1
|
Coward-Smith M, Liong S, Oseghale O, Erlich JR, Miles MA, Liong F, Brassington K, Bozinovski S, Vlahos R, Brooks RD, Brooks DA, O’Leary JJ, Selemidis S. Low dose aspirin prevents endothelial dysfunction in the aorta and foetal loss in pregnant mice infected with influenza A virus. Front Immunol 2024; 15:1378610. [PMID: 38638436 PMCID: PMC11024306 DOI: 10.3389/fimmu.2024.1378610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Influenza A virus (IAV) infection in pregnancy resembles a preeclamptic phenotype characterised by vascular dysfunction and foetal growth retardation. Given that low dose aspirin (ASA) is safe in pregnancy and is used to prevent preeclampsia, we investigated whether ASA or NO-conjugated aspirin, NCX4016, resolve vascular inflammation and function to improve offspring outcomes following IAV infection in pregnant mice. Pregnant mice were intranasally infected with a mouse adapted IAV strain (Hkx31; 104 plaque forming units) and received daily treatments with either 200µg/kg ASA or NCX4016 via oral gavage. Mice were then culled and the maternal lungs and aortas collected for qPCR analysis, and wire myography was performed on aortic rings to assess endothelial and vascular smooth muscle functionality. Pup and placentas were weighed and pup growth rates and survival assessed. IAV infected mice had an impaired endothelial dependent relaxation response to ACh in the aorta, which was prevented by ASA and NCX4016 treatment. ASA and NCX4016 treatment prevented IAV dissemination and inflammation of the aorta as well as improving the pup placental ratios in utero, survival and growth rates at post-natal day 5. Low dose ASA is safe to use during pregnancy for preeclampsia and this study demonstrates that ASA may prove a promising treatment for averting the significant vascular complications associated with influenza infection during pregnancy.
Collapse
Affiliation(s)
- Madison Coward-Smith
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Osezua Oseghale
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Kurt Brassington
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Doug A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - John J. O’Leary
- Discipline of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun’s Research Laboratory and the Trinity Translational Medicine Institute (TTMI), St. James’s Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, Royal Melbourne Institute of Techology (RMIT) University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Danielak A, Wallace JL, Brzozowski T, Magierowski M. Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Front Pharmacol 2021; 12:657457. [PMID: 33995080 PMCID: PMC8116801 DOI: 10.3389/fphar.2021.657457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
3
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
4
|
Qian Y, Matson JB. Gasotransmitter delivery via self-assembling peptides: Treating diseases with natural signaling gases. Adv Drug Deliv Rev 2017; 110-111:137-156. [PMID: 27374785 DOI: 10.1016/j.addr.2016.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are powerful signaling molecules that play a variety of roles in mammalian biology. Collectively called gasotransmitters, these gases have wide-ranging therapeutic potential, but their clinical use is limited by their gaseous nature, extensive reactivity, short half-life, and systemic toxicity. Strategies for gasotransmitter delivery with control over the duration and location of release are therefore vital for developing effective therapies. An attractive strategy for gasotransmitter delivery is though injectable or implantable gels, which can ideally deliver their payload over a controllable duration and then degrade into benign metabolites. Self-assembling peptide-based gels are well-suited to this purpose due to their tunable mechanical properties, easy chemical modification, and inherent biodegradability. In this review we illustrate the biological roles of NO, CO, and H2S, discuss their therapeutic potential, and highlight recent efforts toward their controlled delivery with a focus on peptide-based delivery systems.
Collapse
Affiliation(s)
- Yun Qian
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
5
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Bahnson ESM, Kassam HA, Moyer TJ, Jiang W, Morgan CE, Vercammen JM, Jiang Q, Flynn ME, Stupp SI, Kibbe MR. Targeted Nitric Oxide Delivery by Supramolecular Nanofibers for the Prevention of Restenosis After Arterial Injury. Antioxid Redox Signal 2016; 24:401-18. [PMID: 26593400 PMCID: PMC4782035 DOI: 10.1089/ars.2015.6363] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS Cardiovascular interventions continue to fail as a result of arterial restenosis secondary to neointimal hyperplasia. We sought to develop and evaluate a systemically delivered nanostructure targeted to the site of arterial injury to prevent neointimal hyperplasia. Nanostructures were based on self-assembling biodegradable molecules known as peptide amphiphiles. The targeting motif was a collagen-binding peptide, and the therapeutic moiety was added by S-nitrosylation of cysteine residues. RESULTS Structure of the nanofibers was characterized by transmission electron microscopy and small-angle X-ray scattering. S-nitrosylation was confirmed by mass spectrometry, and nitric oxide (NO) release was assessed electrochemically and by chemiluminescent detection. The balloon carotid artery injury model was performed on 10-week-old male Sprague-Dawley rats. Immediately after injury, nanofibers were administered systemically via tail vein injection. S-nitrosylated (S-nitrosyl [SNO])-targeted nanofibers significantly reduced neointimal hyperplasia 2 weeks and 7 months following balloon angioplasty, with no change in inflammation. INNOVATION This is the first time that an S-nitrosothiol (RSNO)-based therapeutic was shown to have targeted local effects after systemic administration. This approach, combining supramolecular nanostructures with a therapeutic NO-based payload and a targeting moiety, overcomes the limitations of delivering NO to a site of interest, avoiding undesirable systemic side effects. CONCLUSION We successfully synthesized and characterized an RSNO-based therapy that when administered systemically, targets directly to the site of vascular injury. By integrating therapeutic and targeting chemistries, these targeted SNO nanofibers provided durable inhibition of neointimal hyperplasia in vivo and show great potential as a platform to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Edward S M Bahnson
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Hussein A Kassam
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Tyson J Moyer
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,3 Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois
| | - Wulin Jiang
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Courtney E Morgan
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Janet M Vercammen
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Qun Jiang
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Megan E Flynn
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Samuel I Stupp
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,3 Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois.,4 Department of Chemistry, Northwestern University , Evanston, Illinois.,5 Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,6 Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
| | - Melina R Kibbe
- 1 Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois.,2 Department of Surgery, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
7
|
Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol 2013; 62:89-95. [PMID: 23665095 DOI: 10.1016/j.jacc.2013.03.070] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) has been suggested to be a pathophysiological modulator of cell proliferation, cell cycle arrest, and apoptosis. In this context, NO can exert opposite effects under diverse conditions. Indeed, several studies have indicated that low relative concentrations of NO seem to favor cell proliferation and antiapoptotic responses and higher levels of NO favor pathways inducing cell cycle arrest, mitochondria respiration, senescence, or apoptosis. Here we report the effects of NO on both promotion and inhibition of cell proliferation, in particular in regard to cardiovascular disease, diabetes, and stem cells. Moreover, we focus on molecular mechanisms of action involved in the control of cell cycle progression, which include both cyclic guanosine monophosphate-dependent and -independent pathways. This growing field may lead to broad and novel targeted therapies against cardiovascular diseases, especially concomitant type 2 diabetes, as well as novel bioimaging NO-based diagnostic tools.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy; Fondazione SDN, IRCCS, Naples, Italy.
| | - Giuseppe Paolisso
- Division of Geriatrics, 1st School of Medicine, Second University of Naples, Naples, Italy
| | - Amelia Casamassimi
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy
| | - Mohammed Al-Omran
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Michelangela Barbieri
- Division of Geriatrics, 1st School of Medicine, Second University of Naples, Naples, Italy
| | - Linda Sommese
- Department of General Pathology, Excellence Research Centre on Cardiovascular Diseases, U.O.C. Immunohematology, Second University of Naples, Naples, Italy
| | | | - Louis J Ignarro
- Department of Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
8
|
Havelka GE, Moreira ES, Rodriguez MP, Tsihlis ND, Wang Z, Martínez J, Hrabie JA, Kiefer LK, Kibbe MR. Nitric oxide delivery via a permeable balloon catheter inhibits neointimal growth after arterial injury. J Surg Res 2012; 180:35-42. [PMID: 23164361 DOI: 10.1016/j.jss.2012.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/17/2012] [Accepted: 10/23/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neointimal hyperplasia limits the longevity of vascular interventions. Nitric oxide (NO) is well known to inhibit neointimal hyperplasia. However, delivery of NO to the vasculature is challenging. Our study aims to evaluate the efficacy of delivering NO to the site of injury using a permeable balloon catheter. Our hypothesis is that ultra-short duration NO delivery using a permeable balloon catheter will inhibit neointimal hyperplasia. MATERIALS AND METHODS Ten-week-old male Sprague-Dawley rats underwent carotid artery balloon injury. Groups included: (1) control, (2) injury, (3) injury + periadventitial NO, and (4) injury + endoluminal NO via permeable balloon catheter. The catheter was inflated to 5 atm pressure for 5 min. Arteries were harvested 2 wk following injury. Morphometric assessment for neointimal hyperplasia and immunohistochemical staining for inflammatory markers were performed. RESULTS Injury increased neointimal hyperplasia compared with control (intima/media area [I/M] ratio 1.07 versus 0.11, respectively, P < 0.001). Periadventitial delivery of NO reduced the I/M area ratio compared with injury alone (55% decrease, P < 0.001). Endoluminal delivery of NO also reduced the I/M area ratio compared with injury alone (65% decrease; P < 0.001). Both endoluminal and periadventitial NO affected the I/M ratio by reducing the intimal area (64% and 46%, respectively, P < 0.001) whereas neither affected the medial area. Periadventitial NO delivery increased lumen area (P < 0.05), whereas endoluminal NO delivery increased circumference (P < 0.05). Periadventitial NO delivery inhibited macrophage intimal infiltration compared with injury alone (P < 0.05). CONCLUSIONS These data demonstrate that short-duration endoluminal NO delivery via permeable balloon catheters inhibits neointimal hyperplasia following arterial interventions. Endoluminal delivery of NO could become a focus for future clinical interventions.
