1
|
Chen W, Zhang P, Liu D, Wang X, Lu S, Liu Z, Yang M, Deng T, Chen L, Qi H, Xiao S, Chen Q, Qiu R, Xie L. OsPLDα1 mediates cadmium stress response in rice by regulating reactive oxygen species accumulation and lipid remodeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135702. [PMID: 39217932 DOI: 10.1016/j.jhazmat.2024.135702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lipid remodeling is crucial for various cellular activities and the stress tolerance of plants; however, little is known about the lipid dynamics induced by the heavy metal cadmium (Cd). In this study, we investigated the phospholipid profiles in rice (Oryza sativa) under Cd exposure. We observed a significant decline in the total amounts of phosphatidylcholine and phosphatidylserine, contrasted with an elevation in phosphatidic acid (PA) due to Cd stress. Additionally, Cd stress prompted the activation of phospholipase D (PLD) and induced the expression of PLDα1. OsPLDα1 knockout mutants (Ospldα1) showed increased sensitivity to Cd, characterized by a heightened accumulation of hydrogen peroxide in roots and diminished PA production following Cd treatment. Conversely, PLDα1-overexpressing (OsPLDα1-OE) lines demonstrated enhanced tolerance to Cd, with suppressed transcription of the respiratory burst oxidase homolog (Rboh) genes. The transcription levels of genes associated with Cd uptake and transport were accordingly modulated in Ospldα1 and OsPLDα1-OE plants relative to the wild-type. Taken together, our findings underscore the pivotal role of OsPLDα1 in conferring tolerance to Cd by modulating reactive oxygen species homeostasis and lipid remodeling in rice.
Collapse
Affiliation(s)
- Wenzhen Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Peixian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaozhuo Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Sen Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhixuan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mingkang Yang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Wei H, Wang Z, Wang J, Mao X, He W, Hu W, Tang M, Chen H. Mycorrhizal and non-mycorrhizal perennial ryegrass roots exhibit differential regulation of lipid and Ca 2+ signaling pathways in response to low and high temperature stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109099. [PMID: 39260265 DOI: 10.1016/j.plaphy.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lipids and Ca2+ are involved as intermediate messengers in temperature-sensing signaling pathways. Arbuscular mycorrhizal (AM) symbiosis is a mutualistic symbiosis between fungi and terrestrial plants that helps host plants cope with adverse environmental conditions. Nonetheless, the regulatory mechanisms of lipid- and Ca2+-mediated signaling pathways in mycorrhizal plants under cold and heat stress have not been determined. The present work focused on investigating the lipid- and Ca2+-mediated signaling pathways in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) roots under temperature stress and determining the role of Ca2+ levels in AM symbiosis and temperature stress tolerance in perennial ryegrass (Lolium perenne L.) Compared with NM plants, AM symbiosis increased phosphatidic acid (PA) and Ca2+ signaling in the roots of perennial ryegrass, increasing the expression of genes associated with low temperature (LT) stress, including LpICE1, LpCBF3, LpCOR27, LpCOR47, LpIRI, and LpAFP, and high temperature (HT) stress, including LpHSFC1b, LpHSFC2b, LpsHSP17.8, LpHSP22, LpHSP70, and LpHSP90, under LT and HT conditions. These effects result in modulated antioxidant enzyme activities, reduced lipid peroxidation, and suppressed growth inhibition caused by LT and HT stresses. Furthermore, exogenous Ca2+ application enhanced AM symbiosis, leading to the upregulation of Ca2+ signaling pathway genes in roots and ultimately promoting the growth of perennial ryegrass under LT and HT stresses. These findings shed light on lipid and Ca2+ signal transduction in AM-associated plants under LT and HT stresses, emphasizing that Ca2+ enhances cold and heat tolerance in mycorrhizal plants.
Collapse
Affiliation(s)
- Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyuan He
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Lin L, Yuan K, Huang X, Zhang S. Genome-wide identification of the Phospholipase D (PLD) gene family in Chinese white pear (Pyrus bretschneideri) and the role of PbrPLD2 in drought resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112286. [PMID: 39396619 DOI: 10.1016/j.plantsci.2024.112286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The Chinese white pear (Pyrus bretschneideri), a vital fruit crop, is highly susceptible to abiotic stresses, especially drought, which poses a major threat to its growth and productivity. Phospholipase D (PLD) genes are pivotal in orchestrating plant responses to abiotic stresses, acting as key regulators in stress adaptation mechanisms. This study systematically identified and functionally characterized the entire PLD gene family in P. bretschneideri through a comprehensive genome-wide analysis. A total of 20 PbrPLD genes were identified, and they were categorized into five subfamilies based on phylogenetic analysis. chromosome localization, gene structure, and conserved motif analyses revealed that these genes have diverse evolutionary histories. Cis-acting element analysis and expression profiling under drought stress indicated that several PbrPLD genes, particularly PbrPLD2, are strongly induced by drought. Overexpression of PbrPLD2 in both Arabidopsis thaliana and pear demonstrated enhanced drought tolerance through improved stomatal closure and increased expression of drought-responsive genes. These findings highlight the critical role of PbrPLD2 in drought resistance and provide a theoretical and experimental foundation for molecular breeding in pear and other fruit crops.
Collapse
Affiliation(s)
- Likun Lin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kaili Yuan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Hou ZH, Gao Y, Zheng JC, Zhao MJ, Liu Y, Cui XY, Li ZY, Wei JT, Yu TF, Zheng L, Jiao YC, Yang SH, Hao JM, Chen J, Zhou YB, Chen M, Qiu L, Ma YZ, Xu ZS. GmBSK1-GmGSK1-GmBES1.5 regulatory module controls heat tolerance in soybean. J Adv Res 2024:S2090-1232(24)00387-4. [PMID: 39236976 DOI: 10.1016/j.jare.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION Heat stress poses a severe threat to the growth and production of soybean (Glycine max). Brassinosteroids (BRs) actively participate in plant responses to abiotic stresses, however, the role of BR signaling pathway genes in response to heat stress in soybean remains poorly understood. OBJECTIVES In this study, we investigate the regulatory mechanisms of GmBSK1 and GmBES1.5 in response to heat stress and the physiological characteristics and yield performance under heat stress conditions. METHODS Transgenic technology and CRISPR/Cas9 technology were used to generated GmBSK1-OE, GmBES1.5-OE and gmbsk1 transgenic soybean plants, and transcriptome analysis, LUC activity assay and EMSA assay were carried out to elucidate the potential molecular mechanism underlying GmBSK1-GmBES1.5-mediated heat stress tolerance in soybean. RESULTS CRISPR/Cas9-generated gmbsk1 knockout mutants exhibited increased sensitivity to heat stress due to a reduction in their ability to scavenge reactive oxygen species (ROS). The expression of GmBES1.5 was up-regulated in GmBSK1-OE plants under heat stress conditions, and it directly binds to the E-box motif present in the promoters of abiotic stress-related genes, thereby enhancing heat stress tolerance in soybean plants. Furthermore, we identified an interaction between GmGSK1 and GmBES1.5, while GmGSK1 inhibits the transcriptional activity of GmBES1.5. Interestingly, the interaction between GmBSK1 and GmGSK1 promotes the localization of GmGSK1 to the plasma membrane and releases the transcriptional activity of GmBES1.5. CONCLUSION Our findings suggest that both GmBSK1 and GmBES1.5 play crucial roles in conferring heat stress tolerance, highlighting a potential strategy for breeding heat-tolerant soybean crops involving the regulatory module consisting of GmBSK1-GmGSK1-GmBES1.5.
Collapse
Affiliation(s)
- Ze-Hao Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuan Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, College of Agronomy, Fengyang 233100, China
| | - Meng-Jie Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ying Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiao-Yu Cui
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhi-Yong Li
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Tong Wei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Tai-Fei Yu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lei Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuan-Chen Jiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shu-Hui Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jia-Min Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yong-Bin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lijuan Qiu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - You-Zhi Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya 572024, China
| | - Zhao-Shi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya 572024, China.
