met Axis in Heart Function and Cardioprotection. Biomedicines 2014; 2:247-262. [PMID: 28548070 PMCID: PMC5344277 DOI: 10.3390/biomedicines2040247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 12/27/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor (Met) play important roles in myocardial function both in physiological and pathological situations. In the developing heart, HGF influences cardiomyocyte proliferation and differentiation. In the adult, HGF/Met signaling controls heart homeostasis and prevents oxidative stress in normal cardiomyocytes. Thus, the possible cardiotoxicity of current Met-targeted anti-cancer therapies has to be taken in consideration. In the injured heart, HGF plays important roles in cardioprotection by promoting: (1) prosurvival (anti-apoptotic and anti-autophagic) effects in cardiomyocytes, (2) angiogenesis, (3) inhibition of fibrosis, (4) anti-inflammatory and immunomodulatory signals, and (5) regeneration through activation of cardiac stem cells. Furthermore, we discuss the putative role of elevated HGF as prognostic marker of severity in patients with cardiac diseases. Finally, we examine the potential of HGF-based molecules as new therapeutic tools for the treatment of cardiac diseases.
Collapse
|
21
|
Song S, Bi M. [Research progress of HGF/MET signaling pathway in EGFR-TKI resistance
in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:755-9. [PMID: 25342043 PMCID: PMC6000405 DOI: 10.3779/j.issn.1009-3419.2014.10.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
肺癌是世界上最常见的恶性肿瘤之一,其中非小细胞肺癌约占80%。肝细胞生长因子(hepatocyte growth factor, HGF)/上皮间质转化因子(mesenchymal-epithelial transition factor, MET)信号通路在许多生物学进程中都发挥着多效性影响,然而,在多种类型的肿瘤中都观察到HGF/MET信号通路的异常激活,并且通过生长因子受体和其他致癌性基因受体通路促进细胞增殖和转移。近年来,HGF/MET信号通路的异常激活被认为是对表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor tyrosine kinase inhibitor, EGFR-TKI)产生耐药的一个重要原因。本文将重点阐述该通路异常激活与非小细胞肺癌患者EGFR-TKI耐药的联系。
Collapse
Affiliation(s)
- Shilong Song
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Minghong Bi
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| |
Collapse
|
22
|
Ghaffari A, Hoskin V, Szeto A, Hum M, Liaghati N, Nakatsu K, LeBrun D, Madarnas Y, Sengupta S, Elliott BE. A novel role for ezrin in breast cancer angio/lymphangiogenesis. Breast Cancer Res 2014; 16:438. [PMID: 25231728 PMCID: PMC4303119 DOI: 10.1186/s13058-014-0438-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/01/2014] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Recent evidence suggests that tumour lymphangiogenesis promotes lymph node metastasis, a major prognostic factor for survival of breast cancer patients. However, signaling mechanisms involved in tumour-induced lymphangiogenesis remain poorly understood. The expression of ezrin, a membrane cytoskeletal crosslinker and Src substrate, correlates with poor outcome in a diversity of cancers including breast. Furthermore, ezrin is essential in experimental invasion and metastasis models of breast cancer. Ezrin acts cooperatively with Src in the regulation of the Src-induced malignant phenotype and metastasis. However, it remains unclear if ezrin plays a role in Src-induced tumour angio/lymphangiogenesis. METHODS The effects of ezrin knockdown and mutation on angio/lymphangiogenic potential of human MDA-MB-231 and mouse AC2M2 mammary carcinoma cell lines were examined in the presence of constitutively active or wild-type (WT) Src. In vitro assays using primary human lymphatic endothelial cells (hLEC), an ex vivo aortic ring assay, and in vivo tumour engraftment were utilized to assess angio/lymphangiogenic activity of cancer cells. RESULTS Ezrin-deficient cells expressing activated Src displayed significant reduction in endothelial cell branching in the aortic ring assay in addition to reduced hLEC migration, tube formation, and permeability compared to the controls. Intravital imaging and microvessel density (MVD) analysis of tumour xenografts revealed significant reductions in tumour-induced angio/lymphangiogenesis in ezrin-deficient cells when compared to the WT or activated Src-expressing cells. Moreover, syngeneic tumours derived from ezrin-deficient or Y477F ezrin-expressing (non-phosphorylatable by Src) AC2M2 cells further confirmed the xenograft results. Immunoblotting analysis provided a link between ezrin expression and a key angio/lymphangiogenesis signaling pathway by revealing that ezrin regulates Stat3 activation, VEGF-A/-C and IL-6 expression in breast cancer cell lines. Furthermore, high expression of ezrin in human breast tumours significantly correlated with elevated Src expression and the presence of lymphovascular invasion. CONCLUSIONS The results describe a novel function for ezrin in the regulation of tumour-induced angio/lymphangiogenesis promoted by Src in breast cancer. The combination of Src/ezrin might prove to be a beneficial prognostic/predictive biomarker for early-stage metastatic breast cancer.