Collapse
Affiliation(s)
- George E Havelka
- Division of Vascular Surgery, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gresele P, Migliacci R, Arosio E, Bonizzoni E, Minuz P, Violi F. Effect on walking distance and atherosclerosis progression of a nitric oxide-donating agent in intermittent claudication. J Vasc Surg 2012; 56:1622-8, 1628.e1-5. [PMID: 22963812 DOI: 10.1016/j.jvs.2012.05.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Peripheral arterial disease (PAD) is almost invariably associated with a generalized atherosclerotic involvement of the arterial tree and endothelial dysfunction. Previous short-term studies showed improvement of vascular reactivity and walking capacity in PAD patients by measures aimed at restoring nitric oxide (NO) production. NO is also known to prevent the progression of atherosclerosis. We wished to assess whether the prolonged administration of an NO-donating agent (NCX 4016) improves the functional capacity of PAD patients and affects the progression of atherosclerosis as assessed by carotid intima-media thickness (IMT). METHODS This prospective, double-blind, placebo-controlled study enrolled 442 patients with stable intermittent claudication who were randomized to NCX 4016 (800 mg, twice daily) or its placebo for 6 months. The primary study outcome was the absolute claudication distance on a constant treadmill test (10% incline, 3 km/h). The main secondary end point was the change of the mean far-wall right common carotid artery IMT. RESULTS The increase of absolute claudication distance at 6 months compared with baseline was 126±140 meters in the placebo-treated group and 117±137 meters in the NCX 4016-treated group, with no significant differences. Carotid IMT increased in the placebo-treated group (+0.01±0.01 mm; P=.55) and decreased in the NCX 4016-treated group (-0.03±0.01 mm; P=.0306). Other secondary end points did not differ between the two treatments. CONCLUSIONS Long-term NO donation does not improve the claudication distance but does reduce progression of atherosclerosis in patients with PAD. Further studies aimed at assessing whether long-term NO donation may prevent ischemic cardiovascular events are warranted.
Collapse
Affiliation(s)
- Paolo Gresele
- Department of Internal Medicine, Division of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Alef MJ, Tzeng E, Zuckerbraun BS. Nitric oxide and nitrite-based therapeutic opportunities in intimal hyperplasia. Nitric Oxide 2012; 26:285-94. [PMID: 22504069 DOI: 10.1016/j.niox.2012.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 12/22/2022]
Abstract
Vascular intimal hyperplasia (IH) limits the long term efficacy of current surgical and percutaneous therapies for atherosclerotic disease. There are extensive changes in gene expression and cell signaling in response to vascular therapies, including changes in nitric oxide (NO) signaling. NO is well recognized for its vasoregulatory properties and has been investigated as a therapeutic treatment for its vasoprotective abilities. The circulating molecules nitrite (NO(2)(-)) and nitrate (NO(3)(-)), once thought to be stable products of NO metabolism, are now recognized as important circulating reservoirs of NO and represent a complementary source of NO in contrast to the classic L-arginine-NO-synthase pathway. Here we review the background of IH, its relationship with the NO and nitrite/nitrate pathways, and current and future therapeutic opportunities for these molecules.
Collapse
Affiliation(s)
- Matthew J Alef
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | | |
Collapse
|
11
|
Brivio I, Buccellati C, Fumagalli F, Hodge J, Casagrande C, Folco GC, Sala A. The pulmonary pharmacology of [4-methoxy-N1-(4-trans-nitrooxycyclohexyl)-N3-(3-pyridinylmethyl)-1,3-benzenedicarboxamide] (2NTX-99), an anti-atherotrombotic compound with therapeutic potential in pathological conditions that target lung vasculature. Prostaglandins Other Lipid Mediat 2012; 98:116-21. [PMID: 22342851 DOI: 10.1016/j.prostaglandins.2012.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
Abstract
The pharmacological activity of 2NTX-99 ([4-methoxy-N1-(4-trans-nitrooxycyclohexyl)-N3-(3-pyridinylmethyl)-1,3-benzenedicarboxamide]) was investigated in vitro in the intact, rat pulmonary vasculature and in guinea pig airways. Rat lungs were perfused at constant flow and changes in vascular tone recorded. Challenge with the TXA₂ analogue 9,11-dideoxy-9α11α-methanoepoxy ProstaglandinF₂ (U46619, 0.5 μM) increased vessel tone (32.48±1.5 vs 13.13±0.56 mmHg; n=12). 2NTX-99 (0.1-100 μM; n=5), caused a concentration-dependent relaxation, prevented by 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 10 μM, n=4), an inhibitor of soluble guanylate cyclase. Acetylcholine (0.1-10 μM; n=3) and a reference NO-donor, isosorbide-5-mononitrate (5-100 μM; n=4), were ineffective. Intraluminal perfusion of washed human platelets (2 × 10⁸ cells/ml) increased intravascular pressure after challenge with arachidonic acid (AA, 2 μM; n=5), an increase abolished by acetylsalicylic acid and significantly reduced by 2NTX-99 (40 μM; n=5). TXB₂ in the lung perfusate was detected after platelet activation, 2NTX-99 inhibited TXA₂ synthesis (6.45±0.6 and 1.10±0.2 ng/ml, respectively). 2NTX-99 did not alter central or peripheral airway responsiveness to Histamine (0.001-300 μM; n=6), U46619 (0.001-3 μM, n=3) or LTD₄ (1 pM-1 μM; n=6). 2NTX-99 vasodilates the pulmonary vasculature via the release of nitric oxide (NO) and reduces intraluminal, AA-induced, TXA₂ formation. The combined activity of 2NTX-99 as an NO-donor and a TXA₂-synthesis inhibitor provides strong support for its potential therapeutic use in pathologies of the pulmonary vascular bed (e.g. pulmonary hypertension).
Collapse
Affiliation(s)
- I Brivio
- Department of Pharmacological Sciences, School of Pharmacy, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
NO-donating aspirin and aspirin partially inhibit age-related atherosclerosis but not radiation-induced atherosclerosis in ApoE null mice. PLoS One 2010; 5:e12874. [PMID: 20877628 PMCID: PMC2943480 DOI: 10.1371/journal.pone.0012874] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 08/20/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND We previously showed that irradiation to the carotid arteries of ApoE(-/-) mice accelerated the development of macrophage-rich, inflammatory atherosclerotic lesions, prone to intra-plaque hemorrhage. In this study we investigated the potential of anti-inflammatory and anti-coagulant intervention strategies to inhibit age-related and radiation-induced atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS ApoE(-/-) mice were given 0 or 14 Gy to the neck and the carotid arteries and aortic arches were harvested at 4 or 30 weeks after irradiation. Nitric oxide releasing aspirin (NCX 4016, 60 mg/kg/day) or aspirin (ASA, 30 or 300 mg/kg/day) were given continuously in the chow. High dose ASA effectively blocked platelet aggregation, while the low dose ASA or NCX 4016 had no significant effect on platelet aggregation. High dose ASA, but not NCX 4016, inhibited endothelial cell expression of VCAM-1 and thrombomodulin in the carotid arteries at 4 weeks after irradiation; eNOS and ICAM-1 levels were unchanged. After 30 weeks of follow-up, NCX 4016 significantly reduced the total number of lesions and the number of initial macrophage-rich lesions in the carotid arteries of unirradiated mice, but these effects were not seen in the brachiocephalic artery of the aortic arch (BCA). In contrast, high dose ASA lead to a decrease in the number of initial lesions in the BCA, but not in the carotid artery. Both high dose ASA and NCX 4016 reduced the collagen content of advanced lesions and increased the total plaque burden in the BCA of unirradiated mice. At 30 weeks after irradiation, neither NCX 4016 nor ASA significantly influenced the number or distribution of lesions, but high dose ASA lead to formation of collagen-rich "stable" advanced lesions in carotid arteries. The total plaque area of the irradiated BCA was increased after ASA, but the plaque burden was very low compared with the carotid artery. CONCLUSIONS/SIGNIFICANCE The development and characteristics of radiation-induced atherosclerosis varied between different arteries but could not be circumvented by anti-inflammatory and anti-coagulant therapies. This implicates other underlying mechanistic pathways compared to age-related atherosclerosis.
Collapse
|
13
|
Stewart FA, Hoving S, Russell NS. Vascular damage as an underlying mechanism of cardiac and cerebral toxicity in irradiated cancer patients. Radiat Res 2010; 174:865-9. [PMID: 21128810 DOI: 10.1667/rr1862.1] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Radiation is an independent risk factor for cardiovascular and cerebrovascular disease in cancer patients. Modern radiotherapy techniques reduce the volume of the heart and major coronary vessels exposed to high doses, but some exposure is often unavoidable. Radiation damage to the myocardium is caused primarily by inflammatory changes in the microvasculature, leading to microthrombi and occlusion of vessels, reduced vascular density, perfusion defects and focal ischemia. This is followed by progressive myocardial cell death and fibrosis. Clinical studies also demonstrate regional perfusion defects in non-symptomatic breast cancer patients after radiotherapy. The incidence and extent of perfusion defects are related to the volume of left ventricle included in the radiation field. Irradiation of endothelial cells lining large vessels also increases expression of inflammatory molecules, leading to adhesion and transmigration of circulating monocytes. In the presence of elevated cholesterol, invading monocytes transform into activated macrophages and form fatty streaks in the intima, thereby initiating the process of atherosclerosis. Experimental studies have shown that radiation predisposes to the formation of inflammatory plaque, which is more likely to rupture and cause a fatal heart attack or stroke. This paper presents a brief overview of the current knowledge on mechanisms for development of radiation-induced cardiovascular and cerebrovascular damage. It does not represent a comprehensive review of the literature, but reference is made to several excellent recent reviews on the topic.
