1
|
Miguel V, Shaw IW, Kramann R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00889-z. [PMID: 39289568 DOI: 10.1038/s41581-024-00889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Isaac W Shaw
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Chen Y, Dai R, Cheng M, Wang W, Liu C, Cao Z, Ge Y, Wang Y, Zhang L. Status and role of the ubiquitin-proteasome system in renal fibrosis. Biomed Pharmacother 2024; 178:117210. [PMID: 39059348 DOI: 10.1016/j.biopha.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a basic regulatory mechanism in cells that is essential for maintaining cell homeostasis, stimulating signal transduction, and determining cell fate. These biological processes require coordinated signaling cascades across members of the UPS to achieve substrate ubiquitination and deubiquitination. The role of the UPS in fibrotic diseases has attracted widespread attention, and the aberrant expression of UPS members affects the fibrosis process. In this review, we provide an overview of the UPS and its relevance for fibrotic diseases. Moreover, for the first time, we explore in detail how the UPS promotes or inhibits renal fibrosis by regulating biological processes such as signaling pathways, inflammation, oxidative stress, and the cell cycle, emphasizing the status and role of the UPS in renal fibrosis. Further research on this system may reveal new strategies for preventing renal fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanjiao Liu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zeping Cao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yong Ge
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
3
|
Bhattacharya R, Ward T, Kalejaiye TD, Mishra A, Leeman S, Arzaghi H, Seidman JG, Seidman CE, Musah S. Engineered human iPS cell models reveal altered podocytogenesis and glomerular capillary wall in CHD-associated SMAD2 mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606108. [PMID: 39211233 PMCID: PMC11360959 DOI: 10.1101/2024.08.02.606108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Early developmental programming involves extensive cell lineage diversification through shared molecular signaling networks. Clinical observations of congenital heart disease (CHD) patients carrying SMAD2 genetic variants revealed correlations with multi-organ impairments at the developmental and functional levels. For example, many CHD patients present with glomerulosclerosis, periglomerular fibrosis, and albuminuria. Still, it remains largely unknown whether SMAD2 variants associated with CHD can directly alter kidney cell fate, tissue patterning, and organ-level function. To address this question, we engineered human iPS cells (iPSCs) and organ-on-a-chip systems to uncover the role of pathogenic SMAD2 variants in kidney podocytogenesis. Our results show that abrogation of SMAD2 causes altered patterning of the mesoderm and intermediate mesoderm (IM) cell lineages, which give rise to nearly all kidney cell types. Upon further differentiation of IM cells, the mutant podocytes failed to develop arborizations and interdigitations. A reconstituted glomerulus-on-a-chip platform exhibited significant proteinuria as clinically observed in glomerulopathies. This study implicates CHD-associated SMAD2 mutations in kidney tissue malformation and provides opportunities for therapeutic discovery in the future.
Collapse
|
4
|
Xie C, Zhong L, Feng H, Wang R, Shi Y, Lv Y, Hu Y, Li J, Xiao D, Liu S, Chen Q, Tao Y. Exosomal miR-17-5p derived from epithelial cells is involved in aberrant epithelium-fibroblast crosstalk and induces the development of oral submucosal fibrosis. Int J Oral Sci 2024; 16:48. [PMID: 38897993 PMCID: PMC11187069 DOI: 10.1038/s41368-024-00302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 06/21/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic and inflammatory mucosal disease caused by betel quid chewing, which belongs to oral potentially malignant disorders. Abnormal fibroblast differentiation leading to disordered collagen metabolism is the core process underlying OSF development. The epithelium, which is the first line of defense against the external environment, can convert external signals into pathological signals and participate in the remodeling of the fibrotic microenvironment. However, the specific mechanisms by which the epithelium drives fibroblast differentiation remain unclear. In this study, we found that Arecoline-exposed epithelium communicated with the fibrotic microenvironment by secreting exosomes. MiR-17-5p was encapsulated in epithelial cell-derived exosomes and absorbed by fibroblasts, where it promoted cell secretion, contraction, migration and fibrogenic marker (α-SMA and collagen type I) expression. The underlying molecular mechanism involved miR-17-5p targeting Smad7 and suppressing the degradation of TGF-β receptor 1 (TGFBR1) through the E3 ubiquitination ligase WWP1, thus facilitating downstream TGF-β pathway signaling. Treatment of fibroblasts with an inhibitor of miR-17-5p reversed the contraction and migration phenotypes induced by epithelial-derived exosomes. Exosomal miR-17-5p was confirmed to function as a key regulator of the phenotypic transformation of fibroblasts. In conclusion, we demonstrated that Arecoline triggers aberrant epithelium-fibroblast crosstalk and identified that epithelial cell-derived miR-17-5p mediates fibroblast differentiation through the classical TGF-β fibrotic pathway, which provided a new perspective and strategy for the diagnosis and treatment of OSF.
Collapse
Affiliation(s)
- Changqing Xie
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Liang Zhong
- Hospital of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Feng
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Rifu Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Desheng Xiao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qianming Chen
- Hospital of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2024:1-14. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
6
|
Tan Z, Wang Z, Zeng Q, Liu X, Zhang Y, Li S, Huang J, Zeng Y, Huang Z, Jin C, Fu N, Zhao Q, Mu Y, Wang Z, Xiao J, Yang H, Ke G. Natural intestinal metabolite xylitol reduces BRD4 levels to mitigate renal fibrosis. Clin Transl Sci 2024; 17:e13770. [PMID: 38501942 PMCID: PMC10949883 DOI: 10.1111/cts.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Renal fibrosis is a typical pathological change from chronic kidney disease (CKD) to end-stage renal failure, which presents significant challenges in prevention and treatment. The progression of renal fibrosis is closely associated with the "gut-kidney axis," therefore, although clinical intervention to modulate the "gut-kidney axis" imbalance associated with renal fibrosis brings hope for its treatment. In this study, we first identified the close relationship between renal fibrosis development and the intestinal microenvironment through fecal microtransplantation and non-absorbable antibiotics experiments. Then, we analyzed the specific connection between the intestinal microenvironment and renal fibrosis using microbiomics and metabolomics, screening for the differential intestinal metabolite. Potential metabolite action targets were initially identified through network simulation of molecular docking and further verified by molecular biology experiment. We used flow cytometry, TUNEL apoptosis staining, immunohistochemistry, and Western blotting to assess renal injury and fibrosis extent, exploring the potential role of gut microbial metabolite in renal fibrosis development. We discovered that CKD-triggered alterations in the intestinal microenvironment exacerbate renal injury and fibrosis. When metabolomic analysis was combined with experiments in vivo, we found that the differential metabolite xylitol delays renal injury and fibrosis development. We further validated this hypothesis at the cellular level. Mechanically, bromodomain-containing protein 4 (BRD4) protein exhibits strong binding with xylitol, and xylitol alleviates renal fibrosis by inhibiting BRD4 and its downstream transforming growth factor-β (TGF-β) pathway. In summary, our findings suggest that the natural intestinal metabolite xylitol mitigates renal fibrosis by inhibiting the BRD4-regulated TGF-β pathway.
Collapse
Affiliation(s)
- Zhouke Tan
- Organ Transplant CenterAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Department of NephrologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Ze Wang
- Department of Critical Care MedicineThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Qianglin Zeng
- Sichuan Medicine Key Laboratory of Clinical GeneticsAffiliated Hospital & Clinical Medical College of Chengdu UniversityChengduChina
| | - Xiaoyou Liu
- Organ Transplant CenterThe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Yamei Zhang
- Sichuan Medicine Key Laboratory of Clinical GeneticsAffiliated Hospital & Clinical Medical College of Chengdu UniversityChengduChina
| | - Shujue Li
- Department of Urology, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of UrologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Junlin Huang
- Department of Critical Care MedicineMaoming People's HospitalMaomingChina
| | - Yunong Zeng
- School of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Zongshun Huang
- Department of NephrologyThe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Can Jin
- Department of NephrologyThe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Ningying Fu
- Department of NephrologyThe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Qian Zhao
- Department of NephrologyThe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Yingsong Mu
- Department of NephrologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Ziyi Wang
- Department of Critical Care MedicineThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Jie Xiao
- Department of NephrologyThe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| | - Hong Yang
- Department of Critical Care MedicineThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Guibao Ke
- Department of NephrologyThe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Rajabi S, Saberi S, Najafipour H, Askaripour M, Rajizadeh MA, Shahraki S, Kazeminia S. Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/smad signaling pathway. Mol Biol Rep 2024; 51:137. [PMID: 38236310 DOI: 10.1007/s11033-023-09127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Kidney fibrosis is one of the complications of chronic kidney disease (CKD (and contributes to end-stage renal disease which requires dialysis and kidney transplantation. Several signaling pathways such as renin-angiotensin system (RAS), microRNAs (miRNAs) and transforming growth factor-β1 (TGF-β1)/Smad have a prominent role in pathophysiology and progression of renal fibrosis. Activation of classical RAS, the elevation of angiotensin II (Ang II) production and overexpression of AT1R, develop renal fibrosis via TGF-β/Smad pathway. While the non-classical RAS arm, Ang 1-7/AT2R, MasR reveals an anti-fibrotic effect via antagonizing Ang II. This review focused on studies illustrating the interaction of RAS with sexual female hormone estradiol and miRNAs in the progression of renal fibrosis with more emphasis on the TGF-β signaling pathway. MiRNAs, especially miRNA-21 and miRNA-29 showed regulatory effects in renal fibrosis. Also, 17β-estradiol (E2) is a renoprotective hormone that improved renal fibrosis. Beneficial effects of ACE inhibitors and ARBs are reported in the prevention of renal fibrosis in patients. Future studies are also merited to delineate the new therapy strategies such as miRNAs targeting, combination therapy of E2 or HRT, ACEis, and ARBs with miRNAs mimics and antagomirs in CKD to provide a new therapeutic approach for kidney patients.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sarieh Shahraki
- Department of Physiology and Pharmacology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
9
|
Luo H, Fu L, Wang X, Yini Xu, Ling Tao, Shen X. Salvianolic acid B ameliorates myocardial fibrosis in diabetic cardiomyopathy by deubiquitinating Smad7. Chin Med 2023; 18:161. [PMID: 38072948 PMCID: PMC10712074 DOI: 10.1186/s13020-023-00868-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Salvianolic acid B (Sal B), a water-soluble phenolic compound derived from Salvia miltiorrhiza Bunge, is commonly used in Traditional Chinese Medicine to treat cardiovascular disease. In our previous study, Sal B protected against myocardial fibrosis induced by diabetic cardiomyopathy (DCM). This study aimed to investigate the ameliorative effects and potential mechanisms of Sal B in mitigating myocardial fibrosis induced by DCM. METHODS Various methods were used to investigate the effects of Sal B on myocardial fibrosis induced by DCM in vivo and in vitro. These methods included blood glucose measurement, echocardiography, HE staining, Masson's trichrome staining, Sirius red staining, cell proliferation assessment, determination of hydroxyproline levels, immunohistochemical staining, evaluation of fibrosis-related protein expression (Collagen-I, Collagen-III, TGF-β1, p-Smad3, Smad3, Smad7, and α-smooth muscle actin), analysis of Smad7 gene expression, and analysis of Smad7 ubiquitin modification. RESULTS The animal test results indicated that Sal B significantly improved cardiac function, inhibited collagen deposition and phenotypic transformation, and ameliorated myocardial fibrosis in DCM by upregulating Smad7, thereby inhibiting the TGF-β1 signaling pathway. In addition, cell experiments demonstrated that Sal B significantly inhibited the proliferation, migration, phenotypic transformation, and collagen secretion of cardiac fibroblasts (CFs) induced by high glucose (HG). Sal B significantly decreased the ubiquitination of Smad7 and stabilized the protein expression of Smad7, thereby increasing the protein expression of Smad7 in CFs and inhibiting the TGF-β1 signaling pathway, which may be the potential mechanism by which Sal B mitigates myocardial fibrosis induced by DCM. CONCLUSION This study revealed that Sal B can improve myocardial fibrosis in DCM by deubiquitinating Smad7, stabilizing the protein expression of Smad7, and blocking the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Hong Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China
- The Experimental Animal Center of Guizhou Medical University, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China
| | - Lingyun Fu
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China
| | - Xueting Wang
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China
| | - Ling Tao
- The Experimental Animal Center of Guizhou Medical University, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Medical University, Ankang Road, Guian New District, Guizhou, 561113, China.
