1
|
Rosado MRS, Marzan-Rivera N, Watowich MM, Valle ADND, Pantoja P, Pavez-Fox MA, Siracusa ER, Cooper EB, Valle JEND, Phillips D, Ruiz-Lambides A, Martinez MI, Montague MJ, Platt ML, Higham JP, Brent LJN, Sariol CA, Snyder-Mackler N. Immune cell composition varies by age, sex and exposure to social adversity in free-ranging Rhesus Macaques. GeroScience 2024; 46:2107-2122. [PMID: 37853187 PMCID: PMC10828448 DOI: 10.1007/s11357-023-00962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.
Collapse
Affiliation(s)
- Mitchell R Sanchez Rosado
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA.
| | - Nicole Marzan-Rivera
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Petraleigh Pantoja
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Eve B Cooper
- Department of Anthropology, New York University, New York, NY, USA
| | - Josue E Negron-Del Valle
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Angelina Ruiz-Lambides
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melween I Martinez
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Carlos A Sariol
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Malik JA, Kaur G, Agrewala JN. Revolutionizing medicine with toll-like receptors: A path to strengthening cellular immunity. Int J Biol Macromol 2023; 253:127252. [PMID: 37802429 DOI: 10.1016/j.ijbiomac.2023.127252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Toll-like receptors play a vital role in cell-mediated immunity, which is crucial for the immune system's defense against pathogens and maintenance of homeostasis. The interaction between toll-like-receptor response and cell-mediated immunity is complex and essential for effectively eliminating pathogens and maintaining immune surveillance. In addition to pathogen recognition, toll-like receptors serve as adjuvants in vaccines, as molecular sensors, and recognize specific patterns associated with pathogens and danger signals. Incorporating toll-like receptor ligands into vaccines can enhance the immune response to antigens, making them potent adjuvants. Furthermore, they bridge the innate and adaptive immune systems and improve antigen-presenting cells' capacity to process and present antigens to T cells. The intricate signaling pathways and cross-talk between toll-like-receptor and T cell receptor (TCR) signaling emphasize their pivotal role in orchestrating effective immune responses against pathogens, thus facilitating the development of innovative vaccine strategies. This article provides an overview of the current understanding of toll-like receptor response and explores their potential clinical applications. By unraveling the complex mechanisms of toll-like-receptor signaling, we can gain novel insights into immune responses and potentially develop innovative therapeutic approaches. Ongoing investigations into the toll-like-receptor response hold promise in the future in enhancing our ability to combat infections, design effective vaccines, and improve clinical outcomes.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India
| | - Gurpreet Kaur
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India; Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India.
| |
Collapse
|
3
|
Kinney SM, Ortaleza K, Won SY, Licht BJM, Sefton MV. Immunomodulation by subcutaneously injected methacrylic acid-based hydrogels and tolerogenic dendritic cells in a mouse model of autoimmune diabetes. Biomaterials 2023; 301:122265. [PMID: 37586232 DOI: 10.1016/j.biomaterials.2023.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Type 1 diabetes is an autoimmune disease associated with the destruction of insulin-producing β cells. Immunotherapies are being developed to mitigate autoimmune diabetes. One promising option is the delivery of tolerogenic dendritic cells (DCs) primed with specific β-cell-associated autoantigens. These DCs can combat autoreactive cells and promote expansion of β-cell-specific regulatory immune cells, including Tregs. Tolerogenic DCs are typically injected systemically (or near target lymph nodes) in suspension, precluding control over the microenvironment surrounding tolerogenic DC interactions with the host. In this study we show that degradable, synthetic methacrylic acid (MAA)-based hydrogels are an inherently immunomodulating delivery vehicle that enhances tolerogenic DC therapy in the context of autoimmune diabetes. MAA hydrogels were found to affect the local recruitment and activation state of macrophages, DCs, T cells and other cells. Delivering tolerogenic DCs in the MAA hydrogel improved the local host response (e.g., fewer cytotoxic T cells) and enhanced peripheral Treg expansion. Non obese diabetic (NOD) mice treated with tolerogenic DCs subcutaneously injected in MAA hydrogels showed a delay in onset of autoimmune diabetes compared to control vehicles. Our findings further demonstrate the usefulness of MAA-based hydrogels as platforms for regenerative medicine in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Sean M Kinney
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Krystal Ortaleza
- Institute of Biomedical Engineering, University of Toronto, Canada
| | - So-Yoon Won
- Institute of Biomedical Engineering, University of Toronto, Canada
| | | | - Michael V Sefton
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
4
|
Aggarwal N, Manley AL, Chen J, Groarke EM, Feng X, Young NS. Effects of ruxolitinib on murine regulatory T cells are immune-context dependent. Exp Hematol 2023; 125-126:16-19. [PMID: 37468118 PMCID: PMC10528974 DOI: 10.1016/j.exphem.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Aplastic anemia is a bone marrow failure (BMF) disorder characterized by pancytopenia and hypocellular marrow from an immune-mediated etiology. Regulatory T cells (Tregs) prevent autoimmunity by suppressing autoreactive T cells. We recently demonstrated the efficacy of ruxolitinib (RUX), a JAK 1/2 inhibitor, in attenuating murine BMF. Herein, we investigated the changes of Tregs in the context of RUX treatment for murine BMF. Tregs are conventionally identified by surface expression of CD4 and CD25, in addition to intracellular transcription factor FoxP3. RUX promoted the expansion of Tregs in BMF mice defined by increased expression of FoxP3 in CD4 T cells but suppressed expression of activation marker CD25 in CD4 and CD8 T cells. In this context, CD25 is no longer a reliable surface marker for Tregs. We observed strong co-expression of FoxP3 with surface marker GITR instead of CD25 in RUX-treated BMF mice. Fluorescence-activated cell sorting (FACS)-sorted CD4+GITRhi cells showed high FoxP3 expression and intact suppressive function in vitro, suggesting GITR to be a surrogate marker for Tregs. In contrast to its expansive effect on Tregs in BMF, RUX suppressed Tregs in normal and sublethal irradiation conditions, indicating that the effects of RUX on Tregs are immune-context dependent.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| | - Ash Lee Manley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland.
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, NIH Clinical Center, Bethesda, Maryland
| |
Collapse
|
5
|
Suzuki K, Kunisada Y, Miyamura N, Eikawa S, Hurtado de Mendoza T, Mose ES, Lu C, Kuroda Y, Ruoslahti E, Lowy AM, Sugahara KN. Tumor-resident regulatory T cells in pancreatic cancer express the αvβ5 integrin as a targetable activation marker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542137. [PMID: 37292693 PMCID: PMC10245898 DOI: 10.1101/2023.05.24.542137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has abundant immunosuppressive regulatory T cells (Tregs), which contribute to a microenvironment resistant to immunotherapy. Here, we report that Tregs in the PDAC tissue, but not those in the spleen, express the αvβ5 integrin in addition to neuropilin-1 (NRP-1), which makes them susceptible to the iRGD tumor-penetrating peptide, which targets cells positive for αv integrin- and NRP-1. As a result, long-term treatment of PDAC mice with iRGD leads to tumor-specific depletion of Tregs and improved efficacy of immune checkpoint blockade. αvβ5 integrin + Tregs are induced from both naïve CD4 + T cells and natural Tregs upon T cell receptor stimulation, and represent a highly immunosuppressive subpopulation of CCR8 + Tregs. This study identifies the αvβ5 integrin as a marker for activated tumor-resident Tregs, which can be targeted to achieve tumor-specific Treg depletion and thereby augment anti-tumor immunity for PDAC therapy.
Collapse
|
6
|
Rose DC, Rolig AS, Redmond WL. Characterization of murine lymphocyte activation and exhaustion markers by a 14-color flow cytometry panel. Bioanalysis 2023. [PMID: 37125902 DOI: 10.4155/bio-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Previously designed flow cytometry panels have provided a framework to analyze T-cell activation; however, few provide an extensive view of lymphocyte populations, and none are optimized for murine models. This article describes a panel designed specifically to assess the expression of activation and exhaustion markers in expanding lymphocyte populations in tumor-bearing mice across two distinct genetic backgrounds: BALB/c and C57BL/6. This comprehensive panel enables the assessment of multiple functional states and immune checkpoint markers across cytotoxic CD8+ T cells, helper and regulatory CD4+ T cells and NK cells in murine whole blood, lymph nodes and tumor.
Collapse
Affiliation(s)
- Daniel C Rose
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
- ThermoFisher Scientific, Waltham, MA 02451, USA
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| |
Collapse
|
7
|
Tucker N, Cunha P, Gilbert FB, Rambault M, Santos KR, Remot A, Germon P, Rainard P, Martins RP. Bovine blood and milk T-cell subsets in distinct states of activation and differentiation during subclinical Staphylococcus aureus mastitis. J Reprod Immunol 2023; 156:103826. [PMID: 36746006 DOI: 10.1016/j.jri.2023.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
T-lymphocytes are key mediators of adaptive cellular immunity and knowledge about distinct subsets of these cells in healthy and infected mammary gland secretions remains limited. In this study, we used a multiplex cytometry panel to show that staphylococcal mastitis causes the activation of CD4+, CD8+ and γδ T-cells found in bovine milk. We also highlight remarkable differences in the proportions of naïve and memory T-cells subsets found in blood and milk. These observations will contribute to a better understanding of cell-mediated immune mechanisms in the udder and to the development of new therapeutic and preventive strategies targeting mastitis.