Collapse
Affiliation(s)
- F A Stewart
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
14
|
Ii M, Takeshita K, Ibusuki K, Luedemann C, Wecker A, Eaton E, Thorne T, Asahara T, Liao JK, Losordo DW. Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. Circulation 2010; 121:1104-12. [PMID: 20176991 DOI: 10.1161/circulationaha.105.553917] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Little is known about the role of endothelial progenitor cells (EPCs) in atherosclerosis. Accordingly, we performed a series of assessments with hypercholesterolemic (apolipoprotein E-null [ApoE(-/-)]) and wild-type (WT) mice to evaluate how cholesterol influences reendothelialization, atherosclerosis, and EPC function after arterial injury. METHODS AND RESULTS Unexpectedly, reendothelialization (assessed by resistance to Evans blue staining) and circulating EPC counts (EPC culture assay) were greater in ApoE(-/-) mice than in WT mice, and transplantation of ApoE(-/-) bone marrow in WT mice accelerated endothelial recovery and increased recruitment of bone marrow-derived EPCs to the neoendothelium. Cholesterol concentration-dependently promoted the proliferation (MTS assay) of both ApoE(-/-) and WT EPCs, and the concentration dependence of EPC adhesion (to vitronectin-, collagen type I-, fibronectin-, and laminin-coated plates), migration (modified Boyden chamber assay), and antiapoptotic (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling stain) activity was biphasic. Cholesterol enhanced the messenger RNA expression (quantitative, real-time reverse-transcription polymerase chain reaction) of vascular endothelial growth factor and inhibited Notch1 messenger RNA expression in both ApoE(-/-) and WT EPCs, whereas endothelial nitric oxide synthase messenger RNA expression increased in ApoE(-/-) EPCs and declined in WT EPCs after cholesterol exposure. EPC activity was greater in Notch1(+/-) EPCs than in WT EPCs, and transplantation of Notch1(+/-) bone marrow accelerated endothelial recovery after arterial injury in WT mice. CONCLUSIONS The results presented here provide novel insights into the role of EPCs during atherosclerosis and suggest that cholesterol and Notch1 may be involved in the regulation of EPC activity.
Collapse
Affiliation(s)
- Masaaki Ii
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 2009; 122:216-38. [PMID: 19306895 PMCID: PMC2709600 DOI: 10.1016/j.pharmthera.2009.02.009] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 02/07/2023]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) mediates a wide spectrum of physiologic processes in multiple cell types within the cardiovascular system. Dysfunctional signaling at any step of the cascade - cGMP synthesis, effector activation, or catabolism - have been implicated in numerous cardiovascular diseases, ranging from hypertension to atherosclerosis to cardiac hypertrophy and heart failure. In this review, we outline each step of the cGMP signaling cascade and discuss its regulation and physiologic effects within the cardiovascular system. In addition, we illustrate how cGMP signaling becomes dysregulated in specific cardiovascular disease states. The ubiquitous role cGMP plays in cardiac physiology and pathophysiology presents great opportunities for pharmacologic modulation of the cGMP signal in the treatment of cardiovascular diseases. We detail the various therapeutic interventional strategies that have been developed or are in development, summarizing relevant preclinical and clinical studies.
Collapse
Affiliation(s)
- Emily J Tsai
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
16
|
Wimalawansa SJ. Nitric oxide: new evidence for novel therapeutic indications. Expert Opin Pharmacother 2008; 9:1935-54. [PMID: 18627331 DOI: 10.1517/14656566.9.11.1935] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nitric oxide (NO) deficiency is implicated in many pathophysiological processes in mammals. NO is a ubiquitous molecule involved in multiple cellular functions. Uncontrolled or inappropriate production of NO may lead to several disease states including septic shock, rheumatoid and inflammatory arthropathies, and expansion of cerebral damage after stroke. However, to date, there are no therapeutic agents available that can overcome these conditions. Similarly, underproduction of NO by NO synthase or enhanced breakdown of NO also leads to diseases such as hypertension, ischemic conditions, pre-eclampsia, premature delivery, among others. NO donor therapies are indicated in these conditions. RESULTS Nitroglycerin and nitrates (NO donors) have been used as therapeutic agents for the past century, particularly to treat vascular disease, and the only significant adverse effects are headaches. NO donors are highly cost-effective and have beneficial effects in multiple body systems. When the body cannot generate NO via NO synthase or due to rapid turnover leading to inadequate amounts of NO available for biological homeostasis, administration of exogenous NO, or prolongation of the actions of endogenous NO, are practical ways to supplement NO. CONCLUSION Recipients of such therapy include patients with angina pectoris, coronary artery disease, hypertension, osteoporosis, gastrointestinal motility disorders, pregnancy-related disorders including premature delivery, pre-eclampsia, vulvodynia, and erectile dysfunction in men. Postmenopausal NO deficiency is rectified with hormone replacement therapy, which enhances local production of NO. Declining local NO production secondary to estrogen deficiency in postmenopausal women and perhaps in older men could be one of the reasons for age-related increased incidences of cardiovascular events and sexual dysfunction. Thus, in addition to supplementation of NO compounds in acute situations like alleviating angina and erectile dysfunction, chronic NO therapy is cost-effective in decreasing cardiovascular events, and improving the urogenital system and skeletal health.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Robert Wood Johnson Medical School, Department of Medicine, New Brunswick, NJ 08903, USA.
| |
Collapse
|
17
|
Neointimal formation is reduced after arterial injury in human crp transgenic mice. Atherosclerosis 2008; 201:85-91. [PMID: 18358478 DOI: 10.1016/j.atherosclerosis.2008.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/30/2007] [Accepted: 01/23/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVES/METHODS Elevated CRP levels predict increased incidence of cardiovascular events and poor outcomes following interventions. There is the suggestion that CRP is also a mediator of vascular injury. Transgenic mice carrying the human CRP gene (CRPtg) are predisposed to arterial thrombosis post-injury. We examined whether CRP similarly modulates the proliferative and hyperplastic phases of vascular repair in CRPtg when thrombosis is controlled with daily aspirin and heparin at the time of trans-femoral arterial wire-injury. RESULTS Complete thrombotic arterial occlusion at 28 days was comparable for wild-type and CRPtg mice (14 and 19%, respectively). Neointimal area at 28d was 2.5 fold lower in CRPtg (4190+/-3134 microm(2), n=12) compared to wild-types (10,157+/-8890 microm(2), n=11, p<0.05). Likewise, neointimal/media area ratio was 1.10+/-0.87 in wild-types and 0.45+/-0.24 in CRPtg (p<0.05). Seven days post-injury, cellular proliferation and apoptotic cell number in the intima were both less pronounced in CRPtg than wild-type. No differences were seen in leukocyte infiltration or endothelial coverage. CRPtg mice had significantly reduced p38 MAPK signaling pathway activation following injury. CONCLUSIONS The pro-thrombotic phenotype of CRPtg mice was suppressed by aspirin/heparin, revealing CRP's influence on neointimal growth after trans-femoral arterial wire-injury. Signaling pathway activation, cellular proliferation, and neointimal formation were all reduced in CRPtg following vascular injury. Increasingly we are aware of CRP multipotent effects. Once considered only a risk factor, and recently a harmful agent, CRP is a far more complex regulator of vascular biology.
Collapse
|
18
|
Wan S, Shukla N, Angelini GD, Yim APC, Johnson JL, Jeremy JY. Nitric oxide-donating aspirin (NCX 4016) inhibits neointimal thickening in a pig model of saphenous vein-carotid artery interposition grafting: a comparison with aspirin and morpholinosydnonimine (SIN-1). J Thorac Cardiovasc Surg 2007; 134:1033-9. [PMID: 17903525 DOI: 10.1016/j.jtcvs.2007.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Despite its proven value in reducing thrombotic complications in patients undergoing coronary artery bypass graft surgery, aspirin does not reduce the incidence of late vein graft failure. It was suggested, therefore, that co-administration of nitric oxide with aspirin may compensate for these limitations. A drug class that fulfills this pharmacologic criterion is nitric oxide-donating aspirin (NCX 4016). METHODS The effect of administration of the aspirin-nitric oxide adduct, NCX 4016, compared with those of aspirin alone and the nitric oxide donor, morpholinosydnonimine, alone (once daily for 1 month) on thickening of saphenous vein-carotid artery interposition grafts was investigated. RESULTS NCX 4016, at 10 mg, 30 mg, and 60 mg x kg(-1) x d(-1), inhibited neointimal thickness and area in porcine vein grafts. Aspirin alone (60 mg x kg(-1) x d(-1)) and morpholinosydnonimine alone (1 mg x kg(-1) x d(-1)), also inhibited neointimal thickness and neointimal area, although they were less potent than NCX 4016. At 30 mg x kg(-1) x d(-1), aspirin had no effect. Compared with untreated controls, NCX 4016 had little effect on medial thickness or area at 10 mg/kg or 30 mg x kg(-1) x d(-1) but had a significant effect at 60 mg x kg(-1) x d(-1). Aspirin alone and morpholinosydnonimine alone also inhibited medial thickness and area. NCX 4016 at 60 mg x kg(-1) x d(-1) and aspirin at 60 mg x kg(-1) x d(-1) increased luminal area. CONCLUSIONS The range of properties displayed by NCX 4016 (inhibition of neointima formation, gastroprotection, antithrombotic and antiatherogenic effects) renders them potentially useful in treating both early and late vein graft failure and indicates that a clinical study on this novel drug class in patients undergoing coronary bypass grafting is warranted.
Collapse
Affiliation(s)
- Song Wan
- Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
19
|
Miller MR, Megson IL. Recent developments in nitric oxide donor drugs. Br J Pharmacol 2007; 151:305-21. [PMID: 17401442 PMCID: PMC2013979 DOI: 10.1038/sj.bjp.0707224] [Citation(s) in RCA: 440] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/05/2007] [Accepted: 02/12/2007] [Indexed: 12/16/2022] Open
Abstract
During the 1980s, the free radical, nitric oxide (NO), was discovered to be a crucial signalling molecule, with wide-ranging functions in the cardiovascular, nervous and immune systems. Aside from providing a credible explanation for the actions of organic nitrates and sodium nitroprusside that have long been used in the treatment of angina and hypertensive crises respectively, the discovery generated great hopes for new NO-based treatments for a wide variety of ailments. Decades later, however, we are still awaiting novel licensed agents in this arena, despite an enormous research effort to this end. This review explores some of the most promising recent advances in NO donor drug development and addresses the challenges associated with NO as a therapeutic agent.