Collapse
|
23
|
Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:161-79. [DOI: 10.1016/j.bbcan.2014.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022]
|
24
|
Pomerleau V, Landry M, Bernier J, Vachon PH, Saucier C. Met receptor-induced Grb2 or Shc signals both promote transformation of intestinal epithelial cells, albeit they are required for distinct oncogenic functions. BMC Cancer 2014; 14:240. [PMID: 24708867 PMCID: PMC4234027 DOI: 10.1186/1471-2407-14-240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Background Deregulation of receptor tyrosine kinases (RTK) contributes to the initiation and progression of intestinal-derived epithelial cancers, including colorectal cancer (CRC). However, the roles of the proximal signaling molecules engaged by RTKs in different oncogenic functions of CRC remain unclear. Methods Herein, the functional impact of expressing variant forms of the oncogenic Met receptor (Tpr-Met) that selectively recruit the adaptor proteins Grb2 or Shc was investigated in a model derived from normal intestinal epithelial cells (IEC-6). An RNA interference (RNAi) approach was used to define the requirement of Grb2 or Shc in Tpr-Met-transformed IEC-6 cells. Since Grb2 and Shc couple RTKs to the activation of the Ras/MEK/Erk and PI3K/Akt pathways, Erk and Akt phosphorylation/activation states were monitored in transformed IEC-6 cells, and a pharmacological approach was employed to provide insights into the roles of these pathways in oncogenic processes evoked by activated Met, and downstream of Grb2 and Shc. Results We show, for the first time, that constitutive activation of either Grb2 or Shc signals in IEC-6 cells, promotes morphological transformation associated with down-regulation of E-cadherin, as well as increased cell growth, loss of growth contact inhibition, anchorage-independent growth, and resistance to serum deprivation and anoikis. Oncogenic activation of Met was revealed to induce morphological transformation, E-cadherin down-regulation, and protection against anoikis by mechanisms dependent on Grb2, while Shc was shown to be partly required for enhanced cell growth. The coupling of activated Met to the Ras/MEK/Erk and PI3K/Akt pathways, and the sustained engagement of Grb2 or Shc in IECs, was shown to trigger negative feedback, limiting the extent of activation of these pathways. Nonetheless, morphological alterations and E-cadherin down-regulation induced by the oncogenic Tpr-Met, and by Grb2 or Shc signals, were blocked by MEK, but not PI3K, inhibitors while the enhanced growth and resistance to anoikis induced by Tpr-Met were nearly abolished by co-treatment with both inhibitors. Conclusion Overall, these results identify Grb2 and Shc as central signaling effectors of Met-driven progression of intestinal epithelial-derived cancers. Notably, they suggest that Grb2 may represent a promising target for the design of novel CRC therapies.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean-Mignault, Sherbrooke, Quebec J1E 4K8, Canada.
| |
Collapse
|
25
|
Detection of an activated JAK3 variant and a Xq26.3 microdeletion causing loss of PHF6 and miR-424 expression in myelodysplastic syndromes by combined targeted next generation sequencing and SNP array analysis. Pathol Res Pract 2014; 210:369-76. [PMID: 24674452 DOI: 10.1016/j.prp.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/11/2014] [Indexed: 01/25/2023]
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic disorders characterized by ineffective hematopoiesis and progression to acute leukemia. In patients ineligible for hematopoietic stem cell transplantation, azacitidine is the only treatment shown to prolong survival. However, with the availability of a growing compendium of cancer biomarkers and related drugs, analysis of relevant genetic alterations for individual MDS patients might become part of routine evaluation. Therefore and in order to cover the entire bone marrow microenvironment involved in the pathogenesis of MDS, SNP array analysis and targeted next generation sequencing (tNGS) for the mostly therapy relevant 46 onco- and tumor-suppressor genes were performed on bone marrow biopsies from 29 MDS patients. In addition to the detection of mutations known to be associated with MDS in NRAS, KRAS, MPL, NPM1, IDH1, PTPN11, APC and MET, single nucleotide variants so far unrelated to MDS in STK11 (n=1), KDR (n=3), ATM (n=1) and JAK3 (n=2) were identified. Moreover, a recurrent microdeletion was detected in Xq26.3 (n=2), causing loss of PHF6 expression, a potential tumor suppressor gene, and the miR-424, which is involved in the development of acute myeloid leukemia. Finally, combined genetic aberrations affecting the VEGF/VEGFR pathway were found in the majority of cases demonstrating the diversity of mutations affecting different nodes of a particular signaling network as an intrinsic feature in MDS patients. We conclude that combined SNP array analyses and tNGS can identify established and novel therapy relevant genomic aberrations in MDS patients and track them in a clinical setting for individual therapy selection.
Collapse
|
26
|
Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 2013; 142:316-38. [PMID: 24384534 DOI: 10.1016/j.pharmthera.2013.12.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/14/2022]
Abstract
The Met receptor tyrosine kinase (RTK) is an attractive oncology therapeutic target. Met and its ligand, HGF, play a central role in signaling pathways that are exploited during the oncogenic process, including regulation of cell proliferation, invasion, angiogenesis, and cancer stem cell regulation. Elevated Met and HGF as well as numerous Met genetic alterations have been reported in human cancers and correlate with poor outcome. Alterations of pathways that regulate Met, such as the ubiquitin ligase c-Cbl are also likely to activate Met in the oncogenic setting. Moreover, interactive crosstalk between Met and other receptors such as EGFR, HER2 and VEGFR, underlies a key role for Met in resistance to other RTK-targeted therapies. A large body of preclinical and clinical data exists that supports the use of either antibodies or small molecule inhibitors that target Met or HGF as oncology therapeutics. The prognostic potential of Met expression has been suggested from studies in numerous cancers including lung, renal, liver, head and neck, stomach, and breast. Clinical trials using Met inhibitors indicate that the level of Met expression is a determinant of trial outcome, a finding that is actively under investigation in multiple clinical scenarios. Research in Met prognostics and predictors of drug response is now shifting toward more sophisticated methodologies suitable for development as validated and effective biomarkers that can be partnered with therapeutics to improve patient survival.
Collapse
Affiliation(s)
- Christiane R Maroun
- Mirati Therapeutics, 7150 Frederick-Banting, Suite 200, Montreal, Quebec H4S 2A1, Canada.
| | - Tracey Rowlands
- Mirati Therapeutics, 7150 Frederick-Banting, Suite 200, Montreal, Quebec H4S 2A1, Canada
| |
Collapse
|
27
|
Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb Perspect Biol 2013; 5:a008987. [PMID: 24296166 DOI: 10.1101/cshperspect.a008987] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.