Collapse
Affiliation(s)
- Nisha Tucker
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | | | | | | | - Aude Remot
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | | |
Collapse
|
8
|
Kim BS. Critical role of TLR activation in viral replication, persistence, and pathogenicity of Theiler's virus. Front Immunol 2023; 14:1167972. [PMID: 37153539 PMCID: PMC10157096 DOI: 10.3389/fimmu.2023.1167972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) establishes persistent viral infections in the central nervous system and induces chronic inflammatory demyelinating disease in susceptible mice. TMEV infects dendritic cells, macrophages, B cells, and glial cells. The state of TLR activation in the host plays a critical role in initial viral replication and persistence. The further activation of TLRs enhances viral replication and persistence, leading to the pathogenicity of TMEV-induced demyelinating disease. Various cytokines are produced via TLRs, and MDA-5 signals linked with NF-κB activation following TMEV infection. In turn, these signals further amplify TMEV replication and the persistence of virus-infected cells. The signals further elevate cytokine production, promoting the development of Th17 responses and preventing cellular apoptosis, which enables viral persistence. Excessive levels of cytokines, particularly IL-6 and IL-1β, facilitate the generation of pathogenic Th17 immune responses to viral antigens and autoantigens, leading to TMEV-induced demyelinating disease. These cytokines, together with TLR2 may prematurely generate functionally deficient CD25-FoxP3+ CD4+ T cells, which are subsequently converted to Th17 cells. Furthermore, IL-6 and IL-17 synergistically inhibit the apoptosis of virus-infected cells and the cytolytic function of CD8+ T lymphocytes, prolonging the survival of virus-infected cells. The inhibition of apoptosis leads to the persistent activation of NF-κB and TLRs, which continuously provides an environment of excessive cytokines and consequently promotes autoimmune responses. Persistent or repeated infections of other viruses such as COVID-19 may result in similar continuous TLR activation and cytokine production, leading to autoimmune diseases.
Collapse
|
9
|
da Silva Domingues V, Caramalho I, Bergman ML, Demengeot J. Adoptive Transfer and Bone Marrow Chimera Models to Analyze Treg Function and Differentiation. Methods Mol Biol 2023; 2559:15-29. [PMID: 36180623 DOI: 10.1007/978-1-0716-2647-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular adoptive transfer and mixed bone marrow chimera are cornerstone experimental tools for immuno-biology. Here we describe protocols for adoptive transfer and bone marrow chimera to address the effect of a specific mutation on T regulatory cell (Treg) function and differentiation, respectively. Treg function can be quantitatively measured by analyzing the expansion of conventional CD4 T cells and their differentiation into helper cells. The quantitative measure of Treg differentiation is addressed by analyzing the number and phenotype of Foxp3-expressing cells. The use of congenic markers is instrumental for these approaches.
Collapse
Affiliation(s)
- Vital da Silva Domingues
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
10
|
ALLERGY IS AN IMMUNE DISORDER RELATED TO A LACK OF REGULATION: THE GLUING ROLE OF IL-2. Immunol Lett 2022; 251-252:103-106. [DOI: 10.1016/j.imlet.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
|
11
|
Tsiomita S, Liveri EM, Vardaka P, Vogiatzi A, Skiadaresis A, Saridis G, Tsigkas I, Michaelidis TM, Mavrothalassitis G, Thyphronitis G. ETS2 repressor factor (ERF) is involved in T lymphocyte maturation acting as regulator of thymocyte lineage commitment. J Leukoc Biol 2022; 112:641-657. [PMID: 35258130 DOI: 10.1002/jlb.1a0720-439r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Thymocyte differentiation and lineage commitment is regulated by an extensive network of transcription factors and signaling molecules among which Erk plays a central role. However, Erk effectors as well as the molecular mechanisms underlying this network are not well understood. Erf is a ubiquitously expressed transcriptional repressor regulated by Erk-dependent phosphorylation. Here, we investigated the role of Erf in T cell maturation and lineage commitment, using a double-fluorescent Erf-floxed mouse to produce thymus-specific Erf knockouts. We observed significant accumulation of thymocytes in the CD4/CD8 DP stage, followed by a significant reduction in CD4SP cells, a trend for lower CD8SP cell frequency, and an elevated percentage of γδ expressing thymocytes in Erf-deficient mice. Also, an elevated number of CD69+ TCRβ+ cells indicates that thymocytes undergoing positive selection accumulate at this stage. The expression of transcription factors Gata3, ThPOK, and Socs1 that promote CD4+ cell commitment was significantly decreased in Erf-deficient mice. These findings suggest that Erf is involved in T cell maturation, acting as a positive regulator during CD4 and eventually CD8 lineage commitment, while negatively regulates the production of γδ T cells. In addition, Erf-deficient mice displayed decreased percentages of CD4+ and CD8+ splenocytes and elevated levels of IL-4 indicating that Erf may have an additional role in the homeostasis, differentiation, and immunologic response of helper and cytotoxic T cells in the periphery. Overall, our results show, for the first time, Erf's involvement in T cell biology suggesting that Erf acts as a potential regulator during thymocyte maturation and thymocyte lineage commitment, in γδ T cell generation, as well as in Th cell differentiation.
Collapse
Affiliation(s)
- Spyridoula Tsiomita
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Effrosyni Maria Liveri
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Panagiota Vardaka
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Angeliki Vogiatzi
- Department of Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Argyris Skiadaresis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - George Saridis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Ioannis Tsigkas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Theologos M Michaelidis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - George Mavrothalassitis
- Department of Medicine, Medical School, University of Crete, Heraklion, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| | - George Thyphronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
12
|
Prakhar P, Alvarez-DelValle J, Keller H, Crossman A, Tai X, Park YK, Park JH. The small intestine epithelium exempts Foxp3+ Tregs from their IL-2 requirement for homeostasis and effector function. JCI Insight 2021; 6:149656. [PMID: 34747370 PMCID: PMC8663555 DOI: 10.1172/jci.insight.149656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
Foxp3+ Tregs are potent immunosuppressive CD4+ T cells that are critical to maintain immune quiescence and prevent autoimmunity. Both the generation and maintenance of Foxp3+ Tregs depend on the cytokine IL-2. Hence, the expression of the IL-2 receptor α-chain (CD25) is not only considered a specific marker, but also a nonredundant requirement for Tregs. Here, we report that Foxp3+ Tregs in the small intestine (SI) epithelium, a critical barrier tissue, are exempt from such an IL-2 requirement, since they had dramatically downregulated CD25 expression, showed minimal STAT5 phosphorylation ex vivo, and were unable to respond to IL-2 in vitro. Nonetheless, SI epithelial Tregs survived and were present at the same frequency as in other lymphoid organs, and they retained potent suppressor function that was associated with high levels of CTLA-4 expression and the production of copious amounts of IL-10. Moreover, adoptive transfer experiments of Foxp3+ Tregs revealed that such IL-2–independent survival and effector functions were imposed by the SI epithelial tissue, suggesting that tissue adaptation is a mechanism that tailors the effector function and survival requirements of Foxp3+ Tregs specific to the tissue environment.
Collapse
Affiliation(s)
- Praveen Prakhar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jaylene Alvarez-DelValle
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hilary Keller
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Department of Surgery, Guthrie Robert Packer Hospital, Sayre, Pennsylvania, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Xuguang Tai
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yoo Kyoung Park
- Department of Medical Nutrition-AgeTech-Service Convergence Major, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
13
|
CD38 Correlates with an Immunosuppressive Treg Phenotype in Lupus-Prone Mice. Int J Mol Sci 2021; 22:ijms222111977. [PMID: 34769406 PMCID: PMC8584421 DOI: 10.3390/ijms222111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
CD38 is a transmembrane glycoprotein expressed by T-cells. It has been reported that patients with systemic lupus erythematosus (SLE) showed increased CD38+CD25+ T-cells correlating with immune activation and clinical signs. Contrariwise, CD38 deficiency in murine models has shown enhanced autoimmunity development. Recent studies have suggested that CD38+ regulatory T-cells are more suppressive than CD38− regulatory T-cells. Thus, we have suggested that CD38 overexpression in SLE patients could play a role in regulating immune activation cells instead of enhancing it. This study found a correlation between CD38 with FoxP3 expression and immunosuppressive molecules (CD69, IL-10, CTLA-4, and PD-1) in T-cells from lupus-prone mice (B6.MRL-Faslpr/J). Additionally, B6.MRL-Faslpr/J mice showed a decreased proportion of CD38+ Treg cells regarding wild-type mice (WT). Furthermore, Regulatory T-Cells (Treg cells) from CD38-/- mice showed impairment in expressing immunosuppressive molecules and proliferation after stimulation through the T-cell receptor (TCR). Finally, we demonstrated an increased ratio of IFN-γ/IL-10 secretion in CD38-/- splenocytes stimulated with anti-CD3 compared with the WT. Altogether, our data suggest that CD38 represents an element in maintaining activated and proliferative Treg cells. Consequently, CD38 could have a crucial role in immune tolerance, preventing SLE development through Treg cells.
Collapse
|
14
|
Dias-Guerreiro T, Palma-Marques J, Mourata-Gonçalves P, Alexandre-Pires G, Valério-Bolas A, Gabriel Á, Nunes T, Antunes W, da Fonseca IP, Sousa-Silva M, Santos-Gomes G. African Trypanosomiasis: Extracellular Vesicles Shed by Trypanosoma brucei brucei Manipulate Host Mononuclear Cells. Biomedicines 2021; 9:biomedicines9081056. [PMID: 34440259 PMCID: PMC8394715 DOI: 10.3390/biomedicines9081056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
African trypanosomiasis or sleeping sickness is a zoonotic disease caused by Trypanosoma brucei, a protozoan parasite transmitted by Glossina spp. (tsetse fly). Parasite introduction into mammal hosts triggers a succession of events, involving both innate and adaptive immunity. Macrophages (MΦ) have a key role in innate defence since they are antigen-presenting cells and have a microbicidal function essential for trypanosome clearance. Adaptive immune defence is carried out by lymphocytes, especially by T cells that promote an integrated immune response. Like mammal cells, T. b. brucei parasites release extracellular vesicles (TbEVs), which carry macromolecules that can be transferred to host cells, transmitting biological information able to manipulate cell immune response. However, the exact role of TbEVs in host immune response remains poorly understood. Thus, the current study examined the effect elicited by TbEVs on MΦ and T lymphocytes. A combined approach of microscopy, nanoparticle tracking analysis, multiparametric flow cytometry, colourimetric assays and detailed statistical analyses were used to evaluate the influence of TbEVs in mouse mononuclear cells. It was shown that TbEVs can establish direct communication with cells of innate and adaptative immunity. TbEVs induce the differentiation of both M1- and M2-MΦ and elicit the expansion of MHCI+, MHCII+ and MHCI+MHCII+ MΦ subpopulations. In T lymphocytes, TbEVs drive the overexpression of cell-surface CD3 and the nuclear factor FoxP3, which lead to the differentiation of regulatory CD4+ and CD8+ T cells. Moreover, this study indicates that T. b. brucei and TbEVs seem to display opposite but complementary effects in the host, establishing a balance between parasite growth and controlled immune response, at least during the early phase of infection.
