1
|
Chavan SV, Desikan S, Roman CAJ, Huan C. PKCδ Protects against Lupus Autoimmunity. Biomedicines 2024; 12:1364. [PMID: 38927570 PMCID: PMC11202175 DOI: 10.3390/biomedicines12061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C delta (PKCδ) has emerged as a key protective molecule against systemic lupus erythematosus (SLE or lupus), an autoimmune disease characterized by anti-double stranded (ds) DNA IgGs. Although PKCδ-deficient mice and lupus patients with mutated PRKCD genes clearly demonstrate the requirement for PKCδ in preventing lupus autoimmunity, this critical tolerance mechanism remains poorly understood. We recently reported that PKCδ acts as a key regulator of B cell tolerance by selectively deleting anti-dsDNA B cells in the germinal center (GC). PKCδ's tolerance function is activated by sphingomyelin synthase 2 (SMS2), a lipid enzyme whose expression is generally reduced in B cells from lupus patients. Moreover, pharmacologic strengthening of the SMS2/PKCδ tolerance pathway alleviated lupus pathogenesis in mice. Here, we review relevant publications in order to provide mechanistic insights into PKCδ's tolerance activity and discuss the potential significance of therapeutically targeting PKCδ's tolerance activity in the GC for selectively inhibiting lupus autoimmunity.
Collapse
Affiliation(s)
- Sailee Vijay Chavan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Shreya Desikan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Chongmin Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| |
Collapse
|
2
|
Agathangelidis A, Chatzikonstantinou T, Stamatopoulos K. B-cell receptor immunoglobulin stereotypy in chronic lymphocytic leukemia: Key to understanding disease biology and stratifying patients. Semin Hematol 2024; 61:91-99. [PMID: 38242773 DOI: 10.1053/j.seminhematol.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/24/2023] [Indexed: 01/21/2024]
Abstract
Sequence convergence, otherwise stereotypy, of B-cell receptor immunoglobulin (BcR IG) from unrelated patients is a distinctive feature of the IG gene repertoire in chronic lymphocytic leukemia (CLL) whereby patients expressing a particular BcR IG archetype are classified into groups termed stereotyped subsets. From a biological perspective, the fact that a considerable fraction (∼41%) of patients with CLL express (quasi)identical or stereotyped BcR IG underscores the key role of antigen selection in the natural history of CLL. From a clinical perspective, at odds with the pronounced heterogeneity of CLL at large, patients belonging to the same stereotyped subset display consistent clinical presentation and outcome, including response to treatment, likely as a reflection of consistent biological background. Many major stereotyped subsets were recently shown to have satellites, that is, smaller subsets that are immunogenetically similar. Preliminary evidence supports that this similarity extends to shared biological and even clinical features, with important implications for patient stratification. Consequently, BcR IG stereotypy emerges as a powerful tool for dissecting the heterogeneity of CLL toward refined risk stratification and, eventually, more precise therapeutic interventions.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Humans
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
Collapse
Affiliation(s)
- Andreas Agathangelidis
- Division of Genetics & Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Florova M, Abreu-Mota T, Paesen GC, Beetschen AS, Cornille K, Marx AF, Narr K, Sahin M, Dimitrova M, Swarnalekha N, Beil-Wagner J, Savic N, Pelczar P, Buch T, King CG, Bowden TA, Pinschewer DD. Central tolerance shapes the neutralizing B cell repertoire against a persisting virus in its natural host. Proc Natl Acad Sci U S A 2024; 121:e2318657121. [PMID: 38446855 PMCID: PMC10945855 DOI: 10.1073/pnas.2318657121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Viral mimicry of host cell structures has been postulated to curtail the B cell receptor (BCR) repertoire against persisting viruses through tolerance mechanisms. This concept awaits, however, experimental testing in a setting of natural virus-host relationship. We engineered mouse models expressing a monoclonal BCR specific for the envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV), a naturally persisting mouse pathogen. When the heavy chain of the LCMV-neutralizing antibody KL25 was paired with its unmutated ancestor light chain, most B cells underwent receptor editing, a behavior reminiscent of autoreactive clones. In contrast, monoclonal B cells expressing the same heavy chain in conjunction with the hypermutated KL25 light chain did not undergo receptor editing but exhibited low levels of surface IgM, suggesting that light chain hypermutation had lessened KL25 autoreactivity. Upon viral challenge, these IgMlow cells were not anergic but up-regulated IgM, participated in germinal center reactions, produced antiviral antibodies, and underwent immunoglobulin class switch as well as further affinity maturation. These studies on a persisting virus in its natural host species suggest that central tolerance mechanisms prune the protective antiviral B cell repertoire.
Collapse
Affiliation(s)
- Marianna Florova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Tiago Abreu-Mota
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Sophia Beetschen
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Karen Cornille
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Kerstin Narr
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mehmet Sahin
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mirela Dimitrova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Nivedya Swarnalekha
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Natasa Savic
- ETH Phenomics Center, ETH Zürich, Zürich8093, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel4001, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Carolyn G. King
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| |
Collapse
|
4
|
Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kaushal A, Gupta S. Vaccine development: Current trends and technologies. Life Sci 2024; 336:122331. [PMID: 38070863 DOI: 10.1016/j.lfs.2023.122331] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Despite the effectiveness of vaccination in reducing or eradicating diseases caused by pathogens, there remain certain diseases and emerging infections for which developing effective vaccines is inherently challenging. Additionally, developing vaccines for individuals with compromised immune systems or underlying medical conditions presents significant difficulties. As well as traditional vaccine different methods such as inactivated or live attenuated vaccines, viral vector vaccines, and subunit vaccines, emerging non-viral vaccine technologies, including viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer new strategies to address the existing challenges in vaccine development. These advancements have also greatly enhanced our understanding of vaccine immunology, which will guide future vaccine development for a broad range of diseases, including rapidly emerging infectious diseases like COVID-19 and diseases that have historically proven resistant to vaccination. This review provides a comprehensive assessment of emerging non-viral vaccine production methods and their application in addressing the fundamental and current challenges in vaccine development.
Collapse
Affiliation(s)
- Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, 01-142 Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala 134003, India.
| |
Collapse
|
5
|
Deng Y, Ou YY, Mo CJ, Huang L, Qin X. Characteristics and clustering analysis of peripheral blood lymphocyte subsets in children with systemic lupus erythematosus complicated with clinical infection. Clin Rheumatol 2023; 42:3299-3309. [PMID: 37537315 DOI: 10.1007/s10067-023-06716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Clinical infection is a common complication in children with systemic lupus erythematosus (SLE). However, few studies have investigated immune alterations in children with SLE complicated with clinical infection. We assessed lymphocyte subsets in children with SLE to explore the possibility of clinical infection. METHODS We retrospectively analyzed the proportion of peripheral lymphocyte subsets in 140 children with SLE. Children with SLE were classified into different clusters according to the proportion of peripheral blood lymphocyte subsets: (CD3 + /CD4 + T cell, CD3 + /CD8 + T cell, CD3 + /CD4 + /CD8 + T cell, CD3 + /CD4-/CD8- T cell, CD19 + B cell, and CD3-/CD16 + /CD56 + NK cell). Differences in the proportion of lymphoid subsets, infection rates, and systemic lupus erythematosus disease activity index (SLEDAI) scores were compared between clusters. In addition, we grouped the subjects according to the presence or absence of infection. Proportions of lymphoid subsets, demographic variables, clinical presentation, and other laboratory variables were compared between the infected and uninfected groups. Finally, the diagnostic ability of lymphocyte subset ratios to distinguish secondary infection in children with SLE was predicted using an ROC curve. RESULTS Cluster C2 had a higher proportion of B cells than Cluster C1, while Cluster C1 had a lower proportion of NK cells, CD3 + T cells, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, and CD3 + /CD4-/CD8- T cells. Infection rates and SLEDAI scores were higher in Cluster C2 than in Cluster C1. The infected children had a higher proportion of B cells and a lower proportion of CD3 + T cells, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, and CD3 + /CD4-/CD8- T cells. There were no significant differences in lymphoid subsets between children in Cluster C2 and the infected groups. The area under the ROC curve of B lymphocytes in predicting SLE children with infection was 0.842. The area under the ROC curve was 0.855 when a combination of B cells, NK cells, CD4 + T cells, and CD8 + T cells was used to predict the outcome of coinfection. CONCLUSIONS A high percentage of B cells and a low percentage of CD3 + T cells, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, CD3 + /CD4 + /CD8 + T cells, and CD3 + /CD4-/CD8- T cells may be associated with infection in children with SLE. B cells was used to predict the outcome of coinfection in children with SLE. Key Points • A high percentage of B cells and a low percentage of CD3 + T cells, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, CD3 + /CD4 + /CD8 + T cells, and CD3 + /CD4-/CD8- T cells may be associated with infection in children with SLE • B cells was used to predict the outcome of coinfection in children with SLE.