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Ankang Road, Guin New District, Guizhou, 561113, China.
| |
Collapse
|
10
|
Li X, Tao S, Xu Z, Ren Y, Xiang W, He X. SMURF1 activates the cGAS/STING/IFN-1 signal axis by mediating YY1 ubiquitination to accelerate the progression of lupus nephritis. Autoimmunity 2023; 56:2281235. [PMID: 37994046 DOI: 10.1080/08916934.2023.2281235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
Aggravated endoplasmic reticulum stress (ERS) and apoptosis in podocytes play an important role in lupus nephritis (LN) progression, but its mechanism is still unclear. Herein, the role of SMURF1 in regulating podocytes apoptosis and ERS during LN progression were investigated. MRL/lpr mice was used as LN model in vivo. HE staining was performed to analyze histopathological changes. Mouse podocytes (MPC5 cells) were treated with serum IgG from LN patients (LN-IgG) to construct LN model in vitro. CCK8 assay was adopted to determine the viability. Cell apoptosis was measured using flow cytometry and TUNEL staining. The interactions between SMURF1, YY1 and cGAS were analyzed using ChIP and/or dual-luciferase reporter gene and/or Co-IP assays. YY1 ubiquitination was analyzed by ubiquitination analysis. Our results found that SMURF1, cGAS and STING mRNA levels were markedly increased in serum samples of LN patients, while YY1 was downregulated. YY1 upregulation reduced LN-IgG-induced ERS and apoptosis in podocytes. Moreover, SMURF1 upregulation reduced YY1 protein stability and expression by ubiquitinating YY1 in podocytes. Rescue studies revealed that YY1 knockdown abrogated the inhibition of SMURF1 downregulation on LN-IgG-induced ERS and apoptosis in podocytes. It was also turned out that YY1 alleviated podocytes injury in LN by transcriptional inhibition cGAS/STING/IFN-1 signal axis. Finally, SMURF1 knockdown inhibited LN progression in vivo. In short, SMURF1 upregulation activated the cGAS/STING/IFN-1 signal axis by regulating YY1 ubiquitination to facilitate apoptosis in podocytes during LN progression.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pediatrics, The Second Xiangya Hospital, Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Sisi Tao
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, Hunan, China
| | - Zhiquan Xu
- Nephropathy Rheumatology Immunology Department, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Yi Ren
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou, Hainan, China
| | - Wei Xiang
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Xiaojie He
- Department of Pediatrics, The Second Xiangya Hospital, Department of Pediatrics Nephrology, Children's Medical Center, The Second Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
11
|
Yang S, Jiang K, Li L, Xiang J, Li Y, Kang L, Yang G, Liang Z. MircroRNA-92b as a negative regulator of the TGF-β signaling by targeting the type I receptor. iScience 2023; 26:108131. [PMID: 37867958 PMCID: PMC10587525 DOI: 10.1016/j.isci.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Transforming growth factor β1 (TGFβ1) has been identified as a major pathogenic factor underlying the development of chronic kidney disease (CKD). This study investigated the role of miR-92b-3p in the progression of renal fibrosis in unilateral ureteral occlusion (UUO) and unilateral ischemia-reperfusion injury (uIRI) mouse models, as well as explored its underlying mechanisms in human proximal tubular epithelial (HK2) cells. We found that renal fibrosis increased in UUO mice after miR-92b knockout, while it reduced in miR-92b overexpressing mice. MiR-92b knockout aggravated renal fibrosis in uIRI mice. RNA-sequencing analysis, the luciferase reporter assay, qPCR analysis, and western blotting confirmed that miR-92b-3p directly targeted TGF-β receptor 1, thereby ameliorating renal fibrosis by suppressing the TGF-β signaling pathway. Furthermore, we found that TGF-β suppressed miR-92b transcription through Snail family transcriptional repressors 1 and 2. Our results suggest that miR-92b-3p may serve as a novel therapeutic for mitigating fibrosis in CKD.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Kewei Jiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Lixing Li
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Yanchun Li
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
- Guangdong Provincial Clinical Research Center for Geriatrics,Shenzhen Clinical Research Center for Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518000 China
| |
Collapse
|
12
|
Qi J, Zhang X, Zhang S, Wu S, Lu Y, Li S, Li P, Tan J. P65 mediated UBR4 in exosomes derived from menstrual blood stromal cells to reduce endometrial fibrosis by regulating YAP Ubiquitination. J Nanobiotechnology 2023; 21:305. [PMID: 37644565 PMCID: PMC10463480 DOI: 10.1186/s12951-023-02070-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a recurrent and refractory reproductive dysfunction disorder for which menstrual blood-derived stromal cells (MenSCs) might be a promising intervention. We reported that administration of MenSCs-derived exosomes (MenSCs-EXO) could achieve similar therapeutic effects to MenSCs transplantation, including alleviating endometrial fibrosis and improving fertility in IUA rats. The mass spectrometry sequencing result suggested that UBR4, a member of the proteasome family, was abundantly enriched in MenSCs-EXO. This study aimed to investigate the key role of UBR4 in MenSCs-EXO for the treatment of IUA and the specific molecular mechanism. RESULTS UBR4 was lowly expressed in the endometrial stromal cells (EndoSCs) of IUA patients. MenSCs-EXO treatment could restore the morphology of IUA endometrium, reduce the extent of fibrosis, and promote endometrial and vascular proliferation. Knockdown of UBR4 in MenSCs did not affect the characteristics of exosomes but attenuated the therapeutic effect of exosomes. UBR4 in MenSCs-EXO could alleviate endometrial fibrosis by boosting YAP ubiquitination degradation and promoting YAP nuclear-cytoplasmic translocation. Moreover, P65 could bind to the UBR4 promoter region to transcriptionally promote the expression level of UBR4 in MenSCs. CONCLUSION Our study clarified that MenSCs-EXO ameliorated endometrial fibrosis in IUA primarily by affecting YAP activity mediated through UBR4, while inflammatory signaling P65 may affect UBR4 expression in MenSCs to enhance MenSCs-EXO therapeutic effects. This revealed a novel mechanism for the treatment of IUA with MenSCs-EXO, proposing a potential option for the clinical treatment of endometrial injury.
Collapse
Affiliation(s)
- Jiarui Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Yimeng Lu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Shuyu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China.
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China.
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
13
|
Chen JH, Wu PT, Chyau CC, Wu PH, Lin HH. The Nephroprotective Effects of Hibiscus sabdariffa Leaf and Ellagic Acid in Vitro and in Vivo Models of Hyperuricemic Nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:382-397. [PMID: 36562602 DOI: 10.1021/acs.jafc.2c05720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hyperuricemic nephropathy (HN) is caused by urate crystals that get deposited in the kidney and contribute to renal fibrosis. Uric acid (UA) has been proven to directly cause renal mesangial cell oxidative stress and fibrosis in the pathogenesis of HN. Some antioxidants can be used as chemopreventive agents of HN. Hibiscus sabdariffa leaf extracts (HLE), rich in polyphenol, have been shown to possess hypoglycemic, antioxidant, hypolipidemic, antiatherosclerotic, and anticancer effects. The aim of the study is to examine the inhibitory effect of HLE and its main component ellagic acid (EA) on renal fibrosis. In vitro, mouse renal glomerular mesangial SV40MES13 cells pretreated with UA were demonstrated to trigger obvious morphological changes and viability loss, as well as affect matrix metalloproteinases (MMPs) activities. Noncytotoxic doses of HLE and EA abolished the UA-induced cell injury and MMP-2/9 secretion. In addition, HLE and EA exhibited antioxidant and anti-inflammatory effects on the UA-treated cells with a reduction in transforming growth factor-beta (TGF-β) production. Next, the UA-activated pro-fibrotic factors, extracellular matrix (ECM) deposition, and epithelial-mesenchymal-transition (EMT) were inhibited by HLE or EA. Mechanistic assays indicated that antifibrotic effects of HLE might be mediated via TGF-β/Smad signaling, as confirmed by the transfection of Smad7 siRNA. In vivo, HLE and EA supplementations significantly alleviated HN development, which may result from inhibiting adenine-induced TGF-β production accompanying oxidative stress and inflammation, as well as fibrogenesis. Our data imply that EA-enriched HLE regulates the TGF-β/Smad signaling, which in turn led to reduced renal mesangial cell injury and fibrosis in HN and provided a new mechanism for its nephroprotective activity.
Collapse
Affiliation(s)
- Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Pei-Tzu Wu
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, Taichung City 43302, Taiwan
| | - Pei-Hsuan Wu
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Hui-Hsuan Lin
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
14
|
Yu R, Wu Y, He P, Bai Y, Zhang Y, Bian X, Sun G, Zhang B. LIM and Cysteine-Rich Domains 1 Promotes Transforming Growth Factor β1–Induced Epithelial–Mesenchymal Transition in Human Kidney 2 Cells. J Transl Med 2023; 103:100016. [PMID: 37039151 DOI: 10.1016/j.labinv.2022.100016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023] Open
Abstract
Renal fibrosis is the major pathologic manifestation of chronic kidney disease (CKD). LIM and cysteine-rich domains 1 (LMCD1) is upregulated in the kidney tissue from patients with CKD and the transforming growth factor β1 (TGF-β1)-treated human renal tubular epithelial cell line human kidney 2 (HK-2) (Gene Expression Omnibus: GSE66494 and GSE23338). Previously, we have demonstrated that the knockdown of LMCD1 ameliorated renal fibrosis in mice by blocking the activation of the extracellular signal-regulated kinase pathway. In this study, we sought to further investigate whether LMCD1 affects TGF-β1-induced epithelial-mesenchymal transition (EMT) of kidney tubular epithelial cells and its potential role in the TGF-β1/Smad signaling pathway. First, we confirmed that LMCD1 expression was increased in the fibrotic kidneys of patients with CKD compared with that in normal kidneys and that LMCD1 was predominantly localized in the renal tubules. LMCD1 and mesenchymal markers were upregulated in obstructed kidney tissues of mice at 21 days after unilateral ureteral obstruction surgery compared with the tissues in sham mice. Next, we demonstrated that TGF-β1 significantly increased LMCD1 expression through Smad-mediated transcription in HK-2 cells in vitro. In turn, LMCD1 acted as a transcriptional coactivator of E2F transcription factor 1 to promote the transcription of TGF-β1. Moreover, TGF-β1 increased the interaction between LMCD1 and Smad ubiquitination regulatory factor 2 (Smurf2) and accelerated Smurf2-mediated LMCD1 degradation via the ubiquitination system. The knockdown of LMCD1 inhibited TGF-β1-induced EMT in both HK-2 cells and unilateral ureteral obstruction mice. Our results indicate a positive feedback loop between TGF-β1 and LMCD1 for EMT induction in HK-2 cells and that Smurf2 acts as a negative regulator in this process by accelerating LMCD1 degradation.