Collapse
Affiliation(s)
- Tatiana Dias-Guerreiro
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Patrícia Mourata-Gonçalves
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Graça Alexandre-Pires
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (G.A.-P.); (I.P.d.F.)
| | - Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Áurea Gabriel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Wilson Antunes
- Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Laboratório de Imagem Nano-Morfológica e Espectroscopia de Raios-X, 1100-471 Lisboa, Portugal;
| | - Isabel Pereira da Fonseca
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (G.A.-P.); (I.P.d.F.)
| | - Marcelo Sousa-Silva
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
- Centro de Ciências da Saúde, Departamento de Analises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
- Correspondence: ; Tel.: +351-21-365-26-00; Fax: +351-21-363-21-05
| |
Collapse
|
15
|
Chalan P, Thomas N, Caturegli P. Th17 Cells Contribute to the Pathology of Autoimmune Hypophysitis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2536-2543. [PMID: 34011522 DOI: 10.4049/jimmunol.2001073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Autoimmune hypophysitis is classified as primary if its origin is idiopathic and secondary if it develops as a consequence of treatment with immune checkpoint inhibitors. Expanding use of immunotherapy has been paralleled by the increasing hypophysitis prevalence. However, understanding of the immune responses driving the disease remains limited. Using a mouse model of primary hypophysitis, we have identified CD4+ T lymphocytes to be the main pituitary-infiltrating immune cell population. Functional analysis showed that they display a Th17 and Th1/Th17 phenotype. To examine involvement of proinflammatory Th1, Th17, and Th1/17 subsets in hypophysitis, we have isolated RNA from the formalin-fixed paraffin-embedded pituitary specimens from 16 hypophysitis patients (three of whom had hypophysitis secondary to immune checkpoint inhibitors), 10 patients with adenoma, and 23 normal pituitaries obtained at autopsy. Transcript levels of IFN-γ, IL-17A, IL-4, IL-10, TGF-β, CD4, CD8α, and class II MHC transactivator were analyzed by the reverse transcription-quantitative PCR (RT-qPCR). Pituitary glands of patients with hypophysitis showed significantly higher IL-17A, CD4, and class II MHC transactivator mRNA levels compared with adenoma and normal pituitaries. All three secondary hypophysitis patients showed detectable IL-17A levels, but other cytokines were not detected in their pituitaries. Levels of IFN-γ, IL-4, IL-10, and TGF-β did not differ between the groups. TGF-β transcript was found in significantly fewer hypophysitis pituitaries (2 out of 16) compared with adenoma (7 out of 10) and normal pituitaries (11 out of 23). Presence of TGF-β in two hypophysitis patients was associated with significantly lower IL-17A mRNA levels compared with hypophysitis patients with no detectable TGF-β (p = 0.03).
Collapse
Affiliation(s)
- Paulina Chalan
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Nithya Thomas
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
Excessive Innate Immunity Steers Pathogenic Adaptive Immunity in the Development of Theiler's Virus-Induced Demyelinating Disease. Int J Mol Sci 2021; 22:ijms22105254. [PMID: 34067536 PMCID: PMC8156427 DOI: 10.3390/ijms22105254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
Several virus-induced models were used to study the underlying mechanisms of multiple sclerosis (MS). The infection of susceptible mice with Theiler’s murine encephalomyelitis virus (TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating disease. In this review, the innate and adaptive immune responses to TMEV are discussed to better understand the pathogenic mechanisms of viral infections. Professional (dendritic cells (DCs), macrophages, and B cells) and non-professional (microglia, astrocytes, and oligodendrocytes) antigen-presenting cells (APCs) are the major cell populations permissive to viral infection and involved in cytokine production. The levels of viral loads and cytokine production in the APCs correspond to the degrees of susceptibility of the mice to the TMEV-induced demyelinating diseases. TMEV infection leads to the activation of cytokine production via TLRs and MDA-5 coupled with NF-κB activation, which is required for TMEV replication. These activation signals further amplify the cytokine production and viral loads, promote the differentiation of pathogenic Th17 responses, and prevent cellular apoptosis, enabling viral persistence. Among the many chemokines and cytokines induced after viral infection, IFN α/β plays an essential role in the downstream expression of costimulatory molecules in APCs. The excessive levels of cytokine production after viral infection facilitate the pathogenesis of TMEV-induced demyelinating disease. In particular, IL-6 and IL-1β play critical roles in the development of pathogenic Th17 responses to viral antigens and autoantigens. These cytokines, together with TLR2, may preferentially generate deficient FoxP3+CD25- regulatory cells converting to Th17. These cytokines also inhibit the apoptosis of TMEV-infected cells and cytolytic function of CD8+ T lymphocytes (CTLs) and prolong the survival of B cells reactive to viral and self-antigens, which preferentially stimulate Th17 responses.
Collapse
|
17
|
Teer E, Joseph DE, Dominick L, Glashoff RH, Essop MF. Expansion of GARP-Expressing CD4 +CD25 -FoxP3 + T Cells and SATB1 Association with Activation and Coagulation in Immune Compromised HIV-1-Infected Individuals in South Africa. Virol Sin 2021; 36:1133-1143. [PMID: 33974229 DOI: 10.1007/s12250-021-00386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
Although antiretroviral treatment lowers the burden of human immunodeficiency virus (HIV)-related disease, it does not always result in immunological recovery. This manifests as persistent chronic inflammation, immune activation or exhaustion that can promote the onset of co-morbidities. As the exact function of regulatory T (Treg) cells in HIV remains unclear, this cross-sectional study investigated three expression markers (Forkhead box protein P3 [FOXP3], glycoprotein A repetitions predominant [GARP], special AT-rich sequence binding protein 1 [SATB1]) and compared their expansion between CD4+CD25- and CD4+CD25++ T cells. Age-matched study subjects were recruited (Western Cape, South Africa) and sub-divided: HIV-negative subjects (n = 12), HIV-positive naïve treated (n = 22), HIV-positive treated based on CD4 count cells/µL (CD4 > 500 and CD4 < 500) (n = 34) and HIV-treated based on viral load (VL) copies/mL (VL < 1000 and VL > 1000) (n = 34). Markers of immune activation (CD38) and coagulation (CD142) on T cells (CD8) were assessed by flow cytometry together with FOXP3, GARP and SATB1 expression on CD4+CD25- and CD4+CD25++ T cells. Plasma levels of interleukin-10 (IL-10; anti-inflammatory marker), IL-6 (inflammatory marker) and D-dimer (coagulation marker) were assessed. This study revealed three major findings in immuno-compromised patients with virological failure (CD4 < 500; VL > 1000): (1) the expansion of the unconventional Treg cell subset (CD4+CD25-FOXP3+) is linked with disease progression markers; (2) increased GARP expression in the CD4+CD25- and CD4+CD25++ subsets; and (3) the identification of a strong link between CD4+CD25-SATB1+ cells and markers of immune activation (CD8+CD38+) and coagulation (CD8+CD142+ and D-dimer).
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Leanne Dominick
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology and Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
18
|
Nadafi R, Gago de Graça C, Keuning ED, Koning JJ, de Kivit S, Konijn T, Henri S, Borst J, Reijmers RM, van Baarsen LGM, Mebius RE. Lymph Node Stromal Cells Generate Antigen-Specific Regulatory T Cells and Control Autoreactive T and B Cell Responses. Cell Rep 2021; 30:4110-4123.e4. [PMID: 32209472 DOI: 10.1016/j.celrep.2020.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Within lymph nodes (LNs), T follicular helper (TFH) cells help B cells to produce antibodies, which can either be protective or autoreactive. Here, we demonstrate that murine LN stromal cells (LNSCs) suppress the formation of autoreactive TFH cells in an antigen-specific manner, thereby significantly reducing germinal center B cell responses directed against the same self-antigen. Mechanistically, LNSCs express and present self-antigens in major histocompatibility complex (MHC) class II, leading to the conversion of naive CD4+ T cells into T regulatory (TREG) cells in an interleukin-2 (IL-2)-dependent manner. Upon blockade of TREG cells, using neutralizing IL-2 antibodies, autoreactive TFH cells are allowed to develop. We conclude that the continuous presentation of self-antigens by LNSCs is critical to generate antigen-specific TREG cells, thereby repressing the formation of TFH cells and germinal center B cell responses. Our findings uncover the ability of LNSCs to suppress the early activation of autoreactive immune cells and maintain peripheral tolerance.