Collapse
Affiliation(s)
- Yan Deng
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying-Ying Ou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Cui-Ju Mo
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Atisha-Fregoso Y, Diamond B. Decoding B cell receptors in autoimmune diseases. Ann Rheum Dis 2023; 82:1369-1370. [PMID: 37591659 DOI: 10.1136/ard-2023-224779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Yemil Atisha-Fregoso
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| |
Collapse
|
7
|
Gomez-Bañuelos E, Yu Y, Li J, Cashman KS, Paz M, Trejo-Zambrano MI, Bugrovsky R, Wang Y, Chida AS, Sherman-Baust CA, Ferris DP, Goldman DW, Darrah E, Petri M, Sanz I, Andrade F. Affinity maturation generates pathogenic antibodies with dual reactivity to DNase1L3 and dsDNA in systemic lupus erythematosus. Nat Commun 2023; 14:1388. [PMID: 36941260 PMCID: PMC10027674 DOI: 10.1038/s41467-023-37083-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Anti-dsDNA antibodies are pathogenically heterogeneous, implying distinct origins and antigenic properties. Unexpectedly, during the clinical and molecular characterization of autoantibodies to the endonuclease DNase1L3 in patients with systemic lupus erythematosus (SLE), we identified a subset of neutralizing anti-DNase1L3 antibodies previously catalogued as anti-dsDNA. Based on their variable heavy-chain (VH) gene usage, these antibodies can be divided in two groups. One group is encoded by the inherently autoreactive VH4-34 gene segment, derives from anti-DNase1L3 germline-encoded precursors, and gains cross-reactivity to dsDNA - and some additionally to cardiolipin - following somatic hypermutation. The second group, originally defined as nephritogenic anti-dsDNA antibodies, is encoded by diverse VH gene segments. Although affinity maturation results in dual reactivity to DNase1L3 and dsDNA, their binding efficiencies favor DNase1L3 as the primary antigen. Clinical, transcriptional and monoclonal antibody data support that cross-reactive anti-DNase1L3/dsDNA antibodies are more pathogenic than single reactive anti-dsDNA antibodies. These findings point to DNase1L3 as the primary target of a subset of antibodies classified as anti-dsDNA, shedding light on the origin and pathogenic heterogeneity of antibodies reactive to dsDNA in SLE.
Collapse
Affiliation(s)
- Eduardo Gomez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Yikai Yu
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jessica Li
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Kevin S Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Merlin Paz
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | | | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Youliang Wang
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Asiya Seema Chida
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Cheryl A Sherman-Baust
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Dylan P Ferris
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Daniel W Goldman
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Michelle Petri
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Iñaki Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
8
|
Biljecki M, Eisenhut K, Beltrán E, Winklmeier S, Mader S, Thaller A, Eichhorn P, Steininger P, Flierl-Hecht A, Lewerenz J, Kümpfel T, Kerschensteiner M, Meinl E, Thaler FS. Antibodies Against Glutamic Acid Decarboxylase 65 Are Locally Produced in the CSF and Arise During Affinity Maturation. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200090. [PMID: 36823135 PMCID: PMC9969496 DOI: 10.1212/nxi.0000000000200090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Antibodies (Abs) against the cytoplasmic protein glutamic acid decarboxylase 65 (GAD65) are detected in patients with neurologic syndromes together referred to as GAD65-Ab spectrum disorders. The response of some of these patients to plasma exchange or immunoglobulins indicates that GAD65-Abs could contribute to disease pathogenesis at least at some stages of disease. However, the involvement of GAD65-reactive B cells in the CNS is incompletely understood. METHODS We studied 7 patients with high levels of GAD65-Abs and generated monoclonal Abs (mAbs) derived from single cells in the CSF. Sequence characteristics, reactivity to GAD65, and the role of somatic hypermutations of the mAbs were analyzed. RESULTS Twelve CSF-derived mAbs were generated originating from 3 patients with short disease duration, and 7/12 of these mAbs (58%) were GAD65 reactive in at least 1 detection assay. Four of 12 (33%) were definitely positive in all 3 detection assays. The intrathecal anti-GAD65 response was polyclonal. GAD65-Abs were mostly of the IgG1 subtype and had undergone affinity maturation. Reversion of 2 GAD65-reactive mAbs to their corresponding germline-encoded unmutated common ancestors abolished GAD65 reactivity. DISCUSSION GAD65-specific B cells are present in the CNS and represent a sizable fraction of CSF B cells early in the disease course. The anti-GAD65 response in the CSF is polyclonal and shows evidence of antigen-driven affinity maturation required for GAD65 recognition. Our data support the hypothesis that the accumulation of GAD65-specific B cells and plasma cells in the CSF is an important feature of early disease stages.
Collapse
Affiliation(s)
- Michelle Biljecki
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Katharina Eisenhut
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Eduardo Beltrán
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Stephan Winklmeier
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Simone Mader
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Anna Thaller
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Peter Eichhorn
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Philipp Steininger
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Andrea Flierl-Hecht
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Jan Lewerenz
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Tania Kümpfel
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Martin Kerschensteiner
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Edgar Meinl
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany
| | - Franziska S Thaler
- From the Institute of Clinical Neuroimmunology (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), University Hospital, Ludwig-Maximilians-Universität Munich; Biomedical Center (BMC) (M.B., K.E., E.B., S.W., S.M., A.T., A.F.-H., T.K., M.K., E.M., F.S.T.), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität Munich (M.B., K.E.); Munich Cluster for Systems Neurology (SyNergy) (E.B., M.K., F.S.T.); Innate Immunity Unit (A.T.), Institut Pasteur, Inserm U1223, Paris, France; Université de Paris (A.T.), Sorbonne Paris Cité, France; Institute of Laboratory Medicine (P.E.), University Hospital, LMU Munich; Institute of Clinical and Molecular Virology (P.S.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg; and Department of Neurology (J.L.), University Hospital Ulm, Germany.
| |
Collapse
|
9
|
Pioli KT, Pioli PD. Thymus antibody-secreting cells: once forgotten but not lost. Front Immunol 2023; 14:1170438. [PMID: 37122712 PMCID: PMC10130419 DOI: 10.3389/fimmu.2023.1170438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Antibody-secreting cells are essential contributors to the humoral response. This is due to multiple factors which include: 1) the ability to secrete thousands of antibodies per second, 2) the ability to regulate the immune response and 3) the potential to be long-lived. Not surprisingly, these cells can be found in numerous sites within the body which include organs that directly interface with potential pathogens (e.g., gut) and others that provide long-term survival niches (e.g., bone marrow). Even though antibody-secreting cells were first identified in the thymus of both humans and rodents in the 1960s, if not earlier, only recently has this population begun to be extensively investigated. In this article, we provide an update regarding the current breath of knowledge pertaining to thymus antibody-secreting cells and discuss the potential roles of these cells and their impact on health.
Collapse
|
10
|
Schäfer AL, Ruiz-Aparicio PF, Kraemer AN, Chevalier N. Crosstalk in the diseased plasma cell niche - the force of inflammation. Front Immunol 2023; 14:1120398. [PMID: 36895566 PMCID: PMC9989665 DOI: 10.3389/fimmu.2023.1120398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Affiliation(s)
- Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paola Fernanda Ruiz-Aparicio
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Antoine N Kraemer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Eide JG, Wu J, Stevens WW, Bai J, Hou S, Huang JH, Rosenberg J, Utz P, Shintani‐Smith S, Conley DB, Welch KC, Kern RC, Hulse KE, Peters AT, Grammer LC, Zhao M, Lindholm P, Schleimer RP, Tan BK. Anti-phospholipid antibodies are elevated and functionally active in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy 2022; 52:954-964. [PMID: 35253284 PMCID: PMC9339491 DOI: 10.1111/cea.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Polyps from patients with chronic rhinosinusitis with nasal polyps (CRSwNP) contain increased levels of autoreactive antibodies, B cells and fibrin deposition. Anti-phospholipid antibodies (APA) are autoantibodies known to cause thrombosis but have not been implicated in chronic rhinosinusitis (CRS). OBJECTIVE To compare APA levels (anti-cardiolipin, anti-phosphatidylethanolamine (anti-PE), and anti-β2 -glycoprotein (anti-B2GP)) in nasal polyp (NP) tissue with tissue from control and CRS without nasal polyp (CRSsNP) patients, we tested whether NP antibodies affect coagulation, and correlate APAs with anti-dsDNA IgG and markers of coagulation. METHODS Patient specimens were assayed for APA IgG, anti-dsDNA IgG and thrombin-anti-thrombin (TaT) complex by ELISA. Antibodies from a subset of specimens were tested for modified activated partial thromboplastin time (aPTT) measured on an optical-mechanical coagulometer. RESULTS Anti-cardiolipin IgG in NP was 5-fold higher than control tissue (p < .0001). NP antibodies prolonged aPTT compared to control tissue antibodies at 400 µg/mL (36.7 s vs. 33.8 s, p = .024) and 600 µg/mL (40.9 s vs. 34.7 s, p = .0037). Anti-PE IgG antibodies were increased in NP (p = .027), but anti-B2GP IgG was not significantly higher (p = .084). All APAs correlated with anti-dsDNA IgG levels, which were also elevated (R = .77, .71 and .54, respectively, for anti-cardiolipin, anti-PE, and anti-B2GP; all p < .001), but only anti-cardiolipin (R = .50, p = .0185) and anti-PE (R = 0.45, p = .037) correlated with TaT complex levels. CONCLUSIONS APA IgG antibodies are increased in NP and correlate with autoreactive tissue antibodies. NP antibodies have in vitro anti-coagulant activity similar to those observed in anti-phospholipid syndrome, suggesting that they may have pro-coagulant effects in polyp tissue.