Collapse
Affiliation(s)
- M R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute Edinburgh, UK
| | - I L Megson
- Free Radical Research Facility, Department of Diabetes, UHI Millennium Institute Inverness, UK
| |
Collapse
|
20
|
Ahanchi SS, Tsihlis ND, Kibbe MR. The role of nitric oxide in the pathophysiology of intimal hyperplasia. J Vasc Surg 2007; 45 Suppl A:A64-73. [PMID: 17544026 DOI: 10.1016/j.jvs.2007.02.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/11/2007] [Indexed: 12/19/2022]
Abstract
Since its discovery, nitric oxide (NO) has emerged as a biologically important molecule and was even named Molecule of the Year by Science magazine in 1992. Specific to our interests, NO has been implicated in the regulation of vascular pathology. This review begins with a summary of the molecular biology of NO, from its discovery to the mechanisms of endogenous production. Next, we turn our attention to describing the arterial injury response of neointimal hyperplasia, and we review the role of NO in the pathophysiology of neointimal hyperplasia. Finally, we review the literature regarding NO-based therapies. This includes the development of inhalational-based NO therapies, systemically administered L-arginine and NO donors, NO synthase gene therapy, locally applied NO donors, and NO-releasing prosthetic materials. By reviewing the current literature, we emphasize the tremendous clinical potential that NO-based therapies can have on the development of neointimal hyperplasia.
Collapse
Affiliation(s)
- Sadaf S Ahanchi
- Division of Vascular Surgery, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
21
|
Turnbull CM, Rossi AG, Megson IL. Therapeutic effects of nitric oxide-aspirin hybrid drugs. Expert Opin Ther Targets 2007; 10:911-22. [PMID: 17105376 DOI: 10.1517/14728222.10.6.911] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review examines the therapeutic potential and mechanisms of action of drugs known as nitric oxide (NO)-aspirins. Drugs of this class have an NO-releasing moiety joined by ester linkage to the aspirin molecule. NO-aspirins have the capability to release NO in addition to retaining the cyclooxygenase-inhibitory action of aspirin. The protective nature of NO led to the development of NO-aspirins in the hope that they might avoid the gastric side effects associated with aspirin. However, it has become apparent that the drug-derived NO instills potential for a wide range of added beneficial effects over the parent compound. In this review, the authors focus on the analgesic, anti-inflammatory, cardiovascular and chemopreventative actions of compounds of this emerging drug class.
Collapse
Affiliation(s)
- Catriona M Turnbull
- Queen's Medical Research Institute, University of Edinburgh, Centre for Cardiovascular Science, Edinburgh, EH16 4TJ, UK.
| | | | | |
Collapse
|
22
|
|
23
|
Chadjichristos CE, Matter CM, Roth I, Sutter E, Pelli G, Lüscher TF, Chanson M, Kwak BR. Reduced Connexin43 Expression Limits Neointima Formation After Balloon Distension Injury in Hypercholesterolemic Mice. Circulation 2006; 113:2835-43. [PMID: 16769907 DOI: 10.1161/circulationaha.106.627703] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Reducing the expression of the gap junction protein connexin43 (Cx43) inhibits the progression of atherosclerosis, a chronic inflammatory disease. Furthermore, acute vascular injury induced by percutaneous coronary interventions is associated with increased Cx43 expression in neointimal smooth muscle cells (SMCs). However, the relevance of Cx43 after acute vascular injury remains unclear.
Methods and Results—
To investigate whether reducing Cx43 expression would affect neointima formation in vivo, we subjected hypercholesterolemic Cx43
+/−
LDL receptor–deficient (LDLR
−/−
) mice and Cx43
+/+
LDLR
−/−
control littermates to carotid balloon distension injury, which induced marked endothelial denudation and activation of medial SMCs. We observed decreased macrophage infiltration in Cx43
+/−
LDLR
−/−
mice 7 days after injury. Similarly, peritoneal macrophages isolated from Cx43
+/−
LDLR
−/−
mice showed reduced migration in vitro compared with Cx43
+/+
LDLR
−/−
macrophages. Interestingly, Cx43
+/−
LDLR
−/−
macrophages also displayed decreased chemotactic activity for SMCs. In addition, we observed less SMC infiltration and proliferation in Cx43
+/−
LDLR
−/−
mice 7 and 14 days after balloon angioplasty. Likewise, Cx43
+/−
LDLR
−/−
SMCs showed decreased proliferation and migration in vitro compared with Cx43
+/+
LDLR
−/−
cells. All these events resulted in a reduction of neointimal thickening after vascular injury in Cx43
+/−
LDLR
−/−
mice.
Conclusions—
The present study shows for the first time that reducing Cx43 limits neointima formation after acute vascular injury by decreasing the inflammatory response and reducing SMC migration and proliferation. Thus, decreasing Cx43 expression may offer a novel therapeutic strategy for reducing restenosis after percutaneous coronary intervention.
Collapse
MESH Headings
- Angioplasty, Balloon/adverse effects
- Animals
- Carotid Artery Diseases/etiology
- Carotid Artery Diseases/therapy
- Carotid Stenosis/etiology
- Carotid Stenosis/prevention & control
- Cell Division
- Cell Movement
- Cells, Cultured/metabolism
- Chemotactic Factors/metabolism
- Cholesterol/blood
- Connexin 43/genetics
- Connexin 43/physiology
- DNA Replication
- Diet, Atherogenic
- Endothelium, Vascular/pathology
- Hyperlipoproteinemia Type II/blood
- Hyperlipoproteinemia Type II/complications
- Hyperlipoproteinemia Type II/genetics
- Hyperplasia
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Recurrence
- Triglycerides/blood
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Christos E Chadjichristos
- Division of Cardiology, Department of Internal Medicine, Geneva University Hospitals, 64 Avenue de la Roseraie, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
. DM, . DR, . PB. Therapeutic Uses of Nitric Oxide-donating Drugs in the Treatment of Cardiovascular Diseases. INT J PHARMACOL 2006. [DOI: 10.3923/ijp.2006.366.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Gresele P, Momi S. Pharmacologic Profile and Therapeutic Potential of NCX 4016, a Nitric Oxide-releasing Aspirin, for Cardiovascular Disorders. ACTA ACUST UNITED AC 2006; 24:148-68. [PMID: 16961726 DOI: 10.1111/j.1527-3466.2006.00148.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
NCX 4016, 2-(acetyloxy)benzoic acid 3-[(nitrooxy)methyl]phenyl ester, is a new molecule in which a nitric oxide (NO)-releasing moiety is covalently linked to aspirin. After enzymatic metabolism, NCX 4016 releases both components. In vitro and in some animal models, these components exert their pharmacologic effects simultaneously. Nitric oxide (NO) is a small gaseous molecule that exerts several activities which may prevent atherothrombotic disorders. Moreover, it displays a protective activity on the gastric mucosa. NCX 4016 has been shown to inhibit platelet activation in vitro more effectively than aspirin, to inhibit smooth muscle cell proliferation, to exert an endothelial cell protective activity and to suppress the function of several inflammatory cells potentially involved in atherothrombosis. In animal models, NCX 4016 protected from platelet thromboembolism, prevented restenosis in atherosclerosis-prone animals, protected the heart from ischemia/reperfusion injury, and induced neoangiogenesis in critically ischemic limbs. Moreover, it displayed little or no gastric toxicity and appeared to protect stomach from noxious stimuli, including aspirin. NCX 4016 has been evaluated in healthy volunteers and found to inhibit platelet cyclo-oxygenase-1 (COX-1) similarly to or slightly less than aspirin, to raise the circulating levels of NO-degradation products, and to have little or no gastric toxicity in short term studies. In particular, in phase II studies, NCX 4016 had favorable effects on effort-induced endothelial dysfunction in intermittent claudication and on platelet-activation parameters elicited by short-term hyperglycemia in type II diabetics. In patients with type II diabetes the effects of NCX 4016 on microalbuminuria and on some hemodynamic parameters were promising. The pharmacokinetics of in vivo aspirin- and NO- released by NCX 4016, as well as the bioavailability of the two molecules, were not yet adequately studied. Also, the long-term tolerability of NCX 4016, as well as its possible effectiveness in preventing ischemic cardiovascular events and progression of atherosclerosis, should be explored.
Collapse
Affiliation(s)
- Paolo Gresele
- Department of Internal Medicine, Division of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy.
| | | |
Collapse
|
26
|
Turnbull CM, Cena C, Fruttero R, Gasco A, Rossi AG, Megson IL. Mechanism of action of novel NO-releasing furoxan derivatives of aspirin in human platelets. Br J Pharmacol 2006; 148:517-26. [PMID: 16702997 PMCID: PMC1751793 DOI: 10.1038/sj.bjp.0706743] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Incorporation of a nitric oxide (NO)-releasing moiety in aspirin can overcome its gastric side effects. We investigated the NO-release patterns and antiplatelet effects of novel furoxan derivatives of aspirin (B8 and B7) in comparison to existing antiplatelet agents. Cyclooxygenase (COX) activity was investigated in purified enzyme using an electron paramagnetic resonance-based technique. Concentration-response curves for antiplatelet agents +/- the soluble guanylate cyclase inhibitor, ODQ (50 microM) were generated in platelet-rich plasma (PRP) and washed platelets (WP) activated with collagen using turbidometric aggregometry. NO was detected using an isolated NO electrode. The furoxan derivatives of aspirin (B8, B7) and their NO-free furazan equivalents (B16, B15; all 100 microM) significantly inhibited COX activity (P < 0.01; n = 6) in vitro and caused aspirin-independent, cGMP-dependent inhibition of collagen-induced platelet aggregation in WP. B8 was more potent than B7 (PRP IC(50) = 0.62 +/- 0.1 microM for B8; 400 +/- 89 microM for B7; P < 0.0001. WP IC(50)s = 0.6 +/- 0.1 and 62 +/- 10 microM, respectively). The NO-free furazan counterparts were less potent antiplatelet agents (WP IC(50)s = 54 +/- 3 microM and 62 +/- 10 microM, respectively; P < 0.0001, B8 vs B16). Of the hybrids investigated, only B8 retained antiplatelet activity in PRP.NO release from furoxan-aspirin hybrids was undetectable in buffer alone, but was accelerated in the presence of either plasma or plasma components, albumin (4%), glutathione (GSH; 3 microM) and ascorbate (50 microM), the effects of which were additive for B7 but not B8. NO generation from furoxans was greatly enhanced by platelet extract, an effect that could largely be explained by the synergistic effect of intracellular concentrations of GSH (3 mM) and ascorbate (1 mM). We conclude that the decomposition of furoxan-aspirin hybrids to generate biologically active NO is catalysed by endogenous agents which may instil a potential for primarily intracellular delivery of NO. The blunting of the aspirin effects of furoxan hybrids is likely to be due to loss of the acetyl moiety in plasma; the observed antiplatelet effects are thereby primarily mediated via NO release. Compounds of this class might represent a novel means of inhibiting platelet aggregation by a combination of NO generation and COX inhibition.