Collapse
Affiliation(s)
- Reza Nadafi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Catarina Gago de Graça
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Eelco D Keuning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Sander de Kivit
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Universite, INSERM, CNRS, 13288 Marseille, France
| | - Jannie Borst
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Rogier M Reijmers
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Lisa G M van Baarsen
- Department of Rheumatology and Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC and University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Talebi M, Nozad Charoudeh H, Movassaghpour Akbari AA, Baradaran B, Kazemi T. Acellular Wharton's Jelly, Potentials in T-Cell Subtypes Differentiation, Activation and Proliferation. Adv Pharm Bull 2020; 10:617-622. [PMID: 33072540 PMCID: PMC7539310 DOI: 10.34172/apb.2020.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose: Because of different potentials of T-cell subtypes in T-cell based cellular immunotherapy approaches such as CAR-T cell therapies; Regarding the high cost of the serum-free specific culture media, having distinct control on T-cell subset activation, expansion and differentiation seem crucial in T-cell expansion step of cell preparation methods. By the way, there was no clear data about the effect of acellular Wharton’s Jelly (AWJ) on T-cells expansion, activation or differentiation status. So, we have launched to study the effect of AWJ on T-cell’s immunobiological properties. Methods: CD3+ T-cells were isolated from healthy bone marrow allogeneic donors, sorted by FACS method and cultured on either routine phyto-hemagglutinin complemented and different concentrations of AWJ, lag phase and doubling time of the cells calculated from cell growth curve. After 3, 7 and 14-days T-cell subtypes cell markers and cell activity related genes expression rate have been evaluated by flow cytometry and real-time polymerase chain reaction (PCR) methods respectively. Results: AWJ in a 1:1 ratio compared with contemporary lymphocyte culture media showed significant activating and proliferative capacities. The introduced condition has not affected the frequency of CD4+ subpopulation of T-cells, but significantly increased even CD8+ cells and immune-activator genes in T-cells. The regulatory and memory subsets of T-cells in this study have not affected significantly. Conclusion: the study results revealed that AWJ can be utilized as a supportive substance to increase the memory properties of the T-cells, gives control to design a selective medium for expanding and differentiating memory T-cells, relatively.
Collapse
Affiliation(s)
- Mehdi Talebi
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Rapid Expansion of Virus-Specific CD4 + T Cell Types in the CNS of Susceptible Mice Infected with Theiler's Virus. Int J Mol Sci 2020; 21:ijms21207719. [PMID: 33086489 PMCID: PMC7588906 DOI: 10.3390/ijms21207719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023] Open
Abstract
The infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces a T cell-mediated demyelinating disease. This system has been studied as a relevant infection model for multiple sclerosis (MS). Therefore, defining the type of T cell responses and their functions is critically important for understanding the relevant pathogenic mechanisms. In this study, we adoptively transferred naive VP2-specific TCR-Tg CD4+ T cells into syngeneic susceptible SJL mice and monitored the development of the disease and the activation and proliferation of CD4+ T cells during the early stages of viral infection. The preexisting VP2-specific naive CD4+ T cells promoted the pathogenesis of the disease in a dose-dependent manner. The transferred VP2-specific CD4+ T cells proliferated rapidly in the CNS starting at 2-3 dpi. High levels of FoxP3+CD4+ T cells were found in the CNS early in viral infection (3 dpi) and persisted throughout the infection. Activated VP2-specific FoxP3+CD4+ T cells inhibited the production of IFN-γ, but not IL-17, via the same VP2-specific CD4+ T cells without interfering in proliferation. Thus, the early presence of regulatory T cells in the CNS with viral infection may favor the induction of pathogenic Th17 cells over protective Th1 cells in susceptible mice, thereby establishing the pathogenesis of virus-induced demyelinating disease.
Collapse
|
21
|
Regulatory T Cells Contribute to Resistance against Lyme Arthritis. Infect Immun 2020; 88:IAI.00160-20. [PMID: 32778610 DOI: 10.1128/iai.00160-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
The symptoms of Lyme disease are caused by inflammation induced by species of the Borrelia burgdorferi sensu lato complex. The various presentations of Lyme disease in the population suggest that differences exist in the intensity and regulation of the host response to the spirochete. Previous work has described correlations between the presence of regulatory T cells and recovery from Lyme arthritis. However, the effects of Foxp3-expressing CD4+ T cells existing prior to, and during, B. burgdorferi infection have not been well characterized. Here, we used C57BL/6 "depletion of regulatory T cell" mice to assess the effects these cells have on the arthritis-resistant phenotype characteristic of this mouse strain. We showed that depletion of regulatory T cells prior to infection with B. burgdorferi resulted in sustained swelling, as well as histopathological changes, of the tibiotarsal joints that were not observed in infected control mice. Additionally, in vitro stimulation of splenocytes from these regulatory T cell-depleted mice resulted in increases in gamma interferon and interleukin-17 production and decreases in interleukin-10 production that were not evident among splenocytes of infected mice in which Treg cells were not depleted. Depletion of regulatory T cells at various times after infection also induced rapid joint swelling. Collectively, these findings provide evidence that regulatory T cells existing at the time of, and possibly after, B. burgdorferi infection may play an important role in limiting the development of arthritis.
Collapse
|
22
|
Zohouri M, Mehdipour F, Razmkhah M, Faghih Z, Ghaderi A. CD4 +CD25 -FoxP3 + T cells: a distinct subset or a heterogeneous population? Int Rev Immunol 2020; 40:307-316. [PMID: 32705909 DOI: 10.1080/08830185.2020.1797005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to generating effective immunity against infectious agents, the immune system helps to fight against different noninfectious human diseases while maintaining the balance between self and non-self discrimination. The breakdown of tolerance in autoimmune diseases or sustainable tolerance in an abnormal microenvironment such as chronic inflammation may initiate the process of malignancy. Immune system regulation is controlled by a complex, dynamic network of cells and mediators. Understanding the cellular and molecular basis of immune regulation provides better insight into the mechanisms governing the immune pathology of diseases. Among several cellular subsets and mediators with regulatory roles, a subpopulation of CD4+ T cells was recently reported to be positive for FoxP3 and negative for CD25, with a suggested range of functional activities in both cancer and autoimmune diseases. This CD4 subset was first reported in 2006 and thought to have a role in the pathogenesis of cancer. However, the spectrum of roles played by this T cell subset is broad, and no consensus has been reached regarding its immunological functions. In this review, we focused on the possible origin of CD4+CD25‒FoxP3+ T cells and their function in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Mahshid Zohouri
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Song T, Eirin A, Zhu X, Zhao Y, Krier JD, Tang H, Jordan KL, Woollard JR, Taner T, Lerman A, Lerman LO. Mesenchymal Stem Cell-Derived Extracellular Vesicles Induce Regulatory T Cells to Ameliorate Chronic Kidney Injury. Hypertension 2020; 75:1223-1232. [PMID: 32223383 DOI: 10.1161/hypertensionaha.119.14546] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) profoundly changes the contents of mesenchymal stem cells and mesenchymal stem cells-derived extracellular vesicles (EVs). The anti-inflammatory TGF-β (transforming growth factor-β) is selectively enriched in EVs from Lean but not from MetS pigs, but the functional impact of this endowment remains unknown. We hypothesized that Lean-EVs more effectively induce regulatory T cells in injured kidneys. Five groups of pigs (n=7 each) were studied after 16 weeks of diet-induced MetS and unilateral renal artery stenosis (RAS; MetS+RAS). Two groups of MetS+RAS were treated 4 weeks earlier with an intrarenal injection of either Lean-EVs or MetS-EVs. MetS+RAS had lower renal volume, renal blood flow, and glomerular filtration rate than MetS pigs. Compared with Lean-EVs, MetS-EVs were less effective in improving renal function and decreasing tubular injury and fibrosis in MetS+RAS. Lean-EVs upregulated TGF-β expression in stenotic kidney and increased regulatory T cells numbers more prominently. Furthermore, markedly upregulated anti-inflammatory M2 macrophages reduced proinflammatory M1 macrophages, and CD8+ T cells were detected in stenotic kidneys treated with Lean-EVs compared with MetS-EVs, and renal vein levels of interleukin-1β were reduced. In vitro, coculture of Lean-EVs with activated T cells led to greater TGF-β-dependent regulatory T cells induction than did MetS-EVs. Therefore, the beneficial effects of mesenchymal stem cells-derived EVs on injured kidneys might be partly mediated by their content of TGF-β signaling components, which permitting increased Treg preponderance. Modulating EV cargo and transforming their functionality might be useful for renal repair.
Collapse
Affiliation(s)
- Turun Song
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| | - Alfonso Eirin
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| | - Xiangyang Zhu
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| | - Yu Zhao
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| | - James D Krier
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| | - Hui Tang
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| | - Kyra L Jordan
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| | - John R Woollard
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| | - Timucin Taner
- Department of Transplant Surgery and Immunology (T.T.), Mayo Clinic, Rochester, MN
| | - Amir Lerman
- Department of Cardiovascular Diseases (A.L.), Mayo Clinic, Rochester, MN
| | - Lilach O Lerman
- From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN
| |
Collapse
|
24
|
Luo HQ, He YF, Chen WJ, Yan Y, Wu SS, Hu XX, Ke LH, Niu JY, Li HM, Xu HJ. Effect of Apatinib on Serum CD4+CD25+ T cells, NK Cells, and T Cells Subgroup in Malignant Tumor. Technol Cancer Res Treat 2020; 18:1533033819893667. [PMID: 31888413 PMCID: PMC6997845 DOI: 10.1177/1533033819893667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: The immune makers including CD4+CD25+ T cells, natural killer cells, and T cells
subgroup were retrospectively analyzed to find the relationship between apatinib and the
immune system in the patients treated with apatinib. Method: Forty-two patients with advanced malignant tumors orally took apatinib as treatment and
16 patients with the same situation did not take apatinib as a control group. These
patients were all included in the study, and they orally received apatinib 500 mg daily
as monotherapy or combination. The treatment was continued until disease progression or
intolerable toxicity. CD4+CD25+ T cells, natural killer cells, and T cells subgroup were
detected before and 1 month after therapy for all the patients. The relationship between
the changing number of immune cells and progression-free survival was analyzed in this
study. Result: For the apatinib group, the rate of CD4+CD25+ T cells significantly increased
(P = .048). The median progression-free survival was 3.25 months for
the 42 patients. The median progression-free survival in the patients with the rate of
CD4+CD25+ T cells increased and decreased was 5.8 months and 2.9 months, respectively
(P = .012). Multivariate analysis found the increased rate of
CD4+CD25+ T cells was an independent prognostic factor for a longer progression-free
survival. The rate of natural killer cells and T cells subgroup did not change much
after apatinib therapy, and they were not independent prognostic factors for
progression-free survival. Conclusion: The rate of CD4+CD25+ T cells is very important in patients with apatinib treatment.