Collapse
Affiliation(s)
- Jacob G. Eide
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jeffanie Wu
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Whitney W. Stevens
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Junqin Bai
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Songwang Hou
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Julia H. Huang
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jacob Rosenberg
- Department of Infectious DiseaseMassachusetts General HospitalBostonMAUSA
| | - Paul Utz
- Institute for ImmunityTransplantation, and InfectionStanford School of MedicineStanfordCAUSA
| | - Stephanie Shintani‐Smith
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - David B. Conley
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Kevin C. Welch
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Robert C. Kern
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Kathryn E. Hulse
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Anju T. Peters
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Leslie C. Grammer
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ming Zhao
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul Lindholm
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Robert P. Schleimer
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bruce K. Tan
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
12
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Nguyen K, Alsaati N, Le Coz C, Romberg N. Genetic obstacles to developing and tolerizing human B cells. WIREs Mech Dis 2022; 14:e1554. [DOI: 10.1002/wsbm.1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kim Nguyen
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Nouf Alsaati
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Carole Le Coz
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Neil Romberg
- Division of Immunology and Allergy Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
- Institute for Immunology University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
14
|
Chen PM, Tsokos GC. Mitochondria in the Pathogenesis of Systemic Lupus Erythematosus. Curr Rheumatol Rep 2022; 24:88-95. [PMID: 35290598 DOI: 10.1007/s11926-022-01063-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and inflammation in multiple organs. In this article, we present data on how various mitochondria pathologies are involved in the pathogenesis of the disease including the fact that they serve as a reservoir of autoantigens which contribute to the upending of lymphocyte tolerance. RECENT FINDINGS Mitochondrial DNA from various cell sources, including neutrophil extracellular traps, platelets, and red blood cells, elicits the production of type I interferon which contributes to breaking of peripheral tolerance. Mitochondrial DNA also serves as autoantigen targeted by autoantibodies. Mutations of mitochondrial DNA triggered by reactive oxygen species induce T cell cross-reactivity against self-antigens. Selective gene polymorphisms that regulate mitochondrial apoptosis in autoreactive B and T cells represent another key aspect in the induction of autoimmunity. Various mitochondrial abnormalities, including changes in mitochondrial function, oxidative stress, genetic polymorphism, mitochondrial DNA mutations, and apoptosis pathways, are each linked to different aspects of lupus pathogenesis. However, whether targeting these mitochondrial pathologies can be used to harness autoimmunity remains to be explored.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Rekvig OP. The Anti-DNA Antibodies: Their Specificities for Unique DNA Structures and Their Unresolved Clinical Impact-A System Criticism and a Hypothesis. Front Immunol 2022; 12:808008. [PMID: 35087528 PMCID: PMC8786728 DOI: 10.3389/fimmu.2021.808008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical and analytical approaches based on our imperfect definition of the term “The anti-dsDNA antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique classification criterium and pathogenic factor. In a wider sense, antibodies to unique transcriptionally active or silent DNA structures and chromatin components may have individual and profound nephritogenic impact although not considered yet – not in theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated here. In this analysis, our state-of-the-art conception of these antibodies is probed and found too deficient with respect to their origin, structural DNA specificities and clinical/pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The discoveries have left us with a DNA helix that presents distinct structures expressing unique operations of DNA. All structures are proven immunogenic! Unique autoimmune antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA, cruciform DNA, or individual components of chromatin. In light of the massive scientific interest in anti-DNA antibodies over decades, it is an unexpected observation that the spectrum of DNA structures has been known for decades without being implemented in clinical immunology. This leads consequently to a critical analysis of historical and contemporary evidence-based data and of ignored and one-dimensional contexts and hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the impact of DNA and chromatin immunity/autoimmunity are considered and discussed in context of the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Section of Autoimmunity, Fürst Medical Laboratory, Oslo, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
16
|
Ali El Hussien M, Tsai CY, Satouh Y, Motooka D, Okuzaki D, Ikawa M, Kikutani H, Sakakibara S. Multiple tolerance checkpoints restrain affinity maturation of B cells expressing the germline precursor of a lupus patient-derived anti-dsDNA antibody in knock-in mice. Int Immunol 2021; 34:207-223. [PMID: 34865040 DOI: 10.1093/intimm/dxab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/27/2021] [Indexed: 11/13/2022] Open
Abstract
Anti-dsDNA antibodies are a hallmark of systemic lupus erythematosus and are highly associated with its exacerbation. Cumulative evidence has suggested that somatic hypermutation contributes to the high-affinity reactivity of anti-dsDNA antibodies. Our previous study demonstrated that these antibodies are generated from germline precursors with low-affinity ssDNA reactivity through affinity maturation and clonal expansion in patients with acute lupus. This raised the question of whether such precursors could be subject to immune tolerance. To address this, we generated a site-directed knock-in (KI) mouse line, G9gl, which carries germline-reverted sequences of the VH-DH-JH and Vκ-Jκ regions of patient-derived, high-affinity anti-dsDNA antibodies. G9gl heterozygous mice had a reduced number of peripheral B cells, only 27% of which expressed G9gl B cell receptor (BCR). The remaining B cells harbored non-KI allele-derived immunoglobulin heavy (IgH) chains or fusion products of upstream mouse VH and the KI gene, suggesting that receptor editing through VH replacement occurred in a large proportion of B cells in the KI mice. G9gl BCR-expressing B cells responded to ssDNA but not dsDNA, and exhibited several anergic phenotypes, including reduced surface BCR and shortened life span. Further, G9gl B cells were excluded from germinal centers (GCs) induced by several conditions. In particular, following immunization with methylated bovine serum albumin-conjugated bacterial DNA, G9gl B cells occurred at a high frequency in memory B cells but not GC B cells or plasmablasts. Collectively, multiple tolerance checkpoints prevented low-affinity precursors of pathogenic anti-dsDNA B cells from undergoing clonal expansion and affinity maturation in GCs.
Collapse
Affiliation(s)
- Marwa Ali El Hussien
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yuhkoh Satouh
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Regulation of B Cell Responses in SLE by Three Classes of Interferons. Int J Mol Sci 2021; 22:ijms221910464. [PMID: 34638804 PMCID: PMC8508684 DOI: 10.3390/ijms221910464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
There are three classes of interferons (type 1, 2, and 3) that can contribute to the development and maintenance of various autoimmune diseases, including systemic lupus erythematosus (SLE). Each class of interferons promotes the generation of autoreactive B cells and SLE-associated autoantibodies by distinct signaling mechanisms. SLE patients treated with various type 1 interferon-blocking biologics have diverse outcomes, suggesting that additional environmental and genetic factors may dictate how these cytokines contribute to the development of autoreactive B cells and SLE. Understanding how each class of interferons controls B cell responses in SLE is necessary for developing optimized B cell- and interferon-targeted therapeutics. In this review, we will discuss how each class of interferons differentially promotes the loss of peripheral B cell tolerance and leads to the development of autoreactive B cells, autoantibodies, and SLE.