Collapse
|
15
|
Zou XZ, Zhang YW, Pan ZF, Hu XP, Xu YN, Huang ZJ, Sun ZY, Yuan MN, Shi JN, Huang P, Liu T. Gentiopicroside alleviates cardiac inflammation and fibrosis in T2DM rats through targeting Smad3 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154389. [PMID: 36037771 DOI: 10.1016/j.phymed.2022.154389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cardiac fibrosis is a major structural change observed in the heart of patients with type 2 diabetes mellitus (T2DM), ultimately resulting in heart failure (HF). Suppression of inflammation is an effective therapeutic strategy for treating cardiac fibrosis and HF. Gentiopicroside (GPS), the primary component of Gentiana manshurica Kitagawa, possess potent anti-inflammatory activity. However, its cardioprotective role remains elusive. PURPOSE We explored the potential cardioprotective role of GPS in T2DM rats and its underlying mechanisms. METHODS T2DM rats built by high-fat diet and streptozotocin were orally administered 25, 50, or 100 mg/kg GPS, daily for 8 weeks. The positive control drug was Metformin (200 mg/kg/day). Primary cardiac fibroblasts (CFs) were induced by high glucose (30 mM) and subsequently treated with GPS (100 μM). Cardiac function and pathological changes were analyzed using echocardiography and histological staining. Potential targets of GPS were predicted using Molecular docking. Real-time PCR as well as western blotting were applied to verify the expression of objective genes. RESULTS All three doses reduced fasting blood glucose levels, but only 50 and 100 mg/kg GPS improved cardiac function and alleviated inflammation and fibrosis in T2DM rats. GPS (100 mg/kg) exhibited a better effect, similar to that of metformin. Mechanistically, binding between GPS and the MH2 domain of Smad3 blocked high glucose-induced Smad3 phosphorylation, thus attenuating inflammation, oxidative stress, and activation in CFs. CONCLUSION We, for the first time, demonstrated that GPS improved cardiac function in T2DM rats and elucidated the underlying mechanism through which GPS targeted Smad3 phosphorylation to suppress inflammation and activation in CFs, thereby revealing the potential application of GPS in HF therapy.
Collapse
Affiliation(s)
- Xiao-Zhou Zou
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Yi-Wen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Zong-Fu Pan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Xiao-Ping Hu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Yin-Ning Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310014, Zhejiang, China
| | - Zhong-Jie Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310014, Zhejiang, China
| | - Zhi-Yong Sun
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Meng-Nan Yuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Jia-Na Shi
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, Zhejiang, China.
| | - Ting Liu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China; Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
16
|
Zhou W, Wu WH, Si ZL, Liu HL, Wang H, Jiang H, Liu YF, Alolga RN, Chen C, Liu SJ, Bian XY, Shan JJ, Li J, Tan NH, Zhang ZH. The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice. Nat Commun 2022; 13:6081. [PMID: 36241632 PMCID: PMC9568537 DOI: 10.1038/s41467-022-33824-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis is an inevitable outcome of various manifestations of progressive chronic kidney diseases (CKD). The need for efficacious treatment regimen against renal fibrosis can therefore not be overemphasized. Here we show a novel protective role of Bacteroides fragilis (B. fragilis) in renal fibrosis in mice. We demonstrate decreased abundance of B. fragilis in the feces of CKD patients and unilateral ureteral obstruction (UUO) mice. Oral administration of live B. fragilis attenuates renal fibrosis in UUO and adenine mice models. Increased lipopolysaccharide (LPS) levels are decreased after B. fragilis administration. Results of metabolomics and proteomics studies show decreased level of 1,5-anhydroglucitol (1,5-AG), a substrate of SGLT2, which increases after B. fragilis administration via enhancement of renal SGLT2 expression. 1,5-AG is an agonist of TGR5 that attenuates renal fibrosis by inhibiting oxidative stress and inflammation. Madecassoside, a natural product found via in vitro screening promotes B. fragilis growth and remarkably ameliorates renal fibrosis. Our findings reveal the ameliorative role of B. fragilis in renal fibrosis via decreasing LPS and increasing 1,5-AG levels.
Collapse
Affiliation(s)
- Wei Zhou
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-hui Wu
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zi-lin Si
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui-ling Liu
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Wang
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong Jiang
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-fang Liu
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Raphael N. Alolga
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng Chen
- grid.412632.00000 0004 1758 2270Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-jia Liu
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue-yan Bian
- grid.13402.340000 0004 1759 700XNingbo Hospital of Zhejiang University, Ningbo, China
| | - Jin-jun Shan
- grid.410745.30000 0004 1765 1045Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Li
- grid.254147.10000 0000 9776 7793School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ning-hua Tan
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi-hao Zhang
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad. Biomed Pharmacother 2022; 149:112931. [PMID: 36068784 DOI: 10.1016/j.biopha.2022.112931] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
The genesis and development of renal fibrosis involve a variety of pathways closely related to inflammation, cytokines, oxidative stress and metabolic abnormalities. Renal fibrosis is the result of a complex combination of a variety of lesions. Epithelial-mesenchymal transdifferentiation (EMT) of renal tubular epithelial cells is considered the key to renal fibrosis. Losartan is a typical Angiotensin II (ANG II) receptor antagonist and relaxes blood vessels. In this study, we investigated the effects of losartan on Unilateral Ureteral Obstruction (UUO) model mice by studying the changes in the TGF-β/Smad and metabolomics. Male C57BL/6 J mice were intervened with the UUO model and given losartan (10, 20, 30 mg/kg/d) for 28 consecutive days. The results showed that losartan could reduce UUO-induced abnormal serum metabolic spectrum and renal function. It could also improve renal tubular-interstitial injury and fibrosis by reducing tubulointerstitial dilation and collagen deposition. In addition, losartan promoted the expression of Smurf2 and Smurf1, i.e., Smad7 and E3 ubiquitin-linked enzymes, in the nucleus to degrade the type I receptor of TGF-β1 (TβR-I) and P-Smad2/3 to inhibit renal tubular epithelial cells EMT. In summary, these findings indicated that losartan could regulate the TGF-β/Smad and metabolic pathway in UUO model mice through ubiquitination to reduce renal fibrosis.
Collapse
|
18
|
Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad Signaling Pathway in Tubulointerstitial Fibrosis. Front Pharmacol 2022; 13:860588. [PMID: 35401211 PMCID: PMC8987592 DOI: 10.3389/fphar.2022.860588] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) was a major public health problem worldwide. Renal fibrosis, especially tubulointerstitial fibrosis, is final manifestation of CKD. Many studies have demonstrated that TGF-β/Smad signaling pathway plays a crucial role in renal fibrosis. Therefore, targeted inhibition of TGF-β/Smad signaling pathway can be used as a potential therapeutic measure for tubulointerstitial fibrosis. At present, a variety of targeting TGF-β1 and its downstream Smad proteins have attracted attention. Natural products used as potential therapeutic strategies for tubulointerstitial fibrosis have the characteristics of acting on multiple targets by multiple components and few side effects. With the continuous research and technique development, more and more molecular mechanisms of natural products have been revealed, and there are many natural products that inhibited tubulointerstitial fibrosis via TGF-β/Smad signaling pathway. This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubulointerstitial fibrosis by targeting TGF-β/Smad signaling pathway. Additionally, many challenges and opportunities are presented for inhibiting renal fibrosis in the future.
Collapse
Affiliation(s)
- Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Ying-Yong Zhao
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| |
Collapse
|
19
|
miR-154-5p Affects the TGFβ1/Smad3 Pathway on the Fibrosis of Diabetic Kidney Disease via Binding E3 Ubiquitin Ligase Smurf1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7502632. [PMID: 35126820 PMCID: PMC8814716 DOI: 10.1155/2022/7502632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Aim The study is aimed at verifying miR-154-5p and Smurf1 combination in glomerular mesangial cells regulating TGFβ1/Smad3 pathway-related protein ubiquitination in the model of diabetic rats renal tissues, primary mesangial cells, and cell lines. Methods The diabetic SD rat model and high-glucose-cultured primary mesangial cells and cell lines were established. miR-154-5p mimic and inhibitor, Smurf1 siRNA, and TGF β 1/Smad3 inhibitor (SB431542) were pretreated to make the TGFβ1/Smad3 pathway and ubiquitin changes. Fluorescence in situ hybridization was used for the miR-154-5p renal localization; molecular biological detection was adopted for cell proliferation, renal function, urine protein, and pathway proteins. After bioinformatics predicted binding sites, luciferase and Co-IP were used to detect miRNA and protein binding. Results miR-154-5p was significantly increased and mainly concentrated in the glomerular of renal cortex in well-established diabetic rat renal tissues. Rno-miR-154-5p combined Rno-Smurf1 3′ UTR, while Smurf1 combined Smad3 directly. Meanwhile, miR-154-5p regulates TGFβ1/Smad3-mediated cell proliferation via Smurf1 ubiquitination. Conclusion miR-154-5p regulates the TGFβ1/Smads pathway through Smurf1 ubiquitination and promotes the fibrosis process of diabetic kidney disease.