The changing number of CD4+CD25+ T cells may be a good indicator for apatinib prognosis.
Natural killer cells and T cells subgroup did not change much after apatinib, and they
were not independent prognostic factors for progression-free survival.
Collapse
Affiliation(s)
- Hui-Qin Luo
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yi-Fu He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Wen-Ju Chen
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ying Yan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Shu-Sheng Wu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xiao-Xiu Hu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Li-Hong Ke
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jia-Yu Niu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Hui-Min Li
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Hui-Jun Xu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
25
|
Kim HR, Park HJ, Son J, Lee JG, Chung KY, Cho NH, Shim HS, Park S, Kim G, In Yoon H, Kim HG, Jung YW, Cho BC, Park SY, Rha SY, Ha SJ. Tumor microenvironment dictates regulatory T cell phenotype: Upregulated immune checkpoints reinforce suppressive function. J Immunother Cancer 2019; 7:339. [PMID: 31801611 PMCID: PMC6894345 DOI: 10.1186/s40425-019-0785-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/22/2019] [Indexed: 01/29/2023] Open
Abstract
Background Regulatory T (Treg) cells have an immunosuppressive function in cancer, but the underlying mechanism of immunosuppression in the tumor microenvironment (TME) is unclear. Methods We compared the phenotypes of T cell subsets, including Treg cells, obtained from peripheral blood, malignant effusion, and tumors of 103 cancer patients. Our primary focus was on the expression of immune checkpoint (IC)-molecules, such as programmed death (PD)-1, T-cell immunoglobulin and mucin-domain containing (TIM)-3, T cell Ig and ITIM domain (TIGIT), and cytotoxic T lymphocyte antigen (CTLA)-4, on Treg cells in paired lymphocytes from blood, peritumoral tissue, and tumors of 12 patients with lung cancer. To identify the immunosuppressive mechanisms acting on tumor-infiltrating Treg cells, we conducted immunosuppressive functional assays in a mouse model. Results CD8+, CD4+ T cells, and Treg cells exhibited a gradual upregulation of IC-molecules the closer they were to the tumor. Interestingly, PD-1 expression was more prominent in Treg cells than in conventional T (Tconv) cells. In lung cancer patients, higher levels of IC-molecules were expressed on Treg cells than on Tconv cells, and Treg cells were also more enriched in the tumor than in the peri-tumor and blood. In a mouse lung cancer model, IC-molecules were also preferentially upregulated on Treg cells, compared to Tconv cells. PD-1 showed the greatest increase on most cell types, especially Treg cells, and this increase occurred gradually over time after the cells entered the TME. PD-1 high-expressing tumor-infiltrating Treg cells displayed potent suppressive activity, which could be partially inhibited with a blocking anti-PD-1 antibody. Conclusions We demonstrate that the TME confers a suppressive function on Treg cells by upregulating IC-molecule expression. Targeting IC-molecules, including PD-1, on Treg cells may be effective for cancer treatment.
Collapse
Affiliation(s)
- Hye Ryun Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Hyo Jin Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Jimin Son
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Kyung Young Chung
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Gamin Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Gyung Kim
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - Byoung Chul Cho
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Sun Young Rha
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
26
|
Niakan A, Faghih Z, Talei AR, Ghaderi A. Cytokine profile of CD4 +CD25 -FoxP3 + T cells in tumor-draining lymph nodes from patients with breast cancer. Mol Immunol 2019; 116:90-97. [PMID: 31630080 DOI: 10.1016/j.molimm.2019.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND A T cell subtype with the CD4+CD25-FoxP3+ phenotype was recently described. We aimed to investigate the frequency of these cells and their ability to produce cytokines in tumor-draining lymph nodes from patients with breast cancer (BC). MATERIALS AND METHODS Mononuclear cells from lymph nodes of 20 patients with BC were activated and stained for appropriate markers. The cells were assayed with four-color flow cytometry. RESULTS A very small fraction of CD4+CD25-FoxP3+ cells produced cytokines at levels that were significantly lower than in the regulatory (CD4+CD25+FoxP3+) and effector cell (CD4+CD25+FoxP3-) subpopulations. The expression of IFNγ and IL-2 in the CD4+CD25-FoxP3+ subset was significantly higher than in Treg cells, but lower than in the effector subset. Conversely, IL-22 expression in Treg cells was significantly higher than in the CD4+CD25-FoxP3+ subpopulation. The expression of IL-10 in the CD4+CD25-FoxP3+ subset was also significantly higher than in effector cells. CONCLUSION We suggest that CD4+CD25-FoxP3+ cells in patients with BC are exhausted cells with an intermediate phenotype between effector and regulatory cells.
Collapse
Affiliation(s)
- Andisheh Niakan
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdol-Rasoul Talei
- Breast Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Terzieva V, Mihova A, Altankova I, Velikova T, Donchev D, Uzunova J, Goncharov A, Jurukova N, Georgieva V, Yordanova E, Sekulovski M, Chalamanov O, Spassov L. The Dynamic Changes in Soluble CD30 and Regulatory T Cells Before and After Solid Organ Transplantations: A Pilot Study. Monoclon Antib Immunodiagn Immunother 2019; 38:137-144. [PMID: 31361582 DOI: 10.1089/mab.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among multiple parameters, applied in the immunologic monitoring of transplantation, the levels of serum soluble CD30 (sCD30) and peripheral regulatory T cells (Tregs) are very promising. These are relatively new biomarkers, considered to reflect immune activation and tolerance in solid organ transplantation. Results are shown here from a preliminary study on the relevance of sCD30 and Tregs in the monitoring of the early post-transplantation period. Sixteen patients with chronic liver or kidney disease were examined. Nine of them were further selected for transplantation. Follow-up of sCD30 and Tregs was carried out during the first month after transplantation. Until day 30 (D30) after transplantation, a progressive decrease in sCD30 levels was observed in all patients. Conversely, the dynamic of Tregs was dependent on the transplanted organ: in liver recipients, an increase of Tregs was detected at day 7 (D7) followed by a gradual decrease until D30, whereas in kidney recipients, a sustained downward trend starting on D7 was observed. In liver recipients, the increase in Tregs preceded albumin normalization, whereas in kidney recipients, sCD30 was found to have predictive significance for the creatinine levels. Our results demonstrated that peripheral blood sCD30 and Tregs are valuable parameters in the immunologic monitoring of transplanted patients.
Collapse
Affiliation(s)
- Velislava Terzieva
- 1Clinical Immunology Laboratory, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Antoaneta Mihova
- 1Clinical Immunology Laboratory, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Iskra Altankova
- 1Clinical Immunology Laboratory, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Tsvetelina Velikova
- 1Clinical Immunology Laboratory, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Deyan Donchev
- 2Laboratory of Microbiology and Virology, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Jordanka Uzunova
- 3Department of Pediatrics, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Andrey Goncharov
- 3Department of Pediatrics, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Nonka Jurukova
- 4Department of Gastroenterology, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Viktoriya Georgieva
- 4Department of Gastroenterology, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Emilia Yordanova
- 5Department of Hemodyalisis, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Metodija Sekulovski
- 6Intensive Care Unit, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Ognian Chalamanov
- 6Intensive Care Unit, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| | - Lubomir Spassov
- 7Department of Surgery, University Hospital "Lozenetz," Sofia University "St. Kliment Ohridski," Sofia, Bulgaria
| |
Collapse
|
28
|
Polanczyk MJ, Walker E, Haley D, Guerrouahen BS, Akporiaye ET. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4 +CD25 +Foxp3 + and CD4 +CD25 -Foxp3 + T cells. J Transl Med 2019; 17:219. [PMID: 31288845 PMCID: PMC6617864 DOI: 10.1186/s12967-019-1967-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background The pleiotropic cytokine, transforming growth factor (TGF)-β, and CD4+CD25+Foxp3+ regulatory T cells (Tregs) play a critical role in actively suppressing antitumor immune responses. Evidence shows that TGF-β produced by tumor cells promotes tolerance via expansion of Tregs. Our group previously demonstrated that blockade of TGF-β signaling with a small molecule TGF-β receptor I antagonist (SM16) inhibited primary and metastatic tumor growth in a T cell dependent fashion. In the current study, we evaluated the effect of SM16 on Treg generation and function. Methods Using BALB/c, FoxP3eGFP and Rag−/− mice, we performed FACS analysis to determine if SM16 blocked de novo TGF-β-induced Treg generation in vitro and in vivo. CD4+ T cells from lymph node and spleen were isolated from control mice or mice maintained on SM16 diet, and flow cytometry analysis was used to detect the frequency of CD4+CD25−FoxP3+ and CD4+CD25+FoxP3+ T cells. In vitro suppression assays were used to determine the ability to suppress naive T cell proliferation in vitro of both CD4+CD25+FoxP3+ and CD4+CD25−FoxP3+ T cell sub-populations. We then examined whether SM16 diet exerted an inhibitory effect on primary tumor growth and correlated with changes in FoxP3+expression. ELISA analysis was used to measure IFN-γ levels after 72 h co-culture of CD4+CD25+ T cells from tumor-bearing mice on control or SM16 diet with CD4+CD25− T cells from naive donors. Results SM16 abrogates TGF-β-induced Treg generation in vitro but does not prevent global homeostatic expansion of CD4+ T cell sub-populations in vivo. Instead, SM16 treatment causes expansion of a population of CD4+CD25−Foxp3+ Treg-like cells without significantly altering the overall frequency of Treg in lymphoreplete naive and tumor-bearing mice. Importantly, both the CD4+CD25−Foxp3+ T cells and the CD4+CD25+Foxp3+ Tregs in mice receiving SM16 diet exhibited diminished ability to suppress naive T cell proliferation in vitro compared to Treg from mice on control diet. Conclusions These findings suggest that blockade of TGF-β signaling is a potentially useful strategy for blunting Treg function to enhance the anti-tumor response. Our data further suggest that the overall dampening of Treg function may involve the expansion of a quiescent Treg precursor population, which is CD4+CD25−Foxp3+.