Collapse
Affiliation(s)
- Catriona M Turnbull
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh
| | - Clara Cena
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Roberta Fruttero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Alberto Gasco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh
| | - Ian L Megson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh
- Author for correspondence:
| |
Collapse
|
27
|
Matter CM, Chadjichristos CE, Meier P, von Lukowicz T, Lohmann C, Schuler PK, Zhang D, Odermatt B, Hofmann E, Brunner T, Kwak BR, Lüscher TF. Role of endogenous Fas (CD95/Apo-1) ligand in balloon-induced apoptosis, inflammation, and neointima formation. Circulation 2006; 113:1879-87. [PMID: 16606788 DOI: 10.1161/circulationaha.106.611731] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Fas (CD95/Apo-1) ligand (FasL)-induced apoptosis in Fas-bearing cells is critically involved in modulating immune reactions and tissue repair. Apoptosis has also been described after mechanical vascular injury such as percutaneous coronary intervention. However, the relevance of cell death in this context of vascular repair remains unknown. METHODS AND RESULTS To determine whether FasL-induced apoptosis is causally related to neointimal lesion formation, we subjected FasL-deficient (generalized lymphoproliferative disorder [gld], C57BL/6J) and corresponding wild-type (WT) mice to carotid balloon distension injury, which induces marked endothelial denudation and medial cell death. FasL expression in WT mice was induced in injured vessels compared with untreated arteries (P<0.05; n=5). Conversely, absence of functional FasL in gld mice decreased medial and intimal apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling [TUNEL] index) at 1 hour and 7 days after balloon injury (P<0.05; n=6). In addition, peritoneal macrophages isolated from gld mice showed no apoptosis and enhanced migration (P<0.05; n=4). In parallel, we observed increased balloon-induced macrophage infiltrations (anti-CD68) in injured arteries of FasL-deficient animals (P<0.05; n=6). Together with enhanced proliferation (bromodeoxyuridine index; P<0.05), these events resulted in a further increase in medial and neointimal cells (P<0.01; n=8) with thickened neointima in gld mice (intima/media ratio, x3.8 of WT; P<0.01). CONCLUSIONS Our data identify proapoptotic and antiinflammatory effects of endogenous FasL as important factors in the process of neointimal lesion formation after balloon injury. Moreover, they suggest that activation of FasL may decrease neointimal thickening after percutaneous coronary intervention.
Collapse
Affiliation(s)
- Christian M Matter
- Cardiovascular Research, Institute of Physiology, University of Zurich, Cardiovascular Center, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bratasz A, Weir NM, Parinandi NL, Zweier JL, Sridhar R, Ignarro LJ, Kuppusamy P. Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by NCX-4016, a nitro derivative of aspirin. Proc Natl Acad Sci U S A 2006; 103:3914-9. [PMID: 16497833 PMCID: PMC1450164 DOI: 10.1073/pnas.0511250103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ovarian cancer is a gynecological malignancy that is commonly treated by cytoreductive surgery followed by cisplatin treatment. However, the cisplatin treatment, although successful initially, is not effective in the treatment of the recurrent disease that invariably surfaces within a few months of the initial treatment. The refractory behavior is attributed to the increased levels of cellular thiols apparently caused by the cisplatin treatment. This observation prompted us to choose a cytotoxic drug whose activity is potentiated by cellular thiols with enhanced specificity toward the thiol-rich cisplatin-resistant cells. We used NCX-4016 [2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester], a derivative of aspirin containing a nitro group that releases nitric oxide in a sustained fashion for several hours in cells and in vivo, and we studied its cytotoxic efficacy against human ovarian cancer cells (HOCCs). Cisplatin-sensitive and cisplatin-resistant (CR) HOCCs were treated with 100 microM NCX-4016 for 6 h, and/or 0.5 microg/ml cisplatin for 1 h and assayed for clonogenecity. NCX-4016 significantly reduced the surviving fractions of cisplatin-sensitive (63 +/- 6%) and CR (70 +/- 10%) HOCCs. NCX-4016 also caused a 50% reduction in the levels of cellular glutathione in CR HOCCs. Treatment of cells with NCX-4016 followed by cisplatin showed a significantly greater extent of toxicity when compared with treatment of cells with NCX-4016 or cisplatin alone. In conclusion, this study showed that NCX-4016 is a potential inhibitor of the proliferation of CR HOCCs and thus might specifically kill cisplatin-refractory cancer cells in patients with recurrent ovarian cancer.
Collapse
Affiliation(s)
- Anna Bratasz
- *Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Comprehensive Cancer Center, The Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Ohio State University, Columbus, OH 43210
| | - Nathan M. Weir
- *Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Comprehensive Cancer Center, The Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Ohio State University, Columbus, OH 43210
| | - Narasimham L. Parinandi
- *Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Comprehensive Cancer Center, The Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Ohio State University, Columbus, OH 43210
| | - Jay L. Zweier
- *Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Comprehensive Cancer Center, The Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Ohio State University, Columbus, OH 43210
| | - Rajagopalan Sridhar
- Department of Radiation Oncology, Howard University Hospital, Washington, DC 20060; and
| | - Louis J. Ignarro
- Department of Molecular and Medical Pharmacology, Center for the Health Sciences, University of California School of Medicine, Los Angeles, CA 90095
- To whom correspondence may be addressed. E-mail:
| | - Periannan Kuppusamy
- *Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Comprehensive Cancer Center, The Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Ohio State University, Columbus, OH 43210
- To whom correspondence may be addressed at:
The Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210. E-mail:
| |
Collapse
|
29
|
Bolla M, Momi S, Gresele P, Del Soldato P. Nitric oxide-donating aspirin (NCX 4016): an overview of its pharmacological properties and clinical perspectives. Eur J Clin Pharmacol 2005. [DOI: 10.1007/s00228-005-0026-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 2005; 57:217-52. [PMID: 15914468 DOI: 10.1124/pr.57.2.1] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biosynthesis and release of nitric oxide (NO) and prostaglandins (PGs) share a number of similarities. Two major forms of nitric-oxide synthase (NOS) and cyclooxygenase (COX) enzymes have been identified to date. Under normal circumstances, the constitutive isoforms of these enzymes (constitutive NOS and COX-1) are found in virtually all organs. Their presence accounts for the regulation of several important physiological effects (e.g. antiplatelet activity, vasodilation, and cytoprotection). On the other hand, in inflammatory setting, the inducible isoforms of these enzymes (inducible NOS and COX-2) are detected in a variety of cells, resulting in the production of large amounts of proinflammatory and cytotoxic NO and PGs. The release of NO and PGs by the inducible isoforms of NOS and COX has been associated with the pathological roles of these mediators in disease states as evidenced by the use of selective inhibitors. An important link between the NOS and COX pathways was made in 1993 by Salvemini and coworkers when they demonstrated that the enhanced release of PGs, which follows inflammatory mechanisms, was nearly entirely driven by NO. Such studies raised the possibility that COX enzymes represent important endogenous "receptor" targets for modulating the multifaceted roles of NO. Since then, numerous papers have been published extending the observation across various cellular systems and animal models of disease. Furthermore, other studies have highlighted the importance of such interaction in physiology as well as in the mechanism of action of drugs such as organic nitrates. More importantly, mechanistic studies of how NO switches on/off the PG/COX pathway have been undertaken and additional pathways through which NO modulates prostaglandin production unraveled. On the other hand, NO donors conjugated with COX inhibitors have recently found new interest in the understanding of NO/COX reciprocal interaction and potential clinical use. The purpose of this article is to cover the advances which have occurred over the years, and in particular, to summarize experimental data that outline how the discovery that NO modulates prostaglandin production has impacted and extended our understanding of these two systems in physiopathological events.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro Magna Graecia, Roccelletta di Borgia, Catanazaro, Italy
| | | | | | | | | |
Collapse
|
31
|
Nablo BJ, Schoenfisch MH. In vitro cytotoxicity of nitric oxide-releasing sol-gel derived materials. Biomaterials 2005; 26:4405-15. [PMID: 15701369 DOI: 10.1016/j.biomaterials.2004.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 11/15/2004] [Indexed: 11/17/2022]
Abstract
The cytotoxicity of bare and PU-coated nitric oxide (NO)-releasing sol-gel derived materials (sol-gels) was investigated using L929 mouse fibroblasts in both direct and indirect contact models to differentiate between the biological impact of the sol-gel matrix and NO release. The flux of NO was varied up to 150 pmol cm(-2) s(-1) using N-(6-aminohexyl)-aminopropyltrimethoxysilane (balance iso-butyltrimethoxysilane) diazeniumdiolate (NO donor)-modified sol-gels. The addition of a polyurethane (PU) outer membrane greatly improved the stability of the sol-gel matrix without significantly suppressing the NO flux. Direct contact studies demonstrated a cytotoxic effect that was dependent on the aminosilane content of the sol-gel. The use of the thin PU overcoat eliminated this effect. A direct cytotoxicity dependence of NO release for L929 fibroblasts was discovered from indirect contact studies, where 24 h exposure to NO fluxes in excess of 50 pmol cm(-2) s(-1) was cytotoxic.