Collapse
|
18
|
Reijm S, Kissel T, Stoeken-Rijsbergen G, Slot LM, Wortel CM, van Dooren HJ, Levarht NEW, Kampstra ASB, Derksen VFAM, Heer POD, Bang H, Drijfhout JW, Trouw LA, Huizinga TWJ, Rispens T, Scherer HU, Toes REM. Cross-reactivity of IgM anti-modified protein antibodies in rheumatoid arthritis despite limited mutational load. Arthritis Res Ther 2021; 23:230. [PMID: 34479638 PMCID: PMC8413699 DOI: 10.1186/s13075-021-02609-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Anti-modified protein antibodies (AMPA) targeting citrullinated, acetylated and/or carbamylated self-antigens are hallmarks of rheumatoid arthritis (RA). Although AMPA-IgG cross-reactivity to multiple post-translational modifications (PTMs) is evident, it is unknown whether the first responding B cells, expressing IgM, display similar characteristics or if cross-reactivity is crucially dependent on somatic hypermutation (SHM). We now studied the reactivity of (germline) AMPA-IgM to further understand the breach of B cell tolerance and to identify if cross-reactivity depends on extensive SHM. Moreover, we investigated whether AMPA-IgM can efficiently recruit immune effector mechanisms. Methods Polyclonal AMPA-IgM were isolated from RA patients and assessed for cross-reactivity towards PTM antigens. AMPA-IgM B cell receptor sequences were obtained by single cell isolation using antigen-specific tetramers. Subsequently, pentameric monoclonal AMPA-IgM, their germline counterparts and monomeric IgG variants were generated. The antibodies were analysed on a panel of PTM antigens and tested for complement activation. Results Pentameric monoclonal and polyclonal AMPA-IgM displayed cross-reactivity to multiple antigens and different PTMs. PTM antigen recognition was still present, although reduced, after reverting the IgM into germline. Valency of AMPA-IgM was crucial for antigen recognition as PTM-reactivity significantly decreased when AMPA-IgM were expressed as IgG. Furthermore, AMPA-IgM was 15- to 30-fold more potent in complement-activation compared to AMPA-IgG. Conclusions We provide first evidence that AMPA-IgM are cross-reactive towards different PTMs, indicating that PTM (cross-)reactivity is not confined to IgG and does not necessarily depend on extensive somatic hypermutation. Moreover, our data indicate that a diverse set of PTM antigens could be involved in the initial tolerance breach in RA and suggest that AMPA-IgM can induce complement-activation and thereby inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02609-5.
Collapse
Affiliation(s)
- Sanne Reijm
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Linda M Slot
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corrie M Wortel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hugo J van Dooren
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nivine E W Levarht
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle F A M Derksen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jan W Drijfhout
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Ou P, Stanek A, Huan Z, Roman CAJ, Huan C. SMS2 deficiency impairs PKCδ-regulated B cell tolerance in the germinal center. Cell Rep 2021; 36:109624. [PMID: 34469734 DOI: 10.1016/j.celrep.2021.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
B cell tolerance prevents autoimmunity by deleting or deactivating autoreactive B cells that otherwise may cause autoantibody-driven disorders, including systemic lupus erythematosus (lupus). Lupus is characterized by immunoglobulin Gs carrying a double-stranded (ds)-DNA autospecificity derived mainly from somatic hypermutation in the germinal center (GC), pointing to a checkpoint breach of GC B cell tolerance that leads to lupus. However, tolerance mechanisms in the GC remain poorly understood. Here, we show that upregulated sphingomyelin synthase 2 (SMS2) in anti-dsDNA GC B cells induces apoptosis by directly activating protein kinase C δ (PKCδ)'s pro-apoptotic activity. This tolerance mechanism prevents lupus autoimmunity in C57/BL6 mice and can be stimulated pharmacologically to inhibit lupus pathogenesis in lupus-prone NZBWF1 mice. Patients with lupus consistently have substantially reduced SMS2 expression in B cells and to an even greater extent in autoimmune-prone, age-associated B cells, suggesting that patients with lupus have insufficient SMS2-regulated B cell tolerance.
Collapse
Affiliation(s)
- Peiqi Ou
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Albert Stanek
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Zack Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - Chongmin Huan
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
20
|
Canny SP, Jackson SW. B Cells in Systemic Lupus Erythematosus: From Disease Mechanisms to Targeted Therapies. Rheum Dis Clin North Am 2021; 47:395-413. [PMID: 34215370 PMCID: PMC8357318 DOI: 10.1016/j.rdc.2021.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B cells exert a prominent contribution to the pathogenesis of systemic lupus erythematosus (SLE). Here, we review the immune mechanisms underlying autoreactive B cell activation in SLE, focusing on how B cell receptor and Toll-like receptor signals integrate to drive breaks in tolerance to nuclear antigens. In addition, we discuss autoantibody-dependent and autoantibody-independent B cell effector functions during lupus pathogenesis. Finally, we address efforts to target B cells therapeutically in human SLE. Despite initial disappointing clinical trials testing B cell depletion in lupus, more recent studies show promise, emphasizing how greater understanding of underlying immune mechanisms can yield clinical benefits.
Collapse
Affiliation(s)
- Susan P Canny
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Shaun W Jackson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
21
|
Melki I, Allaeys I, Tessandier N, Lévesque T, Cloutier N, Laroche A, Vernoux N, Becker Y, Benk-Fortin H, Zufferey A, Rollet-Labelle E, Pouliot M, Poirier G, Patey N, Belleannee C, Soulet D, McKenzie SE, Brisson A, Tremblay ME, Lood C, Fortin PR, Boilard E. Platelets release mitochondrial antigens in systemic lupus erythematosus. Sci Transl Med 2021; 13:13/581/eaav5928. [PMID: 33597264 DOI: 10.1126/scitranslmed.aav5928] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet FcγRIIA, a receptor for immune complexes. Because mice lack FcγRIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing FcγRIIA for our in vivo investigations. FcγRIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by FcγRIIA and its cosignaling by the fibrinogen receptor α2bβ3 in vivo. These findings suggest that platelets might be a key source of mitochondrial antigens in SLE and might be a therapeutic target for treating SLE.
Collapse
Affiliation(s)
- Imene Melki
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Isabelle Allaeys
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Nicolas Tessandier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Tania Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Nathalie Cloutier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Audrée Laroche
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Nathalie Vernoux
- Axe Neurosciences du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Yann Becker
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Hadrien Benk-Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Anne Zufferey
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Emmanuelle Rollet-Labelle
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Marc Pouliot
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada.,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| | - Guy Poirier
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Natacha Patey
- Centre Hospitalier Universitaire de Sainte-Justine, Faculté de Médecine, Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Clemence Belleannee
- Department of Obstetrics, Gynecology and Reproduction, Centre hospitalier universitaire de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Denis Soulet
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Steven E McKenzie
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alain Brisson
- UMR-CBMN CNRS-Université de Bordeaux-IPB, Pessac 33600, France
| | - Marie-Eve Tremblay
- Axe Neurosciences du Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Paul R Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada. .,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada.,Division of Rheumatology, Department of Medicine, Centre hospitalier universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada. .,Faculté de Médecine and Centre de Recherche ARThrite, Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
22
|
Wangriatisak K, Thanadetsuntorn C, Krittayapoositpot T, Leepiyasakulchai C, Suangtamai T, Ngamjanyaporn P, Khowawisetsut L, Khaenam P, Setthaudom C, Pisitkun P, Chootong P. The expansion of activated naive DNA autoreactive B cells and its association with disease activity in systemic lupus erythematosus patients. Arthritis Res Ther 2021; 23:179. [PMID: 34229724 PMCID: PMC8259008 DOI: 10.1186/s13075-021-02557-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/20/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Autoreactive B cells are well recognized as key participants in the pathogenesis of systemic lupus erythematosus (SLE). However, elucidating the particular subset of B cells in producing anti-dsDNA antibodies is limited due to their B cell heterogeneity. This study aimed to identify peripheral B cell subpopulations that display autoreactivity to DNA and contribute to lupus pathogenesis. METHODS Flow cytometry was used to detect total B cell subsets (n = 20) and DNA autoreactive B cells (n = 15) in SLE patients' peripheral blood. Clinical disease activities were assessed in SLE patients using modified SLEDAI-2 K and used for correlation analyses with expanded B cell subsets and DNA autoreactive B cells. RESULTS The increases of circulating double negative 2 (DN2) and activated naïve (aNAV) B cells were significantly observed in SLE patients. Expanded B cell subsets and DNA autoreactive B cells represented a high proportion of aNAV B cells with overexpression of CD69 and CD86. The frequencies of aNAV B cells in total B cell populations were significantly correlated with modified SLEDAI-2 K scores. Further analysis showed that expansion of aNAV DNA autoreactive B cells was more related to disease activity and serum anti-dsDNA antibody levels than to total aNAV B cells. CONCLUSION Our study demonstrated an expansion of aNAV B cells in SLE patients. The association between the frequency of aNAV B cells and disease activity patients suggested that these expanded B cells may play a role in SLE pathogenesis.
Collapse
Affiliation(s)
- Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Nakhonpathom, 73170, Thailand
| | - Chokchai Thanadetsuntorn
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thamonwan Krittayapoositpot
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Nakhonpathom, 73170, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Nakhonpathom, 73170, Thailand
| | - Thanitta Suangtamai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pintip Ngamjanyaporn
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasong Khaenam
- Center of Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chavachol Setthaudom
- Immunology Laboratory, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, 10400, Thailand.