Collapse
Affiliation(s)
| | - Edwin Walker
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA.,Veana Therapeutics, Inc., Portland, OR, USA
| | - Daniel Haley
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA
| | | | - Emmanuel T Akporiaye
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA. .,Veana Therapeutics, Inc., Portland, OR, USA.
| |
Collapse
|
29
|
Changes in CDKN2A/2B expression associate with T-cell phenotype modulation in atherosclerosis and type 2 diabetes mellitus. Transl Res 2019; 203:31-48. [PMID: 30176239 DOI: 10.1016/j.trsl.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
Previous studies indicate a role of CDKN2A/2B/2BAS genes in atherosclerosis and type 2 diabetes mellitus (T2DM). Progression of these diseases is accompanied by T-cell imbalance and chronic inflammation. Our main objective was to investigate a potential association between CDKN2A/2B/2BAS gene expression and T cell phenotype in T2DM and coronary artery disease (CAD) in humans, and to explore the therapeutic potential of these genes to restore immune cell homeostasis and disease progression. Reduced mRNA levels of CDKN2A (p16Ink4a), CDKN2B (p15Ink4b), and CDKN2BAS were observed in human T2DM and T2DM-CAD subjects compared with controls. Protein levels of p16Ink4a and p15Ink4b were also diminished in T2DM-CAD patients while CDK4 levels, the main target of p16Ink4a and p15Ink4b, were augmented in T2DM and T2DM-CAD subjects. Both patient groups displayed higher activated CD3+CD69+ T cells and proatherogenic CD14++CD16+ monocytes, while CD4+CD25+CD127 regulatory T (Treg cells) cells were decreased. Treatment of primary human lymphocytes with PD0332991, a p16Ink4a/p15Ink4b mimetic drug and a proven CDK4 inhibitor, increased Treg cells and the levels of activated transcription factor phosphoSTAT5. In vivo PD0332991 treatment of atherosclerotic apoE-/- mice and insulin resistant apoE-/-Irs2+/- mice augmented Foxp3-expressing Treg cells and decreased lesion size. Thus, atherosclerosis complications in T2DM associate with altered immune cell homeostasis, diminished CDKN2A/2B/2BAS expression, and increased CDK4 levels. The present study also suggests that the treatment with drugs that mimic CDKN2A/2B genes could potential be considered as a promising therapy to delay atherosclerosis.
Collapse
|
30
|
Hanna BS, Roessner PM, Scheffold A, Jebaraj BMC, Demerdash Y, Öztürk S, Lichter P, Stilgenbauer S, Seiffert M. PI3Kδ inhibition modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia. Leukemia 2018; 33:1427-1438. [DOI: 10.1038/s41375-018-0318-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023]
|
31
|
Dietary Cows' Milk Protein A1 Beta-Casein Increases the Incidence of T1D in NOD Mice. Nutrients 2018; 10:nu10091291. [PMID: 30213104 PMCID: PMC6163334 DOI: 10.3390/nu10091291] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022] Open
Abstract
The contribution of cows’ milk containing beta-casein protein A1 variant to the development of type 1 diabetes (T1D) has been controversial for decades. Despite epidemiological data demonstrating a relationship between A1 beta-casein consumption and T1D incidence, direct evidence is limited. We demonstrate that early life exposure to A1 beta-casein through the diet can modify progression to diabetes in non-obese diabetic (NOD) mice, with the effect apparent in later generations. Adult NOD mice from the F0 generation and all subsequent generations (F1 to F4) were fed either A1 or A2 beta-casein supplemented diets. Diabetes incidence in F0–F2 generations was similar in both cohorts of mice. However, diabetes incidence doubled in the F3 generation NOD mice fed an A1 beta-casein supplemented diet. In F4 NOD mice, subclinical insulitis and altered glucose handling was evident as early as 10 weeks of age in A1 fed mice only. A significant decrease in the proportion of non-conventional regulatory T cell subset defined as CD4+CD25−FoxP3+ was evident in the F4 generation of A1 fed mice. This feeding intervention study demonstrates that dietary A1 beta-casein may affect glucose homeostasis and T1D progression, although this effect takes generations to manifest.
Collapse
|
32
|
Sparger EE, Murphy BG, Kamal FM, Arzi B, Naydan D, Skouritakis CT, Cox DP, Skorupski K. Investigation of immune cell markers in feline oral squamous cell carcinoma. Vet Immunol Immunopathol 2018; 202:52-62. [PMID: 30078599 DOI: 10.1016/j.vetimm.2018.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/04/2018] [Accepted: 06/13/2018] [Indexed: 01/22/2023]
Abstract
Squamous cell carcinoma is the most common oral cancer in the cat and presents as a locally aggressive lesion for which an effective therapeutic protocol remains elusive. Feline oral squamous cell carcinoma (OSCC) shares many clinical characteristics with human head and neck squamous cell carcinoma (HNSCC). Accordingly, present studies were conducted to determine similarities for immune markers shared by feline OSCC and human HNSCC. Biopsies harvested from a feline patient cohort-1 (n = 12) were analyzed for lymphoid cell infiltrates by immunohistochemistry (IHC). Results revealed unique patterns of T cell infiltration involving both neoplastic epithelium and stroma that were detected in most patient tumor biopsies (92%) examined by IHC staining for CD3. Intratumoral B cell infiltrates were detected within tumor stroma only, based on IHC staining for CD79a and CD20 for all patients within the same cohort-1. Infiltration of tumors by a regulatory CD4 T cell subset (Tregs) defined by expression of the forkhead transcription factor FoxP3, was also detected in biopsies from 57% of patients and involved infiltration of neoplastic epithelium and stroma. Patient biopsies were also examined for expression of immunomodulator cyclooxygenase (COX)-2 and revealed positive but weak staining of neoplastic epithelium in a significant proportion of cases (75%). Interestingly, COX-2 expression was detected in both neoplastic epithelium and stroma. Blood collected from a second cohort of feline OSCC patients (n = 9) revealed an increased frequency of circulating CD4+FoxP3+ T cells when compared to healthy adult controls (n = 7) (P = 0.045), although frequencies of CD4+CD25+FoxP3+ T cells were comparable between patients and healthy pet cat controls. Lastly, biopsies from feline OSCC patients were characterized for histologic subtype using a classification scheme previously described for human HNSCC. This analysis revealed the conventional subtype as the predominant variant (75%) with conventional subtypes split evenly between well differentiated and moderately differentiated carcinomas. Two cases were classified as papillary and one case as basaloid subtypes. Correlations between subtype, immune marker scores or circulating Treg frequencies and clinical characteristics or outcome were not detected, most likely due to small patient numbers within patient cohorts. However, findings from these studies provide a preliminary step in the characterization of immune and histologic markers that will be critical to defining prognostic immune markers for feline OSCC and potential targets for testing of immunotherapeutics also relevant to human HNSCC in future studies.
Collapse
Affiliation(s)
- Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Brian G Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Farina Mustaffa Kamal
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Diane Naydan
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Chrisoula T Skouritakis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Darren P Cox
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Katherine Skorupski
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
33
|
Batorov EV, Tikhonova MA, Pronkina NV, Kryuchkova IV, Sergeevicheva VV, Sizikova SA, Ushakova GY, Aristova TA, Batorova DS, Menyaeva EV, Gilevich AV, Shevela EY, Ostanin AA, Chernykh ER. Increased circulating CD4 +FOXP3 + T cells associate with early relapse following autologous hematopoietic stem cell transplantation in multiple myeloma patients. Oncotarget 2018; 9:27305-27317. [PMID: 29930767 PMCID: PMC6007464 DOI: 10.18632/oncotarget.25553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 11/25/2022] Open
Abstract
We investigated dynamics of CD4+FOXP3+ T cell recovery following the high-dose chemotherapy (HDC) with autologous hematopoietic stem cell transplantation (auto-HSCT) in multiple myeloma (MM) patients. Circulating CD4+FOXP3+ T cells of 79 MM patients were evaluated using flow cytometry before HDC with auto-HSCT, at the day of engraftment, and following 6 and 12 months. Percentage of CD4+FOXP3+ T cells restored rapidly following auto-HSCT, became higher than pre-transplant level at the day of engraftment and then subsequently decreased for a year. CD4+FOXP3+ T cells at the time of engraftment were increased in patients with the relapse or progression of MM during 12 months following auto-HSCT (n=10) compared to non-relapsed patients (n=50): 6.7% (5.3-8.9%) vs 4.9% (2.8-6.6%); PU = 0.026. Area under the curve was 0.72 (95% CI: 0.570-0.878; р=0.026). Circulating CD4+FOXP3+ T cell count was not associated with the percentage of myeloma plasma cells in a bone marrow but depended on its amount in autografts. Conclusions Relative count of CD4+FOXP3+ T cells restored rapidly following auto-HSCT (at the day of engraftment), became higher than pre-transplant level and then subsequently decreased for a year. Their excess at the time of engraftment is associated with early relapse.