Collapse
|
28
|
Wu W, Bi C, Credille KM, Manro JR, Peek VL, Donoho GP, Yan L, Wijsman JA, Yan SB, Walgren RA. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res 2013; 19:5699-710. [PMID: 23989980 DOI: 10.1158/1078-0432.ccr-13-1758] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lung cancer is the leading cause of cancer-related death worldwide. Sustained activation, overexpression, or mutation of the MET pathway is associated with a poor prognosis in a variety of tumors, including non-small cell lung cancer (NSCLC), implicating the MET pathway as a potential therapeutic target for lung cancer. Previously, we reported on the development of LY2801653: a novel, orally bioavailable oncokinase inhibitor with MET as one of its targets. Here, we discuss the evaluation of LY2801653 in both preclinical in vitro and in vivo NSCLC models. Experimental Design/ RESULTS Treatment with LY2801653 showed tumor growth inhibition in tumor cell lines and patient-derived tumor xenograft models as a single agent (37.4%-90.0% inhibition) or when used in combination with cisplatin, gemcitabine, or erlotinib (66.5%-86.3% inhibition). Mechanistic studies showed that treatment with LY2801653 inhibited the constitutive activation of MET pathway signaling and resulted in inhibition of NCI-H441 cell proliferation, anchorage-independent growth, migration, and invasion. These in vitro findings were confirmed in the H441 orthotopic model where LY2801653 treatment significantly inhibited both primary tumor growth (87.9% inhibition) and metastasis (64.5% inhibition of lymph node and 67.7% inhibition of chest wall). Tumor-bearing animals treated with LY2801653 had a significantly greater survival time (87% increase compared with the vehicle-treated mice). In the MET-independent NCI-H1299 orthotopic model, treatment with LY2801653 showed a significant inhibition of primary tumor growth but not metastasis. CONCLUSIONS Collectively, these results support clinical evaluation of LY2801653 in NSCLCs and suggest that differences in the MET activation of tumors may be predictive of response.
Collapse
Affiliation(s)
- Wenjuan Wu
- Authors' Affiliation: Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Graveel CR, Tolbert D, Vande Woude GF. MET: a critical player in tumorigenesis and therapeutic target. Cold Spring Harb Perspect Biol 2013; 5:a009209. [PMID: 23818496 PMCID: PMC3685898 DOI: 10.1101/cshperspect.a009209] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its discovery more than 25 years ago, numerous studies have established that the MET receptor is unique among tyrosine kinases. Signaling through MET is necessary for normal development and for the progression of a wide range of human cancers. MET activation has been shown to drive numerous signaling pathways; however, it is not clear how MET signaling mediates diverse cellular responses such as motility, invasion, growth, and angiogenesis. Great strides have been made in understanding the pleotropic aspects of MET signaling using three-dimensional molecular structures, cell culture systems, human tumors, and animal models. These combined approaches have driven the development of MET-targeted therapeutics that have shown promising results in the clinic. Here we examine the unique features of MET and hepatocyte growth factor/scatter factor (HGF/SF) structure and signaling, mutational activation, genetic mouse models of MET and HGF/SF, and MET-targeted therapeutics.
Collapse
Affiliation(s)
- Carrie R Graveel
- Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | |
Collapse
|
30
|
Northey JJ, Dong Z, Ngan E, Kaplan A, Hardy WR, Pawson T, Siegel PM. Distinct phosphotyrosine-dependent functions of the ShcA adaptor protein are required for transforming growth factor β (TGFβ)-induced breast cancer cell migration, invasion, and metastasis. J Biol Chem 2012; 288:5210-22. [PMID: 23277357 DOI: 10.1074/jbc.m112.424804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The ErbB2 and TGFβ signaling pathways cooperate to promote the migratory, invasive, and metastatic behavior of breast cancer cells. We previously demonstrated that ShcA is necessary for these synergistic interactions. Through a structure/function approach, we now show that the phosphotyrosine-binding, but not the Src homology 2, domain of ShcA is required for TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. We further demonstrate that the tyrosine phosphorylation sites within ShcA (Tyr(239)/Tyr(240) and Tyr(313)) transduce distinct and non-redundant signals that promote these TGFβ-mediated effects. We demonstrate that Grb2 is required specifically downstream of Tyr(313), whereas the Tyr(239)/Tyr(240) phosphorylation sites require the Crk adaptor proteins to augment TGFβ-induced migration and invasion. Furthermore, ShcA Tyr(313) phosphorylation enhances tumor cell survival, and ShcA Tyr(239)/Tyr(240) signaling promotes endothelial cell recruitment into ErbB2-expressing breast tumors in vivo, whereas all three ShcA tyrosine residues are required for efficient breast cancer metastasis to the lungs. Our data uncover a novel ShcA-dependent signaling axis downstream of TGFβ and ErbB2 that requires both the Grb2 and Crk adaptor proteins to increase the migratory and invasive properties of breast cancer cells. In addition, signaling downstream of specific ShcA tyrosine residues facilitates the survival, vascularization, and metastatic spread of breast tumors.