- Translational Medicine Program, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Nakhonpathom, 73170, Thailand.
| |
Collapse
|
23
|
Jacobs HM, Arkatkar T, Du SW, Scharping NE, Woods J, Li QZ, Hudkins KL, Alpers CE, Rawlings DJ, Jackson SW. TACI haploinsufficiency protects against BAFF-driven humoral autoimmunity in mice. Eur J Immunol 2021; 51:2225-2236. [PMID: 34146342 DOI: 10.1002/eji.202149244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 11/06/2022]
Abstract
Polymorphisms in TACI, a BAFF family cytokine receptor, are linked to diverse human immune disorders including common variable immunodeficiency (CVID) and systemic lupus erythematosus (SLE). Functional studies of individual variants show modest impacts on surface TACI expression and/or downstream signal transduction, indicating that relatively subtle variation in TACI activity can impact human B-cell biology. However, significant complexity underlies TACI biology, including both positive and negative regulation of physiologic and pathogenic B-cell responses. To model these contradictory events, we compared the functional impact of TACI deletion on separate models of murine SLE driven by T cell-independent and -dependent breaks in B-cell tolerance. First, we studied whether reduced surface TACI expression was sufficient to protect against progressive BAFF-mediated systemic autoimmunity. Strikingly, despite a relatively modest impact on surface TACI levels, TACI haploinsufficiency markedly reduced pathogenic RNA-associated autoantibody titers and conferred long-term protection from BAFF-driven lupus nephritis. In contrast, B cell-intrinsic TACI deletion exerted a limited impact of autoantibody generation in murine lupus characterized by spontaneous germinal center formation and T cell-dependent humoral autoimmunity. Together, these combined data provide new insights into TACI biology and highlight how TACI signals must be tightly regulated during protective and pathogenic B-cell responses.
Collapse
Affiliation(s)
| | | | - Samuel W Du
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kelly L Hudkins
- Departments of Laboratory Medicine and Pathology, Immunology and Pediatrics, University of Washington School of Medicine, Washington, WA, USA
| | - Charles E Alpers
- Departments of Laboratory Medicine and Pathology, Immunology and Pediatrics, University of Washington School of Medicine, Washington, WA, USA
| | | | | |
Collapse
|
24
|
Bonasia CG, Abdulahad WH, Rutgers A, Heeringa P, Bos NA. B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells. Cells 2021; 10:cells10051190. [PMID: 34068035 PMCID: PMC8152463 DOI: 10.3390/cells10051190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive B cells in autoimmune diseases.
Collapse
Affiliation(s)
- Carlo G. Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; (C.G.B.); (W.H.A.); (A.R.)
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; (C.G.B.); (W.H.A.); (A.R.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands;
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; (C.G.B.); (W.H.A.); (A.R.)
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands;
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; (C.G.B.); (W.H.A.); (A.R.)
- Correspondence:
| |
Collapse
|
25
|
Fichtner ML, Vieni C, Redler RL, Kolich L, Jiang R, Takata K, Stathopoulos P, Suarez PA, Nowak RJ, Burden SJ, Ekiert DC, O'Connor KC. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. J Exp Med 2021; 217:152036. [PMID: 32820331 PMCID: PMC7953735 DOI: 10.1084/jem.20200513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogenic muscle-specific tyrosine kinase (MuSK)–specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient–derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm–exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Casey Vieni
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY.,Medical Scientist Training Program, New York University School of Medicine, New York, NY
| | - Rachel L Redler
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ljuvica Kolich
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kazushiro Takata
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pablo A Suarez
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven J Burden
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Damian C Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
26
|
Chen PM, Tsokos GC. T Cell Abnormalities in the Pathogenesis of Systemic Lupus Erythematosus: an Update. Curr Rheumatol Rep 2021; 23:12. [PMID: 33512577 DOI: 10.1007/s11926-020-00978-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus is a complex disease with broad spectrum of clinical manifestations. In addition to abnormal B cell responsive leading to autoantibody production, various T cells also play different roles in promoting systemic autoimmunity and end organ damage. We aim to provide a review on recent developments in how abnormalities in different T cells subsets contribute to systemic lupus erythematosus pathogenesis and how they inform the consideration of new promising therapeutics. RECENT FINDINGS Distinct subsets of T cells known as T follicular helper cells enable the production of pathogenic autoantibodies. Detailed understanding of the B cell helping T cell subsets should improve the performance of clinical trials targeting the cognate T:B cell interaction. CD8+ T cells play a role in peripheral tolerance and reversal of its exhausted phenotype could potentially alleviate both systemic autoimmunity and the risk of infection. Research on the abnormal lupus T cell signaling also leads to putative therapeutic targets able to restore interleukin-2 production and suppress the production of the pathogenic IL-17 cytokine. Recently, several studies have focused on dissecting T cell populations located in the damaged organs, aiming to target the pathogenic processes specific to each organ. Numerous T cell subsets play distinct roles in SLE pathogenesis and recent research in understanding abnormal signaling pathways, cellular metabolism, and environmental cues pave the way for the development of novel therapeutics.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Reijm S, Kissel T, Toes R. Checkpoints controlling the induction of B cell mediated autoimmunity in human autoimmune diseases. Eur J Immunol 2020; 50:1885-1894. [DOI: 10.1002/eji.202048820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Affiliation(s)
- S. Reijm
- Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
| | - T. Kissel
- Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
| | - R.E.M. Toes
- Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
| |
Collapse
|
28
|
Kinloch AJ, Asano Y, Mohsin A, Henry C, Abraham R, Chang A, Labno C, Wilson PC, Clark MR. Machine Learning to Quantify In Situ Humoral Selection in Human Lupus Tubulointerstitial Inflammation. Front Immunol 2020; 11:593177. [PMID: 33329582 PMCID: PMC7731665 DOI: 10.3389/fimmu.2020.593177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
In human lupus nephritis, tubulointerstitial inflammation (TII) is associated with in situ expansion of B cells expressing anti-vimentin antibodies (AVAs). The mechanism by which AVAs are selected is unclear. Herein, we demonstrate that AVA somatic hypermutation (SHM) and selection increase affinity for vimentin. Indeed, germline reversion of several antibodies demonstrated that higher affinity AVAs can be selected from both low affinity B cell germline clones and even those that are strongly reactive with other autoantigens. While we demonstrated affinity maturation, enzyme-linked immunosorbent assays (ELISAs) suggested that affinity maturation might be a consequence of increasing polyreactivity or even non-specific binding. Therefore, it was unclear if there was also selection for increased specificity. Subsequent multi-color confocal microscopy studies indicated that while TII AVAs often appeared polyreactive by ELISA, they bound selectively to vimentin fibrils in whole cells or inflamed renal tissue. Using a novel machine learning pipeline (CytoSkaler) to quantify the cellular distribution of antibody staining, we demonstrated that TII AVAs were selected for both enhanced binding and specificity in situ. Furthermore, reversion of single predicted amino acids in antibody variable regions indicated that we could use CytoSkaler to capture both negative and positive selection events. More broadly, our data suggest a new approach to assess and define antibody polyreactivity based on quantifying the distribution of binding to native and contextually relevant antigens.
Collapse
Affiliation(s)
- Andrew J. Kinloch
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Yuta Asano
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Azam Mohsin
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Carole Henry
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Rebecca Abraham
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Christine Labno
- Light Microscopy Core, University of Chicago, Chicago, IL, United States
| | - Patrick C. Wilson
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Marcus R. Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Pouw JN, Leijten EFA, van Laar JM, Boes M. Revisiting B cell tolerance and autoantibodies in seropositive and seronegative autoimmune rheumatic disease (AIRD). Clin Exp Immunol 2020; 203:160-173. [PMID: 33090496 DOI: 10.1111/cei.13542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune rheumatic diseases (AIRD) are categorized seropositive or seronegative, dependent upon the presence or absence of specific autoreactive antibodies, including rheumatoid factor and anti-citrullinated protein antibodies. Autoantibody-based diagnostics have proved helpful in patient care, not only for diagnosis but also for monitoring of disease activity and prediction of therapy responsiveness. Recent work demonstrates that AIRD patients develop autoantibodies beyond those contained in the original categorization. In this study we discuss key mechanisms that underlie autoantibody development in AIRD: defects in early B cell development, genetic variants involved in regulating B cell and T cell tolerance, environmental triggers and antigen modification. We describe how autoantibodies can directly contribute to AIRD pathogenesis through innate and adaptive immune mechanisms, eventually culminating in systemic inflammation and localized tissue damage. We conclude by discussing recent insights that suggest distinct AIRD have incorrectly been denominated seronegative.