Collapse
|
20
|
Wu W, Wang Y, Li H, Chen H, Shen J. Buyang Huanwu Decoction protects against STZ-induced diabetic nephropathy by inhibiting TGF-β/Smad3 signaling-mediated renal fibrosis and inflammation. Chin Med 2021; 16:118. [PMID: 34775979 PMCID: PMC8591830 DOI: 10.1186/s13020-021-00531-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Buyang Huanwu Decoction (BHD) is a classical Chinese Medicine formula empirically used for diabetic nephropathy (DN). However, its therapeutic efficacies and the underlying mechanisms remain obscure. In our study, we aim to evaluate the renoprotective effect of BHD on a streptozotocin (STZ)-induced diabetic nephropathy mouse model and explore the potential underlying mechanism in mouse mesangial cells (MCs) treated with high glucose in vitro, followed by screening the active compounds in BHD. Methods Mice were received 50 mg/kg streptozotocin (STZ) or citrate buffer intraperitoneally for 5 consecutive days. BHD was intragastrically administrated for 12 weeks starting from week 4 after the diabetes induction. The quality control and quantitative analysis of BHD were studied by high-performance liquid chromatography (HPLC). Renal function was evaluated by urinary albumin excretion (UAE) using ELISA. The mesangial matrix expansion and renal fibrosis were measured using periodic acid-schiff (PAS) staining and Masson Trichrome staining. Mouse mesangial cells (MCs) were employed to study molecular mechanisms. Results We found that the impaired renal function in diabetic nephropathy was significantly restored by BHD, as indicated by the decreased UAE without affecting the blood glucose level. Consistently, BHD markedly alleviated STZ-induced diabetic glomerulosclerosis and tubulointerstitial injury as shown by PAS staining, accompanied by a reduction of renal inflammation and fibrosis. Mechanistically, BHD inhibited the activation of TGF-β1/Smad3 and NF-κB signaling in diabetic nephropathy while suppressing Arkadia expression and restoring renal Smad7. We further found that calycosin-7-glucoside (CG) was one of the active compounds from BHD, which significantly suppressed high glucose-induced inflammation and fibrosis by inhibiting TGF-β1/Smad3 and NF-κB signaling pathways in mesangial cells. Conclusion BHD could attenuate renal fibrosis and inflammation in STZ-induced diabetic kidneys via inhibiting TGF-β1/Smad3 and NF-κB signaling while suppressing the Arkadia and restoring renal Smad7. CG could be one of the active compounds in BHD to suppress renal inflammation and fibrosis in diabetic nephropathy. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00531-1.
Collapse
Affiliation(s)
- Weifeng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yifan Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haidi Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 2021; 135:275-303. [PMID: 33480423 DOI: 10.1042/cs20201213] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Elevated expression of the multifunctional cytokine transforming growth factor β1 (TGF-β1) is causatively linked to kidney fibrosis progression initiated by diabetic, hypertensive, obstructive, ischemic and toxin-induced injury. Therapeutically relevant approaches to directly target the TGF-β1 pathway (e.g., neutralizing antibodies against TGF-β1), however, remain elusive in humans. TGF-β1 signaling is subjected to extensive negative control at the level of TGF-β1 receptor, SMAD2/3 activation, complex assembly and promoter engagement due to its critical role in tissue homeostasis and numerous pathologies. Progressive kidney injury is accompanied by the deregulation (loss or gain of expression) of several negative regulators of the TGF-β1 signaling cascade by mechanisms involving protein and mRNA stability or epigenetic silencing, further amplifying TGF-β1/SMAD3 signaling and fibrosis. Expression of bone morphogenetic proteins 6 and 7 (BMP6/7), SMAD7, Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene (SnoN), phosphate tensin homolog on chromosome 10 (PTEN), protein phosphatase magnesium/manganese dependent 1A (PPM1A) and Klotho are dramatically decreased in various nephropathies in animals and humans albeit with different kinetics while the expression of Smurf1/2 E3 ligases are increased. Such deregulations frequently initiate maladaptive renal repair including renal epithelial cell dedifferentiation and growth arrest, fibrotic factor (connective tissue growth factor (CTGF/CCN2), plasminogen activator inhibitor type-1 (PAI-1), TGF-β1) synthesis/secretion, fibroproliferative responses and inflammation. This review addresses how loss of these negative regulators of TGF-β1 pathway exacerbates renal lesion formation and discusses the therapeutic value in restoring the expression of these molecules in ameliorating fibrosis, thus, presenting novel approaches to suppress TGF-β1 hyperactivation during chronic kidney disease (CKD) progression.
Collapse
|
22
|
Li L, Lee J, Cho A, Kim JH, Ju W, An JN, Park JH, Zhu SM, Lee J, Yu SS, Lim CS, Kim DK, Kim YS, Yang SH, Lee JP. cMet agonistic antibody prevents acute kidney injury to chronic kidney disease transition by suppressing Smurf1 and activating Smad7. Clin Sci (Lond) 2021; 135:1427-1444. [PMID: 34061176 DOI: 10.1042/cs20210013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
We aimed to investigate the role of cMet agonistic antibody (cMet Ab) in preventing kidney fibrosis during acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Additionally, we explored the effect of cMet Ab on TGF-β1/Smad pathway during the pathogenesis of kidney fibrosis. A unilateral ischemia-reperfusion injury (UIRI) mouse model was established to induce AKI-to-CKD transition. Furthermore, we incubated human proximal tubular epithelial cells (hPTECs) under hypoxic conditions as in vitro model of kidney fibrosis. We analyzed the soluble plasma cMet level in patients with AKI requiring dialysis. Patients who did not recover kidney function and progressed to CKD presented a higher increase in the cMet level. The kidneys of mice treated with cMet Ab showed fewer contractions and weighed more than the controls. The mice in the cMet Ab-treated group showed reduced fibrosis and significantly decreased expression of fibronectin and α-smooth muscle actin. cMet Ab treatment decreased inflammatory markers (MCP-1, TNF-α, and IL-1β) expression, reduced Smurf1 and Smad2/3 level, and increased Smad7 expressions. cMet Ab treatment increased cMet expression and reduced the hypoxia-induced increase in collagen-1 and ICAM-1 expression, thereby reducing apoptosis in the in vitro cell model. After cMet Ab treatment, hypoxia-induced expression of Smurf1, Smad2/3, and TGF-β1 was reduced, and suppressed Smad7 was activated. Down-regulation of Smurf1 resulted in suppression of hypoxia-induced fibronectin expression, whereas treatment with cMet Ab showed synergistic effects. cMet Ab can successfully prevent fibrosis response in UIRI models of kidney fibrosis by decreasing inflammatory response and inhibiting the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Lilin Li
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ara Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jin Hyuk Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Wonmin Ju
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Nam An
- Department of Internal Medicine, Hallym Sacred Heart Hospital, Anyang, Gyeonggi-do, Republic of Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Shi Mao Zhu
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Junghun Lee
- R&D Center of Innovative Medicines, Helixmith Co., Ltd., Seoul, Republic of Korea
| | - Seung-Shin Yu
- R&D Center of Innovative Medicines, Helixmith Co., Ltd., Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hee Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Seoul National University Kidney Research Institute, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Seoul National University Kidney Research Institute, Seoul, Republic of Korea
| |
Collapse
|
23
|
Inui N, Sakai S, Kitagawa M. Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway. Int J Mol Sci 2021; 22:6107. [PMID: 34198949 PMCID: PMC8201174 DOI: 10.3390/ijms22116107] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. During the past decade, novel pathogenic mechanisms of IPF have been elucidated that have shifted the concept of IPF from an inflammatory-driven to an epithelial-driven disease. Dysregulated repair responses induced by recurrent epithelial cell damage and excessive extracellular matrix accumulation result in pulmonary fibrosis. Although there is currently no curative therapy for IPF, two medications, pirfenidone and nintedanib, have been introduced based on understanding the pathogenesis of the disease. In this review, we discuss advances in understanding IPF pathogenesis, highlighting epithelial-mesenchymal transition (EMT), the ubiquitin-proteasome system, and endothelial cells. TGF-β is a central regulator involved in EMT and pulmonary fibrosis. HECT-, RING finger-, and U-box-type E3 ubiquitin ligases regulate TGF-β-Smad pathway-mediated EMT via the ubiquitin-proteasome pathway. p27 degradation mediated by the SCF-type E3 ligase, Skp2, contributes to the progression of pulmonary fibrosis by promotion of either mesenchymal fibroblast proliferation, EMT, or both. In addition to fibroblasts as key effector cells in myofibroblast differentiation and extracellular matrix deposition, endothelial cells also play a role in the processes of IPF. Endothelial cells can transform into myofibroblasts; therefore, endothelial-mesenchymal transition can be another source of myofibroblasts.
Collapse
Affiliation(s)
- Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan;
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan;
| |
Collapse
|
24
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
25
|
Stoyanova I, Lutz D. Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. Front Cell Dev Biol 2021; 9:595914. [PMID: 33869167 PMCID: PMC8046019 DOI: 10.3389/fcell.2021.595914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The nervous system is highly vulnerable to different factors which may cause injury followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization and stimulating neuronal plasticity could prevent propagation of the degeneration into the tissue surrounding the injury. To find an omnipotent therapeutic molecule, however, seems to be a fairly ambitious task, given the complex demands of the regenerating nervous system that need to be fulfilled. Among the vast number of candidates examined so far, the neuropeptide and hormone ghrelin holds within a very promising therapeutic potential with its ability to cross the blood-brain barrier, to balance metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with its well-established systemic effects in treatment of metabolism-related disorders, the therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent player unleashing developmentally related molecular cues and morphogenic cascades, which could attenuate and/or counteract acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Irina Stoyanova
- Department of Anatomy and Cell Biology, Medical University Varna, Varna, Bulgaria
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Dong L, Li JC, Hu ZJ, Huang XR, Wang L, Wang HL, Ma RCW, Lan HY, Yang SJ. Deletion of Smad3 protects against diabetic myocardiopathy in db/db mice. J Cell Mol Med 2021; 25:4860-4869. [PMID: 33733577 PMCID: PMC8107104 DOI: 10.1111/jcmm.16464] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common diabetic complication characterized by diastolic relaxation abnormalities, myocardial fibrosis and chronic heart failure. Although TGF‐β/Smad3 signalling has been shown to play a critical role in chronic heart disease, the role and mechanisms of Smad3 in DCM remain unclear. We reported here the potential role of Smad3 in the development of DCM by genetically deleting the Smad3 gene from db/db mice. At the age of 32 weeks, Smad3WT‐db/db mice developed moderate to severe DCM as demonstrated by a marked increase in the left ventricular (LV) mass, a significant fall in the LV ejection fraction (EF) and LV fractional shortening (FS), and progressive myocardial fibrosis and inflammation. In contrast, db/db mice lacking Smad3 (Smad3KO‐db/db) were protected against the development of DCM with normal cardiac function and undetectable myocardial inflammation and fibrosis. Interestingly, db/db mice with deleting one copy of Smad3 (Smad3 ± db/db) did not show any cardioprotective effects. Mechanistically, we found that deletion of Smad3 from db/db mice largely protected cardiac Smad7 from Smurf2‐mediated ubiquitin proteasome degradation, thereby inducing IBα to suppress NF‐kB‐driven cardiac inflammation. In addition, deletion of Smad3 also altered Smad3‐dependent miRNAs by up‐regulating cardiac miR‐29b while suppressing miR‐21 to exhibit the cardioprotective effect on Smad3KO‐db/db mice. In conclusion, results from this study reveal that Smad3 is a key mediator in the pathogenesis of DCM. Targeting Smad3 may be a novel therapy for DCM.