| |
Collapse
|
5
|
Liu QQ, Xia JQ, Wu J, Han Y, Zhang GQ, Zhao PX, Xiang CB. Root-derived long-distance signals trigger ABA synthesis and enhance drought resistance in Arabidopsis. J Genet Genomics 2024; 51:749-761. [PMID: 38554784 DOI: 10.1016/j.jgg.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Vascular plants have evolved intricate long-distance signaling mechanisms to cope with environmental stress, with reactive oxygen species (ROS) emerging as pivotal systemic signals in plant stress responses. However, the exact role of ROS as root-to-shoot signals in the drought response has not been determined. In this study, we reveal that compared with wild-type plants, ferric reductase defective 3 (frd3) mutants exhibit enhanced drought resistance concomitant with elevated NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) transcript levels and abscisic acid (ABA) contents in leaves as well as increased hydrogen peroxide (H2O2) levels in roots and leaves. Grafting experiments distinctly illustrate that drought resistance can be conferred by the frd3 rootstock regardless of the scion genotype, indicating that long-distance signals originating from frd3 roots promote an increase in ABA levels in leaves. Intriguingly, the drought resistance conferred by the frd3 mutant rootstock is weakened by the CAT2-overexpressing scion, suggesting that H2O2 may be involved in long-distance signaling. Moreover, the results of comparative transcriptome and proteome analyses support the drought resistance phenotype of the frd3 mutant. Taken together, our findings substantiate the notion that frd3 root-derived long-distance signals trigger ABA synthesis in leaves and enhance drought resistance, providing new evidence for root-to-shoot long-distance signaling in the drought response of plants.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Yi Han
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Gui-Quan Zhang
- College of Agronomy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ping-Xia Zhao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
| |
Collapse
|
6
|
Song Y, Li X, Zhang M, Xiong C. Spatial specificity of metabolism regulation of abscisic acid-imposed seed germination inhibition in Korean pine (Pinus koraiensis sieb et zucc). FRONTIERS IN PLANT SCIENCE 2024; 15:1417632. [PMID: 38966139 PMCID: PMC11222580 DOI: 10.3389/fpls.2024.1417632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Introduction Abscisic acid (ABA) can negatively regulate seed germination, but the mechanisms of ABA-mediated metabolism modulation are not well understood. Moreover, it remains unclear whether metabolic pathways vary with the different tissue parts of the embryo, such as the radicle, hypocotyl and cotyledon. Methods In this report, we performed the first comprehensive metabolome analysis of the radicle and hypocotyl + cotyledon in Pinus koraiensis seeds in response to ABA treatment during germination. Results and discussion Metabolome profiling showed that following ABA treatment, 67 significantly differentially accumulated metabolites in the embryo were closely associated with pyrimidine metabolism, phenylalanine metabolism, cysteine and methionine metabolism, galactose metabolism, terpenoid backbone biosynthesis, and glutathione metabolism. Meanwhile, 62 metabolites in the hypocotyl + cotyledon were primarily involved in glycerophospholipid metabolism and glycolysis/gluconeogenesis. We can conclude that ABA may inhibit Korean pine seed germination primarily by disrupting the biosynthesis of certain plant hormones mediated by cysteine and methionine metabolism and terpenoid backbone biosynthesis, as well as reducing the reactive oxygen species scavenging ability regulated by glutathione metabolism and shikimate pathway in radicle. ABA may strongly disrupt the structure and function of cellular membranes due to alterations in glycerophospholipid metabolism, and weaken glycolysis/gluconeogenesis in the hypocotyl + cotyledon, both of which are major contributors to ABA-mediated inhibition of seed germination. These results highlight that the spatial modulation of metabolic pathways in Pinus koraiensis seeds underlies the germination response to ABA.
Collapse
Affiliation(s)
- Yuan Song
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
- The Karst Environmental Geological Hazard Prevention Laboratory of Guizhou Minzu University, Guiyang, China
| | - Xinghuan Li
- Department of Health Management, Guiyang Institute of Information Science and Technology, Guiyang, China
| | - Mingyi Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| | - Chao Xiong
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
7
|
Shen C, Feng G, Zhao F, Huang X, Li X. The multi-omics analysis in the hepatopancreas of Eriocheir sinensis provides novel insights into the response mechanism of heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101232. [PMID: 38598963 DOI: 10.1016/j.cbd.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Under global warming, heat stress can induce the excessive production of reactive oxygen species, causing irreversible damage to aquatic animals. It is essential to predict potentially harmful impacts on aquatic organisms under heat stress. Eriocheir sinensis, a typical crustacean crab, is widely distributed in China, American and Europe. Parent E. sinensis need migrate to the estuaries to reproduce in winter, and temperature is a key environmental factor. Herein, we performed a comprehensive transcriptomic and proteomic analysis in the hepatopancreas of E. sinensis under heat stress (20 °C and 30 °C), focusing on heat shock protein family, antioxidant system, energy metabolism and immune defense. The results revealed that parent E. sinensis generated adaptative responses to maintain physiological function under 20 °C stress via the transcriptional up-regulation of energy metabolism enzymes, mRNA synthesis and heat shock proteins. The transcriptional inhibition of key enzymes related to energy metabolism implied that 30 °C stress may lead to the dysfunction of energy metabolism in parent E. sinensis. Meanwhile, parent E. sinensis also enhanced the expression of ferritin and phospholipase D at translational level, and the glutathione s-transferase and heat shock protein 70 at both transcriptional and translational levels, speculating that parent E. sinensis can strengthen antioxidant and immune capacity to resist oxidative stress under 30 °C stress. This study elucidated the potential molecular mechanism in response to heat stress of parent E. sinensis hepatopancreas. The preliminary selection of heat tolerance genes or proteins in E. sinensis can provide a reference for the population prediction and the study of evolutionary mechanism under heat stress in crabs.
Collapse
Affiliation(s)
- Chenchen Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Feng Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| | - Xiaorong Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| |
Collapse
|
8
|
Zhou H, Huo Y, Yang N, Wei T. Phosphatidic acid: from biophysical properties to diverse functions. FEBS J 2024; 291:1870-1885. [PMID: 37103336 DOI: 10.1111/febs.16809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.
Collapse
Affiliation(s)
- Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanwu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Genetic and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Wang Y, Liu H, Bai L, Liu R, Jiang H, Tan J, Chen J. Overexpression of OsNAR2.1 by OsNAR2.1 promoter increases drought resistance by increasing the expression of OsPLDα1 in rice. BMC PLANT BIOLOGY 2024; 24:321. [PMID: 38654179 PMCID: PMC11040742 DOI: 10.1186/s12870-024-05012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hongyan Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan, 572025, China
| | - Lu Bai
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ruifang Liu
- The High School Affiliated to Renmin, University of China, Shenzhen, Guangdong, 518119, China
| | - Hongzhen Jiang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jinfang Tan
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
10
|
Ndathe R, Kato N. Phosphatidic acid produced by phospholipase Dα1 and Dδ is incorporated into the internal membranes but not involved in the gene expression of RD29A in the abscisic acid signaling network in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1356699. [PMID: 38681216 PMCID: PMC11045897 DOI: 10.3389/fpls.2024.1356699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Core protein components of the abscisic acid (ABA) signaling network, pyrabactin resistance (PYR), protein phosphatases 2C (PP2C), and SNF1-related protein kinase 2 (SnRK2) are involved in the regulation of stomatal closure and gene expression downstream responses in Arabidopsis thaliana. Phosphatidic acid (PA) produced by the phospholipases Dα1 and Dδ (PLDs) in the plasma membrane has been identified as a necessary molecule in ABA-inducible stomatal closure. On the other hand, the involvement of PA in ABA-inducible gene expression has been suggested but remains a question. In this study, the involvement of PA in the ABA-inducible gene expression was examined in the model plant Arabidopsis thaliana and the canonical RD29A ABA-inducible gene that possesses a single ABA-responsive element (ABRE) in the promoter. The promoter activity and accumulation of the RD29A mRNA during ABA exposure to the plants were analyzed under conditions in which the production of PA by PLDs is abrogated through chemical and genetic modification. Changes in the subcellular localization of PA during the signal transduction were analyzed with confocal microscopy. The results obtained in this study suggest that inhibition of PA production by the PLDs does not affect the promoter activity of RD29A. PA produced by the PLDs and exogenously added PA in the plasma membrane are effectively incorporated into internal membranes to transduce the signal. However, exogenously added PA induces stomatal closure but not RD29A expression. This is because PA produced by the PLDs most likely inhibits the activity of not all but only the selected PP2C family members, the negative regulators of the RD29A promoter. This finding underscores the necessity for experimental verifications to adapt previous knowledge into a signaling network model before its construction.
Collapse
Affiliation(s)
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Wang NN, Ni P, Wei YL, Hu R, Li Y, Li XB, Zheng Y. Phosphatidic acid interacts with an HD-ZIP transcription factor GhHOX4 to influence its function in fiber elongation of cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:423-436. [PMID: 38184843 DOI: 10.1111/tpj.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Upland cotton, the mainly cultivated cotton species in the world, provides over 90% of natural raw materials (fibers) for the textile industry. The development of cotton fibers that are unicellular and highly elongated trichomes on seeds is a delicate and complex process. However, the regulatory mechanism of fiber development is still largely unclear in detail. In this study, we report that a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, GhHOX4, plays an important role in fiber elongation. Overexpression of GhHOX4 in cotton resulted in longer fibers, while GhHOX4-silenced transgenic cotton displayed a "shorter fiber" phenotype compared with wild type. GhHOX4 directly activates two target genes, GhEXLB1D and GhXTH2D, for promoting fiber elongation. On the other hand, phosphatidic acid (PA), which is associated with cell signaling and metabolism, interacts with GhHOX4 to hinder fiber elongation. The basic amino acids KR-R-R in START domain of GhHOX4 protein are essential for its binding to PA that could alter the nuclear localization of GhHOX4 protein, thereby suppressing the transcriptional regulation of GhHOX4 to downstream genes in the transition from fiber elongation to secondary cell wall (SCW) thickening during fiber development. Thus, our data revealed that GhHOX4 positively regulates fiber elongation, while PA may function in the phase transition from fiber elongation to SCW formation by negatively modulating GhHOX4 in cotton.
Collapse
Affiliation(s)
- Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Ni
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ying-Li Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Rong Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
12
|
Qi F, Li J, Ai Y, Shangguan K, Li P, Lin F, Liang Y. DGK5β-derived phosphatidic acid regulates ROS production in plant immunity by stabilizing NADPH oxidase. Cell Host Microbe 2024; 32:425-440.e7. [PMID: 38309260 DOI: 10.1016/j.chom.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
In plant immunity, phosphatidic acid (PA) regulates reactive oxygen species (ROS) by binding to respiratory burst oxidase homolog D (RBOHD), an NADPH oxidase responsible for ROS production. Here, we analyze the influence of PA binding on RBOHD activity and the mechanism of RBOHD-bound PA generation. PA binding enhances RBOHD protein stability by inhibiting vacuolar degradation, thereby increasing chitin-induced ROS production. Mutations in diacylglycerol kinase 5 (DGK5), which phosphorylates diacylglycerol to produce PA, impair chitin-induced PA and ROS production. The DGK5 transcript DGK5β (but not DGK5α) complements reduced PA and ROS production in dgk5-1 mutants, as well as resistance to Botrytis cinerea. Phosphorylation of S506 residue in the C-terminal calmodulin-binding domain of DGK5β contributes to the activation of DGK5β to produce PA. These findings suggest that DGK5β-derived PA regulates ROS production by inhibiting RBOHD protein degradation, elucidating the role of PA-ROS interplay in immune response regulation.