Collapse
Affiliation(s)
- Jason J Northey
- Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Vo DT, Subramaniam D, Remke M, Burton TL, Uren PJ, Gelfond JA, de Sousa Abreu R, Burns SC, Qiao M, Suresh U, Korshunov A, Dubuc AM, Northcott PA, Smith AD, Pfister SM, Taylor MD, Janga SC, Anant S, Vogel C, Penalva LOF. The RNA-binding protein Musashi1 affects medulloblastoma growth via a network of cancer-related genes and is an indicator of poor prognosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1762-72. [PMID: 22985791 DOI: 10.1016/j.ajpath.2012.07.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/01/2012] [Accepted: 07/11/2012] [Indexed: 12/23/2022]
Abstract
Musashi1 (Msi1) is a highly conserved RNA-binding protein that is required during the development of the nervous system. Msi1 has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation, and has also been implicated in tumorigenesis, being highly expressed in multiple tumor types. We analyzed Msi1 expression in a large cohort of medulloblastoma samples and found that Msi1 is highly expressed in tumor tissue compared with normal cerebellum. Notably, high Msi1 expression levels proved to be a sign of poor prognosis. Msi1 expression was determined to be particularly high in molecular subgroups 3 and 4 of medulloblastoma. We determined that Msi1 is required for tumorigenesis because inhibition of Msi1 expression by small-interfering RNAs reduced the growth of Daoy medulloblastoma cells in xenografts. To characterize the participation of Msi1 in medulloblastoma, we conducted different high-throughput analyses. Ribonucleoprotein immunoprecipitation followed by microarray analysis (RIP-chip) was used to identify mRNA species preferentially associated with Msi1 protein in Daoy cells. We also used cluster analysis to identify genes with similar or opposite expression patterns to Msi1 in our medulloblastoma cohort. A network study identified RAC1, CTGF, SDCBP, SRC, PRL, and SHC1 as major nodes of an Msi1-associated network. Our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target.
Collapse
Affiliation(s)
- Dat T Vo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Takeuchi S, Wang W, Li Q, Yamada T, Kita K, Donev IS, Nakamura T, Matsumoto K, Shimizu E, Nishioka Y, Sone S, Nakagawa T, Uenaka T, Yano S. Dual Inhibition of Met Kinase and Angiogenesis to Overcome HGF-Induced EGFR-TKI Resistance in EGFR Mutant Lung Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1034-43. [DOI: 10.1016/j.ajpath.2012.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/12/2012] [Accepted: 05/17/2012] [Indexed: 01/03/2023]
|
33
|
Torres KE, Zhu QS, Bill K, Lopez G, Ghadimi MP, Xie X, Young ED, Liu J, Nguyen T, Bolshakov S, Belousov R, Wang S, Lahat G, Liu J, Hernandez B, Lazar AJ, Lev D. Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors. Clin Cancer Res 2011; 17:3943-55. [PMID: 21540237 DOI: 10.1158/1078-0432.ccr-11-0193] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE MET signaling has been suggested a potential role in malignant peripheral nerve sheath tumors (MPNST). Here, MET function and blockade were preclinically assessed. EXPERIMENTAL DESIGN Expression levels of MET, its ligand hepatocyte growth factor (HGF), and phosphorylated MET (pMET) were examined in a clinically annotated MPNST tissue microarray (TMA) incorporating univariable and multivariable statistical analyses. Human MPNST cells were studied in vitro and in vivo; Western blot (WB) and ELISA were used to evaluate MET and HGF expression, activation, and downstream signaling. Cell culture assays tested the impact of HGF-induced MET activation and anti-MET-specific siRNA inhibition on cell proliferation, migration, and invasion; in vivo gel-foam assays were used to evaluate angiogenesis. Cells stably transduced with anti-MET short hairpin RNA (shRNA) constructs were tested for growth and metastasis in severe combined immunodeficient (SCID) mice. The effect of the tyrosine kinase inhibitor XL184 (Exelixis) targeting MET/VEGFR2 (vascular endothelial growth factor receptor 2) on local and metastatic MPNST growth was examined in vivo. RESULTS All three markers were expressed in MPNST human samples; pMET expression was an independent prognosticator of poor patient outcome. Human MPNST cell lines expressed MET, HGF, and pMET. MET activation increased MPNST cell motility, invasion, angiogenesis, and induced matrix metalloproteinase-2 (MMP2) and VEGF expression; MET knockdown had inverse effects in vitro and markedly decreased local and metastatic growth in vivo. XL184 abrogated human MPNST xenograft growth and metastasis in SCID mice. CONCLUSIONS Informative prognosticators and novel therapies are crucially needed to improve MPNST management and outcomes. We show an important role for MET in MPNST, supporting continued investigation of novel anti-MET therapies in this clinical context.
Collapse
Affiliation(s)
- Keila E Torres
- Department of Cancer Biology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1104, Houston TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sala V, Crepaldi T. Novel therapy for myocardial infarction: can HGF/Met be beneficial? Cell Mol Life Sci 2011; 68:1703-17. [PMID: 21327916 PMCID: PMC11114731 DOI: 10.1007/s00018-011-0633-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
Myocardial infarction (MI) is a leading cause of hospitalization worldwide. A recently developed strategy to improve the management of MI is based on the use of growth factors which are able to enhance the intrinsic capacity of the heart to repair itself or regenerate after damage. Among others, hepatocyte growth factor (HGF) has been proposed as a modulator of cardiac repair of damage due to the pleiotropic effects elicited by Met receptor stimulation. In this review we describe the mechanistic basis for autocrine and paracrine protection of HGF in the injured heart. We also analyse the role of HGF/Met in stem cell maintenance and in stem cell therapies for MI. Finally, we summarize the most significant results on the use of HGF in experimental models of heart injury and discuss the potential of the molecule for treating ischaemic heart disease in humans.
Collapse
Affiliation(s)
- V. Sala
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Corso Massimo D’Azeglio 52, 10126 Turin, Italy
| | - T. Crepaldi
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Corso Massimo D’Azeglio 52, 10126 Turin, Italy
| |
Collapse
|
35
|
Tomilov AA, Ramsey JJ, Hagopian K, Giorgio M, Kim KM, Lam A, Migliaccio E, Lloyd KC, Berniakovich I, Prolla TA, Pelicci P, Cortopassi GA. The Shc locus regulates insulin signaling and adiposity in mammals. Aging Cell 2011; 10:55-65. [PMID: 21040401 DOI: 10.1111/j.1474-9726.2010.00641.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively - consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the 'lean' phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a 'fat' phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain.