Collapse
Affiliation(s)
- J N Pouw
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E F A Leijten
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J M van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
30
|
Rekvig OP. Autoimmunity and SLE: Factual and Semantic Evidence-Based Critical Analyses of Definitions, Etiology, and Pathogenesis. Front Immunol 2020; 11:569234. [PMID: 33123142 PMCID: PMC7573073 DOI: 10.3389/fimmu.2020.569234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
One cannot discuss anti-dsDNA antibodies and lupus nephritis without discussing the nature of Systemic lupus erythematosus (SLE). SLE is insistently described as a prototype autoimmune syndrome, with anti-dsDNA antibodies as a central biomarker and a pathogenic factor. The two entities, "SLE" and "The Anti-dsDNA Antibody," have been linked in previous and contemporary studies although serious criticism to this mutual linkage have been raised: Anti-dsDNA antibodies were first described in bacterial infections and not in SLE; later in SLE, viral and parasitic infections and in malignancies. An increasing number of studies on classification criteria for SLE have been published in the aftermath of the canonical 1982 American College of Rheumatology SLE classification sets of criteria. Considering these studies, it is surprising to observe a nearby complete absence of fundamental critical/theoretical discussions aimed to explain how and why the classification criteria are linked in context of etiology, pathogenicity, or biology. This study is an attempt to prioritize critical comments on the contemporary definition and classification of SLE and of anti-dsDNA antibodies in context of lupus nephritis. Epidemiology, etiology, pathogenesis, and measures of therapy efficacy are implemented as problems in the present discussion. In order to understand whether or not disparate clinical SLE phenotypes are useful to determine its basic biological processes accounting for the syndrome is problematic. A central problem is discussed on whether the clinical role of anti-dsDNA antibodies from principal reasons can be accepted as a biomarker for SLE without clarifying what we define as an anti-dsDNA antibody, and in which biologic contexts the antibodies appear. In sum, this study is an attempt to bring to the forum critical comments on the contemporary definition and classification of SLE, lupus nephritis and anti-dsDNA antibodies. Four concise hypotheses are suggested for future science at the end of this analytical study.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Fürst Medical Laboratory, Oslo, Norway
| |
Collapse
|
31
|
Tay SH, Celhar T, Fairhurst A. Low-Density Neutrophils in Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:1587-1595. [PMID: 32524751 PMCID: PMC7590095 DOI: 10.1002/art.41395] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) display increased numbers of immature neutrophils in the blood, but the exact role of these immature neutrophils is unclear. Neutrophils that sediment within the peripheral blood mononuclear cell fraction after density centrifugation of blood are generally defined as low-density neutrophils (LDNs). Far beyond antimicrobial functions, LDNs are emerging as decision-shapers during innate and adaptive immune responses. Traditionally, neutrophils have been viewed as a homogeneous population. However, the various LDN populations identified in SLE to date are heterogeneously composed of mixed populations of activated mature neutrophils and immature neutrophils at various stages of differentiation. Controversy also surrounds the role of LDNs in SLE in terms of whether they are proinflammatory or polymorphonuclear myeloid-derived suppressor cells. It is clear that LDNs in SLE can secrete increased levels of type I interferon (IFN) and that they contribute to the cycle of inflammation and tissue damage. They readily form neutrophil extracellular traps, exposing modified autoantigens and oxidized mitochondrial DNA, which contribute to autoantibody production and type I IFN signaling, respectively. Importantly, the ability of LDNs in SLE to perform canonical neutrophil functions is polarized, based on mature CD10+ and immature CD10- neutrophils. Although this field is still relatively new, multiomic approaches have advanced our understanding of the diverse origins, phenotype, and function of LDNs in SLE. This review updates the literature on the origin and nature of LDNs, their distinctive features, and their biologic roles in the immunopathogenesis and end-organ damage in SLE.
Collapse
Affiliation(s)
- Sen Hee Tay
- National University Hospital Yong Loo Lin School of MedicineInstitute for Molecular and Cellular Biology, Agency for Science, Technology and ResearchSingapore
| | - Teja Celhar
- Singapore Immunology NetworkAgency for Science, Technology and ResearchSingapore
| | - Anna‐Marie Fairhurst
- Institute for Molecular and Cellular BiologyAgency for Science, Technology and ResearchUniversity of Singapore Yong Loo Lin School of MedicineSingapore
| |
Collapse
|
32
|
Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging Concepts and Technologies in Vaccine Development. Front Immunol 2020; 11:583077. [PMID: 33101309 PMCID: PMC7554600 DOI: 10.3389/fimmu.2020.583077] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Natalie Kirk
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
- Comparative Molecular Biosciences Graduate Program, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota Twin Cities, St. Paul, MN, United States
| |
Collapse
|
33
|
Jani PK, Kubagawa H, Melchers F. A rheostat sets B-cell receptor repertoire selection to distinguish self from non-self. Curr Opin Immunol 2020; 67:42-49. [PMID: 32916645 DOI: 10.1016/j.coi.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
In bone marrow VDJ-recombination continuously generates original repertoires of immature B cells expressing IgM-B cell receptor (BcR), in which each cell recognizes the wide variety of self and non-self antigens with an individually different spectrum of avidities. High avidity self-reactive B cells try to edit their BcRs by secondary or multiple VL-rearrangements to JL-rearrangements. If they do not manage to change their self reactivity, they are deleted by apoptosis. Low avidity self-reactive B cells are anergized, while B cells with no avidity to self are ignored. A rheostat crosslinking antigen-binding BcRs, self antigen complexed with pentameric IgM and Fcμ-receptor monitors high, low or no binding. PI3K and PTEN are the effectors of this self antigen-sensing device. In mature B cells this rheostat continues to function in the activation of resting B cells by foreign antigens which crosslink BcR, antigen and pentameric IgM with Fcμ-receptors.
Collapse
Affiliation(s)
- Peter K Jani
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
34
|
Lou H, Wojciak-Stothard B, Ruseva MM, Cook HT, Kelleher P, Pickering MC, Mongkolsapaya J, Screaton GR, Xu XN. Autoantibody-dependent amplification of inflammation in SLE. Cell Death Dis 2020; 11:729. [PMID: 32908129 PMCID: PMC7481301 DOI: 10.1038/s41419-020-02928-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Anti-double stranded DNA antibodies (anti-dsDNA) are a hallmark of SLE but their role in disease pathogenesis is not fully resolved. Anti-dsDNA in serum are highly heterogeneous therefore in this study, we aimed to dissect the functional specificities of anti-dsDNA using a panel of human monoclonal antibodies (humAbs) generated from patients with active lupus nephritis. A total of 46 ANA reactive humAbs were isolated and divided into four broad classes based on their reactivity to histones, DNA and Crithidia. Functional analysis indicated that one subclass of antibodies bound strongly to decondensed DNA areas in neutrophil extracellular traps (NETs) and protected NETs from nuclease digestion, similar to the sera from active SLE patients. In addition, these anti-dsDNA antibodies could stimulate type I interferon responses in mononuclear phagocytic cells, or NF-kB activity in endothelial cells, by uptake of NETs-anti-NETs immune complexes and subsequently trigging inflammatory responses in an Fc-gamma receptor (Fcg-R)-dependant manner. Together our data suggest that only a subset of anti-dsDNA antibodies is capable to amplify inflammatory responses by deposit in the nephritic kidney in vivo, protecting NETs digestion as well as uptake of NETs immune complexes into Fcg-R-expressing cells in vitro.
Collapse
Affiliation(s)
- Hantao Lou
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, London, W12 0NN, UK.
- Department of Medicine, Centre for Immunology & Vaccinology, Chelsea and Westminster Hospital, Imperial College London, London, SW10 9NH, UK.
| | - Beata Wojciak-Stothard
- Department of Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, London, W12 0HS, UK
| | - Marieta M Ruseva
- Division of Immunology and Inflammation, Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK
| | - H Terence Cook
- Division of Immunology and Inflammation, Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK
| | - Peter Kelleher
- Department of Medicine, Centre for Immunology & Vaccinology, Chelsea and Westminster Hospital, Imperial College London, London, SW10 9NH, UK
- Department of Infection and Immunity, Charing Cross Hospital North West London Pathology, London, W6 8RF, UK
| | - Matthew C Pickering
- Division of Immunology and Inflammation, Centre for Complement and Inflammation Research, Imperial College London, London, W12 0NN, UK
| | - Juthathip Mongkolsapaya
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, London, W12 0NN, UK
- Division of Medical Sciences, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DU, UK
| | - Gavin R Screaton
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, London, W12 0NN, UK
- Division of Medical Sciences, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DU, UK
| | - Xiao-Ning Xu
- Department of Medicine, Centre for Immunology & Vaccinology, Chelsea and Westminster Hospital, Imperial College London, London, SW10 9NH, UK.
| |
Collapse
|
35
|
Siu JH, Motallebzadeh R, Pettigrew GJ. Humoral autoimmunity after solid organ transplantation: Germinal ideas may not be natural. Cell Immunol 2020; 354:104131. [DOI: 10.1016/j.cellimm.2020.104131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
36
|
Meidan E, Li H, Pan W, Kono M, Yu S, Kyttaris VC, Ioannidis C, Rodriguez Rodriguez N, Crispin JC, Apostolidis SA, Lee P, Manis J, Sharabi A, Tsokos MG, Tsokos GC. Serine/threonine phosphatase PP2A is essential for optimal B cell function. JCI Insight 2020; 5:130655. [PMID: 32161189 PMCID: PMC7141385 DOI: 10.1172/jci.insight.130655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/12/2020] [Indexed: 12/28/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase, has been shown to control T cell function. We found that in vitro-activated B cells and B cells from various lupus-prone mice and patients with systemic lupus erythematosus display increased PP2A activity. To understand the contribution of PP2A to B cell function, we generated a Cd19CrePpp2r1afl/fl (flox/flox) mouse which lacks functional PP2A only in B cells. Flox/flox mice displayed reduced spontaneous germinal center formation and decreased responses to T cell-dependent and T-independent antigens, while their B cells responded poorly in vitro to stimulation with an anti-CD40 antibody or CpG in the presence of IL-4. Transcriptome and metabolome studies revealed altered nicotinamide adenine dinucleotide (NAD) and purine/pyrimidine metabolism and increased expression of purine nucleoside phosphorylase in PP2A-deficient B cells. Our results demonstrate that PP2A is required for optimal B cell function and may contribute to increased B cell activity in systemic autoimmunity.