Collapse
Affiliation(s)
- Li Dong
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Chun Li
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Jing Hu
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Wang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong-Lian Wang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Si-Jin Yang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Hewitson TD, Smith ER. A Metabolic Reprogramming of Glycolysis and Glutamine Metabolism Is a Requisite for Renal Fibrogenesis-Why and How? Front Physiol 2021; 12:645857. [PMID: 33815149 PMCID: PMC8010236 DOI: 10.3389/fphys.2021.645857] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic Kidney Disease (CKD) is characterized by organ remodeling and fibrosis due to failed wound repair after on-going or severe injury. Key to this process is the continued activation and presence of matrix-producing renal fibroblasts. In cancer, metabolic alterations help cells to acquire and maintain a malignant phenotype. More recent evidence suggests that something similar occurs in the fibroblast during activation. To support these functions, pro-fibrotic signals released in response to injury induce metabolic reprograming to meet the high bioenergetic and biosynthetic demands of the (myo)fibroblastic phenotype. Fibrogenic signals such as TGF-β1 trigger a rewiring of cellular metabolism with a shift toward glycolysis, uncoupling from mitochondrial oxidative phosphorylation, and enhanced glutamine metabolism. These adaptations may also have more widespread implications with redirection of acetyl-CoA directly linking changes in cellular metabolism and regulatory protein acetylation. Evidence also suggests that injury primes cells to these metabolic responses. In this review we discuss the key metabolic events that have led to a reappraisal of the regulation of fibroblast differentiation and function in CKD.
Collapse
Affiliation(s)
- Timothy D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital (RMH), Melbourne, VIC, Australia.,Department of Medicine-RMH, The University of Melbourne, Melbourne, VIC, Australia
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital (RMH), Melbourne, VIC, Australia.,Department of Medicine-RMH, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Abarca-Buis RF, Mandujano-Tinoco EA, Cabrera-Wrooman A, Krötzsch E. The complexity of TGFβ/activin signaling in regeneration. J Cell Commun Signal 2021; 15:7-23. [PMID: 33481173 DOI: 10.1007/s12079-021-00605-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
The role of transforming growth factor β TGFβ/activin signaling in wound repair and regeneration is highly conserved in the animal kingdom. Various studies have shown that TGF-β/activin signaling can either promote or inhibit different aspects of the regeneration process (i.e., proliferation, differentiation, and re-epithelialization). It has been demonstrated in several biological systems that some of the different cellular responses promoted by TGFβ/activin signaling depend on the activation of Smad-dependent or Smad-independent signal transduction pathways. In the context of regeneration and wound healing, it has been shown that the type of R-Smad stimulated determines the different effects that can be obtained. However, neither the possible roles of Smad-independent pathways nor the interaction of the TGFβ/activin pathway with other complex signaling networks involved in the regenerative process has been studied extensively. Here, we review the important aspects concerning the TGFβ/activin signaling pathway in the regeneration process. We discuss data regarding the role of TGF-β/activin in the most common animal regenerative models to demonstrate how this signaling promotes or inhibits regeneration, depending on the cellular context.
Collapse
Affiliation(s)
- René Fernando Abarca-Buis
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico.
| | - Edna Ayerim Mandujano-Tinoco
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Alejandro Cabrera-Wrooman
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| |
Collapse
|
29
|
Adaptors as the regulators of HECT ubiquitin ligases. Cell Death Differ 2021; 28:455-472. [PMID: 33402750 DOI: 10.1038/s41418-020-00707-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
The HECT (homologous to E6AP C-terminus) ubiquitin ligases (E3s) are a small family of highly conserved enzymes involved in diverse cellular functions and pathological conditions. Characterised by a C-terminal HECT domain that accepts ubiquitin from E2 ubiquitin conjugating enzymes, these E3s regulate key signalling pathways. The activity and functional regulation of HECT E3s are controlled by several factors including post-translational modifications, inter- and intramolecular interactions and binding of co-activators and adaptor proteins. In this review, we focus on the regulation of HECT E3s by accessory proteins or adaptors and discuss various ways by which adaptors mediate their regulatory roles to affect physiological outcomes. We discuss common features that are conserved from yeast to mammals, regardless of the type of E3s as well as shed light on recent discoveries explaining some existing enigmas in the field.
Collapse
|
30
|
Zhang Z, Liu C, Chen B, Tang W, Liu Z, Cao W, Li X. Smad7 down-regulation via ubiquitin degradation mediated by Smurf2 in fibroblasts of hypertrophic scars in burned patients. Burns 2020; 47:1333-1341. [PMID: 33436154 DOI: 10.1016/j.burns.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 11/27/2022]
Abstract
TGF-β1 (transforming growth factor β1) was considered to play a critical role in the forming of hypertrophic scars. Smad, as a kind of signal downstream mediators, can modulate the functions of TGF-β1. Smad7 can regulate TGF-β1/Smad pathway and present negative feedbacks, which prevents fibrosis mediated by TGF-β1. Nonetheless, the mechanisms related to Smad7 activity in regulating hypertrophic scarring are hardly known. The studies have shown that Smad7 decrease induced by the increase of Smurf2 (Smad ubiquitination regulatory factor 2, an E3 ubiquitin ligase of Smad7) ubiquitination degradation plays a part in fibrosis. We thus made a hypothesis that Smad7 could not inhibit TGF-β1 because Smurf2 ubiquitin degradation was increased in hypertrophic scar fibroblasts. In our research, it was discovered that there was an increase in Smad7 mRNA levels but no increase in Smad7 protein levels in the fibroblasts of hypertrophic scars after TGF-β1 treatment. The ubiquitination activity and degradation of Smad7 protein were increased in the fibroblasts of hypertrophic scars compared with the fibroblasts of normal skin. Enhanced degradation of Smad7 protein in the fibroblasts of hypertrophic scars was prevented by proteasome inhibitors MG132 / MG115. Furthermore, it was found that TGF-β1 stimulation increased Smad7 protein expression after silencing Smurf2 gene in hypertrophic scar fibroblasts, and enhanced Smad7 degradation was prevented in hypertrophic scar fibroblasts after Smurf2 was silenced. It was implied that ubiquitin degradation mediated by Smurf2 might contribute to decreased Smad7 protein levels following TGF-β1 stimulation in the fibroblasts of hypertrophic scars.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| | - Changling Liu
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Bin Chen
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Wenbin Tang
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Wenjuan Cao
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Li X, Fan X, Yin X, Liu H, Yang Y. Alteration of N 6-methyladenosine epitranscriptome profile in unilateral ureteral obstructive nephropathy. Epigenomics 2020; 12:1157-1173. [PMID: 32543222 DOI: 10.2217/epi-2020-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To reveal the alterations of N6-methyladenosine (m6A) epitranscriptome profile in kidney after unilateral ureteral obstruction in mice. Materials & methods: Total renal m6A and expressions of methyltransferases and demethylases were detected by colorimetric quantification method, real-time PCR and western blot, respectively. Methylated RNA immunoprecipitation sequencing was performed to map epitranscriptome-wide m6A profile. Results: Total m6A levels were time-dependent decreased within 1 week, with the lowest level detected at day 7. A total of 823 differentially methylated transcripts in 507 genes were identified. Specifically, demethylated mRNAs selectively acted on multiple pathways, including TGF-β and WNT. Conclusion: m6A modification has a functional importance in renal interstitial fibrosis during obstructive nephropathy and might be a promising therapeutic target.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Huajian Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| |
Collapse
|
32
|
Saifi MA, Peddakkulappagari CS, Ahmad A, Godugu C. Leveraging the Pathophysiological Alterations of Obstructive Nephropathy to Treat Renal Fibrosis by Cerium Oxide Nanoparticles. ACS Biomater Sci Eng 2020; 6:3563-3573. [PMID: 33463173 DOI: 10.1021/acsbiomaterials.9b01944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) has wide prevalence globally that affects a considerable population and has renal fibrosis (RF) as a hallmark feature. RF is characterized by abnormal deposition of extracellular matrix (ECM) in the interstitial space of renal tissue. There are only few studies where nanoparticles (NPs) were used for targeting the kidney mainly due to their size-dependent constraints. Further, most of the studies have been carried out in healthy animals. As the diseased kidney becomes susceptible to accumulation of nanoparticles, we hypothesized that nanoparticles (size ∼10 nm) could reach the kidney and might provide protective effects due to their inherent properties. We investigated the protective effects of cerium oxide nanoparticles (CONPs) with promising antioxidant activity in a CKD model. We, to the best of our knowledge, are first to report that CONPs abrogated RF by inhibiting transforming growth factor-β (TGF-β) signaling and epithelial-mesenchymal transition (EMT) in a fibrotic kidney.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Chandra Sekhar Peddakkulappagari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, Telangana, India
| |
Collapse
|
33
|
Zhao L, Zou Y, Liu F. Transforming Growth Factor-Beta1 in Diabetic Kidney Disease. Front Cell Dev Biol 2020; 8:187. [PMID: 32266267 PMCID: PMC7105573 DOI: 10.3389/fcell.2020.00187] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/05/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Renin-angiotensin-aldosterone system (RAAS) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors have shown efficacy in reducing the risk of ESRD. However, patients vary in their response to RAAS blockades, and the pharmacodynamic responses to SGLT2 inhibitors decline with increasing severity of renal impairment. Thus, effective therapy for DKD is yet unmet. Transforming growth factor-β1 (TGF-β1), expressed by nearly all kidney cell types and infiltrating leukocytes and macrophages, is a pleiotropic cytokine involved in angiogenesis, immunomodulation, and extracellular matrix (ECM) formation. An overactive TGF-β1 signaling pathway has been implicated as a critical profibrotic factor in the progression of chronic kidney disease in human DKD. In animal studies, TGF-β1 neutralizing antibodies and TGF-β1 signaling inhibitors were effective in ameliorating renal fibrosis in DKD. Conversely, a clinical study of TGF-β1 neutralizing antibodies failed to demonstrate renal efficacy in DKD. However, overexpression of latent TGF-β1 led to anti-inflammatory and anti-fibrosis effects in non-DKD. This evidence implied that complete blocking of TGF-β1 signaling abolished its multiple physiological functions, which are highly associated with undesirable adverse events. Ideal strategies for DKD therapy would be either specific and selective inhibition of the profibrotic-related TGF-β1 pathway or blocking conversion of latent TGF-β1 to active TGF-β1.