Collapse
Affiliation(s)
- Alexey A Tomilov
- VM-Molecular Biosciences, University of California, Davis, CA 95616 USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ursini-Siegel J, Cory S, Zuo D, Hardy WR, Rexhepaj E, Lam S, Schade B, Jirstrom K, Bjur E, Piccirillo CA, Denardo D, Coussens LM, Brennan DJ, Gallagher WM, Park M, Pawson T, Hallett M, Muller WJ. Receptor tyrosine kinase signaling favors a protumorigenic state in breast cancer cells by inhibiting the adaptive immune response. Cancer Res 2010; 70:7776-87. [PMID: 20924104 DOI: 10.1158/0008-5472.can-10-2229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Using transgenic mouse models of breast cancer that ablate Src homology and collagen A (ShcA) expression or oncogene-coupled ShcA signaling, we previously showed that this adaptor is critical for mammary tumor onset and progression. We now provide the first evidence that ShcA regulates mammary tumorigenesis, in part, through its ability to regulate the adaptive immune response. Inactivation of ShcA signaling within tumor cells results in extensive CD4(+) T-cell infiltration and induction of a humoral immune response in mammary tumors. This is associated with a robust CTL response in preneoplastic lesions that are deficient in ShcA signaling. Moreover, mammary tumor progression of ShcA-deficient hyperplasias is accelerated in a T cell-deficient background. We also uncover a clinically relevant correlation between high ShcA expression and low CTL infiltration in human breast cancers. Finally, we define a novel ShcA-regulated immune signature that functions as an independent prognostic marker of survival in human epidermal growth factor receptor 2(+) and basal breast cancers. We reveal a novel role for tumor cell-derived ShcA in the establishment and maintenance of an immunosuppressive state.
Collapse
Affiliation(s)
- Josie Ursini-Siegel
- Goodman Cancer Centre and Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bernier J, Chababi W, Pomerleau V, Saucier C. Oncogenic engagement of the Met receptor is sufficient to evoke angiogenic, tumorigenic, and metastatic activities in rat intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 299:G677-86. [PMID: 20539003 DOI: 10.1152/ajpgi.00315.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The deregulation of Met/hepatocyte growth factor (HGF) receptor tyrosine kinase signaling constitutes a common event in colorectal cancers. However, the physiopathological functions of such a deregulation remain poorly understood. In the present study, we investigated the role of the deregulation of Met receptor in the neoplastic transformation of intestinal epithelial cells. To do so, the normal, well-established and characterized rat intestinal epithelial IEC-6 cells were transduced with a retrovirus carrying the oncogenic constitutive active form of Met receptor, Tpr-Met. Herein, we show that compared with control IEC-6 cells, Tpr-Met-IEC-6 cells exhibit enhanced proliferation, loss of growth-contact inhibition, cell morphological alterations, actin cytoskeletal reorganization, loss of E-cadherin expression and anchorage-independent growth. Moreover, Tpr-Met-IEC-6 cells are conferred the capacity to produce the proangiogenic factor VEGF and to reduce the potent antiangiogenic factor thrombospondin-1. Of significance, Tpr-Met-IEC-6 cells are endowed with the ability to elicit angiogenic responses and to form tumors and metastases in vivo. Hence, our study demonstrates for the first time that the sole oncogenic engagement of Met receptor in normal intestinal epithelial cells is sufficient to induce a wide array of cancerous biological processes that are fundamental to the initiation and malignant progression of colorectal cancers.
Collapse
Affiliation(s)
- Jimmy Bernier
- Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
38
|
Wang X, Li K, Chen H, Wang D, Zhang Y, Bai C. Does hepatocyte growth factor/c-Met signal play synergetic role in lung cancer? J Cell Mol Med 2010; 14:833-9. [PMID: 20178463 PMCID: PMC3823115 DOI: 10.1111/j.1582-4934.2010.01040.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that the signal pathway between hepatocyte growth factor (HGF) and its receptor c-Met plays an important role in the development of lung cancer, although the specificity of such role is to be clarified. It seems clear that the HGF/c-Met signal contributes to the metastasis of cancer cells to the lung by stimulating the hyperproduction and overactivation of cytokines and enzymes, e.g. HGF, vascular endothelial growth factor and matrix metalloproteases. The HGF/c-Met signal may act as the candidate responsible for the development of epidermal growth factor receptor (EGFR) kinase inhibitor resistance. Experimental evidence showed that the combination of both EGFR and c-Met inhibitors had synergetic or additive therapeutic effects on lung cancer. Although the mechanism of interaction between HGF/c-Met and transforming growth factor-a/EGFR remains unclear, the cross-talk and balance between those two signal pathways are critical and necessary in the development of new therapies for lung cancer.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
39
|
Valta MP, Tuomela J, Vuorikoski H, Loponen N, Väänänen RM, Pettersson K, Väänänen HK, Härkönen PL. FGF-8b induces growth and rich vascularization in an orthotopic PC-3 model of prostate cancer. J Cell Biochem 2009; 107:769-84. [PMID: 19415685 DOI: 10.1002/jcb.22175] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor 8 (FGF-8) is expressed at an increased level in a high proportion of prostate cancers and it is associated with a poor prognosis of the disease. Our aim was to study the effects of FGF-8b on proliferation of PC-3 prostate cancer cells and growth of PC-3 tumors, and to identify FGF-8b-associated molecular targets. Expression of ectopic FGF-8b in PC-3 cells caused a 1.5-fold increase in cell proliferation in vitro and a four- to fivefold increase in the size of subcutaneous and orthotopic prostate tumors in nude mice. Tumors expressing FGF-8b showed a characteristic morphology with a very rich network of capillaries. This was associated with increased spread of the cancer cells to the lungs as measured by RT-qPCR of FGF-8b mRNA. Microarray analyses revealed significantly altered, up- and downregulated, genes in PC-3 cell cultures (169 genes) and in orthotopic PC-3 tumors (61 genes). IPA network analysis of the upregulated genes showed the strongest association with development, cell proliferation (CRIP1, SHC1), angiogenesis (CCL2, DDAH2), bone metastasis (SPP1), cell-to-cell signaling and energy production, and the downregulated genes associated with differentiation (DKK-1, VDR) and cell death (CYCS). The changes in gene expression were confirmed by RT-qPCR. In conclusion, our results demonstrate that FGF-8b increases the growth and angiogenesis of orthotopic prostate tumors. The associated gene expression signature suggests potential mediators for FGF-8b actions on prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Maija P Valta