Collapse
Affiliation(s)
- Brian J Nablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Venable Hall, CB#3290, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
32
|
de Nigris F, Williams-Ignarro S, Lerman LO, Crimi E, Botti C, Mansueto G, D'Armiento FP, De Rosa G, Sica V, Ignarro LJ, Napoli C. Beneficial effects of pomegranate juice on oxidation-sensitive genes and endothelial nitric oxide synthase activity at sites of perturbed shear stress. Proc Natl Acad Sci U S A 2005; 102:4896-901. [PMID: 15781875 PMCID: PMC555721 DOI: 10.1073/pnas.0500998102] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis is enhanced in arterial segments exposed to disturbed flow. Perturbed shear stress increases the expression of oxidation-sensitive responsive genes (such as ELK-1 and p-JUN) in the endothelium. Evidence suggests that polyphenolic antioxidants contained in the juice derived from the pomegranate can contribute to the reduction of oxidative stress and atherogenesis. The aim of the present study was to evaluate the effects of intervention with pomegranate juice (PJ) on oxidation-sensitive genes and endothelial NO synthase (eNOS) expression induced by high shear stress in vitro and in vivo. Cultured human coronary artery endothelial cells (EC) exposed to high shear stress in vitro and hypercholesterolemic mice were used in this study. PJ concentrate reduced the activation of redox-sensitive genes (ELK-1 and p-JUN) and increased eNOS expression (which was decreased by perturbed shear stress) in cultured EC and in atherosclerosis-prone areas of hypercholesterolemic mice. Moreover, oral administration of PJ to hypercholesterolemic mice at various stages of disease reduced significantly the progression of atherosclerosis. This experimental study indicates that the proatherogenic effects induced by perturbed shear stress can be reversed by chronic administration of PJ. This approach may have implications for the prevention or treatment of atherosclerosis and its clinical manifestations.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of General Pathology, School of Medicine, University of Naples, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, Musiani P, Zanovello P, Bronte V. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 2005; 102:4185-90. [PMID: 15753302 PMCID: PMC554823 DOI: 10.1073/pnas.0409783102] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Indexed: 12/17/2022] Open
Abstract
Active suppression of tumor-specific T lymphocytes can limit the immune-mediated destruction of cancer cells. Of the various strategies used by tumors to counteract immune attacks, myeloid suppressors recruited by growing cancers are particularly efficient, often resulting in the induction of systemic T lymphocyte dysfunction. We have previously shown that the mechanism by which myeloid cells from tumor-bearing hosts block immune defense strategies involves two enzymes that metabolize L-arginine: arginase and nitric oxide (NO) synthase. NO-releasing aspirin is a classic aspirin molecule covalently linked to a NO donor group. NO aspirin does not possess direct antitumor activity. However, by interfering with the inhibitory enzymatic activities of myeloid cells, orally administered NO aspirin normalized the immune status of tumor-bearing hosts, increased the number and function of tumor-antigen-specific T lymphocytes, and enhanced the preventive and therapeutic effectiveness of the antitumor immunity elicited by cancer vaccination. Because cancer vaccines and NO aspirin are currently being investigated in independent phase I/II clinical trials, these findings offer a rationale to combine these treatments in subjects with advanced neoplastic diseases.
Collapse
Affiliation(s)
- Carmela De Santo
- Department of Oncology and Surgical Sciences, Oncology Section, Padua University, 35128 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the western world. These disorders share a common pathophysiology -- atherosclerosis, which affects various arterial beds, leading to protean manifestations (coronary artery disease [CAD], stroke, peripheral arterial disease [PAD]). The platelet plays a pivotal role in the perpetuation and clinical expression of these disorders. The platelet, once believed to have a role confined to modulation of thrombosis and haemostasis, also plays an active role in vascular inflammation. Antiplatelet agents have become first-line therapy for CVD, and their unequivocal benefits are demonstrated in various basic and experimental models and supported by overwhelming evidence from clinical trials. Search is underway for more effective and safer antiplatelet therapy. Novel therapies are emerging to target the redundant pathways of platelet adhesion, activation and aggregation. Efforts are also ongoing to enhance implementation of existent therapy, target therapy selectively to high-risk patients and to those likely to respond (pharmacogenomics), and study the incremental benefits and safety of various antiplatelet combinations and their interaction with other medications in patients with CVD treated with polypharmacy.
Collapse
Affiliation(s)
- Hani Jneid
- Division of Cardiology, University of Louisville, KY, USA
| | | |
Collapse
|
35
|
Emanueli C, Van Linthout S, Salis MB, Monopoli A, Del Soldato P, Ongini E, Madeddu P. Nitric oxide-releasing aspirin derivative, NCX 4016, promotes reparative angiogenesis and prevents apoptosis and oxidative stress in a mouse model of peripheral ischemia. Arterioscler Thromb Vasc Biol 2004; 24:2082-7. [PMID: 15345513 DOI: 10.1161/01.atv.0000144030.39087.3b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recently, nitric oxide (NO) donors have been developed that mimic the physiological intracellular release of NO. We evaluated whether one of these new compounds, consisting of aspirin coupled to an NO-releasing moiety (NCX 4016), would protect limbs from supervening arterial occlusion. METHODS AND RESULTS Mice were assigned to receive regular chow or chow containing NCX 4016 or aspirin (both at 300 mumol/kg body weight, daily) throughout the 3-week experimental period. One week after randomization, they underwent surgical excision of the left femoral artery. Limb blood flow recovery (laser Doppler flowmetry) was accelerated by NCX 4016 as compared with aspirin or vehicle (P<0.05). In controls, histological analysis revealed a 35% increase in the capillary density of ischemic muscles compared with contralateral ones, indicative of spontaneous angiogenesis. Neovascularization was enhanced by NCX 4016 (91%; P<0.05 versus vehicle), but not by aspirin (51%; P=NS versus vehicle). Furthermore, NCX 4016 reduced endothelial cell (EC) apoptosis (4.3+/-1.0 versus 8.7+/-2.0 in aspirin and 12.6+/-3.3 ECs/1000 cap in vehicle; P<0.05 for either comparison) as well as caspase-3 mRNA levels in ischemic muscles ([caspase-3/GAPDH]*100 = 0.09+/-0.04 versus 2.30+/-0.44 in aspirin and 2.30+/-0.32 in vehicle; P<0.01 for either comparison). Nitrite levels and the ratio of reduced to oxidized glutathione were selectively increased in ischemic muscles by NCX 4016. Vascular endothelial growth factor-A expression was reduced by aspirin, with this effect being blunted by NCX 4016. CONCLUSIONS Pretreatment with the new oral NO-releasing aspirin derivative stimulates reparative angiogenesis and prevents apoptosis and oxidative stress, thereby alleviating the consequences of supervening arterial occlusion.
Collapse
Affiliation(s)
- Costanza Emanueli
- Molecular and Cellular Medicine, National Institute of Biostructures and Biosystems, Alghero, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Nitric oxide (NO) is a molecule that has gained recognition as a crucial modulator of vascular disease. NO has a number of intracellular effects that lead to vasorelaxation, endothelial regeneration, inhibition of leukocyte chemotaxis, and platelet adhesion. Its role in vascular disease has been intensively investigated and further elucidated over the past two decades. It is important in the pathogenesis of many cardiovascular diseases, including atherosclerosis, intimal hyperplasia, and aneurysmal disease. In addition, NO has been used as a therapeutic tool to treat diseases that range from recurrent stenosis to inhibiting thrombotic events. Many commonly used medications have their therapeutic actions through the production of NO. This review highlights the vascular biologic characteristics of NO, its role in the pathogenesis of cardiovascular disease processes, and its potential therapeutic applications.
Collapse
Affiliation(s)
- Joel E Barbato
- Department of Surgery, University of Pittsburgh Medical Center, PA, USA
| | | |
Collapse
|
37
|
Foppoli A, Sangalli ME, Maroni A, Gazzaniga A, Caira MR, Giordano F. Polymorphism of NCX4016, an NO-Releasing Derivative of Acetylsalicylic Acid. J Pharm Sci 2004; 93:521-31. [PMID: 14762891 DOI: 10.1002/jps.10547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
NCX4016 [2-acetoxybenzoic acid 3'-(nitrooxymethyl)phenyl ester] is a recently developed nitrooxy-derivative of aspirin with improved antiinflammatory, analgesic, and antithrombotic activity as well as increased gastrointestinal safety. Systematic polymorphic screening performed with different solvents and preparation methods resulted in the identification of two polymorphs, designated Forms I and II. They were characterized by scanning electron microscopy, powder X-ray diffraction, thermal analyses, and infrared spectroscopy; the crystal structure of polymorph I was solved by single-crystal X-ray analysis and compared with that of aspirin. Finally, intrinsic dissolution rate studies and calculations according to the melting data method were performed to assess the thermodynamic relationship between the two polymorphs.