Collapse
Affiliation(s)
- Esra Meidan
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Michihito Kono
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Shuilian Yu
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Vasileios C. Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Christina Ioannidis
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Noe Rodriguez Rodriguez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Jose C. Crispin
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Sokratis A. Apostolidis
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - John Manis
- Division of Transfusion Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Amir Sharabi
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| |
Collapse
|
37
|
Cotzomi E, Stathopoulos P, Lee CS, Ritchie AM, Soltys JN, Delmotte FR, Oe T, Sng J, Jiang R, Ma AK, Vander Heiden JA, Kleinstein SH, Levy M, Bennett JL, Meffre E, O'Connor KC. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 2020; 142:1598-1615. [PMID: 31056665 DOI: 10.1093/brain/awz106] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 11/12/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) constitute rare autoimmune disorders of the CNS that are primarily characterized by severe inflammation of the spinal cord and optic nerve. Approximately 75% of NMOSD patients harbour circulating pathogenic autoantibodies targeting the aquaporin-4 water channel (AQP4). The source of these autoantibodies remains unclear, but parallels between NMOSD and other autoantibody-mediated diseases posit compromised B cell tolerance checkpoints as common underlying and contributing factors. Using a well established assay, we assessed tolerance fidelity by creating recombinant antibodies from B cell populations directly downstream of each checkpoint and testing them for polyreactivity and autoreactivity. We examined a total of 863 recombinant antibodies. Those derived from three anti-AQP4-IgG seropositive NMOSD patients (n = 130) were compared to 733 antibodies from 15 healthy donors. We found significantly higher frequencies of poly- and autoreactive new emigrant/transitional and mature naïve B cells in NMOSD patients compared to healthy donors (P-values < 0.003), thereby identifying defects in both central and peripheral B cell tolerance checkpoints in these patients. We next explored whether pathogenic NMOSD anti-AQP4 autoantibodies can originate from the pool of poly- and autoreactive clones that populate the naïve B cell compartment of NMOSD patients. Six human anti-AQP4 autoantibodies that acquired somatic mutations were reverted back to their unmutated germline precursors, which were tested for both binding to AQP4 and poly- or autoreactivity. While the affinity of mature autoantibodies against AQP4 ranged from modest to strong (Kd 15.2-559 nM), none of the germline revertants displayed any detectable binding to AQP4, revealing that somatic hypermutation is required for the generation of anti-AQP4 autoantibodies. However, two (33.3%) germline autoantibody revertants were polyreactive and four (66.7%) were autoreactive, suggesting that pathogenic anti-AQP4 autoantibodies can originate from the pool of autoreactive naïve B cells, which develops as a consequence of impaired early B cell tolerance checkpoints in NMOSD patients.
Collapse
Affiliation(s)
- Elizabeth Cotzomi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Casey S Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Alanna M Ritchie
- Departments of Neurology and Ophthalmology and Neuroscience Program, University of Colorado, Denver, CO, USA
| | - John N Soltys
- Departments of Neurology and Ophthalmology and Neuroscience Program, University of Colorado, Denver, CO, USA
| | - Fabien R Delmotte
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tyler Oe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Joel Sng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anthony K Ma
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Levy
- Department of Neurology, Johns Hopkins, School of Medicine, Baltimore, MD, USA
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology and Neuroscience Program, University of Colorado, Denver, CO, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Zhu J, Hay AN, Potter AA, Richwine MW, Sproule T, LeRoith T, Wilson J, Hasham MG, Roopenian DC, Leeth CM. Abrogated AID Function Prolongs Survival and Diminishes Renal Pathology in the BXSB Mouse Model of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2020; 204:1091-1100. [PMID: 31988182 DOI: 10.4049/jimmunol.1900501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022]
Abstract
Almost a decade has passed since the approval of belimumab, an mAb directed against B lymphocyte stimulation and the first targeted therapy approved for systemic lupus erythematous (SLE) in over 50 y. Although well tolerated, the efficacy of belimumab remains limited and is not labeled for patients suffering from nephritis, the leading cause of patient mortality. We sought to explore alternative targets of autoreactive B lymphocytes through manipulation of affinity maturation. The BXSB/MpJ mouse, a well-established model of human SLE, develops elevated antinuclear Abs and immune complex-mediated nephritis along with other manifestations of SLE-like disease. To limit interfering with critical background genetics, we used CRISPR-Cas9 to disrupt activation-induced cytidine deaminase (AID; Aicda) directly in BXSB zygotes. Homozygous null mice demonstrated significantly prolonged survival compared with wild-type. Although mice continued to develop plasma cells, splenic follicular structure was restored, and renal pathology was reduced. Mice developed expanded germinal center B lymphocyte populations as in other models of AID deficiency as well as increased populations of CD73+ B lymphocytes. Treatment with the small molecule inhibitor of RAD51, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, resulted in minimal changes in disease markers in BXSB mice. The prolonged survival in AID-deficient BXSB mice appears attributed primarily to the reduced renal pathology, warranting further exploration, as current therapeutics targeting lupus nephritis are limited and, thus, in great demand.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Alayna N Hay
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Ashley A Potter
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Madison W Richwine
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | | | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - John Wilson
- The Jackson Laboratory, Bar Harbor, ME 04609; and
| | | | | | - Caroline M Leeth
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
| |
Collapse
|
39
|
Ueno H. The IL-12-STAT4 axis in the pathogenesis of human systemic lupus erythematosus. Eur J Immunol 2019; 50:10-16. [PMID: 31762023 DOI: 10.1002/eji.201948134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/05/2019] [Indexed: 12/28/2022]
Abstract
Generation of autoantibodies is a hallmark of systemic lupus erythematosus (SLE). As demonstrated in a number of lupus mouse models, recent evidence suggests that both GC and extrafollicular pathways contribute to the generation of autoantibodies also in human SLE, and that CD11c+ IgD- CD27- (double negative:DN) B cells play a central role in the latter pathway. In this mini-review, the author will first briefly summarize the features of CD11c+ DN B cells in human SLE, and discuss how the IL-12-STAT4 axis might contribute to the generation of autoantibodies in SLE. In addition, various types of CD4+ helper T cell subsets promoting the generation of autoantibodies in SLE will be described, and finally it will be discussed how these recent discoveries contribute to understanding of SLE pathogenesis and treatment of SLE patients.
Collapse
Affiliation(s)
- Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Immunology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Institute for the Advanced Study of Human Biology, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
40
|
Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol 2019; 10:2061. [PMID: 31681256 PMCID: PMC6803437 DOI: 10.3389/fimmu.2019.02061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
FcγRIIb is the only inhibitory Fc receptor and controls many aspects of immune and inflammatory responses. The observation 19 years ago that Fc γ RIIb -/- mice generated by gene targeting in 129 derived ES cells developed severe lupus like disease when backcrossed more than 7 generations into C57BL/6 background initiated extensive research on the functional understanding of this strong autoimmune phenotype. The genomic region in the distal part of Chr1 both in human and mice in which the Fc γ R gene cluster is located shows a high level of complexity in relation to the susceptibility to SLE. Specific haplotypes of closely linked genes including the Fc γ RIIb and Slamf genes are associated with increased susceptibility to SLE both in mice and human. Using forward and reverse genetic approaches including in human GWAS and in mice congenic strains, KO mice (germline and cell type specific, on different genetic background), knockin mice, overexpressing transgenic mice combined with immunological models such as adoptive transfer of B cells from Ig transgenic mice the involved genes and the causal mutations and their associated functional alterations were analyzed. In this review the results of this 19 years extensive research are discussed with a focus on (genetically modified) mouse models.