Collapse
Affiliation(s)
- Fan Qi
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Li
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yingfei Ai
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Keke Shangguan
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Ping Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China
| | - Fucheng Lin
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 311200, China.
| | - Yan Liang
- Zhejiang Xianghu Laboratory, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Li J, Yao S, Kim SC, Wang X. Lipid phosphorylation by a diacylglycerol kinase suppresses ABA biosynthesis to regulate plant stress responses. MOLECULAR PLANT 2024; 17:342-358. [PMID: 38243594 PMCID: PMC10869644 DOI: 10.1016/j.molp.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Lipid phosphorylation by diacylglycerol kinase (DGK) that produces phosphatidic acid (PA) plays important roles in various biological processes, including stress responses, but the underlying mechanisms remain elusive. Here, we show that DGK5 and its lipid product PA suppress ABA biosynthesis by interacting with ABA-DEFICIENT 2 (ABA2), a key ABA biosynthesis enzyme, to negatively modulate plant response to abiotic stress tested in Arabidopsis thaliana. Loss of DGK5 function rendered plants less damaged, whereas overexpression (OE) of DGK5 enhanced plant damage to water and salt stress. The dgk5 mutant plants exhibited decreased total cellular and nuclear levels of PA with increased levels of diacylglycerol, whereas DGK5-OE plants displayed the opposite effect. Interestingly, we found that both DGK5 and PA bind to the ABA-synthesizing enzyme ABA2 and suppress its enzymatic activity. Consistently, the dgk5 mutant plants exhibited increased levels of ABA, while DGK5-OE plants showed reduced ABA levels. In addition, we showed that both DGK5 and ABA2 are detected in and outside the nuclei, and loss of DGK5 function decreased the nuclear association of ABA2. We found that both DGK5 activity and PA promote nuclear association of ABA2. Taken together, these results indicate that both DGK5 and PA interact with ABA2 to inhibit its enzymatic activity and promote its nuclear sequestration, thereby suppressing ABA production in response to abiotic stress. Our study reveals a sophisticated mechanism by which DGK5 and PA regulate plant stress responses.
Collapse
Affiliation(s)
- Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
14
|
Lei J, You Y, Dai P, Yu L, Li Y, Liu C, Liu X. GhAGL16 ( AGAMOUS- LIKE16) Negatively Regulates Tolerance to Water Deficit in Transgenic Arabidopsis and Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:282. [PMID: 38256835 PMCID: PMC10820581 DOI: 10.3390/plants13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Cotton is one of the most economically important crops in the world, and drought is a key abiotic factor that can significantly reduce cotton yield. MADS-box transcription factors play essential roles in various aspects of plant growth and development as well as responses to biotic and abiotic stress. However, the use of MADS-box transcription factors to regulate water stress responses has not been fully explored in cotton. Here, we showed that GhAGL16 acts as a negative regulator of water deficit in cotton, at least in part by regulating ABA signaling. GhAGL16-overexpressing (GhAGL16-OE) transgenic Arabidopsis had lower survival rates and relative water contents (RWCs) under water stress. Isolated leaves of GhAGL16-OE Arabidopsis had increased water loss rates, likely attributable to their increased stomatal density. GhAGL16-OE Arabidopsis also showed reduced primary root lengths in response to mannitol treatment and decreased sensitivity of seed germination to ABA treatment. By contrast, silencing GhAGL16 in cotton enhanced tolerance to water deficit by increasing proline (Pro) content, increasing superoxide dismutase (SOD) and peroxidase (POD) activities, and reducing malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents under water stress. Subcellular localization and transcriptional activation assays confirmed that GhAGL16 is a nuclear protein that lacks transcriptional self-activation activity. The expression of ABA biosynthesis-related genes (GhNCED3/7/14), a catabolism-related gene (GhCYP707A), and a gene related to the ABA signaling pathway (GhABF4) was altered in GhAGL16-silenced plants. Taken together, our data demonstrate that GhAGL16 plays an important role in cotton resistance to water stress.
Collapse
Affiliation(s)
- Jianfeng Lei
- College of Agronomy, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China;
| | - Yangzi You
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Peihong Dai
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Li Yu
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Yue Li
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Chao Liu
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| | - Xiaodong Liu
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China; (Y.Y.); (P.D.); (L.Y.); (Y.L.); (C.L.)
| |
Collapse
|
15
|
Lin J, Zhao J, Du L, Wang P, Sun B, Zhang C, Shi Y, Li H, Sun H. Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. PLANT COMMUNICATIONS 2024; 5:100659. [PMID: 37434356 PMCID: PMC10811337 DOI: 10.1016/j.xplc.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.
Collapse
Affiliation(s)
- Jiayu Lin
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jinpeng Zhao
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Linlin Du
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengkun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yan Shi
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hangjun Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
16
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Yao S, Kim SC, Li J, Tang S, Wang X. Phosphatidic acid signaling and function in nuclei. Prog Lipid Res 2024; 93:101267. [PMID: 38154743 PMCID: PMC10843600 DOI: 10.1016/j.plipres.2023.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Membrane lipidomes are dynamic and their changes generate lipid mediators affecting various biological processes. Phosphatidic acid (PA) has emerged as an important class of lipid mediators involved in a wide range of cellular and physiological responses in plants, animals, and microbes. The regulatory functions of PA have been studied primarily outside the nuclei, but an increasing number of recent studies indicates that some of the PA effects result from its action in nuclei. PA levels in nuclei are dynamic in response to stimuli. Changes in nuclear PA levels can result from activities of enzymes associated with nuclei and/or from movements of PA generated extranuclearly. PA has also been found to interact with proteins involved in nuclear functions, such as transcription factors and proteins undergoing nuclear translocation in response to stimuli. The nuclear action of PA affects various aspects of plant growth, development, and response to stress and environmental changes.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shan Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
18
|
Pal P, Masand M, Sharma S, Seth R, Singh G, Singh S, Kumar A, Sharma RK. Genome-wide transcriptional profiling and physiological investigation elucidating the molecular mechanism of multiple abiotic stress response in Stevia rebaudiana Bertoni. Sci Rep 2023; 13:19853. [PMID: 37963906 PMCID: PMC10645737 DOI: 10.1038/s41598-023-46000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Considering the major source of plant-derived low/non-calorie steviol glycosides (SGs), comprehensive physiological, biochemical, and deep transcriptional investigations were conducted to explicit deeper insight into multiple abiotic stress responses in Stevia rebaudiana. The physiological indicators including photosynthesis, chlorophyll, relative water content, shoot growth, electrolyte leakage, and SG biosynthesis were negatively impacted under drought (DS), followed by salinity (SS) and waterlogging (WS). Global transcriptional analysis revealed significant upregulated expression of the genes encoding for ROS detoxification (GST, SOD, APX, glutathione peroxidase), osmotic adjustment (alpha-trehalose-phosphate and S-adenosylmethionine decarboxylase), ion transporters (CAX, NHX, CNGS, VPPase, VATPase), water channel (PIP1, TIP) and abiotic stress-responsive candidate genes (LEA, HSPs, and Dehydrins) regulating abiotic stress response in S. rebaudiana. These inferences were complemented with predicted interactome network that revealed regulation of energy metabolism by key stress-responsive genes (GST, HKT1, MAPKs, P5CSs, PIP), transcription factors (HSFA2, DREB1A, DREB2A), and abiotic stress responsive pathways (ABA, ethylene, ion stress). This is the first detailed study to comprehend the molecular regulation of stress response and their interplay under DS, SS, and WS. The key genes and regulators can be functionally validated, and will facilitate targeted gene editing for genetic improvement of crop sustainability under changing environmental conditions in S. rebaudiana.
Collapse
Affiliation(s)
- Poonam Pal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mamta Masand
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Romit Seth
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanatsujat Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Ashok Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
19
|
Cao H, Liu Q, Liu X, Ma Z, Zhang J, Li X, Shen L, Yuan J, Zhang Q. Phosphatidic acid regulates ammonium uptake by interacting with AMMONIUM TRANSPORTER 1;1 in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:1954-1969. [PMID: 37471275 DOI: 10.1093/plphys/kiad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Ammonium (NH4+) is a key inorganic nitrogen source in cellular amino acid biosynthesis. The coupling of transcriptional and posttranslational regulation of AMMONIUM TRANSPORTER (AMT) ensures that NH4+ acquisition by plant roots is properly balanced, which allows for rapid adaptation to a variety of nitrogen conditions. Here, we report that phospholipase D (PLD)-derived phosphatidic acid (PA) interacts with AMT1;1 to mediate NH4+ uptake in Arabidopsis (Arabidopsis thaliana). We examined pldα1 pldδ-knockout mutants and found that a reduced PA level increased seedling growth under nitrogen deficiency and inhibited root growth upon NH4+ stress, which was consistent with the enhanced accumulation of cellular NH4+. PA directly bound to AMT1;1 and inhibited its transport activity. Mutation of AMT1;1 R487 to Gly (R487G) resulted in abolition of PA suppression and, subsequently, enhancement of ammonium transport activity in vitro and in vivo. Observations of AMT1;1-GFP showed suppressed endocytosis under PLD deficiency or by mutation of the PA-binding site in AMT1;1. Endocytosis was rescued by PA in the pldα1 pldδ mutant but not in the mutant AMT1;1R487G-GFP line. Together, these findings demonstrated PA-based shutoff control of plant NH4+ transport and point to a broader paradigm of lipid-transporter function.