Collapse
Affiliation(s)
- Egor V Batorov
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Marina A Tikhonova
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Natalia V Pronkina
- Laboratory of Clinical Immunology, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Irina V Kryuchkova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vera V Sergeevicheva
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Svetlana A Sizikova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Galina Y Ushakova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Tatiana A Aristova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Dariya S Batorova
- Department of Hematology and Bone Marrow Transplantation, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena V Menyaeva
- Clinical Diagnostic Laboratory, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Andrey V Gilevich
- Intensive Care Unit, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Ekaterina Y Shevela
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Alexander A Ostanin
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
34
|
Sabbagh P, Karkhah A, Nouri HR, Javanian M, Ebrahimpour S. The significance role of regulatory T cells in the persistence of infections by intracellular bacteria. INFECTION GENETICS AND EVOLUTION 2018; 62:270-274. [PMID: 29751196 DOI: 10.1016/j.meegid.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Treg cells), are considered as effective immune cells playing a key role in immune response during cancers, autoimmune and infectious diseases. Regulatory T lymphocytes are divided into two main subgroups: natural Treg cells that generated during maturation in the thymus and have the suppressive activity that is critical for the establishment and maintenance of homeostasis in the body and induced Treg cells (iTreg) that are originated from naive T cells following the self-antigen recognition. In recent years, the roles of Treg in immune responses to microbial infections have received increased attention in researches. Several reports suggested the pivotal role of Treg cells in controlling responses to bacterial infections and demonstrated the impact of regulatory cells on one or more stages in the pathogenesis of bacterial infections. In this review, we describe the significance of regulatory T cells in the immunopathology of bacterial infections by focusing on specific bacterial infections including Mycobacteria, Listeria monocytogenes, and Bordetella pertussis. Moreover, suppressive mechanisms of regulatory T cells during bacterial infection including cell-cell contact, local secretion of inhibitory cytokines and local competition for growth factors will be discussed.
Collapse
Affiliation(s)
- Parisa Sabbagh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Ahmad Karkhah
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran; Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| |
Collapse
|
35
|
Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood 2018; 131:1617-1621. [PMID: 29439955 DOI: 10.1182/blood-2017-06-792267] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
36
|
Peng J, Yu Z, Xue L, Wang J, Li J, Liu D, Yang Q, Lin Y. The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells. Mol Med Rep 2018; 17:5860-5868. [PMID: 29436663 PMCID: PMC5866031 DOI: 10.3892/mmr.2018.8606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate the novel mechanisms of forkhead box protein P3 (foxp3) in T regulatory (Treg) cells in lung cancer behavior. Treg cells were isolated from the peripheral blood of healthy volunteers and then co-cultured with 95D cells. A plasmid overexpressing foxp3 was constructed and transfected into Treg cells and an MTS assay was performed to assess cell viability. Flow cytometry was performed to evaluate cell apoptosis and reverse transcription-quantitative polymerase chain reaction was used to measure mRNA expression. A Transwell assay was used to assess cell invasion. Treg cells were successfully isolated from peripheral blood with purity of 94.26%. Foxp3 expression in Treg cells was significantly increased following co-culture with 95D cells, while matrix metalloproteinase-9 expression was upregulated in 95D cells co-cultured with Treg cells. The apoptosis, invasion and migration abilities of 95D cells were suppressed by co-culture with Treg cells, whereas the adhesive ability was enhanced. Foxp3 overexpression in Treg cells enhanced the viability and invasiveness of 95D cells, whereas cell adhesion and migration were decreased. The results of the present study demonstrate that the viability and invasiveness of 95D cells are enhanced by foxp3 overexpression in Treg cells, indicating that increased levels of foxp3 in the tumor microenvironment may promote tumor cell growth.
Collapse
Affiliation(s)
- Jiangzhou Peng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Zigang Yu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Lei Xue
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Jiabin Wang
- Department of Thoracic Surgery, Shanwei People's Hospital, Shanwei, Guangdong 516600, P.R. China
| | - Jun Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Degang Liu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Qiang Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Yihui Lin
- Department of Neurology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| |
Collapse
|
37
|
Olesen MN, Christiansen JR, Petersen SV, Jensen PH, Paslawski W, Romero-Ramos M, Sanchez-Guajardo V. CD4 T cells react to local increase of α-synuclein in a pathology-associated variant-dependent manner and modify brain microglia in absence of brain pathology. Heliyon 2018; 4:e00513. [PMID: 29560431 PMCID: PMC5857520 DOI: 10.1016/j.heliyon.2018.e00513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that immunological processes in the brain during α-synuclein-induced neurodegeneration vary depending on the presence or absence of cell death. This suggests that the immune system is able to react differently to the different stages of α-synuclein pathology. However, it was unclear whether these immune changes were governed by brain processes or by a direct immune response to α-synuclein modifications. We have herein locally increased the peripheral concentration of α-synuclein or its pathology-associated variants, nitrated or fibrillar, to characterize the modulation of the CD4 T cell pool by α-synuclein and brain microglia in the absence of any α-synuclein brain pathology. We observed that α-synuclein changed the CD4:CD8 ratio by contracting the CD3+CD4+ T cell pool and reducing the pool of memory Regulatory T cells (Treg). Nitrated α-synuclein induced the expansion of both the CD3+CD4+ and CD3+CD4- T cells, while fibrils increased the percentage of Foxp3+ Treg cells and induced anti-α-synuclein antibodies. Furthermore, the activation pattern of CD3+CD4+ T cells was modulated in a variant-dependent manner; while nitrated and fibrillar α-synuclein expanded the fraction of activated Treg, all three α-synuclein variants reduced the expression levels of STAT3, CD25 and CD127 on CD3+CD4+ T cells. Additionally, while monomeric α-synuclein increased CD103 expression, the fibrils decreased it, and CCR6 expression was decreased by nitrated and fibrillar α-synuclein, indicating that α-synuclein variants affect the homing and tolerance capacities of CD3+CD4+ T cells. Indeed, this correlated with changes in brain microglia phenotype, as determined by FACS analysis, in an α-synuclein variant-specific manner and coincided in time with CD4+ T cell infiltration into brain parenchyma. We have shown that the peripheral immune system is able to sense and react specifically to changes in the local concentration and structure of α-synuclein, which results in variant-specific T cell migration into the brain. This may have a specific repercussion for brain microglia.
Collapse
Affiliation(s)
- Mads N Olesen
- Neuroimmunology of Degenerative Diseases Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,AUideas Pilot Center NEURODIN, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Josefine R Christiansen
- Neuroimmunology of Degenerative Diseases Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,AUideas Pilot Center NEURODIN, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steen Vang Petersen
- Laboratory for Redox Regulation, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Wojciech Paslawski
- iNANO, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- AUideas Pilot Center NEURODIN, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- Neuroimmunology of Degenerative Diseases Group, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,AUideas Pilot Center NEURODIN, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Handa T, Matsui S, Yoshifuji H, Kodama Y, Yamamoto H, Minamoto S, Waseda Y, Sato Y, Kubo K, Mimori T, Chiba T, Hirai T, Mishima M. Serum soluble interleukin-2 receptor as a biomarker in immunoglobulin G4-related disease. Mod Rheumatol 2018; 28:838-844. [DOI: 10.1080/14397595.2017.1416739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoko Matsui
- Health Administration Center, University of Toyama, Toyama, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Yamamoto
- First Department of Internal Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Seijiro Minamoto
- Department of Medicine for Allergic Diseases, Osaka Habikino Medical Center, Osaka, Japan
| | - Yuko Waseda
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yasuharu Sato
- Department of Pathology, Okayama University Grduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keishi Kubo
- Nagano Prefectural Hospital Organization, Nagano, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kansai Electric Power Hospital, Osaka, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiaki Mishima
- Department of Respiratory Medicine, Saiseikai-Noe Hospital, Osaka, Japan
| |
Collapse
|
39
|
Fernandes C, Wanderley CWS, Silva CMS, Muniz HA, Teixeira MA, Souza NRP, Cândido AGF, Falcão RB, Souza MHLP, Almeida PRC, Câmara LMC, Lima-Júnior RCP. Role of regulatory T cells in irinotecan-induced intestinal mucositis. Eur J Pharm Sci 2018; 115:158-166. [PMID: 29307857 DOI: 10.1016/j.ejps.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Intestinal mucositis (IM) is a common side effect of irinotecan-based chemotherapy. The involvement of inflammatory mediators, such as TNF-α, IL1-β, IL-18 and IL-33, has been demonstrated. However, the role of adaptive immune system cells, whose activation is partially regulated by these cytokines, is yet unknown. Thus, we investigated the role of regulatory T cells (Tregs) in irinotecan-induced IM. C57BL/6 mice were injected with saline or irinotecan (75mgkg-1, i.p.), once a day for 4days, and euthanized at day 1, 3, 5 or 7 following the first dose of irinotecan. For Treg depletion, the mice were pretreated with a low single dose of cyclophosphamide (100mgkg-1, i.p). Intestinal lamina propria lymphocytes were harvested and purified by Percoll gradient. Treg and Th17 cells were identified by flow cytometry. Blood leukocyte count was obtained and ileum samples were collected for histopathological analysis and myeloperoxidase assay. IM caused an accumulation of Tregs and Th17 cells over time. Treg depletion exacerbated intestinal damage, diarrhea, neutrophil infiltration and animal mortality, despite a reduction in Th17 cell number. The frequency of other Th cells increased and was positively correlated with neutrophil infiltration. Tregs showed a negative correlation with neutrophils and the frequency of non-regulatory Th cells. In conclusion, Tregs are important in the control of intestinal damage induced by irinotecan, and their depletion showed a deleterious effect on IM. Activation of these cells appears to be a compensatory mechanism for intestinal inflammation.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | | | | | - Heitor Amorim Muniz
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Maraiza Alves Teixeira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | - Renata Brito Falcão
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | | | | |
Collapse
|
40
|
Ugor E, Simon D, Almanzar G, Pap R, Najbauer J, Németh P, Balogh P, Prelog M, Czirják L, Berki T. Increased proportions of functionally impaired regulatory T cell subsets in systemic sclerosis. Clin Immunol 2017; 184:54-62. [DOI: 10.1016/j.clim.2017.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/03/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022]
|
41
|
Ritvo PGG, Churlaud G, Quiniou V, Florez L, Brimaud F, Fourcade G, Mariotti-Ferrandiz E, Klatzmann D. T
fr
cells lack IL-2Rα but express decoy IL-1R2 and IL-1Ra and suppress the IL-1–dependent activation of T
fh
cells. Sci Immunol 2017; 2:2/15/eaan0368. [DOI: 10.1126/sciimmunol.aan0368] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
|
42
|
Nasim F, Das S, Mishra R, Mishra R. Hematological alterations and splenic T lymphocyte polarization at the crest of snake venom induced acute kidney injury in adult male mice. Toxicon 2017; 134:57-63. [DOI: 10.1016/j.toxicon.2017.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
|
43
|
Borken F, Markwart R, Requardt RP, Schubert K, Spacek M, Verner M, Rückriem S, Scherag A, Oehmichen F, Brunkhorst FM, Rubio I. Chronic Critical Illness from Sepsis Is Associated with an Enhanced TCR Response. THE JOURNAL OF IMMUNOLOGY 2017; 198:4781-4791. [DOI: 10.4049/jimmunol.1700142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
|
44
|
Breser ML, Lino AC, Motrich RD, Godoy GJ, Demengeot J, Rivero VE. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis. Sci Rep 2016; 6:33097. [PMID: 27624792 PMCID: PMC5022010 DOI: 10.1038/srep33097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022] Open
Abstract
Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence.