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lucs AV, Muller WJ, Muthuswamy SK. Shc is required for ErbB2-induced inhibition of apoptosis but is dispensable for cell proliferation and disruption of cell polarity. Oncogene 2009; 29:174-87. [PMID: 19826412 DOI: 10.1038/onc.2009.312] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amplification and overexpression of ErbB2 strongly correlates with aggressive breast cancers. A deeper understanding of pathways downstream of ErbB2 signaling that are required for the transformation of human mammary epithelial cells will identify novel strategies for therapeutic intervention in breast cancer. Using an inducible activation of ErbB2 autophosphorylation qsite mutants and the MCF-10A three-dimensional (3D) culture system, we investigated pathways used by ErbB2 to transform the epithelia. We report that ErbB2 induces cell proliferation and loss of 3D organization by redundant mechanisms, whereas it disrupts apical basal polarity and inhibits apoptosis using Tyr 1201 and Tyr 1226/7, respectively. Signals downstream of Tyr 1226/7 were also sufficient to confer paclitaxel resistance. The Tyr 1226/7 binds Shc, and the knockdown of Shc blocks the ability of ErbB2 to inhibit apoptosis and mediate paclitaxel resistance. Tyr 1226/7 is known to activate the Ras/Erk pathway; however, paclitaxel resistance did not correlate with the activation of Erk or Akt, suggesting the presence of a novel mechanism. Thus, our results show that targeting pathways used by ErbB2 to inhibit cell death is a better option than targeting cell proliferation pathways. Furthermore, we identify a novel function for Shc as a regulator of apoptosis and drug resistance in human mammary epithelial cells transformed by ErbB2.
Collapse
Affiliation(s)
- A V Lucs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | |
Collapse
|
41
|
Choi WJ, Kim SE, Stephen AG, Weidlich I, Giubellino A, Liu F, Worthy KM, Bindu L, Fivash MJ, Nicklaus MC, Bottaro DP, Fisher RJ, Burke TR. Identification of Shc Src homology 2 domain-binding peptoid-peptide hybrids. J Med Chem 2009; 52:1612-8. [PMID: 19226165 DOI: 10.1021/jm800789h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fluorescence anisotropy (FA) competition-based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC) containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 microM). Examination of a series of open-chain bis-alkenylamide containing peptides, prepared as ring-closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with N alpha-substituted Gly (NSG) "peptoid" residues. This provided peptoid-peptide hybrids of the form "Ac-pY-Q-[NSG]-L-amide." Depending on the NSG substituent, certain of these hybrids exhibited up to 40-fold higher Shc SH2 domain-binding affinity than the parent Gly-containing peptide (IC50 = 248 microM) (for example, for N-homoallyl analogue 50, IC50 = 6 microM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics.
Collapse
Affiliation(s)
- Won Jun Choi
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, National Insitutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Seiwert TY, Jagadeeswaran R, Faoro L, Janamanchi V, Nallasura V, El Dinali M, Yala S, Kanteti R, Cohen EEW, Lingen MW, Martin L, Krishnaswamy S, Klein-Szanto A, Christensen JG, Vokes EE, Salgia R. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res 2009; 69:3021-31. [PMID: 19318576 PMCID: PMC2871252 DOI: 10.1158/0008-5472.can-08-2881] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recurrent/metastatic head and neck cancer remains a devastating disease with insufficient treatment options. We investigated the MET receptor tyrosine kinase as a novel target for the treatment of head and neck squamous cell carcinoma (HNSCC). MET/phosphorylated MET and HGF expression was analyzed in 121 tissues (HNSCC/normal) by immunohistochemistry, and in 20 HNSCC cell lines by immunoblotting. The effects of MET inhibition using small interfering RNA/two small-molecule inhibitors (SU11274/PF-2341066) on signaling, migration, viability, and angiogenesis were determined. The complete MET gene was sequenced in 66 head and neck cancer tissue samples and eight cell lines. MET gene copy number was determined in 14 cell lines and 23 tumor tissues. Drug combinations of SU11274 with cisplatin or erlotinib were tested in SCC35/HN5 cell lines. Eighty-four percent of the HNSCC samples showed MET overexpression, whereas 18 of 20 HNSCC cell lines (90%) expressed MET. HGF overexpression was present in 45% of HNSCC. MET inhibition with SU11274/PF-2341066 abrogated MET signaling, cell viability, motility/migration in vitro, and tumor angiogenesis in vivo. Mutational analysis of 66 tumor tissues and 8 cell lines identified novel mutations in the semaphorin (T230M/E168D/N375S), juxtamembrane (T1010I/R988C), and tyrosine kinase (T1275I/V1333I) domains (incidence: 13.5%). Increased MET gene copy number was present with >10 copies in 3 of 23 (13%) tumor tissues. A greater-than-additive inhibition of cell growth was observed when combining a MET inhibitor with cisplatin or erlotinib and synergy may be mediated via erbB3/AKT signaling. MET is functionally important in HNSCC with prominent overexpression, increased gene copy number, and mutations. MET inhibition abrogated MET functions, including proliferation, migration/motility, and angiogenesis. MET is a promising, novel target for HNSCC and combination approaches with cisplatin or EGFR inhibitors should be explored.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor
- Cisplatin/administration & dosage
- ErbB Receptors/antagonists & inhibitors