Collapse
Affiliation(s)
- Hongwei Cao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaokun Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jixiu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebing Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Like Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Yuan Y, Zhang W, Pang J, Zhou M, Liu J, Zhao J, Sui J, Huang D, Yang M. Integrated physiological and metabolomic analyses reveal changes during the natural senescence of Quercus mongolica leaves. PLoS One 2023; 18:e0289272. [PMID: 37611226 PMCID: PMC10446833 DOI: 10.1371/journal.pone.0289272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/15/2023] [Indexed: 08/25/2023] Open
Abstract
Quercus mongolica is a common landscape, afforestation, and construction timber species in northern China with high ecological, economic, and ornamental value. Leaf senescence is a complex process that has important implications for plant growth and development. To explore changes of metabolites during the ageing of Quercus mongolica leaves, we investigated physiological responses and metabolite composition in ageing leaves harvested from 15-20-year-old Quercus mongolica. Leaf samples of Q. mongolica were collected when they were still green (at maturity) (stage 1), during early senescence (stage 2), and during late senescence (stage 3). These leaves were then subjected to physiological index and metabolome sequencing analyses. The physiological analysis showed that the leaves of Q. mongolica changed from green to yellow during senescence, which induced significant accumulation of soluble sugar and significant reductions in the concentration of soluble protein and chlorophyll. Peroxidase and catalase were the main antioxidant enzymes mitigating leaf senescence. Metabolomic analysis identified 797 metabolites during leaf senescence. Compared to stage 1, 70 differential metabolites were screened in stage 2 and 72 were screened in stage 3. Differential metabolites in the two senescent stages were principally enriched in amino acid metabolism, lipid metabolism and secondary metabolite biosynthesis. The contents of N-oleoylethanolamine and N, N-dimethylglycine were significantly increased only in stage 2, while the contents of trifolin, astragalin, valine, isoleucine, leucine, and citric acid were significantly increased only in stage 3. Histidine, homoserine, tryptophan, tyrosine, phenylalanine, proline, norleucine, N-glycyl-L-leucine, linoleic acid, linolenic acid, gallic acid, 3-indoleacrylic acid, 3-amino-2-naphthoic acid, 3-hydroxy-3-methylpentane-1,5-dioic acid, 2,3,4-trihydroxybenzoic acid, trifolin, astragalin, DL-2-aminoadipic acid, pinoresinol dimethyl ether, dimethylmatairesinol, and lysophosphatidylcholine increased during both stage 2 and stage 3. Increasing contents of these metabolites may constitute the main mechanism by which Q. mongolica leaves adapt to senescence.
Collapse
Affiliation(s)
- Yangchen Yuan
- College of Landscape Architecture and Tourism, Agricultural University of Hebei, Baoding, Hebei, China
- Hongyashan State-Owned Forest Farm, Baoding, Hebei, China
| | - Weiqiang Zhang
- Hongyashan State-Owned Forest Farm, Baoding, Hebei, China
| | - Jiushuai Pang
- Hongyashan State-Owned Forest Farm, Baoding, Hebei, China
| | - Miaomiao Zhou
- Hongyashan State-Owned Forest Farm, Baoding, Hebei, China
| | - Jianying Liu
- Hongyashan State-Owned Forest Farm, Baoding, Hebei, China
| | - Jin Zhao
- Hongyashan State-Owned Forest Farm, Baoding, Hebei, China
| | - Jinming Sui
- Meteorological Bureau of Yi County, Baoding, Hebei, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Agricultural University of Hebei, Baoding, Hebei, China
| | - Minsheng Yang
- College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| |
Collapse
|
21
|
Sharma P, Lakra N, Goyal A, Ahlawat YK, Zaid A, Siddique KHM. Drought and heat stress mediated activation of lipid signaling in plants: a critical review. FRONTIERS IN PLANT SCIENCE 2023; 14:1216835. [PMID: 37636093 PMCID: PMC10450635 DOI: 10.3389/fpls.2023.1216835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Lipids are a principal component of plasma membrane, acting as a protective barrier between the cell and its surroundings. Abiotic stresses such as drought and temperature induce various lipid-dependent signaling responses, and the membrane lipids respond differently to environmental challenges. Recent studies have revealed that lipids serve as signal mediators forreducing stress responses in plant cells and activating defense systems. Signaling lipids, such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, and N-acylethanolamines, are generated in response to stress. Membrane lipids are essential for maintaining the lamellar stack of chloroplasts and stabilizing chloroplast membranes under stress. However, the effects of lipid signaling targets in plants are not fully understood. This review focuses on the synthesis of various signaling lipids and their roles in abiotic stress tolerance responses, providing an essential perspective for further investigation into the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Nita Lakra
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Alisha Goyal
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)—Central Soil Salinity Research Institute, Karnal, India
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Gandhi Memorial (GGM) Science College, Cluster University Jammu, Jammu, India
| | | |
Collapse
|
22
|
Negi J, Obata T, Nishimura S, Song B, Yamagaki S, Ono Y, Okabe M, Hoshino N, Fukatsu K, Tabata R, Yamaguchi K, Shigenobu S, Yamada M, Hasebe M, Sawa S, Kinoshita T, Nishida I, Iba K. PECT1, a rate-limiting enzyme in phosphatidylethanolamine biosynthesis, is involved in the regulation of stomatal movement in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37058128 DOI: 10.1111/tpj.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].
Collapse
Affiliation(s)
- Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Tomoki Obata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sakura Nishimura
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Boseok Song
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sho Yamagaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yuhei Ono
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Makoto Okabe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Natsumi Hoshino
- Graduate School of Science and Engineering, Saitama University, 338-8570, Saitama, Japan
| | - Kohei Fukatsu
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ryo Tabata
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, 2-39-1, Kumamoto, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Masashi Yamada
- Department of Biology and HHMI, Duke University, Durham, North Carolina, 27710, USA
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shinichiro Sawa
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, 2-39-1, Kumamoto, Japan
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ikuo Nishida
- Graduate School of Science and Engineering, Saitama University, 338-8570, Saitama, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
23
|
Liang Y, Huang Y, Liu C, Chen K, Li M. Functions and interaction of plant lipid signalling under abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:361-378. [PMID: 36719102 DOI: 10.1111/plb.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids - including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids - also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Y Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - Y Huang
- Guilin University of Electronic Technology, School of Mechanical and Electrical Engineering, Guilin, China
| | - C Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - K Chen
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| | - M Li
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Wang X, Zhang Q, Luo J, Liu X, Jiang J. Major-effect quantitative trait locus qLKR4.1 encodes a phospholipase Dδ protein associated with low-K + stress tolerance by promoting root length. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:88. [PMID: 36973446 DOI: 10.1007/s00122-023-04351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
qLKR4.1, controlling low K+ resistance in tomato, was fine-mapped to an interval of 67.5 kb on chromosome A04, and one gene encoding phospholipase Dδ was identified as a candidate gene. In plants, changes in root length are an important morphological response to low K+ (LK) stress; however, the underlying genetics in tomato remain unclear. Here, we combined bulked segregant analysis-based whole-genome sequencing, single-nucleotide polymorphism haplotyping, and fine genetic mapping to identify a candidate gene as a major-effect quantitative trait loci (QTL), i.e., qLKR4.1, which was associated with LK tolerance due to increased root elongation in the tomato line JZ34. Through multiple analyses, we found that Solyc04g082000 is the most likely candidate for qLKR4.1, which encodes phospholipase Dδ (PLDδ). Increased root elongation under LK in JZ34 may be attributed to a non-synonymous single-nucleotide polymorphism in the Ca2+-binding domain region of this gene. Solyc04g082000 increases root length through its PLDδ activity. Silencing of Solyc04g082000Arg in JZ34 led to a significant decrease in root length compared with silencing of Solyc04g082000His allele in JZ18 under LK conditions. Mutation of a Solyc04g082000 homologue in Arabidopsis, pldδ, resulted in decreased primary root lengths under LK conditions, compared to the wild type. Transgenic tomato expressing the qLKR4.1Arg allele from JZ34 exhibited a significant increase in root length compared with the wild type expressing the allele from JZ18 under LK conditions. Taken together, our results confirm that the PLDδ gene Solyc04g082000 exerts important functions in increasing tomato root length and LK tolerance.