Collapse
Affiliation(s)
- A Foppoli
- Università di Milano, Istituto di Chimica Farmaceutica e Tossicologica, viale Abruzzi 42, 20131 Milan, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Pharmacological compounds that release nitric oxide (NO) have been useful tools for evaluating the broad role of NO in physiology and therapeutics. NO deficiency has been implicated in the genesis and evolution of several disease states. Both medical needs and commercial opportunities have fostered attempts to modulate NO in the human body for therapeutic gain. Strategies for NO modulation encompass antiinflammatory, sexual dysfunction, and cardiovascular indications. Apart from newly developed drugs, several commonly used cardiovascular drugs exert their beneficial action, at least in part, by modulating the NO pathway. This review discusses the fundamental pharmacological properties and mechanisms of action of NO-releasing drugs. Some of these compounds may enter in the clinical arena providing important therapeutic benefits in human diseases.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine-0682, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
39
|
Abstract
Nitric oxide-releasing aspirins are new chemical entities obtained by adding a nitric oxide-releasing moiety to aspirin. NCX-4016 is the prototype of this family of molecules. NCX-4016 consists of the parent molecule (aspirin) linked to a 'spacer' via an ester linkage, which is in turn connected to a nitric oxide-releasing moiety. Both aspirin and nitric oxide moieties of NCX-4016 contribute to its effectiveness, the latter occurring via both cyclic guanosyl monophosphate-dependent and -independent mechanisms. In vitro studies have shown that NCX-4016 inhibits platelet aggregation induced by aspirin-sensitive (arachidonic acid) and aspirin-insensitive (thrombin) agonist. In contrast to aspirin, NCX-4016 exerts a multilevel regulation of inflammatory target, including caspase-1 and NF-kappaB. This broad spectrum of activities translates to an increased potency of this drug in modulating cardiovascular inflammation. Human studies have shown, that while nitric oxide-aspirin maintains its anti-thrombotic activity, it spares the gastrointestinal tract. Indeed, a 7-day course of NCX-4016 results in 90% reduction of gastric damage caused by equimolar doses of aspirin. Further studies are ongoing to define whether this superior anti-inflammatory and anti-thrombotic profile translates in clinical benefits in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- S Fiorucci
- Gastrointestinal and Liver Unit, Department of Internal Medicine, University of Perugia, Perugia, Italy.
| | | |
Collapse
|
40
|
Abstract
Despite great advantages in antithrombotic treatments, important limitations of the presently available drugs encourage the search of more effective agents. Within the cardiovascular system, nitric oxide exerts several activities which may have an antithrombotic potential. Nitroaspirin in vitro inhibits platelet aggregation and adhesion under shear conditions and smooth muscle cell proliferation--all activities not exerted by aspirin. In vivo nitroaspirin exerts antithrombotic properties and prevents restenosis in hypercholesterolemic mice while aspirin is inactive. Nitroaspirin has shown a number of significant advantages over the presently available antiplatelet agents; however, only clinical studies will say whether nitroaspirin represents a step forward in antithrombotic treatment.
Collapse
Affiliation(s)
- P Gresele
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Via Enrico dal Pozzo, 06126 Perugia, Italy.
| | | | | |
Collapse
|
41
|
Brooks G, Yu XM, Wang Y, Crabbe MJC, Shattock MJ, Harper JV. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit vascular smooth muscle cell proliferation via differential effects on the cell cycle. J Pharm Pharmacol 2003; 55:519-26. [PMID: 12803774 DOI: 10.1211/002235702775] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of both atherosclerosis and restenosis. Recent studies suggest that high-dose salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in-vitro and in-vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAIDs) exert similar antiproliferative effects on VSMCs, and do so via a common mechanism of action, remains to be shown. In this study, we demonstrate that the NSAIDs aspirin, sodium salicylate, diclofenac, ibuprofen, indometacin and sulindac induce a dose-dependent inhibition of proliferation in rat A10 VSMCs in the absence of significant cytotoxicity. Flow cytometric analyses showed that exposure of A10 cells to diclofenac, indometacin, ibuprofen and sulindac, in the presence of the mitotic inhibitor, nocodazole, led to a significant G0/G1 arrest. In contrast, the salicylates failed to induce a significant G1 arrest since flow cytometry profiles were not significantly different from control cells. Cyclin A levels were elevated, and hyperphosphorylated p107 was present at significant levels, in salicylate-treated A10 cells, consistent with a post-G1/S block, whereas cyclin A levels were low, and hypophosphorylated p107 was the dominant form, in cells treated with other NSAIDs consistent with a G1 arrest. The ubiquitously expressed cyclin-dependent kinase (CDK) inhibitors, p21 and p27, were increased in all NSAID-treated cells. Our results suggest that diclofenac, indometacin, ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase, whereas the growth inhibitory effect of salicylates probably affects the late S and/or G2/M phases. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit in the treatment of certain vasculoproliferative disorders.
Collapse
Affiliation(s)
- Gavin Brooks
- Cardiovascular Research Group, Division of Cell and Molecular Biology, School of Animal and Microbial Sciences, The University of Reading, P.O. Box 228, Whiteknights, Reading, Berkshire RG6 6AJ, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Fiorucci S, Santucci L, Gresele P, Faccino RM, Del Soldato P, Morelli A. Gastrointestinal safety of NO-aspirin (NCX-4016) in healthy human volunteers: a proof of concept endoscopic study. Gastroenterology 2003; 124:600-7. [PMID: 12612897 DOI: 10.1053/gast.2003.50096] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND AIMS NCX-4016 is a nitric oxide-releasing derivative of aspirin with antiplatelet activity. The aim of this study was to investigate the effect of NCX-4016 on gastrointestinal mucosa and platelet functions in healthy human volunteers. METHODS This was a parallel-group, double-blind, placebo-controlled study. Forty healthy subjects were randomly allocated to receive 7 days of treatment with NCX-4016 (400 and 800 mg twice daily), equimolar doses of aspirin (200 and 420 mg twice daily), or placebo. Upper endoscopies were performed before and at the end of the treatment period, and gastroduodenal lesions were graded using a predefined scoring system. Basal and posttreatment platelet aggregation in response to arachidonic acid (AA) and serum thromboxane (TX) B(2) and AA-stimulated platelet TXB(2) production were investigated. RESULTS Mucosal endoscopic injury score on day 7 was 0.63 +/- 0.16 in the placebo group and 11.0 +/- 3.0 and 16.1 +/- 1.6 in healthy volunteers treated with 200 and 420 mg aspirin twice daily (P < 0.0001 vs. placebo). NCX-4016 was virtually devoid of gastric and duodenal toxicity, resulting in a total gastric and duodenal endoscopic score of 1.38 +/- 0.3 and 1.25 +/- 0.5 (P < 0.0001 vs. aspirin, not significant vs. placebo). NCX-4016 inhibited AA-induced platelet aggregation as well as serum TXB(2) and platelet TXB(2) generation induced by AA to the same extent as aspirin (not significant vs. aspirin). CONCLUSIONS In this study, we have proven the concept that addition of an NO-donating moiety to aspirin results in a new chemical entity that maintains cyclooxygenase-1 and platelet inhibitory activity while nearly avoiding gastrointestinal damage.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Clinica di Gastroenterologia ed Epatologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
de Nigris F, Lerman LO, Ignarro SW, Sica G, Lerman A, Palinski W, Ignarro LJ, Napoli C. Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci U S A 2003; 100:1420-5. [PMID: 12525696 PMCID: PMC298788 DOI: 10.1073/pnas.0237367100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherogenesis is enhanced in arterial segments exposed to disturbed blood flow, indicating the active participation of the hemodynamic environment in lesion formation. Turbulent shear stress selectively regulates responsive genes in the endothelium and increases the damage induced by free radicals. The purpose of the present study was to evaluate the effects of intervention with antioxidants and l-arginine on endothelial NO synthase (eNOS) and oxidation-sensitive gene perturbation induced by disturbed flow in vitro and in vivo. Both human endothelial cells exposed to shear stress and high atherosclerosis-prone areas of hypercholesterolemic low-density lipoprotein receptor knockout (LDLR(-/-)) mice showed increased activities of redox-transcription factors (ELK-1, p-Jun, and p-CREB) and decreased expression of eNOS. Intervention with antioxidants and l-arginine reduced the activation of redox-transcription factors and increased eNOS expression in cells and in vivo. These results demonstrate that atherogenic effects induced by turbulent shear stress can be prevented by cotreatment with antioxidants and l-arginine. The therapeutic possibility to modulate shear stress-response genes may have important implications for the prevention of atherosclerosis and its clinical manifestations.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Medicine-0682, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Over the past decade, the platelet has emerged as a pivotal entity in cardiovascular diseases. Indeed, the 'preeminence of the platelet' has spawned a variety of drugs that have been shown in large-scale randomized trials to improve patient outcomes in acute coronary syndromes and percutaneous revascularization procedures. Although the platelet was initially viewed only as a bystander in haemostasis, it is now evident that the platelet is in fact a key mediator of thrombosis as well as of inflammation. New insights at the cellular and genomic levels will probably generate novel drugs to inhibit platelet function more effectively and safely than previously possible.