Collapse
Affiliation(s)
- Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Suzuki S, Penner R, Fleig A. TRPM7 contributes to progressive nephropathy. Sci Rep 2020; 10:2333. [PMID: 32047249 PMCID: PMC7012919 DOI: 10.1038/s41598-020-59355-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/27/2020] [Indexed: 12/03/2022] Open
Abstract
TRPM7 belongs to the Transient Receptor Potential Melastatin family of ion channels and is a divalent cation-conducting ion channel fused with a functional kinase. TRPM7 plays a key role in a variety of diseases, including neuronal death in ischemia, cancer, cardiac atrial fibrillation, malaria invasion. TRPM7 is aberrantly over-expressed in lung, liver and heart fibrosis. It is also overexpressed after renal ischemia-reperfusion, an event that induces kidney injury and fibrosis. However, the role of TRPM7 in kidney fibrosis is unclear. Using the unilateral ureteral obstruction (UUO) mouse model, we examined whether TRPM7 contributes to progressive renal damage and fibrosis. We find that TRPM7 expression increases in UUO kidneys. Systemic application of NS8593, a known TRPM7 inhibitor, prevents kidney atrophy in UUO kidneys, retains tubular formation, and reduces TRPM7 expression to normal levels. Cell proliferation of both tubular epithelial cells and interstitial cells is reduced by NS8593 treatment in UUO kidneys, as are TGF-β1/Smad signaling events. We conclude that TRPM7 is upregulated during inflammatory renal damage and propose that pharmacological intervention targeting TRPM7 may prove protective in progressive kidney fibrosis.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA. .,John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA.
| | - Reinhold Penner
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA.,University of Hawaii Cancer Center, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA.,John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, 1301 Punchbowl St., Honolulu, HI, 96813, USA.,University of Hawaii Cancer Center, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA.,John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, 96813, USA
| |
Collapse
|
35
|
Kim JY, Kim KM, Yang JH, Cho SS, Kim SJ, Park SJ, Ahn SG, Lee GH, Yang JW, Lim SC, Kang KW, Ki SH. Induction of E6AP by microRNA-302c dysregulation inhibits TGF-β-dependent fibrogenesis in hepatic stellate cells. Sci Rep 2020. [PMID: 31949242 DOI: 10.1038/s41598-019-57322-w.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hepatic stellate cells (HSCs) are essential for liver fibrosis. E6 associated protein (E6AP) is one of the E3-ubiquitin-protein ligase and has been studied in proliferation and cellular stress. Currently, no information is available on the role of E6AP on transforming growth factor-β (TGF-β) signaling and hepatic fibrogenesis. This study examined whether E6AP is overexpressed in activated HSCs, and if so, its effect on hepatic fibrogenesis and the molecular mechanism. E6AP was expressed higher in HSCs than hepatocytes, and was up-regulated in activated HSCs, HSCs from the livers of carbon tetrachloride-injected mice, or TGF-β-treated LX-2 cells. The TGF-β-mediated E6AP up-regulation was not due to altered mRNA level nor protein stability. Thus, we performed microRNA (miRNA, miR) analysis and found that miR-302c was dysregulated in TGF-β-treated LX-2 cells or activated primary HSCs. We revealed that miR-302c was a modulator of E6AP. E6AP overexpression inhibited TGF-β-induced expression of plasminogen activator inhibitor-1 in LX-2 cells, albeit it was independent of Smad pathway. Additionally, E6AP inhibited TGF-β-mediated phosphorylation of mitogen-activated protein kinases. To conclude, E6AP overexpression due to decreased miR-302c in HSCs attenuated hepatic fibrogenesis through inhibition of the TGF-β-induced mitogen-activated protein kinase signaling pathway, implying that E6AP and other molecules may contribute to protection against liver fibrosis.
Collapse
Affiliation(s)
- Ji Young Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ji Hye Yang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.,College of Korean Medicine, Dongshin University, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Sam Seok Cho
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Seung Jung Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Su Jung Park
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, College of Dentistry, Chosun University, Gwangju, 61452, Republic of Korea
| | - Gum Hwa Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jin Won Yang
- College of Pharmacy, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea
| | - Sung Chul Lim
- College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
36
|
Induction of E6AP by microRNA-302c dysregulation inhibits TGF-β-dependent fibrogenesis in hepatic stellate cells. Sci Rep 2020; 10:444. [PMID: 31949242 PMCID: PMC6965100 DOI: 10.1038/s41598-019-57322-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatic stellate cells (HSCs) are essential for liver fibrosis. E6 associated protein (E6AP) is one of the E3-ubiquitin-protein ligase and has been studied in proliferation and cellular stress. Currently, no information is available on the role of E6AP on transforming growth factor-β (TGF-β) signaling and hepatic fibrogenesis. This study examined whether E6AP is overexpressed in activated HSCs, and if so, its effect on hepatic fibrogenesis and the molecular mechanism. E6AP was expressed higher in HSCs than hepatocytes, and was up-regulated in activated HSCs, HSCs from the livers of carbon tetrachloride-injected mice, or TGF-β-treated LX-2 cells. The TGF-β-mediated E6AP up-regulation was not due to altered mRNA level nor protein stability. Thus, we performed microRNA (miRNA, miR) analysis and found that miR-302c was dysregulated in TGF-β-treated LX-2 cells or activated primary HSCs. We revealed that miR-302c was a modulator of E6AP. E6AP overexpression inhibited TGF-β-induced expression of plasminogen activator inhibitor-1 in LX-2 cells, albeit it was independent of Smad pathway. Additionally, E6AP inhibited TGF-β-mediated phosphorylation of mitogen-activated protein kinases. To conclude, E6AP overexpression due to decreased miR-302c in HSCs attenuated hepatic fibrogenesis through inhibition of the TGF-β-induced mitogen-activated protein kinase signaling pathway, implying that E6AP and other molecules may contribute to protection against liver fibrosis.
Collapse
|
37
|
Liu J, Kong D, Qiu J, Xie Y, Lu Z, Zhou C, Liu X, Zhang R, Wang Y. Praziquantel ameliorates CCl 4 -induced liver fibrosis in mice by inhibiting TGF-β/Smad signalling via up-regulating Smad7 in hepatic stellate cells. Br J Pharmacol 2019; 176:4666-4680. [PMID: 31412137 DOI: 10.1111/bph.14831] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 06/24/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Praziquantel is a schistosomicide, which has been used for more than 30 years due to its efficiency, safety, and mild side effects. Previous studies showed that prolonged treatment with praziquantel suppressed the development of liver fibrosis in mice with schistosomiasis. In this study, we investigated the potential mechanisms underlying the antifibrotic effects of praziquantel. EXPERIMENTAL APPROACH To avoid the effect of schistosomicidal activity of praziquantel against liver fibrosis induced by Schistosoma japonicum infection, we established a mouse model of carbon tetrachloride (CCl4 )-induced liver fibrosis for in vivo studies and used TGF-β1-stimulated human hepatic stellate cell line (LX-2) in addition to other fibroblast-like cell line (MES13) and fibroblast cell line (NIH3T3) in vitro. Western blotting, immunohistochemistry, quantitative real-time PCR, siRNA, and immunofluorescence staining were utilized to assess the expression of key molecules in liver fibrosis and the TGF-β/Smad pathway. KEY RESULTS Praziquantel significantly attenuated CCl4 -induced liver fibrosis by inhibiting the activation of hepatic stellate cells (HSCs) and expression of collagen matrix via enhancement of Smad7 expression, which were confirmed in LX-2, MES13, and NIH3T3 cells in vitro. In contrast, knockdown of Smad7 in LX-2 cells prevented praziquantel-mediated inhibition of LX-2 cell activation and TGF-β1-mediated collagen type I α1 induction, revealing the critical role of Smad7 in the antifibrotic effect of praziquantel during liver fibrosis. CONCLUSIONS AND IMPLICATIONS PZQ exhibited a strong efficacy against liver fibrosis by inhibiting activation of HSCs via Smad7 up-regulation, suggesting potential broad utility in treatment of diseases characterized by liver fibrosis.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Delong Kong
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jingfan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yanci Xie
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Zhongkui Lu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Chunlei Zhou
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Children's Hospital, Nanjing, China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Rong Zhang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Pathogen Biology and Immunology, Kangda College, Nanjing Medical University, Lianyungang, China.,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Tang J, Goldschmeding R, Samarakoon R, Higgins PJ. Protein phosphatase Mg 2+ /Mn 2+ dependent-1A and PTEN deregulation in renal fibrosis: Novel mechanisms and co-dependency of expression. FASEB J 2019; 34:2641-2656. [PMID: 31909517 DOI: 10.1096/fj.201902015rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
PPM1A and PTEN emerged as novel suppressors of chronic kidney disease (CKD). Since loss of PPM1A and PTEN in the tubulointerstitium promotes fibrogenesis, defining molecular events underlying PPM1A/PTEN deregulation is necessary to develop expression rescue as novel therapeutic strategies. Here we identify TGF-β1 as a principle repressor of PPM1A, as conditional renal tubular-specific induction of TGF-β1 in mice dramatically downregulates kidney PPM1A expression. TGF-β1 similarly attenuates PPM1A and PTEN expression in human renal epithelial cells and fibroblasts, via a protein degradation mechanism by promoting their ubiquitination. A proteasome inhibitor MG132 rescues PPM1A and PTEN expression, even in the presence of TGF-β1, along with decreased fibrogenesis. Restoration of PPM1A or PTEN similarly limits SMAD3 phosphorylation and the activation of TGF-β1-induced fibrotic genes. Concurrent loss of PPM1A and PTEN levels in aristolochic acid nephropathy further suggests crosstalk between these repressors. PPM1A silencing in renal fibroblasts, moreover, results in PTEN loss, while PTEN stable depletion decreases PPM1A expression with acquisition of a fibroproliferative phenotype in each case. Transient PPM1A expression, conversely, elevates cellular PTEN levels while lentiviral PTEN introduction increases PPM1A expression. PPM1A and PTEN, therefore, co-regulate each other's relative abundance, identifying a previously unknown pathological link between TGF-β1 repressors, contributing to CKD.
Collapse
Affiliation(s)
- Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical Center, Albany, NY, USA
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical Center, Albany, NY, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
39
|
Chae DK, Park J, Cho M, Ban E, Jang M, Yoo YS, Kim EE, Baik JH, Song EJ. MiR-195 and miR-497 suppress tumorigenesis in lung cancer by inhibiting SMURF2-induced TGF-β receptor I ubiquitination. Mol Oncol 2019; 13:2663-2678. [PMID: 31581360 PMCID: PMC6887584 DOI: 10.1002/1878-0261.12581] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
SMURF2 is a member of the HECT family of E3 ubiquitin ligases that have important roles as a negative regulator of transforming growth factor‐β (TGF‐β) signaling through ubiquitin‐mediated degradation of TGF‐β receptor I. However, the regulatory mechanism of SMURF2 is largely unknown. In this study, we identified that micro(mi)R‐195 and miR‐497 putatively target SMURF2 using several target prediction databases. Both miR‐195 and miR‐497 bind to the 3′‐UTR of the SMURF2 mRNA and inhibit SMURF2 expression. Furthermore, miR‐195 and miR‐497 regulate SMURF2‐dependent TβRI ubiquitination and cause the activation of the TGF‐β signaling pathway in lung cancer cells. Upregulation of miR‐195 and miR‐497 significantly reduced cell viability and colony formation through the activation of TGF‐β signaling. Interestingly, miR‐195 and miR‐497 also reduced the invasion ability of lung cancer cells when cells were treated with TGF‐β1. Subsequent in vivo studies in xenograft nude mice model revealed that miR‐195 and miR‐497 repress tumor growth. These findings demonstrate that miR‐195 and miR‐497 act as a tumor suppressor by suppressing ubiquitination‐mediated degradation of TGF‐β receptors through SMURF2, and suggest that miR‐195 and miR‐497 are potential therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Dong-Kyu Chae
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Moonsoo Cho
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Eunmi Ban
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Mihue Jang
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Young Sook Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Ja-Hyun Baik
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
40
|
Furukawa S, Matsuda K, Sugano M, Uehara T, Honda T. NLRP3 upregulation in A549 cells co-cultured with THP-1 macrophages under hypoxia via deregulated TGF-β signaling. Exp Cell Res 2019; 383:111506. [PMID: 31326388 DOI: 10.1016/j.yexcr.2019.111506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is one of the key components of the inflammasome. NLRP3 also participates in the regulation of fibrosis independent of the inflammasome. In this study, we analyzed the mechanism of upregulation of NLRP3 expression in A549 cells co-cultured with THP-1 macrophages under hypoxia. Upregulation of NLRP3 was suppressed after treatment with inhibitors of TGF-β receptor or p38, but not with inhibitors of the IL-1 receptor and SMAD3. The analysis of downstream molecules of TGF-β signaling in A549 cells co-cultured with THP-1 macrophages under hypoxia showed that TGFBR1 was upregulated and SMAD7 was downregulated. Taken together, these results suggest that the upregulation of NLRP3 in A549 cells is associated with deregulated TGF-β signaling and that the interaction between NLRP3 and TGF-β signaling plays a fundamental role in fibrogenesis.