Collapse
Affiliation(s)
- Xi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qiongqiong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Junfeng Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
25
|
Niaz M, Zhang B, Zhang Y, Yan X, Yuan M, Cheng Y, Lv G, Fadlalla T, Zhao L, Sun C, Chen F. Genetic and molecular basis of carotenoid metabolism in cereals. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:63. [PMID: 36939900 DOI: 10.1007/s00122-023-04336-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Carotenoids are vital pigments for higher plants and play a crucial function in photosynthesis and photoprotection. Carotenoids are precursors of vitamin A synthesis and contribute to human nutrition and health. However, cereal grain endosperm contains a minor carotenoid measure and a scarce supply of provitamin A content. Therefore, improving the carotenoids in cereal grain is of major importance. Carotenoid content is governed by multiple candidate genes with their additive effects. Studies on genes related to carotenoid metabolism in cereals would increase the knowledge of potential metabolic steps of carotenoids and enhance the quality of crop plants. Recognizing the metabolism and carotenoid accumulation in various staple cereal crops over the last few decades has broadened our perspective on the interdisciplinary regulation of carotenogenesis. Meanwhile, the amelioration in metabolic engineering approaches has been exploited to step up the level of carotenoid and valuable industrial metabolites in many crops, but wheat is still considerable in this matter. In this study, we present a comprehensive overview of the consequences of biosynthetic and catabolic genes on carotenoid biosynthesis, current improvements in regulatory disciplines of carotenogenesis, and metabolic engineering of carotenoids. A panoptic and deeper understanding of the regulatory mechanisms of carotenoid metabolism and genetic manipulation (genome selection and gene editing) will be useful in improving the carotenoid content of cereals.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Minjie Yuan
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - YongZhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Faculty of Agriculture, Nile valley University, Atbara, 346, Sudan
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
26
|
Zhu F, Sun Y, Jadhav SS, Cheng Y, Alseekh S, Fernie AR. The Plant Metabolic Changes and the Physiological and Signaling Functions in the Responses to Abiotic Stress. Methods Mol Biol 2023; 2642:129-150. [PMID: 36944876 DOI: 10.1007/978-1-0716-3044-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Global climate change has altered, and will further alter, rainfall patterns and temperatures likely causing more frequent drought and heat waves, which will consequently exacerbate abiotic stresses of plants and significantly decrease the yield and quality of crops. On the one hand, the global demand for food is ever-increasing owing to the rapid increase of the human population. On the other hand, metabolic responses are one of the most important mechanisms by which plants adapt to and survive to abiotic stresses. Here we therefore summarize recent progresses including the plant primary and secondary metabolic responses to abiotic stresses and their function in plant resistance acting as antioxidants, osmoregulatory, and signaling factors, which enrich our knowledge concerning commonalities of plant metabolic responses to abiotic stresses, including their involvement in signaling processes. Finally, we discuss potential methods of metabolic fortification of crops in order to improve their abiotic stress tolerance.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yuming Sun
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sagar Sudam Jadhav
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
27
|
Pratyusha DS, Sarada DVL. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. PLANT CELL REPORTS 2022; 41:2245-2260. [PMID: 36171500 DOI: 10.1007/s00299-022-02927-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Phenylpropanoids, the largest class of natural products including flavonoids, anthocyanins, monolignols and tannins perform multiple functions ranging from photosynthesis, nutrient uptake, regulating growth, cell division, maintenance of redox homeostasis and biotic and abiotic stress responses. Being sedentary life forms, plants possess several regulatory modules that increase their performance in varying environments by facilitating activation of several signaling cascades upon perception of developmental and stress signals. Of the various regulatory modules, those involving MYB transcription factors are one of the extensive groups involved in regulating the phenylpropanoid metabolic enzymes in addition to other genes. R2R3 MYB transcription factors are a class of plant-specific transcription factors that regulate the expression of structural genes involved in anthocyanin, flavonoid and monolignol biosynthesis which are indispensable to several developmental pathways and stress responses. The aim of this review is to present the regulation of the phenylpropanoid pathway by MYB transcription factors via Phospholipase D/phosphatidic acid signaling, downstream activation of the structural genes, leading to developmental and/or stress responses. Specific MYB transcription factors inducing or repressing specific structural genes of anthocyanin, flavonoid and lignin biosynthetic pathways are discussed. Further the roles of MYB in activating biotic and abiotic stress responses are delineated. While several articles have reported the role of MYB's in stress responses, they are restricted to two or three specific MYB factors. This review is a consolidation of the diverse roles of different MYB transcription factors involved both in induction and repression of anthocyanin, flavonoid, and lignin biosynthesis.
Collapse
Affiliation(s)
- Durvasula Sumana Pratyusha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
28
|
Li S, Liu S, Zhang Q, Cui M, Zhao M, Li N, Wang S, Wu R, Zhang L, Cao Y, Wang L. The interaction of ABA and ROS in plant growth and stress resistances. FRONTIERS IN PLANT SCIENCE 2022; 13:1050132. [PMID: 36507454 PMCID: PMC9729957 DOI: 10.3389/fpls.2022.1050132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 05/31/2023]
Abstract
The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.
Collapse
Affiliation(s)
- Shenghui Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Qiong Zhang
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Meixiang Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Nanyang Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Suna Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Ruigang Wu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
29
|
Han X, Wang Z, Shi L, Zhu J, Shi L, Ren A, Zhao M. Phospholipase D and phosphatidic acid mediate regulation in the biosynthesis of spermidine and ganoderic acids by activating
GlMyb
in
Ganoderma lucidum
under heat stress. Environ Microbiol 2022; 24:5345-5361. [DOI: 10.1111/1462-2920.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Lingyan Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| |
Collapse
|
30
|
The Examination of the Role of Rice Lysophosphatidic Acid Acyltransferase 2 in Response to Salt and Drought Stresses. Int J Mol Sci 2022; 23:ijms23179796. [PMID: 36077191 PMCID: PMC9456497 DOI: 10.3390/ijms23179796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphatidic acid (PA) is an important signal molecule in various biological processes including osmotic stress. Lysophosphatidic acid acyltransferase (LPAT) acylates the sn-2 position of the glycerol backbone of lysophosphatidic acid (LPA) to produce PA. The role of LPAT2 and its PA in osmotic stress response remains elusive in plants. Here we showed that LPAT2-derived PA is important for salt and drought stress tolerance in rice. Rice LPAT2 was localized to the endoplasmic reticulum (ER) to catalyze the PA synthesis. The LPAT2 transcript was induced by osmotic stress such as high salinity and water deficit. To reveal its role in osmotic stress response, an LPAT2 knockdown mutant, designated lpat2, was isolated from rice, which contained a reduced PA level relative to wild type (WT) plants under salt stress and water deficit. The lpat2 mutant was more susceptible to osmotic stress and less sensitive to abscisic acid (ABA) than that of WT, which was recovered by either PA supplementation or genetic LPAT2 complementation. Moreover, suppressed LPAT2 also led to a large number of differentially expressed genes (DEGs) involved in diverse processes, particularly, in ABA response, kinase signaling, and ion homeostasis in response to salt stress. Together, LPAT2-produced PA plays a positive role in osmotic tolerance through mediating ABA response, which leads to transcriptional alteration of genes related to ABA response, protein kinase signaling, and ion homeostasis.
Collapse
|
31
|
Islam MT, Kudla-Williams C, Kar S, Londo JP, Centinari M, Rosa C. Deciphering genome-wide transcriptomic changes in grapevines heavily infested by spotted lanternflies. FRONTIERS IN INSECT SCIENCE 2022; 2:971221. [PMID: 38468776 PMCID: PMC10926465 DOI: 10.3389/finsc.2022.971221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 03/13/2024]
Abstract
The spotted lanternfly, a newly invasive insect in the U.S. that is a great concern for the grapevine industry, produces damage on its host plants through aggressive feeding, using a piercing and sucking method to feed on the phloem of plants. In the eastern US, adult SLF can invade vineyards through fruit ripening until the end of the growing season; however, it is still unclear how prolonged late-season SLF feeding can affect the health of grapevines, as well as the host responses to this extensive damage. Thus, we have performed a comprehensive genome-wide transcriptome analysis in grapevines heavily infested by the spotted lanternfly, as it occurs in Pennsylvania vineyards, and compared it to other relevant transcriptomes in grapes with different degrees to susceptibility to similar pests. Among a variety of plant responses, we highlight here a subset of relevant biological pathways that distinguish or are common to the spotted lanternfly and other phloem feeders in grapevine. The molecular interaction between spotted lanternfly and the vine begins with activation of signal transduction cascades mediated mainly by protein kinase genes. It also induces the expression of transcription factors in the nucleus, of other signaling molecules like phytohormones and secondary metabolites, and their downstream target genes responsible for defense and physiological functions, such as detoxification and photosynthesis. Grapevine responses furthermore include the activation of genes for cell wall strengthening via biosynthesis of major structural components. With this study, we hope to provide the regulatory network to explain effects that the invasive spotted lanternfly has on grapevine health with the goal to improve its susceptibility.
Collapse
Affiliation(s)
- Md Tariqul Islam
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| | - Crosley Kudla-Williams
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| | - Suraj Kar
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Jason P. Londo
- School of Integrative Plant Science Horticulture Section, Cornell AgriTech, Cornell University, Geneva, NY, United States
| | - Michela Centinari
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
32
|
Pandit S, Goel R, Mishra G. Phosphatidic acid binds to and stimulates the activity of ARGAH2 from Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:344-355. [PMID: 35752016 DOI: 10.1016/j.plaphy.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidic acid (PA) has emerged as an important lipid signal during abiotic and biotic stress conditions such as drought, salinity, freezing, nutrient starvation, wounding and microbial elicitation. PA acts during stress responses primarily via binding and translocating target proteins or through modulating their activity. Owing to the importance of PA during stress signaling and developmental stages, it is imperative to identify PA interacting proteins and decipher their specific roles. In the present study, we have identified PA binding proteins from the leaves of Arabidopsis thaliana. Mass spectroscopy analysis led to the identification of 21 PA binding proteins with known roles in various cellular processes. One of the PA-binding proteins identified during this study, AtARGAH2, was further studied to unravel the role of PA interaction. Recombinant AtARGAH2 binding with immobilized PA on a solid support validated PA-AtARGAH2 binding invitro. PA binding to AtARGAH2 leads to the enhancement of arginase enzymatic activity in a dose dependent manner. Enzyme kinetics of recombinant AtARGAH2 demonstrated a lower Km value in presence of PA, suggesting role of PA in efficient enzyme-substrate binding. This simple approach could systematically be applied to perform an inclusive study on lipid binding proteins to elucidate their role in physiology of plants.