Collapse
Affiliation(s)
- Deepak L Bhatt
- Cleveland Clinic Foundation, Department of Cardiovascular Medicine/Desk F25, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
45
|
Fiorucci S, Mencarelli A, Meneguzzi A, Lechi A, Morelli A, del Soldato P, Minuz P. NCX-4016 (NO-aspirin) inhibits lipopolysaccharide-induced tissue factor expression in vivo: role of nitric oxide. Circulation 2002; 106:3120-5. [PMID: 12473561 DOI: 10.1161/01.cir.0000039341.57809.1e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND NCX-4016 is an acetylsalicylic acid (ASA) derivative containing a nitric oxide-releasing moiety. Compared with ASA, NCX-4016 has a broader spectrum of antithrombotic and antiinflammatory activities. We hypothesized that NCX-4016 might inhibit in vivo lipopolysaccharide (LPS)-induced expression of tissue factor (TF). METHODS AND RESULTS Rats were administered 90 mg/kg NCX-4016 orally for 5 days. Placebo, 50 mg/kg ASA, and 80 mg/kg isosorbide-5-mononitrate (ISMN) were used in control groups. On day 5, rats were injected intraperitoneally with 100 microg/kg LPS and killed 6 hours later. The expression of TF in monocytes was measured by flow cytometry and Western blot analysis. Reverse transcriptase-polymerase chain reaction was performed to assess expression of TF and cyclooxygenase-2 (COX-2) genes. Plasma concentrations of interleukin-1beta and tumor necrosis factor-alpha were measured. Urine samples were collected to evaluate the excretion of the thromboxane metabolite 11-dehydro-thromboxane (TX)B2. Gastric mucosa was inspected. LPS injection was followed by synthesis TF and COX-2 mRNAs in circulating monocytes, which were blunted by NCX-4016 but not by ASA or ISMN. Both NCX-4016 and ISMN reduced TF expression on surface of circulating monocyte. LPS increased the excretion 11-dehydro-TXB2, and this was prevented by NCX-4016 and ASA. Unlike ASA, NCX-4016 reduced plasma interleukin-1beta and tumor necrosis factor-alpha. In addition, NCX-4016 almost completely prevented mucosal damage, whereas ASA increased the extension of gastric lesions in LPS-injected rats. CONCLUSIONS NCX-4016 prevents monocyte TF expression; this is accompanied by inhibition of TX and cytokine biosynthesis. These additive effects of nitric oxide release and COX inhibition may help explain efficacy and tolerability of NCX-4016.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Clinica di Gastroenterologia ed Epatologia, Università degli Studi di Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
de Nigris F, Lerman LO, Napoli C. New insights in the transcriptional activity and coregulator molecules in the arterial wall. Int J Cardiol 2002; 86:153-68. [PMID: 12419552 DOI: 10.1016/s0167-5273(02)00328-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of vascular diseases are associated with abnormal expression of genes that contribute to their pathophysiological and clinical manifestations, but at the same time offer potential therapeutic targets. One of the promising therapeutic approaches targets the pathophysiological pathways leading to aberrant gene activation, namely transcriptional activity and its molecular modulators (agonists, antagonists, coregulators, and nuclear receptors). The transcription factors can be divided into four classes (I-IV) classified by structural elements, like basic leucine zipper (bZIP) or basic helix-loop-helix (bHLH), which mediate their DNA binding activity but also determine the classes of drugs that can affect their activity. For example, statins modulate activation of the class-I transcription factor sterol responsive element-binding protein (SREBP), whose target genes including hydroxyl-methyl-glutaryl acetyl Coenzyme-A (HMG-CoA) reductase, HMG-CoA synthase, and the low-density lipoprotein receptor, all of which are involved in cholesterol and fatty acid metabolism. Similarly, insulin-like drugs target the nuclear receptor peroxisome-proliferator-activator-receptor (PPAR)-gamma (class-II), several anti-inflammatory drugs inhibit activation of nuclear factor kappa B (NFkappaB) (class-IV), while others (e.g. flavopiridol, rapamycin, and paclitaxel) target regulation of cell-cycle proteins. Increased understanding of the genetic and molecular basis of disease (e.g. transcriptional activity and its coregulation) will potentially enhance future diagnosis, treatment, and prevention of vascular diseases.
Collapse
|
47
|
Keeble JE, Moore PK. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs. Br J Pharmacol 2002; 137:295-310. [PMID: 12237248 PMCID: PMC1573498 DOI: 10.1038/sj.bjp.0704876] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 03/03/2002] [Accepted: 03/15/2002] [Indexed: 01/25/2023] Open
Abstract
This review examines the biological significance, therapeutic potential and mechanism(s) of action of a range of nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAID) and related nitric oxide-releasing donating drugs (NODD). The slow release of nitric oxide (NO) from these compounds leads to subtle changes in the profile of pharmacological activity of the parent, non-steroidal anti-inflammatory drugs (NSAID). For example, compared with NSAID, NO-NSAID cause markedly diminished gastrointestinal toxicity and improved anti-inflammatory and anti-nociceptive efficacy. In addition, nitroparacetamol exhibits hepatoprotection as opposed to the hepatotoxic activity of paracetamol. The possibility that NO-NSAID or NODD may be of therapeutic benefit in a wide variety of disease states including pain and inflammation, thrombosis and restenosis, neurodegenerative diseases of the central nervous system, colitis, cancer, urinary incontinence, liver disease, impotence, bronchial asthma and osteoporosis is discussed.
Collapse
Affiliation(s)
- J E Keeble
- Centre for Cardiovascular Biology and Medicine, King's College, University of London, Guy's Campus, London SE1 9RT
| | - P K Moore
- Centre for Cardiovascular Biology and Medicine, King's College, University of London, Guy's Campus, London SE1 9RT
| |
Collapse
|
48
|
Napoli C, Ackah E, De Nigris F, Del Soldato P, D'Armiento FP, Crimi E, Condorelli M, Sessa WC. Chronic treatment with nitric oxide-releasing aspirin reduces plasma low-density lipoprotein oxidation and oxidative stress, arterial oxidation-specific epitopes, and atherogenesis in hypercholesterolemic mice. Proc Natl Acad Sci U S A 2002; 99:12467-70. [PMID: 12209007 PMCID: PMC129468 DOI: 10.1073/pnas.192244499] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Indexed: 11/18/2022] Open
Abstract
The effects of chronic treatment with nitric oxide-containing aspirin (NO-aspirin, NCX-4016) in comparison with regular aspirin or placebo on the development of a chronic disease such as atherosclerosis were investigated in hypercholesterolemic low-density lipoprotein (LDL)-receptor-deficient mice. Male mice were assigned randomly to receive in a volume of 10 ml/kg either placebo (n = 10), 30 mg/kg/day NO-aspirin (n = 10), or 18 mg/kg/day of regular aspirin (n = 10). After 12 weeks of treatment, the computer-assisted imaging analysis revealed that NO-aspirin reduced the aortic cumulative lesion area by 39.8 +/- 12.3% compared with that of the placebo (P < 0.001). Regular aspirin did not reduce significantly aortic lesions (-5.1 +/- 2.3%) compared with the placebo [P = 0.867, not significant (NS)]. Furthermore, NO-aspirin reduced significantly plasma LDL oxidation compared with aspirin and placebo, as shown by the significant reduction of malondialdehyde content (P < 0.001) as well as by the prolongation of lag-time (P < 0.01). Similarly, systemic oxidative stress, measured by plasma isoprostanes, was significantly reduced by treatment with NCX-4016 (P < 0.05). More importantly, mice treated with NO-aspirin revealed by immunohistochemical analysis of aortic serial sections a significant decrease in the intimal presence of oxidation-specific epitopes of oxLDL (E06 monoclonal antibody, P < 0.01), and macrophages-derived foam cells (F4/80 monoclonal antibody, P < 0.05), compared with placebo or aspirin. These data indicate that enhanced NO release by chronic treatment with the NO-containing aspirin has antiatherosclerotic and antioxidant effects in the arterial wall of hypercholesterolemic mice.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Arteriosclerosis/etiology
- Arteriosclerosis/prevention & control
- Aspirin/administration & dosage
- Aspirin/analogs & derivatives
- Aspirin/pharmacology
- Foam Cells/drug effects
- Foam Cells/pathology
- Hypercholesterolemia/complications
- Hypercholesterolemia/drug therapy
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Donors/administration & dosage
- Nitric Oxide Donors/pharmacology
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, School of Medicine, Federico II University of Naples, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rossoni G, Manfredi B, Del Soldato P, Berti F. NCX 4016, a nitric oxide-releasing aspirin, modulates adrenergic vasoconstriction in the perfused rat tail artery. Br J Pharmacol 2002; 137:229-36. [PMID: 12208780 PMCID: PMC1573491 DOI: 10.1038/sj.bjp.0704869] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Accepted: 07/02/2002] [Indexed: 12/21/2022] Open
Abstract
1. The ability of the nitric oxide (NO)-releasing aspirin, NCX 4016, to control vasoconstrictor responses induced by electrical field stimulation (TNS) or by exogenous norepinephrine (NE) was investigated in perfused rat tail artery with intact endothelium. 2. NCX 4016 (25, 50 and 100 microM) dose-dependently antagonized the vasoconstriction caused by TNS (from 0.5 to 64 Hz) and by NE (from 0.01 to 10 microM). The vasorelaxant activity of NCX 4016 (100 microM) in NE-precontracted arteries was concomitant with a marked increase of tissue cyclic GMP (4.9 fold, P<0.001) and was significantly antagonized by the inhibitors of soluble guanylate cyclase, methylene blue and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one. 3. The effect of NCX 4016 was endothelium NO-independent since, in preparations perfused with N(G)-monomethyl-L-arginine (10 microM), this compound prevented the rise in basal perfusion pressure and reversed the accentuation of vasoconstrictor responses caused by NO synthase inhibition. 4. Aspirin-moiety released by NCX 4016 inhibited the 6-keto-PGF(1alpha) formation without interfering with the vasorelaxant activity of NCX 4016, while aspirin (100 microM) was devoid of any activity against vasoconstriction induced by both TNS and NE in perfused rat tail artery. 5. NCX 4016 moderated adrenergic vasoconstriction in perfused rat tail arteries by a direct donation of NO without involving the relaxant factors such as PGI(2) and NO from endothelial cells. 6. The results obtained with NCX 4016 in perfused rat tail artery bears some therapeutical potential in conditions associated with vascular smooth muscle hyperreactivity to adrenergic stimulation.
Collapse
Affiliation(s)
- Giuseppe Rossoni
- Department of Pharmacological Sciences, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
50
|
Yu J, Rudic RD, Sessa WC. Nitric oxide-releasing aspirin decreases vascular injury by reducing inflammation and promoting apoptosis. J Transl Med 2002; 82:825-32. [PMID: 12118084 DOI: 10.1097/01.lab.0000018828.61722.bd] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endothelial dysfunction, defined as a deficit in the bioavailability of nitric oxide (NO), occurs as sequelae of many vascular diseases; however, the utility of supplementing NO to obviate the extent of disease is understudied. Here, we examined if prolonged treatment with an NO-releasing form of aspirin (NO-ASA) can influence neointimal remodeling of femoral arteries of hypercholesterolemic ApoE (-/-) mice. Treatment of ApoE (-/-) mice with NO-ASA, but not aspirin (ASA), improved neointimal remodeling post-injury. NO-ASA treatment increased lumen diameters and reduced intimal-to-medial ratios of injured femoral arteries compared with ASA- or vehicle-treated mice. The reduction in lumen diameter in NO-ASA-treated mice was associated with a marked reduction in CD45-positive inflammatory cells and an increased number of TUNEL-positive cells. Thus, NO-ASA, by virtue of releasing NO, can reduce vascular inflammation and promote apoptosis during vascular remodeling associated with neointimal thickening.
Collapse
Affiliation(s)
- Jun Yu
- Department of Pharmacology and Program in Vascular Cell Signaling and Therapeutics,Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | |
Collapse
|