- Gene Dosage
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/enzymology
- Head and Neck Neoplasms/genetics
- Humans
- Immunohistochemistry
- Indoles/administration & dosage
- Indoles/pharmacology
- Mice
- Mice, Nude
- Mutation
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-met
- RNA, Small Interfering/genetics
- Receptors, Growth Factor/antagonists & inhibitors
- Receptors, Growth Factor/biosynthesis
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Signal Transduction/drug effects
- Sulfonamides/administration & dosage
- Sulfonamides/pharmacology
- Transfection
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Tanguy Y Seiwert
- Section of Hematology/Oncology, Department of Medicine and University of Chicago Cancer Research Center, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin ML, Chung JG, Lu YC, Yang CY, Chen SS. Rhein inhibits invasion and migration of human nasopharyngeal carcinoma cells in vitro by down-regulation of matrix metalloproteinases-9 and vascular endothelial growth factor. Oral Oncol 2008; 45:531-7. [PMID: 18804415 DOI: 10.1016/j.oraloncology.2008.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 06/05/2008] [Accepted: 07/18/2008] [Indexed: 01/01/2023]
Abstract
Progression of cancer invasion is believed to be dependent on the remodeling of extracellular matrix induced by tumor cells. Rhein has been shown to inhibit the growth and proliferation of human nasopharyngeal carcinoma (NPC) cells. However, the molecular mechanism underlying rhein-induced inhibition of cancer invasion has not been explored. Herein, we show that rhein could inhibit the invasion and migration of NPC cells in vitro. Rhein inhibits invasion by reducing the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF). Moreover, we demonstrate that the pathway involved in rhein-inhibited invasion is presumably through the growth factor receptor bound protein 2/son of sevenless-Ras-mitogen-activated protein kinase (GRB2/SOS-Ras-MAPK) pathway, as shown by an decrease in the expression levels of GRB2, SOS-1 and Ras as well as led to suppression of the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK. Further study has shown that rhein also inhibited activation of transcription factor nuclear factor kappaB (NF-kappaB), which is known to implicate the regulation of MMP-9 and VEGF gene expression in cancer invasion. Our findings suggest that rhein inhibits the invasion of NPC cells may be mediated in part through the suppression of MMP-9 and VEGF expression via the modulation of NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factors are potent angiogenic inducers; however, their precise roles in angiogenesis have not been well understood. In this review, we will focus on specific roles played by fibroblast growth factors in neovascularization. RECENT FINDINGS Although fibroblast growth factors promote a strong angiogenic response, it has been suggested that FGF-induced angiogenesis requires activation of the vascular endothelial growth factor system. Recent findings have endorsed the view of indirect contribution of fibroblast growth factor signaling to vascular development. A study using embryoid bodies demonstrated a nonimmediate role played by fibrobalst growth factor receptor 1 in vasculogenesis as vascular endothelial growth factor supplementation was sufficient to promote vascular development in Fgfr1-/- embryoid bodies. Moreover, another line of evidence indicated that myocardial fibroblast growth factor signaling is essential for mouse coronary development. The key role of fibroblast growth factor signaling in this process is Hedgehog activation, which induces vascular endothelial growth factor expression and formation of the coronary vasculature. In addition to vascular endothelial growth factor interaction, fibroblast growth factors can control neovascularization by influencing other growth factors and chemokines such as platelet-derived growth factor, hepatocyte growth factor and monocyte chemoattractant protein-1, contributing to development of mature vessels and collateral arteries. SUMMARY Although fibroblast growth factors are potent angiogenic factors, they may indirectly control neovascularization in concert with other growth factors. Thus, the unique role played by fibroblast growth factors might be organization of various angiogenic pathways and coordination of cell-cell interactions in this process.
Collapse
|
45
|
Yang Y, Wislez M, Fujimoto N, Prudkin L, Izzo JG, Uno F, Ji L, Hanna AE, Langley RR, Liu D, Johnson FM, Wistuba I, Kurie JM. A selective small molecule inhibitor of c-Met, PHA-665752, reverses lung premalignancy induced by mutant K-ras. Mol Cancer Ther 2008; 7:952-60. [PMID: 18413809 PMCID: PMC3378059 DOI: 10.1158/1535-7163.mct-07-2045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The c-Met receptor tyrosine kinase has been implicated in cellular transformation induced by mutant Ras, a commonly activated proto-oncogene in non-small cell lung cancer (NSCLC). However, the role of c-Met has not been defined in K-ras-mutant NSCLC, a disease for which no effective targeted therapeutic options currently exist. To acquire a greater understanding of its role, we used genetic and pharmacologic approaches to inhibit c-Met in mice and cultured cells. In Kras(LA1) mice, which develop premalignant lung lesions that progress to multifocal lung adenocarcinomas owing to somatic mutations in K-ras, c-Met was expressed in multiple cell types within premalignant lung lesions, and high concentrations of HGF were detected in bronchoalveolar lavage samples. Short-term treatment with PHA-665752, a c-Met inhibitor, decreased the numbers of premalignant lung lesions and induced apoptosis in tumor cells and vascular endothelial cells within lesions. In cell culture, PHA-665752 induced apoptosis of a lung adenocarcinoma cell line derived from Kras(LA1) mice (LKR-13) and a murine lung endothelial cell line (MEC). c-Met depletion by siRNA transfection induced apoptosis of MECs but not LKR-13 cells. Collectively, these findings suggest that apoptosis was an on-target effect of PHA-665752 in MECs but not in LKR-13 cells. We conclude that PHA-665752 inhibited lung tumorigenesis in Kras(LA1) mice and may provide a novel therapeutic approach to the prevention of K-ras-mutant NSCLC.