Collapse
Affiliation(s)
- Shatakshi Pandit
- Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Renu Goel
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| | - Girish Mishra
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
33
|
Ling J, Xia Y, Hu J, Zhu T, Wang J, Zhang H, Kong L. Integrated Lipidomic and Transcriptomic Analysis Reveals Phospholipid Changes in Somatic Embryos of Picea asperata in Response to Partial Desiccation. Int J Mol Sci 2022; 23:ijms23126494. [PMID: 35742942 PMCID: PMC9223630 DOI: 10.3390/ijms23126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Partial desiccation treatment (PDT) is an effective technology for promoting the germination and conversion of conifer somatic embryos (SEs). PDT, as a drought stress, induces intensive physiological responses in phospholipid metabolism, which are not well understood in the conifer SEs. Here, we integrated lipidomics, transcriptomics and proteomics analyses to reveal the molecular basis of lipid remodeling under PDT in Picea asperata SEs. Among the 82 lipid molecular species determined by mass spectrometry, phosphatidic acid (PA) had a significant effect after PDT and was the most critical lipid in the response to PDT. The transcriptomics results showed that multiple transcripts in the glycerolipid and glycerophospholipid metabolism pathways were differentially expressed, and these included five PLDα1 transcripts that catalyze the conversion of phosphatidylcholine (PC) to PA. Furthermore, the enzyme activity of this phospholipase D (PLD) was significantly enhanced in response to PDT, and PDT also significantly increased the protein level of PLDα1 (MA_10436582g0020). In addition, PA is a key factor in gibberellin, abscisic acid and ethylene signal transduction. One GDI1, one DELLA, three ABI1s, two SnRK2s, one CTR and 12 ERFs showed significantly differential expression between SEs before and after PDT in this study. Our data suggest that the observed increases in the PA contents might result from the activation of PLDα by PDT. PA not only affects the physical and chemical properties of the cell membrane but also participates in plant hormone signal transduction. Our work provides novel insight into the molecular mechanism through which PDT promotes the germination of SEs of coniferous tree species and fills the gap in the understanding of the mechanism of somatic embryo lipid remodeling in response to PDT.
Collapse
Affiliation(s)
- Juanjuan Ling
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
| | - Yan Xia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
- Correspondence: (T.Z.); (J.W.)
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.X.); (J.H.)
- Correspondence: (T.Z.); (J.W.)
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
34
|
Wei J, Shao W, Liu X, He L, Zhao C, Yu G, Xu J. Genome-wide identification and expression analysis of phospholipase D gene in leaves of sorghum in response to abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1261-1276. [PMID: 35910446 PMCID: PMC9334518 DOI: 10.1007/s12298-022-01200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 06/03/2023]
Abstract
Abiotic stress caused by unsuitable environmental changes brings serious impacts on the growth and development of sorghum, resulting in significant loss in yield and quality every year. Phospholipase D is one of the key enzymes that catalyze the hydrolysis of phospholipids, and participates in plants response to abiotic stresses and phytohormones, whereas as the main producers of Phosphatidic acid (PA) signal, the detailed information about Phospholipase D associated (SbPLD) family in sorghum has been rarely reported. This study was performed to identify the PLD family gene in sorghum based on the latest genome annotation and to determine the expression of PLDs under abiotic stresses by qRT-PCR analysis. In this study, 13 PLD genes were identified in sorghum genome and further divided into 7 groups according to the phylogenetic analysis. All sorghum PLD family members harbored two conserved domains (HDK1&2) with catalytic activity, and most members contained a C2 domain. In ζ subfamily, C2 domain was replaced by PX and PH domain. The exon-intron structure of SbPLD genes within the same subfamily was highly conservative. The tissue specific expression analysis revealed different expression of SbPLD genes in various developmental stages. High level expression of SbPLDα3 was observed in almost all tissues, whereas SbPLDα4 was mainly expressed in roots. Under abiotic stress conditions, SbPLD genes responded actively to NaCl, ABA, drought (PEG) and cold (4 °C) treatment at the transcriptional level. The expression of SbPLDβ1 was significantly up-regulated, while the transcription of SbPLDζ was suppressed under various stress conditions. In addition, SbPLDβ1 and SbPLDδ2 were predicted to be the target genes of sbi-miR159 and sbi-miR167, respectively. This study will help to decipher the roles of PLDs in sorghum growth and abiotic stress responses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01200-9.
Collapse
Affiliation(s)
- Jinpeng Wei
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
- Ministry of Agriculture and Rural Affairs Agro-Products and Processed Products Quality Supervision, Inspection and Testing Center, Daqing, 163319 China
- National Coarse Cereal Engineering Research Center, Daqing, 163319 China
| | - Wenjing Shao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Xinyu Liu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Lin He
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Changjiang Zhao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Gaobo Yu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Jingyu Xu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Heilongjiang Engineering Technology Research Center for Crop Straw Utilization, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
- National Coarse Cereal Engineering Research Center, Daqing, 163319 China
| |
Collapse
|
35
|
Su W, Raza A, Gao A, Zeng L, Lv Y, Ding X, Cheng Y, Zou X. Plant lipid phosphate phosphatases: current advances and future outlooks. Crit Rev Biotechnol 2022; 43:384-392. [PMID: 35430946 DOI: 10.1080/07388551.2022.2032588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lipids are widely distributed in various tissues of an organism, mainly in plant storage organs (e.g., fruits, seeds, etc.). Lipids are vital biological substances that are involved in: signal transduction, membrane biogenesis, energy storage, and the formation of transmembrane fat-soluble substances. Some lipids and related lipid derivatives could be changed in their: content, location, or physiological activity by the external environment, such as biotic or abiotic stresses. Lipid phosphate phosphatases (LPPs) play important roles in regulating intermediary lipid metabolism and cellular signal response. LPPs can dephosphorylate lipid phosphates containing phosphate monolipid bonds such as: phosphatidic acid, lysophosphatidic acid (LPA), and diacylglycerol pyrophosphate, etc. These processes can change the contents of some important lipid signal mediation such as diacylglycerol and LPA, affecting lipid signal transmission. Here, we summarize the research progress of LPPs in plants, emphasizing the structural and biochemical characteristics of LPPs and their role in spatio-temporal regulation. In the future, more in-depth studies are required to boost our understanding of the key role of plant LPPs and lipid metabolism in: signal regulation, stress tolerance pathway, and plant growth and development.
Collapse
Affiliation(s)
- Wei Su
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ang Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
36
|
Ali U, Lu S, Fadlalla T, Iqbal S, Yue H, Yang B, Hong Y, Wang X, Guo L. The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Prog Lipid Res 2022; 86:101158. [PMID: 35134459 DOI: 10.1016/j.plipres.2022.101158] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Cell membranes are the initial site of stimulus perception from environment and phospholipids are the basic and important components of cell membranes. Phospholipases hydrolyze membrane lipids to generate various cellular mediators. These phospholipase-derived products, such as diacylglycerol, phosphatidic acid, inositol phosphates, lysophopsholipids, and free fatty acids, act as second messengers, playing vital roles in signal transduction during plant growth, development, and stress responses. This review focuses on the structure, substrate specificities, reaction requirements, and acting mechanism of several phospholipase families. It will discuss their functional significance in plant growth, development, and stress responses. In addition, it will highlight some critical knowledge gaps in the action mechanism, metabolic and signaling roles of these phospholipases and their products in the context of plant growth, development and stress responses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Iqbal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Hong Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
37
|
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int J Mol Sci 2022; 23:ijms23063227. [PMID: 35328648 PMCID: PMC8954910 DOI: 10.3390/ijms23063227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells sense a variety of extracellular signals balancing their metabolism and physiology according to changing growth conditions. Plasma membranes are the outermost informational barriers that render cells sensitive to regulatory inputs. Membranes are composed of different types of lipids that play not only structural but also informational roles. Hormones and other regulators are sensed by specific receptors leading to the activation of lipid metabolizing enzymes. These enzymes generate lipid second messengers. Among them, phosphatidic acid (PA) is a well-known intracellular messenger that regulates various cellular processes. This lipid affects the functional properties of cell membranes and binds to specific target proteins leading to either genomic (affecting transcriptome) or non-genomic responses. The subsequent biochemical, cellular and physiological reactions regulate plant growth, development and stress tolerance. In the present review, we focus on primary (genome-independent) signaling events triggered by rapid PA accumulation in plant cells and describe the functional role of PA in mediating response to hormones and hormone-like regulators. The contributions of individual lipid signaling enzymes to the formation of PA by specific stimuli are also discussed. We provide an overview of the current state of knowledge and future perspectives needed to decipher the mode of action of PA in the regulation of cell functions.
Collapse
|
38
|
Lung SC, Lai SH, Wang H, Zhang X, Liu A, Guo ZH, Lam HM, Chye ML. Oxylipin signaling in salt-stressed soybean is modulated by ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase. THE PLANT CELL 2022; 34:1117-1143. [PMID: 34919703 PMCID: PMC8894927 DOI: 10.1093/plcell/koab306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/11/2021] [Indexed: 05/24/2023]
Abstract
Plant lipoxygenases (LOXs) oxygenate linoleic and linolenic acids, creating hydroperoxy derivatives, and from these, jasmonates and other oxylipins are derived. Despite the importance of oxylipin signaling, its activation mechanism remains largely unknown. Here, we show that soybean ACYL-COA-BINDING PROTEIN3 (ACBP3) and ACBP4, two Class II acyl-CoA-binding proteins, suppressed activity of the vegetative LOX homolog VLXB by sequestering it at the endoplasmic reticulum. The ACBP4-VLXB interaction was facilitated by linoleoyl-CoA and linolenoyl-CoA, which competed with phosphatidic acid (PA) for ACBP4 binding. In salt-stressed roots, alternative splicing produced ACBP variants incapable of VLXB interaction. Overexpression of the variants enhanced LOX activity and salt tolerance in Arabidopsis and soybean hairy roots, whereas overexpressors of the native forms exhibited reciprocal phenotypes. Consistently, the differential alternative splicing pattern in two soybean genotypes coincided with their difference in salt-induced lipid peroxidation. Salt-treated soybean roots were enriched in C32:0-PA species that showed high affinity to Class II ACBPs. We conclude that PA signaling and alternative splicing suppress ligand-dependent interaction of Class II ACBPs with VLXB, thereby triggering lipid peroxidation during salt stress. Hence, our findings unveil a dual mechanism that initiates the onset of oxylipin signaling in the salinity response.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sze Han Lai
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haiyang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiuying Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ailin Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
39
|
Sun M, Liu X, Gao H, Zhang B, Peng F, Xiao Y. Phosphatidylcholine Enhances Homeostasis in Peach Seedling Cell Membrane and Increases Its Salt Stress Tolerance by Phosphatidic Acid. Int J Mol Sci 2022; 23:ijms23052585. [PMID: 35269728 PMCID: PMC8910501 DOI: 10.3390/ijms23052585] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Salt stress is a major adverse abiotic factor seriously affecting fruit tree growth and development. It ultimately lowers fruit quality and reduces yield. Phosphatidylcholine (PC) is an important cell membrane component that is critical for cell structure and membrane stability maintenance. In this study, we found that the addition of external PC sources significantly increased the tolerance of one-year-old peach trees, Prunus persica (L.) Batsch., to salt stress and attenuated their damage. The effect of exogenous application of 200 mg/L PC exerted the most significant positive effect. Its use caused seedling leaf stomatal opening, contributing to normal gas exchange. Moreover, beneficial effects were exerted also to the root system, which grew normally under salt stress. Meanwhile, phospholipase D activity in the cell was promoted. The production of phosphatidic acid (PA) was enhanced by increased decomposition of phospholipids; PA serves as a secondary messenger involved in plant biological process regulation and the reduction in the reactive oxygen species- and peroxide-induced damage caused by salt stress. The possible mechanism of action is via promoted plant osmotic regulation and tolerance to salt stress, reducing salt stress-induced injury to plants.