Collapse
Affiliation(s)
- Satomi Furukawa
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| | - Kazuyuki Matsuda
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| | - Mitsutoshi Sugano
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| | - Takayuki Honda
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| |
Collapse
|
41
|
Xiao Y, Jiang X, Peng C, Zhang Y, Xiao Y, Liang D, Shi M, Wang Y, Zhang F, Guo B. BMP-7/Smads-induced inhibitor of differentiation 2 (Id2) upregulation and Id2/Twist interaction was involved in attenuating diabetic renal tubulointerstitial fibrosis. Int J Biochem Cell Biol 2019; 116:105613. [PMID: 31539631 DOI: 10.1016/j.biocel.2019.105613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/13/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Renal tubular epithelial-mesenchymal transition (EMT) is the main pathological change in diabetic renal tubulointerstitial fibrosis. Mounting evidence indicates that the inhibitor of differentiation 2 (Id2) protein acts as a negative regulatory factor in organ fibrosis and can inhibit or reverse the process of fibrosis. However, its specific regulatory mechanism is not clear. Diabetes mellitus (DM) rat models were established by injecting rats with streptozotocin and sacrificing them after 16 weeks. Rat renal tubular epithelial cells (NRK-52E) were cultured with normal and high glucose. Immunohistochemical analysis, double immunofluorescence staining, co-immunoprecipitation, Western blot analysis, and real-time polymerase chain reaction were used to determine the expression of Id2, Twist, Smad1/5/8, E-cadherin, α-smooth muscle actin (α-SMA), and collagen Ⅳ. The results showed that bone morphogenetic protein-7 (BMP-7) upregulated the expression of Id2 against high-glucose-induced EMT and extracellular matrix secretion. Moreover, only the simultaneous knockdown of Smad1, Smad5, and Smad8 downregulated the expression of Id2, which was not altered by the individual knockdown of Smad1, Smad5, and Smad8. Basic helix-loop-helix (bHLH) transcription factors were essential for Id2 to regulate the role of downstream target genes, and Twist was a bHLH transcription factor. Therefore, the expression of Twist was examined in this study. Twist was found to be highly expressed in the kidney of DM rats and renal tubular epithelial cells cultured with high glucose. The overexpression of Id2 did not alter the expression of Twist, but the interaction between Id2 and Twist was enhanced. In conclusion, the data showed the specific mechanism underlying Id2 negative regulation in diabetic renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Xiaohan Jiang
- Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, China.
| | - Can Peng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Yingying Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Yawen Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Dan Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, China.
| |
Collapse
|
42
|
Abstract
Renal fibrosis is characterized by excessive deposition of extracellular matrix (ECM) that disrupts and replaces functional parenchyma, which leads to organ failure. It is known as the major pathological mechanism of chronic kidney disease (CKD). Although CKD has an impact on no less than 10% of the world population, therapeutic options are still limited. Regardless of etiology, elevated TGF-β levels are highly correlated with the activated pro-fibrotic pathways and disease progression. TGF-β, the key driver of renal fibrosis, is involved in a dynamic pathophysiological process that leads to CKD and end-stage renal disease (ESRD). It is becoming clear that epigenetics regulates renal programming, and therefore, the development and progression of renal disease. Indeed, recent evidence shows TGF-β1/Smad signaling regulates renal fibrosis via epigenetic-correlated mechanisms. This review focuses on the function of TGF-β/Smads in renal fibrogenesis, and the role of epigenetics as a regulator of pro-fibrotic gene expression.
Collapse
Affiliation(s)
- Tao-Tao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
43
|
Song MK, Lee JH, Ryoo IG, Lee SH, Ku SK, Kwak MK. Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation. Free Radic Biol Med 2019; 138:33-42. [PMID: 31059771 DOI: 10.1016/j.freeradbiomed.2019.04.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Transforming growth factor-β (TGF-β) is a potent pathogenic factor of renal injury through the upregulation of extracellular matrix (ECM) expression and facilitation of renal fibrosis. Nuclear factor erythroid 2-like 2 (Nfe2l2; Nrf2), a master regulator of antioxidant and detoxifying systems, is mainly controlled by the binding with cytosolic protein Kelch-like ECH-associated protein 1 (Keap1) and subsequent proteasomal degradation. The protective effect of Nrf2 on renal injury has been attributed to its antioxidant role, where it aids in coping with oxidative stress-associated progression of renal disease. In this study, we investigated the effect of Nrf2 activation on ECM production and TGF-β/Smad signaling using Keap1-silenced MES-13 cells (a genetic glomerular mesangial cell model with Nrf2 overexpression). The TGF-β1-inducible expression of fibronectin and α-smooth muscle actin (α-Sma) was suppressed and Smad2/3 phosphorylation was blocked in Nrf2-high mesangial cells as compared with that in control cells. Notably, in these Nrf2-high mesangial cells, levels of TGF-β1 receptor 1 (TβR1) were substantially diminished, and the protein levels of Smad7, an inhibitor TGF-β1/Smad signaling, were increased. Nrf2-mediated Smad7 elevation and its anti-fibrotic role in Keap1-silenced cells were confirmed by studies with Nrf2-or Smad7-silencing. As a molecular link for Smad7 elevation in Nrf2-high cells, the reduction of Smad-ubiquitination-regulatory factor 1 (Smurf1), an E3 ubiquitin ligase for Smad7, was notable. Silencing of Smurf1 increased Smad7 in the control mesangial cells; however, forced expression of Smurf1 repressed Smad7 levels in Keap1-silenced cells. Additionally, we demonstrate that bardoxolone (BARD; CDDO-methyl), a pharmacological activator of Nrf2, increased Smad7 levels and attenuated TGF-β/Smad/ECM expression in MES-13. Moreover, in an aristolochic acid (AA)-mediated nephropathy mouse model, the renal expression of Nrf2 and Smad7 was elevated by BARD treatment, and AA-induced tubular necrosis and interstitial fibrosis were substantially ameliorated by BARD. Collectively, these results indicate that the Nrf2-Smad7 axis plays a key role in the protection of TGF-β-induced renal fibrosis, and further suggest a novel molecular mechanism of beneficial effect of BARD on renal disease.
Collapse
Affiliation(s)
- Min-Kyun Song
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Jin-Hee Lee
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Republic of Korea
| | - In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Republic of Korea
| | - Sang-Hwan Lee
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeonsangbuk-do, 712-715, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea; Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Republic of Korea; College of Pharmacy, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
44
|
Zhou J, Cheng H, Wang Z, Chen H, Suo C, Zhang H, Zhang J, Yang Y, Geng L, Gu M, Tan R. Bortezomib attenuates renal interstitial fibrosis in kidney transplantation via regulating the EMT induced by TNF-α-Smurf1-Akt-mTOR-P70S6K pathway. J Cell Mol Med 2019; 23:5390-5402. [PMID: 31140729 PMCID: PMC6653435 DOI: 10.1111/jcmm.14420] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
Allograft interstitial fibrosis was characterized by massive extracellular matrix deposition caused by activated fibroblasts and myofibroblasts. Epithelial‐mesenchymal transition (EMT) is recognized as an important source of myofibroblasts contributing to the pathogenesis of allograft interstitial fibrosis. Smad ubiquitination regulatory factor 1 (Smurf1) has been recently reported to be involved in the progression of EMT. Our study was to detect the effect of Bortezomib and Smurf1 in the EMT and allograft interstitial fibrosis. Biomarkers of EMT, as well as Smurf1, were examined in human proximal tubular epithelial cells (HK‐2) treated with tumour necrosis factor‐alpha (TNF‐α) in various doses or at various time points by Western Blotting or qRT‐PCR. We knockdown or overexpressed Smurf1 in HK‐2 cells. Furthermore, rat renal transplant model was established and intervened by Bortezomib. Allograft tissues from human and rats were also collected and prepared for HE, Masson's trichrome, immunohistochemical staining and western blotting assays. As a result, we found that TNF‐α significantly promoted the development of EMT in a time‐dependent and dose‐dependent manner through Smurf1/Akt/mTOR/P70S6K signalling pathway. More importantly, Bortezomib alleviated the progression of EMT and allograft interstitial fibrosis in vivo and in vitro by inhibiting the production of TNF‐α and expression of Smurf1. In conclusion, Smurf1 plays a critical role in the development of EMT induced by TNF‐α. Bortezomib can attenuate the Sumrf1‐mediated progression of EMT and renal allograft interstitial fibrosis, which could be suggested as a novel choice for the prevention and treatment of renal allograft interstitial fibrosis.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Cheng
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hengcheng Zhang
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayi Zhang
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yanhao Yang
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Geng
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ming Gu
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Huangqi Shengmai Yin Protects against Radiation-Induced Cardiac Fibrosis Injury by Regulating the TGF- β1/Smads and MMPs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1358469. [PMID: 31214266 PMCID: PMC6535819 DOI: 10.1155/2019/1358469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
Abstract
Background Radiation-induced heart damage is considered to be a progressive process of fibrosis. Emerging evidence has indicated that the Smads and matrix metalloproteinases (MMPs)/tissue inhibitors of MMPs (TIMP) may be involved in radiation-induced cardiac fibrosis (RICF) by regulating the activation of TGF-β1 signaling pathway. Based on this, the present study was undertaken to characterize the effect of Huangqi Shengmai Yin (HSY) on RICF in a rat model. Methods Precardiac region of rats was irradiated with 25 Gy X-rays, and their myocardial pathology scores in terms of injury and collagen volume fraction (CVF) and the expression levels of fibrotic molecules were detected. Results The pathology scores and CVF in myocardial tissue increased after irradiation, and the expression of TGF-β1, Col1, and Col3 increased. This change indicated that such irradiation promoted the fibrosis damage in rat hearts. The damage was accompanied by an increase in the expression of Smad 2, Smad3, Smad4, and MMP14 and a decrease in the expression of Smad 7 and TIMP1. Administration of HSY weakened the RICF by decreasing pathology score and CVF and decreased the expression of TGF-β1, Col1, and Col3 in irradiated rat hearts. In addition, Smad2, Smad3, Smad4, and MMP14 were downregulated, while Smad 7 and TIMP1 were upregulated during intervention with HSY. Conclusions The involvement of the TGF-β1/Smads and MMPs/TIMP system in RICF was confirmed. This study demonstrated, for the first time, that HSY attenuates the effects of RICF in a rat model. The effect HSY was found to be closely related to the TGF-β1/Smads signaling pathway and MMPs system. These results suggest that HSY is a prospective drug for clinical treatment of RICF.