Collapse
Affiliation(s)
- Yanan Yang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Marie Wislez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- UPRESEA3493, CHU Saint-Antoine, Université Paris-VI, Paris, France
| | - Nobukazu Fujimoto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ludmila Prudkin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Julie G. Izzo
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Futoshi Uno
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Amy E. Hanna
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Robert R. Langley
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Diane Liu
- Department of Biostatistics and Applied Mathematics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Faye M. Johnson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ignacio Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
46
|
Ursini-Siegel J, Hardy WR, Zuo D, Lam SHL, Sanguin-Gendreau V, Cardiff RD, Pawson T, Muller WJ. ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 2008; 27:910-20. [PMID: 18273058 DOI: 10.1038/emboj.2008.22] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/24/2008] [Indexed: 12/17/2022] Open
Abstract
To explore the in vivo significance of ShcA during mammary tumorigenesis, we used mice expressing several phosphotyrosine-deficient ShcA alleles under the control of their endogenous promoter. We show that all three ShcA tyrosine phosphorylation sites are involved in the early stages of mammary tumour progression, including loss of the myoepithelial cell layer surrounding hyperplasias and during progression to carcinoma. We have determined that signals emanating from Y313 are important for tumour cell survival, whereas Y239/240 transduce signals promoting tumour vascularization. We further demonstrate that loss of ShcA expression in mammary epithelial cells abrogates tumour development. This study is the first to directly demonstrate that signalling downstream from the ShcA adaptor protein is critical for breast cancer development.
Collapse
Affiliation(s)
- Josie Ursini-Siegel
- Department of Medicine, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Puri N, Khramtsov A, Ahmed S, Nallasura V, Hetzel JT, Jagadeeswaran R, Karczmar G, Salgia R. A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Res 2007; 67:3529-34. [PMID: 17440059 DOI: 10.1158/0008-5472.can-06-4416] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The c-Met receptor tyrosine kinase is emerging as a novel target in many solid tumors, including lung cancer. PHA-665752 was identified as a small molecule, ATP competitive inhibitor of the catalytic activity of the c-Met kinase. Here, we show that treatment with PHA665752 reduced NCI-H69 (small cell lung cancer) and NCI-H441 (non-small cell lung cancer) tumorigenicity in mouse xenografts by 99% and 75%, respectively. Reduction in tumor size was also observed by magnetic resonance imaging of tumors in mice. PHA665752 inhibited c-Met phosphorylation at the autophosphorylation and c-Cbl binding sites in mouse xenografts derived from non-small cell lung cancer cell lines (NCI-H441 and A549) and small cell lung cancer cell line (NCI-H69). PHA665752 also inhibited angiogenesis by >85% in all the abovementioned cell lines and caused an angiogenic switch which resulted in a decreased production of vascular endothelial growth factor and an increase in the production of the angiogenesis inhibitor thrombospondin-1. These studies show the feasibility of selectively targeting c-Met with ATP competitive small molecule inhibitors and suggest that PHA665752 may provide a novel therapeutic approach to lung cancer.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Small Cell/blood supply
- Carcinoma, Small Cell/drug therapy
- Carcinoma, Small Cell/enzymology
- Carcinoma, Small Cell/pathology
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- Humans
- Immunohistochemistry
- Indoles/pharmacology
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Sulfones/pharmacology
- Thrombospondin 1/biosynthesis
- Vascular Endothelial Growth Factor A/biosynthesis
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Neelu Puri
- Sections of Gastroenterology and Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and University of Chicago Cancer Research Center, 5841 South Maryland Avenue, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The receptor for hepatocyte growth factor (HGF)/scatter factor (SF), Met, controls a program of invasive epithelial growth through the coordination of cell proliferation and survival, cell migration and epithelial morphogenesis. This process is important during embryogenesis and for organ regeneration in the adult. However, when deregulated the HGF/SF-Met signaling axis contributes to tumorigenesis and metastasis. Studies on the oncogenic activation of the Met receptor have shed light on the molecular mechanisms underlying the oncogenic activation of receptor tyrosine kinase (RTKs). More than a decade ago, work on the Met related oncogene, Tpr-Met, revealed the mechanism for activation of RTK-derived oncogenes generated following chromosomal translocation. More recently, studies on the mechanisms of downregulation of the Met RTK highlight a role for loss of downregulation in RTK oncogenic activation.
Collapse
Affiliation(s)
- P Peschard
- Department of Biochemistry, Molecular Oncology Group, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
49
|
Abstract
The development of solid tumors depends upon an adequate supply of blood. This can be achieved by way of co-option of preexisting blood vessels and by the induction of angiogenesis. During the past 30 years, tumor angiogenesis had been found to play a crucial role in the progression of solid tumors. Tumor angiogenesis was found to be induced by a variety of pro-angiogenic cytokines of which the best characterized is vascular endothelial growth factor (VEGF). Indeed, the first FDA approved anti-angiogenic drug for the treatment of cancer is Avastin, a neutralizing antibody directed against VEGF. This review focuses on cytokines which have been reported to induce tumor angiogenesis.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer and Vascular Biology Research Center, Rappaport Research Institute in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, 1 Efron St., P. O. Box 9679, Haifa 31096, Israel.
| | | |
Collapse
|
50
|
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11:69-82. [PMID: 17222791 DOI: 10.1016/j.ccr.2006.11.020] [Citation(s) in RCA: 1560] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/03/2006] [Accepted: 11/28/2006] [Indexed: 12/11/2022]
Abstract
Cancers are believed to arise from cancer stem cells (CSCs), but it is not known if these cells remain dependent upon the niche microenvironments that regulate normal stem cells. We show that endothelial cells interact closely with self-renewing brain tumor cells and secrete factors that maintain these cells in a stem cell-like state. Increasing the number of endothelial cells or blood vessels in orthotopic brain tumor xenografts expanded the fraction of self-renewing cells and accelerated the initiation and growth of tumors. Conversely, depletion of blood vessels from xenografts ablated self-renewing cells from tumors and arrested tumor growth. We propose that brain CSCs are maintained within vascular niches that are important targets for therapeutic approaches.
Collapse
Affiliation(s)
- Christopher Calabrese
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|