Collapse
Affiliation(s)
| | | | | | | | - Futian Peng
- Correspondence: (F.P.); (Y.X.); Tel.: +86-13563821651 (F.P.); +86-15163873786 (Y.X.)
| | - Yuansong Xiao
- Correspondence: (F.P.); (Y.X.); Tel.: +86-13563821651 (F.P.); +86-15163873786 (Y.X.)
| |
Collapse
|
40
|
Naing AH, Campol JR, Kang H, Xu J, Chung MY, Kim CK. Role of Ethylene Biosynthesis Genes in the Regulation of Salt Stress and Drought Stress Tolerance in Petunia. FRONTIERS IN PLANT SCIENCE 2022; 13:844449. [PMID: 35283920 PMCID: PMC8906779 DOI: 10.3389/fpls.2022.844449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 06/12/2023]
Abstract
Ethylene plays a critical signaling role in the abiotic stress tolerance mechanism. However, the role of ethylene in regulating abiotic stress tolerance in petunia has not been well-investigated, and the underlying molecular mechanism by which ethylene regulates abiotic stress tolerance is still unknown. Therefore, we examined the involvement of ethylene in salt and drought stress tolerance of petunia using the petunia wild type cv. "Merage Rose" and the ethylene biosynthesis genes (PhACO1 and PhACO3)-edited mutants (phaco1 and phaco3). Here, we discovered that editing PhACO1 and PhACO3 reduced ethylene production in the mutants, and mutants were more sensitive to salt and drought stress than the wild type (WT). This was proven by the better outcomes of plant growth and physiological parameters and ion homeostasis in WT over the mutants. Molecular analysis revealed that the expression levels of the genes associated with antioxidant, proline synthesis, ABA synthesis and signaling, and ethylene signaling differed significantly between the WT and mutants, indicating the role of ethylene in the transcriptional regulation of the genes associated with abiotic stress tolerance. This study highlights the involvement of ethylene in abiotic stress adaptation and provides a physiological and molecular understanding of the role of ethylene in abiotic stress response in petunia. Furthermore, the finding alerts researchers to consider the negative effects of ethylene reduction on abiotic stress tolerance when editing the ethylene biosynthesis genes to improve the postharvest quality of horticultural crops.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Jova Riza Campol
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Junping Xu
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
41
|
Ding X, Zhang X, Paez-Valencia J, McLoughlin F, Reyes FC, Morohashi K, Grotewold E, Vierstra RD, Otegui MS. Microautophagy Mediates Vacuolar Delivery of Storage Proteins in Maize Aleurone Cells. FRONTIERS IN PLANT SCIENCE 2022; 13:833612. [PMID: 35251104 PMCID: PMC8894768 DOI: 10.3389/fpls.2022.833612] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The molecular machinery orchestrating microautophagy, whereby eukaryotic cells sequester autophagic cargo by direct invagination of the vacuolar/lysosomal membrane, is still largely unknown, especially in plants. Here, we demonstrate microautophagy of storage proteins in the maize aleurone cells of the endosperm and analyzed proteins with potential regulatory roles in this process. Within the cereal endosperm, starchy endosperm cells accumulate storage proteins (mostly prolamins) and starch whereas the peripheral aleurone cells store oils, storage proteins, and specialized metabolites. Although both cell types synthesize prolamins, they employ different pathways for their subcellular trafficking. Starchy endosperm cells accumulate prolamins in protein bodies within the endoplasmic reticulum (ER), whereas aleurone cells deliver prolamins to vacuoles via an autophagic mechanism, which we show is by direct association of ER prolamin bodies with the tonoplast followed by engulfment via microautophagy. To identify candidate proteins regulating this process, we performed RNA-seq transcriptomic comparisons of aleurone and starchy endosperm tissues during seed development and proteomic analysis on tonoplast-enriched fractions of aleurone cells. From these datasets, we identified 10 candidate proteins with potential roles in membrane modification and/or microautophagy, including phospholipase-Dα5 and a possible EUL-like lectin. We found that both proteins increased the frequency of tonoplast invaginations when overexpressed in Arabidopsis leaf protoplasts and are highly enriched at the tonoplast surface surrounding ER protein bodies in maize aleurone cells, thus supporting their potential connections to microautophagy. Collectively, this candidate list now provides useful tools to study microautophagy in plants.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Xiaoguo Zhang
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Francisca C. Reyes
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Kengo Morohashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Richard D. Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
42
|
Zhou Y, Zhou DM, Yu WW, Shi LL, Zhang Y, Lai YX, Huang LP, Qi H, Chen QF, Yao N, Li JF, Xie LJ, Xiao S. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. THE PLANT CELL 2022; 34:889-909. [PMID: 34850198 PMCID: PMC8824597 DOI: 10.1093/plcell/koab289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 05/07/2023]
Abstract
Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - De-Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei-Wei Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Li Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong-Xia Lai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Ping Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hua Qi
- Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Shi Xiao
- Authors for correspondence: (S.X.) and (L.J.X.)
| |
Collapse
|
43
|
Pacheco R, Quinto C. Phospholipase Ds in plants: Their role in pathogenic and symbiotic interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:76-86. [PMID: 35101797 DOI: 10.1016/j.plaphy.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/05/2023]
Abstract
Phospholipase Ds (PLDs) are a heterogeneous group of enzymes that are widely distributed in organisms. These enzymes hydrolyze the structural phospholipids of the plasma membrane, releasing phosphatidic acid (PA), an important secondary messenger. Plant PLDs play essential roles in several biological processes, including growth and development, abiotic stress responses, and plant-microbe interactions. Although the roles of PLDs in plant-pathogen interactions have been extensively studied, their roles in symbiotic relationships are not well understood. The establishment of the best-studied symbiotic interactions, those between legumes and rhizobia and between most plants and mycorrhizae, requires the regulation of several physiological, cellular, and molecular processes. The roles of PLDs in hormonal signaling, lipid metabolism, and cytoskeletal dynamics during rhizobial symbiosis were recently explored. However, to date, the roles of PLDs in mycorrhizal symbiosis have not been reported. Here, we present a critical review of the participation of PLDs in the interactions of plants with pathogens, nitrogen-fixing bacteria, and arbuscular mycorrhizal fungi. We describe how PLDs regulate rhizobial and mycorrhizal symbiosis by modulating reactive oxygen species levels, hormonal signaling, cytoskeletal rearrangements, and G-protein activity.
Collapse
Affiliation(s)
- Ronal Pacheco
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
44
|
Shimamura R, Ohashi Y, Taniguchi YY, Kato M, Tsuge T, Aoyama T. Arabidopsis PLDζ1 and PLDζ2 localize to post-Golgi membrane compartments in a partially overlapping manner. PLANT MOLECULAR BIOLOGY 2022; 108:31-49. [PMID: 34601701 DOI: 10.1007/s11103-021-01205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis PLDζ1 and PLDζ2 localize to the trans-Golgi network and to compartments including the trans-Golgi network, multi-vesicular bodies, and the tonoplast, respectively, depending on their N-terminal regions containing PX-PH domains. Phospholipase D (PLD) is involved in dynamic cellular processes, including membrane trafficking, cytoskeletal reorganization, and signal transduction for gene expression, through the production of phosphatidic acid in membrane compartments specific to each process. Although PLD plays crucial roles in various plant phenomena, the underlying processes involving PLD for each phenomenon remain largely elusive, partly because the subcellular localization of PLD remains obscure. In this study, we performed comparative subcellular localization analyses of the Arabidopsis thaliana PX-PH-PLDs PLDζ1 and PLDζ2. In mature lateral root cap cells, own promoter-driven fluorescence protein fusions of PLDζ1 localized to the entire trans-Golgi network (TGN) while that of PLDζ2 localized to punctate structures including part of the TGN and multi-vesicular bodies as well as the tonoplast. These localization patterns were reproduced using N-terminal partial proteins, which contain PX-PH domains. An inducibly overexpressed fluorescence protein fusion of the PLDζ2 partial protein first localized to punctate structures, and then accumulated predominantly on the tonoplast. Further domain dissection analysis revealed that the N-terminal moiety preceding the PX-PH domain of PLDζ2 was required for the tonoplast-predominant accumulation. These findings suggest that PLDζ1 and PLDζ2 play partially overlapping but nonetheless distinctive roles in post-Golgi compartments along the membrane trafficking pathway from the TGN to the tonoplast.