Collapse
|
46
|
TTC3 contributes to TGF-β 1-induced epithelial-mesenchymal transition and myofibroblast differentiation, potentially through SMURF2 ubiquitylation and degradation. Cell Death Dis 2019; 10:92. [PMID: 30696809 PMCID: PMC6351531 DOI: 10.1038/s41419-019-1308-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023]
Abstract
Transforming growth factor-β (TGF-β) acts as a key cytokine in epithelial−mesenchymal transition (EMT) and myofibroblast differentiation, which are important for normal tissue repair and fibrotic diseases. Ubiquitylation and proteasomal degradation of TGF-β signaling proteins acts as a regulatory mechanism for the precise control of TGF-β signaling. SMAD-specific ubiquitin E3 ligase (SMAD ubiquitination regulatory factor 2, SMURF2) controls TGF-β signaling proteins including the TGF-β receptor (TGFR) and SMAD2/3. Here, we report that tetratricopeptide repeat domain 3 (TTC3), a ubiquitin E3 ligase, positively regulates TGF-β1-induced EMT and myofibroblast differentiation, through inducing ubiquitylation and proteasomal degradation of SMURF2. In human bronchial epithelial cells (BEAS-2B) and normal human lung fibroblasts, TTC3 knockdown suppressed TGF-β1-induced EMT and myofibroblast differentiation, respectively. Similarly, when TTC3 expression was suppressed, the TGF-β1-stimulated elevation of p-SMAD2, SMAD2, p-SMAD3, and SMAD3 were inhibited. In contrast, overexpression of TTC3 caused both EMT and myofibroblast differentiation in the absence of TGF-β1 treatment. TGF-β1 reduced SMURF2 levels and TTC3 overexpression led to a further decrease in SMURF2 levels, while TTC3 knockdown inhibited TGF-β1-induced SMURF2 reduction. In cell and in vitro ubiquitylation assays demonstrated TTC3-mediated SMURF2 ubiquitylation, and coimmunoprecipitation assays established the binding between SMURF2 and TTC3. TGF-β1-induced TTC3 expression was inhibited by the knockdown of SMAD2 and SMAD3. Finally, Ttc3 mRNA levels were significantly increased and Smurf2 protein levels were significantly decreased in the lungs of mice treated with bleomycin as compared with the lungs of control mice. Collectively, these data suggest that TTC3 may contribute to TGF-β1-induced EMT and myofibroblast differentiation, potentially through SMURF2 ubiquitylation/proteasomal degradation and subsequent inhibition of SMURF2-mediated suppression of SMAD2 and SMAD3, which in turn induces TTC3 expression.
Collapse
|
47
|
Zhang S, Huang Q, Cai X, Jiang S, Xu N, Zhou Q, Cao X, Hultström M, Tian J, Lai EY. Osthole Ameliorates Renal Fibrosis in Mice by Suppressing Fibroblast Activation and Epithelial-Mesenchymal Transition. Front Physiol 2018; 9:1650. [PMID: 30524310 PMCID: PMC6258720 DOI: 10.3389/fphys.2018.01650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Renal fibrosis is a common pathway of virtually all progressive kidney diseases. Osthole (OST, 7-Methoxy-8-(3-methylbut-2-enyl)-2-chromenone), a derivative of coumarin mainly found in plants of the Apiaceae family, has shown inhibitory effects on inflammation, oxidative stress, fibrosis and tumor progression. The present study investigated whether OST mediates its effect via suppressing fibroblast activation and epithelial-mesenchymal transition (EMT) in unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice. Herein, we found that OST inhibited fibroblast activation in a dose-dependent manner by inhibiting the transforming growth factor-β1 (TGFβ1)-Smad pathway. OST also blocked fibroblast proliferation by reducing DNA synthesis and downregulating the expressions of proliferation- and cell cycle-related proteins including proliferating cell nuclear antigen (PCNA), CyclinD1 and p21 Waf1/Cip1. Meanwhile, in the murine model of renal interstitial fibrosis induced by UUO, myofibroblast activation with increased expression of α-smooth muscle actin (α-SMA) and proliferation were attenuated by OST treatment. Additionally, we provided in vivo evidence suggesting that OST repressed EMT with preserved E-cadherin and reduced Vimentin expression in obstructed kidney. UUO injury-induced upregulation of EMT-related transcription factors, Snail family transcriptional repressor-1(Snail 1) and Twist family basic helix-loop-helix (BHLH) transcription factor (Twist) as well as elevated G2/M arrest of tubular epithelial cell, were rescued by OST treatment. Further, OST treatment reversed aberrant expression of TGFβ1-Smad signaling pathway, increased level of proinflammatory cytokines and NF-kappaB (NF-κB) activation in kidneys with obstructive nephropathy. Taken together, these findings suggest that OST hinder renal fibrosis in UUO mouse mainly through inhibition of fibroblast activation and EMT.
Collapse
Affiliation(s)
- Suping Zhang
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Huang
- Department of Physiology, Quanzhou Medical College, Quanzhou, China
| | - Xiaoxia Cai
- Department of Basic Medical Sciences, Honghe Health Vocational College, Mengzi, China
| | - Shan Jiang
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Xu
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Cao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jiong Tian
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - En Yin Lai
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Long Y, Chen W, Du Q, Zuo X, Zhu H. Ubiquitination in Scleroderma Fibrosis and Its Treatment. Front Immunol 2018; 9:2383. [PMID: 30386338 PMCID: PMC6199354 DOI: 10.3389/fimmu.2018.02383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
Scleroderma (systemic sclerosis, SSc) is a highly heterogeneous rheumatic disease, and uncontrolled fibrosis in visceral organs is the major cause of death in patients. The transforming growth factor-β (TGF-β) and WNT/β-catenin signaling pathways, along with signal transducer and activator of transcription 3 (STAT3), play crucial roles in this fibrotic process. Currently, no therapy is available that effectively arrests or reverses the progression of fibrosis in patients with SSc. Ubiquitination is an important post-translational modification that controls many critical cellular functions. Dysregulated ubiquitination events have been observed in patients with systemic lupus erythematosus, rheumatoid arthritis and fibrotic diseases. Inhibitors targeting the ubiquitination pathway have considerable potential for the treatment of rheumatic diseases. However, very few studies have examined the role and mechanism of ubiquitination in patients with SSc. In this review, we will summarize the molecular mechanisms of ubiquitination in patients with SSc and explore the potential targets for treatment.
Collapse
Affiliation(s)
- Ying Long
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Du
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Mota MSV, Jackson WP, Bailey SK, Vayalil P, Landar A, Rostas JW, Mulekar MS, Samant RS, Shevde LA. Deficiency of tumor suppressor Merlin facilitates metabolic adaptation by co-operative engagement of SMAD-Hippo signaling in breast cancer. Carcinogenesis 2018; 39:1165-1175. [PMID: 29893810 PMCID: PMC6148973 DOI: 10.1093/carcin/bgy078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/15/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
The NF2 gene encodes the tumor and metastasis suppressor protein Merlin. Merlin exerts its tumor suppressive role by inhibiting proliferation and inducing contact-growth inhibition and apoptosis. In the current investigation, we determined that loss of Merlin in breast cancer tissues is concordant with the loss of the inhibitory SMAD, SMAD7, of the TGF-β pathway. This was reflected as dysregulated activation of TGF-β signaling that co-operatively engaged with effectors of the Hippo pathway (YAP/TAZ/TEAD). As a consequence, the loss of Merlin in breast cancer resulted in a significant metabolic and bioenergetic adaptation of cells characterized by increased aerobic glycolysis and decreased oxygen consumption. Mechanistically, we determined that the co-operative activity of the Hippo and TGF-β transcription effectors caused upregulation of the long non-coding RNA Urothelial Cancer-Associated 1 (UCA1) that disengaged Merlin's check on STAT3 activity. The consequent upregulation of Hexokinase 2 (HK2) enabled a metabolic shift towards aerobic glycolysis. In fact, Merlin deficiency engendered cellular dependence on this metabolic adaptation, endorsing a critical role for Merlin in regulating cellular metabolism. This is the first report of Merlin functioning as a molecular restraint on cellular metabolism. Thus, breast cancer patients whose tumors demonstrate concordant loss of Merlin and SMAD7 may benefit from an approach of incorporating STAT3 inhibitors.
Collapse
Affiliation(s)
- Mateus S V Mota
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - William P Jackson
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Sarah K Bailey
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Praveen Vayalil
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Aimee Landar
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Jack W Rostas
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Madhuri S Mulekar
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Louisville, Louisville, KY, USA
- UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Louisville, Louisville, KY, USA
- UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
50
|
Zheng R, Zhu R, Li X, Li X, Shen L, Chen Y, Zhong Y, Deng Y. N6-(2-Hydroxyethyl) Adenosine From Cordyceps cicadae Ameliorates Renal Interstitial Fibrosis and Prevents Inflammation via TGF-β1/Smad and NF-κB Signaling Pathway. Front Physiol 2018; 9:1229. [PMID: 30233405 PMCID: PMC6131671 DOI: 10.3389/fphys.2018.01229] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023] Open
Abstract
Renal interstitial fibrosis is characterized by inflammation and an excessive accumulation of extracellular matrix, which leads to end-stage renal failure. Our previous studies have shown that a natural product from Cordyceps cicadae can ameliorate chronic kidney diseases. N6-(2-Hydroxyethyl) adenosine (HEA), a physiologically active compound in C. cicadae, has been identified as a Ca2+ antagonist and an anti-inflammatory agent in pharmacological tests. However, its role in renal interstitial fibrosis and the underlying mechanism remains unclear. Here, unilateral ureteral obstruction (UUO) was used to induce renal interstitial fibrosis in male C57BL/6 mice. Different doses of HEA (2.5, 5, and 7.5 mg/kg) were given by intraperitoneal injection 24 h before UUO, and the treatment was continued for 14 days post-operatively. Histologic changes were examined by hematoxylin & eosin, Masson’s trichrome, and picrosirius red stain. Quantitative real-time PCR analysis, enzyme-linked immunosorbent assays, immunohistochemistry, and western blot analysis were used to evaluate proteins levels. And the results showed that HEA significantly decreased UUO-induced renal tubular injury and fibrosis. In vivo, HEA apparently decreased UUO-induced inflammation and renal fibroblast activation by suppression of the NF-κB and TGF-β1/Smad signaling pathway. In vitro, HEA also obviously decreased lipopolysaccharide-induced inflammatory cytokine level in RAW 264.7 cells and TGF-β1-induced fibroblast activation in NRK-49F cells by modulating NF-κB and TGF-β1/Smad signaling. In general, our findings indicate that HEA has a beneficial effect on UUO-induced tubulointerstitial fibrosis by suppression of inflammatory and renal fibroblast activation, which may be a potential therapy in chronic conditions such as renal interstitial fibrosis.
Collapse
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zhu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyun Li
- Chengjiaqiao Street Community Health Service Center, Shanghai, China
| | - Lianli Shen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|