Collapse
Affiliation(s)
- Maria L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | | | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | - Gloria J Godoy
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | | | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| |
Collapse
|
45
|
Determination of a CD4+CD25−FoxP3+ T cells subset in tumor-draining lymph nodes of colorectal cancer secreting IL-2 and IFN-γ. Tumour Biol 2016; 37:14659-14666. [DOI: 10.1007/s13277-016-5345-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
|
46
|
Rodríguez-Perea AL, Arcia ED, Rueda CM, Velilla PA. Phenotypical characterization of regulatory T cells in humans and rodents. Clin Exp Immunol 2016; 185:281-91. [PMID: 27124481 DOI: 10.1111/cei.12804] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Regulatory T cells (Tregs ) constitute a fascinating subpopulation of CD4(+) T cells due to their ability to limit the immune response against self and non-self antigens. Murine models and antibodies directed against surface and intracellular molecules have allowed elucidation of the mechanisms that govern their development and function. However, these markers used to their classification lack of specificity, as they can be expressed by activated T cells. Similarly, there are slight differences between animal models, in steady state and pathological conditions, anatomical localization and strategy of analysis by flow cytometry. Here, we revised the most common markers utilized for Treg typification by flow cytometry such as CD25, forkhead box protein 3 (FoxP3) and CD127, along with our data obtained in different body compartments of humans, mice and rats. Furthermore, we revised and determined the expression of other molecules important for the phenotypical characterization of Treg cells. We draw attention to the drawbacks of those markers used in chronic states of inflammation. However, until a specific marker for the identification of Tregs is discovered, the best combination of markers will depend upon the tissue or the degree of inflammation from which Tregs derive.
Collapse
Affiliation(s)
- A L Rodríguez-Perea
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - E D Arcia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - C M Rueda
- Clinical Laboratory, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - P A Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
47
|
Enlarged colitogenic T cell population paradoxically supports colitis prevention through the B-lymphocyte-dependent peripheral generation of CD4(+)Foxp3(+) Treg cells. Sci Rep 2016; 6:28573. [PMID: 27353032 PMCID: PMC4926115 DOI: 10.1038/srep28573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Intestinal inflammation can be induced by the reconstitution of T/B cell-deficient mice with low numbers of CD4+ T lymphocytes depleted of CD25+Foxp3+ regulatory T cells (Treg). Using RAG-knockout mice as recipients of either splenocytes exclusively depleted of CD25+ cells or FACS-purified CD4+CD25−Foxp3− T cells, we found that the augmentation of potentially colitogenic naïve T cell numbers in the inoculum was unexpectedly beneficial for the suppression of colon disease and maintenance of immune homeostasis. Protection against T cell-mediated colitis correlated with a significant increment in the frequency of peripherally-induced CD4+CD25+Foxp3+ T (pTreg) cells, especially in the mesenteric lymph nodes, an effect that required the presence of B cells and CD4+CD25−Foxp3+ cells in physiological proportions. Our findings support a model whereby the interplay between B lymphocytes and a diversified naïve T cell repertoire is critical for the generation of CD4+CD25+Foxp3+ pTreg cells and colitis suppression.
Collapse
|
48
|
Wang T, Shi W, Fan T, Wan X, Chen YH, Ruan Q. c-Rel is Required for the Induction of pTregs in the Eye but Not in the Gut Mucosa. Immunol Invest 2016; 45:776-786. [PMID: 27224262 DOI: 10.3109/08820139.2016.1172639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regulatory T (Treg) cells play an integral role in maintaining immune homeostasis and preventing autoimmune diseases. Forkhead box P3 expression marks the commitment of progenitor cells to the Treg lineage. Although the essential function of the nuclear factor (NF)-κB family transcription factor c-Rel in the regulation of natural Treg cells has been firmly established, little is known about whether c-Rel is involved in the in vivo generation of peripheral Treg cells (pTregs), which develop from mature CD4+ conventional T cells outside of the thymus. We sought to answer this question through the induction of pTregs in the eye and gut mucosa using ovalbumin-specific T cell receptor transgenic mice that do or do not express c-Rel. Our results showed that Tregs can be induced in the eye in a c-Rel-dependent manner when immune-mediated inflammation occurs. However, c-Rel is dispensable for the induction of pTregs in the gut mucosa after oral antigen administration. Thus, c-Rel may play distinct roles in regulating the development of pTregs in different organs. Abbreviations ACAID: Anterior Chamber-Associated Immune Deviation; ATF: activating transcription factor; CREB: cAMP responsive element-binding protein; DMEM: Dulbecco minimum essential medium; HBSS: Hanks Balanced Salt Solution; NFAT: Nuclear Factor of Activated T cells; PBS: Phosphate-buffered saline; PE: Phycoerythrin; WT: wild type.
Collapse
Affiliation(s)
- Ting Wang
- a Shandong Eye Institute , Qingdao , People's Republic of China
| | - Weiyun Shi
- a Shandong Eye Institute , Qingdao , People's Republic of China
| | - Tingting Fan
- b Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , People's Republic of China
| | - Xiaochun Wan
- b Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , People's Republic of China
| | - Youhai H Chen
- c Department of Pathology and Laboratory of Medicine , University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - Qingguo Ruan
- b Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , People's Republic of China
| |
Collapse
|
49
|
Chen X, Du Y, Lin X, Qian Y, Zhou T, Huang Z. CD4+CD25+ regulatory T cells in tumor immunity. Int Immunopharmacol 2016; 34:244-249. [PMID: 26994448 DOI: 10.1016/j.intimp.2016.03.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 01/11/2023]
Abstract
Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Depletion of Tregs results in the onset of a variety of autoimmune diseases. Tregs are defined based on expression of CD4, CD25, and the transcription factor, FoxP3. It is now clear that three inhibitory cytokines, IL-10, IL-35 and TGF-β, are key mediators of Tregs function. Tregs have been shown to be important contributors to the development of immune tolerance toward tumors and play a critical role in the induction of tolerance to tumor associated antigens and suppression of anti-tumor immunity. Increasing researches support the existence of elevated numbers of regulatory T cells in cancer patients. Poor prognosis and decreased survival rates are closely correlated with higher Treg cell frequencies. Depletion of Tregs or blockade of their immune inhibitory role can enhance anti-tumor effects. Recent evidence suggests that Tregs may be responsible for the failure of host anti-tumor immunity by suppressing cytotoxic T-cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of Tregs in tumor immunity.
Collapse
Affiliation(s)
- Xin Chen
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yong Du
- Department of Pediatrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - XiuQing Lin
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yan Qian
- Department of Pediatrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ting Zhou
- Department of Pediatrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - ZhiMing Huang
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
50
|
Denies S, Cicchelero L, de Rooster H, Daminet S, Polis I, Van de Maele I, Sanders NN. Immunological and angiogenic markers during metronomic temozolomide and cyclophosphamide in canine cancer patients. Vet Comp Oncol 2016; 15:594-605. [PMID: 26961119 DOI: 10.1111/vco.12203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 12/01/2022]
Abstract
Metronomic chemotherapy stimulates the immune response via depletion of regulatory T cells (Tregs) and suppresses angiogenesis by modulating the secretion of thrombospondin-1 (TSP-1) and vascular endothelial growth factor (VEGF). In this study, blood was collected from 10 healthy dogs and from 30 canine cancer patients before and 2 and 4 weeks after treatment with metronomic temozolomide (6.6 mg m-2 ), cyclophosphamide (12.5 mg m-2 ) or cyclophosphamide and temozolomide. The percentage of circulating CD25+ Foxp3+ CD4+ Tregs and the plasma levels of TSP-1 and VEGF were measured. There was a significant difference in the percentage of Tregs between cancer patients and healthy dogs. A significant decrease in Tregs was noted in patients treated with metronomic cyclophosphamide and the combination. Treatment with temozolomide had no effect on the percentage of Tregs. TSP-1 and VEGF levels were, respectively, significantly lower and higher in cancer patients than in healthy dogs, but they were not influenced by any of the studied metronomic treatment regimens.
Collapse
Affiliation(s)
- S Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - H de Rooster
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Daminet
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I Polis
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I Van de Maele
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - N N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|