Collapse
Affiliation(s)
- Ryota Shimamura
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | | | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
45
|
Yao S, Wang X. Monitoring lipid-protein interactions in planta using Förster resonance energy transfer. Methods Enzymol 2022; 683:243-252. [PMID: 37087190 PMCID: PMC10122718 DOI: 10.1016/bs.mie.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phospholipids are not only the major structural components of cellular membranes but also important signaling molecules regulating various cellular and physiological processes. One mode of action by lipid mediators is via lipid-protein interactions to modulate the downstream cellular events. An increasing number of lipid-binding proteins have been identified using in vitro lipid-protein binding assays, but it has been challenging to monitor lipid-protein interactions in vivo. Here we describe one Förster resonance energy transfer (FRET)-based method using the cyan fluorescence protein (CFP)-tagged protein cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) and TopFluor TMR-labeled lipid phosphatidic acid (PA) to monitor the lipid-protein interaction in planta. This approach permits detection of the subcellular localization of lipid-protein interactions and dynamics of the interactions in planta in response to different cues.
Collapse
|
46
|
Sun AZ, Chen LS, Tang M, Chen JH, Li H, Jin XQ, Yi Y, Guo FQ. Lipidomic Remodeling in Begonia grandis Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:843942. [PMID: 35251112 PMCID: PMC8891222 DOI: 10.3389/fpls.2022.843942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Characterization of the alterations in leaf lipidome in Begonia (Begonia grandis Dry subsp. sinensis) under heat stress will aid in understanding the mechanisms of stress adaptation to high-temperature stress often occurring during hot seasons at southern areas in China. The comparative lipidomic analysis was performed using leaves taken from Begonia plants exposed to ambient temperature or heat stress. The amounts of total lipids and major lipid classes, including monoacylglycerol (MG), diacylglycerol (DG), triacylglycerols (TG), and ethanolamine-, choline-, serine-, inositol glycerophospholipids (PE, PC, PS, PI) and the variations in the content of lipid molecular species, were analyzed and identified by tandem high-resolution mass spectrometry. Upon exposure to heat stress, a substantial increase in three different types of TG, including 18:0/16:0/16:0, 16:0/16:0/18:1, and 18:3/18:3/18:3, was detected, which marked the first stage of adaptation processes. Notably, the reduced accumulation of some phospholipids, including PI, PC, and phosphatidylglycerol (PG) was accompanied by an increased accumulation of PS, PE, and phosphatidic acid (PA) under heat stress. In contrast to the significant increase in the abundance of TG, all of the detected lysophospholipids and sphingolipids were dramatically reduced in the Begonia leaves exposed to heat stress, suggesting that a very dynamic and specified lipid remodeling process is highly coordinated and synchronized in adaptation to heat stress in Begonia plants.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Sha Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, China
| | - Juan-Hua Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Han Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Qi Jin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yin Yi
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
- *Correspondence: Yin Yi,
| | - Fang-Qing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Fang-Qing Guo,
| |
Collapse
|
47
|
Jia X, Si X, Jia Y, Zhang H, Tian S, Li W, Zhang K, Pan Y. Genomic profiling and expression analysis of the diacylglycerol kinase gene family in heterologous hexaploid wheat. PeerJ 2021; 9:e12480. [PMID: 34993014 PMCID: PMC8679913 DOI: 10.7717/peerj.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
The inositol phospholipid signaling system mediates plant growth, development, and responses to adverse conditions. Diacylglycerol kinase (DGK) is one of the key enzymes in the phosphoinositide-cycle (PI-cycle), which catalyzes the phosphorylation of diacylglycerol (DAG) to form phosphatidic acid (PA). To date, comprehensive genomic and functional analyses of DGKs have not been reported in wheat. In this study, 24 DGK gene family members from the wheat genome (TaDGKs) were identified and analyzed. Each putative protein was found to consist of a DGK catalytic domain and an accessory domain. The analyses of phylogenetic and gene structure analyses revealed that each TaDGK gene could be grouped into clusters I, II, or III. In each phylogenetic subgroup, the TaDGKs demonstrated high conservation of functional domains, for example, of gene structure and amino acid sequences. Four coding sequences were then cloned from Chinese Spring wheat. Expression analysis of these four genes revealed that each had a unique spatial and developmental expression pattern, indicating their functional diversification across wheat growth and development processes. Additionally, TaDGKs were also prominently up-regulated under salt and drought stresses, suggesting their possible roles in dealing with adverse environmental conditions. Further cis-regulatory elements analysis elucidated transcriptional regulation and potential biological functions. These results provide valuable information for understanding the putative functions of DGKs in wheat and support deeper functional analysis of this pivotal gene family. The 24 TaDGKs identified and analyzed in this study provide a strong foundation for further exploration of the biological function and regulatory mechanisms of TaDGKs in response to environmental stimuli.
Collapse
Affiliation(s)
- Xiaowei Jia
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Xuyang Si
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Yangyang Jia
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Hongyan Zhang
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Shijun Tian
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Wenjing Li
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Ke Zhang
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei, China
| | - Yanyun Pan
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| |
Collapse
|
48
|
Li L, Li N, Qi X, Bai Y, Chen Q, Fang H, Yu X, Liu D, Liang C, Zhou Y. Characterization of the Glehnia littoralis Non-specific Phospholipase C Gene GlNPC3 and Its Involvement in the Salt Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:769599. [PMID: 34956268 PMCID: PMC8695444 DOI: 10.3389/fpls.2021.769599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Glehnia littoralis is a medicinal halophyte that inhabits sandy beaches and has high ecological and commercial value. However, the molecular mechanism of salt adaptation in G. littoralis remains largely unknown. Here, we cloned and identified a non-specific phospholipase C gene (GlNPC3) from G. littoralis, which conferred lipid-mediated signaling during the salt stress response. The expression of GlNPC3 was induced continuously by salt treatment. Overexpression of GlNPC3 in Arabidopsis thaliana increased salt tolerance compared to wild-type (WT) plants. GlNPC3-overexpressing plants had longer roots and higher fresh and dry masses under the salt treatment. The GlNPC3 expression pattern revealed that the gene was expressed in most G. littoralis tissues, particularly in roots. The subcellular localization of GlNPC3 was mainly at the plasma membrane, and partially at the tonoplast. GlNPC3 hydrolyzed common membrane phospholipids, such as phosphotidylserine (PS), phosphoethanolamine (PE), and phosphocholine (PC). In vitro enzymatic assay showed salt-induced total non-specific phospholipase C (NPC) activation in A. thaliana GlNPC3-overexpressing plants. Plant lipid profiling showed a significant change in the membrane-lipid composition of A. thaliana GlNPC3-overexpressing plants compared to WT after the salt treatment. Furthermore, downregulation of GlNPC3 expression by virus-induced gene silencing in G. littoralis reduced the expression levels of some stress-related genes, such as SnRK2, P5SC5, TPC1, and SOS1. Together, these results indicated that GlNPC3 and GlNPC3-mediated membrane lipid change played a positive role in the response of G. littoralis to a saline environment.
Collapse
Affiliation(s)
- Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Naiwei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiwu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yang Bai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Qiutong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hailing Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xu Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Dongmei Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chengyuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yifeng Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
49
|
Kocourková D, Kroumanová K, Podmanická T, Daněk M, Martinec J. Phospholipase Dα1 Acts as a Negative Regulator of High Mg 2+-Induced Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:770794. [PMID: 34899793 PMCID: PMC8656112 DOI: 10.3389/fpls.2021.770794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/26/2021] [Indexed: 05/16/2023]
Abstract
Magnesium (Mg2+) is a macronutrient involved in essential cellular processes. Its deficiency or excess is a stress factor for plants, seriously affecting their growth and development and therefore, its accurate regulation is essential. Recently, we discovered that phospholipase Dα1 (PLDα1) activity is vital in the stress response to high-magnesium conditions in Arabidopsis roots. This study shows that PLDα1 acts as a negative regulator of high-Mg2+-induced leaf senescence in Arabidopsis. The level of phosphatidic acid produced by PLDα1 and the amount of PLDα1 in the leaves increase in plants treated with high Mg2+. A knockout mutant of PLDα1 (pldα1-1), exhibits premature leaf senescence under high-Mg2+ conditions. In pldα1-1 plants, higher accumulation of abscisic and jasmonic acid (JA) and impaired magnesium, potassium and phosphate homeostasis were observed under high-Mg2+ conditions. High Mg2+ also led to an increase of starch and proline content in Arabidopsis plants. While the starch content was higher in pldα1-1 plants, proline content was significantly lower in pldα1-1 compared with wild type plants. Our results show that PLDα1 is essential for Arabidopsis plants to cope with the pleiotropic effects of high-Mg2+ stress and delay the leaf senescence.
Collapse
Affiliation(s)
| | | | | | | | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
50
|
Han X, Yang Y. Phospholipids in Salt Stress Response. PLANTS 2021; 10:plants10102204. [PMID: 34686013 PMCID: PMC8540237 DOI: 10.3390/plants10102204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
High salinity threatens crop production by harming plants and interfering with their development. Plant cells respond to salt stress in various ways, all of which involve multiple components such as proteins, peptides, lipids, sugars, and phytohormones. Phospholipids, important components of bio-membranes, are small amphoteric molecular compounds. These have attracted significant attention in recent years due to the regulatory effect they have on cellular activity. Over the past few decades, genetic and biochemical analyses have partly revealed that phospholipids regulate salt stress response by participating in salt stress signal transduction. In this review, we summarize the generation and metabolism of phospholipid phosphatidic acid (PA), phosphoinositides (PIs), phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), as well as the regulatory role each phospholipid plays in the salt stress response. We also discuss the possible regulatory role based on how they act during other cellular activities.
Collapse
Affiliation(s)
- Xiuli Han
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China;
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel./Fax: +86-10-62732030
| |
Collapse
|