Collapse
Affiliation(s)
- J Sjef Verbeek
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Hiroyuki Nishimura
- Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| |
Collapse
|
41
|
Burnett DL, Reed JH, Christ D, Goodnow CC. Clonal redemption and clonal anergy as mechanisms to balance B cell tolerance and immunity. Immunol Rev 2019; 292:61-75. [DOI: 10.1111/imr.12808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Deborah L. Burnett
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- St Vincent's Clinical School UNSW Sydney Darlinghurst NSW Australia
| | - Joanne H. Reed
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- St Vincent's Clinical School UNSW Sydney Darlinghurst NSW Australia
| | - Daniel Christ
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- St Vincent's Clinical School UNSW Sydney Darlinghurst NSW Australia
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- St Vincent's Clinical School UNSW Sydney Darlinghurst NSW Australia
| |
Collapse
|
42
|
Lin L, Moran TP, Peng B, Yang J, Culton DA, Che H, Jiang S, Liu Z, Geng S, Zhang Y, Diaz LA, Qian Y. Walnut antigens can trigger autoantibody development in patients with pemphigus vulgaris through a "hit-and-run" mechanism. J Allergy Clin Immunol 2019; 144:720-728.e4. [PMID: 31071340 PMCID: PMC6742533 DOI: 10.1016/j.jaci.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Environmental factors, as well as genetic predisposition, are known to be critical for the development of autoimmunity. However, the environmental agents that trigger autoimmune responses have remained elusive. One possible explanation is the "hit-and-run" mechanism in which the inciting antigens that initiate autoimmune responses are not present at the time of overt autoimmune disease. OBJECTIVE After our previous findings that some allergens can incite autoimmune responses, we investigated the potential role of environmental allergens in triggering autoantibody development in patients with an autoimmune skin disease, pemphigus vulgaris (PV). METHODS Revertant/germline mAbs (with mutations on variable regions of heavy and light chains reverted to germline forms) of 8 anti-desmoglein (Dsg) 3 pathogenic mAbs from patients with PV were tested for reactivity against a panel of possible allergens, including insects, pollens, epithelia, fungi, and food antigens. RESULTS All the PV germline mAbs were reactive to antigens from walnut, including the well-known allergen Jug r 2 and an uncharacterized 85-kDa protein component. Sera from patients with PV contained significantly greater levels of anti-Dsg3 autoantibodies than walnut-specific antibodies, suggesting that the autoreactive B-cell response in patients with PV might be initially triggered by walnut antigens but is subsequently driven by Dsg3. CONCLUSION Our findings suggest that walnut antigens/allergens can initiate autoantibody development in patients with PV through a "hit-and-run" mechanism. The revertant/germline mAb approach might provide a paradigm for the etiological study of other allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Lan Lin
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Timothy P Moran
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bin Peng
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Jinsheng Yang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Western Regional Research Center, US Department of Agriculture, Albany, Calif
| | - Songsong Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Western Regional Research Center, US Department of Agriculture, Albany, Calif
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Yuzhu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
43
|
Kiss MG, Ozsvár-Kozma M, Porsch F, Göderle L, Papac-Miličević N, Bartolini-Gritti B, Tsiantoulas D, Pickering MC, Binder CJ. Complement Factor H Modulates Splenic B Cell Development and Limits Autoantibody Production. Front Immunol 2019; 10:1607. [PMID: 31354740 PMCID: PMC6637296 DOI: 10.3389/fimmu.2019.01607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Complement factor H (CFH) has a pivotal role in regulating alternative complement activation through its ability to inhibit the cleavage of the central complement component C3, which links innate and humoral immunity. However, insights into the role of CFH in B cell biology are limited. Here, we demonstrate that deficiency of CFH in mice leads to altered splenic B cell development characterized by the accumulation of marginal zone (MZ) B cells. Furthermore, B cells in Cfh−/− mice exhibit enhanced B cell receptor (BCR) signaling as evaluated by increased levels of phosphorylated Bruton's tyrosine kinase (pBTK) and phosphorylated spleen tyrosine kinase (pSYK). We show that enhanced BCR activation is associated with uncontrolled C3 consumption in the spleen and elevated complement receptor 2 (CR2, also known as CD21) levels on the surface of mature splenic B cells. Moreover, aged Cfh−/− mice developed splenomegaly with distorted spleen architecture and spontaneous B cell-dependent autoimmunity characterized by germinal center hyperactivity and a marked increase in anti-double stranded DNA (dsDNA) antibodies. Taken together, our data indicate that CFH, through its function as a complement repressor, acts as a negative regulator of BCR signaling and limits autoimmunity.
Collapse
Affiliation(s)
- Máté G Kiss
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mária Ozsvár-Kozma
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florentina Porsch
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura Göderle
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolina Papac-Miličević
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Barbara Bartolini-Gritti
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dimitrios Tsiantoulas
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Christoph J Binder
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
44
|
Rekvig OP. The dsDNA, Anti-dsDNA Antibody, and Lupus Nephritis: What We Agree on, What Must Be Done, and What the Best Strategy Forward Could Be. Front Immunol 2019; 10:1104. [PMID: 31156647 PMCID: PMC6529578 DOI: 10.3389/fimmu.2019.01104] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
This study aims to understand what lupus nephritis is, its origin, clinical context, and its pathogenesis. Truly, we encounter many conceptual and immanent tribulations in our attempts to search for the pathogenesis of this disease—and how to explain its assumed link to SLE. Central in the present landscape stay a short history of the early studies that substantiated the structures of isolated or chromatin-assembled mammalian dsDNA, and its assumed, highly controversial role in induction of anti-dsDNA antibodies. Arguments discussed here may provoke the view that anti-dsDNA antibodies are not what we think they are, as they may be antibodies operational in quite different biological contexts, although they bind dsDNA by chance. This may not mean that these antibodies are not pathogenic but they do not inform how they are so. This theoretical study centers the content around the origin and impact of extra-cellular DNA, and if dsDNA has an effect on the adaptive immune system. The pathogenic potential of chromatin-anti-dsDNA antibody interactions is limited to incite lupus nephritis and dermatitis which may be linked in a common pathogenic process. These are major criteria in SLE classification systems but are not shared with other defined manifestations in SLE, which may mean that they are their own disease entities, and not integrated in SLE. Today, the models thought to explain lupus nephritis are divergent and inconsistent. We miss a comprehensive perspective to try the different models against each other. To do this, we need to take all elements of the syndrome SLE into account. This can only be achieved by concentrating on the interactions between autoimmunity, immunopathology, deviant cell death and necrotic chromatin in context of elements of system science. System science provides a framework where data generated by experts can be compared, and tested against each other. This approach open for consensus on central elements making up “lupus nephritis” to separate what we agree on and how to understand the basis for conflicting models. This has not been done yet in a systematic context.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
45
|
Kongpachith S, Lingampalli N, Ju CH, Blum LK, Lu DR, Elliott SE, Mao R, Robinson WH. Affinity Maturation of the Anti-Citrullinated Protein Antibody Paratope Drives Epitope Spreading and Polyreactivity in Rheumatoid Arthritis. Arthritis Rheumatol 2019; 71:507-517. [PMID: 30811898 DOI: 10.1002/art.40760] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/11/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA). While epitope spreading of the serum ACPA response is believed to contribute to RA pathogenesis, little is understood regarding how this phenomenon occurs. This study was undertaken to analyze the antibody repertoires of individuals with RA to gain insight into the mechanisms leading to epitope spreading of the serum ACPA response in RA. METHODS Plasmablasts from the blood of 6 RA patients were stained with citrullinated peptide tetramers to identify ACPA-producing B cells by flow cytometry. Plasmablasts were single-cell sorted and sequenced to obtain antibody repertoires. Sixty-nine antibodies were recombinantly expressed, and their anticitrulline reactivities were characterized using a cyclic citrullinated peptide enzyme-linked immuosorbent assay and synovial antigen arrays. Thirty-six mutated antibodies designed either to represent ancestral antibodies or to test paratope residues critical for binding, as determined from molecular modeling studies, were also tested for anticitrulline reactivities. RESULTS Clonally related monoclonal ACPAs and their shared ancestral antibodies each exhibited differential reactivity against citrullinated antigens. Molecular modeling identified residues within the complementarity-determining region loops and framework regions predicted to be important for citrullinated antigen binding. Affinity maturation resulted in mutations of these key residues, which conferred binding to different citrullinated epitopes and/or increased polyreactivity to citrullinated epitopes. CONCLUSION These results demonstrate that the different somatic hypermutations accumulated by clonally related B cells during affinity maturation alter the antibody paratope to mediate epitope spreading and polyreactivity of the ACPA response in RA, suggesting that these may be key properties that likely contribute to the pathogenicity of ACPAs.
Collapse
Affiliation(s)
- Sarah Kongpachith
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Nithya Lingampalli
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Chia-Hsin Ju
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Lisa K Blum
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Daniel R Lu
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Serra E Elliott
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Rong Mao
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - William H Robinson
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
46
|
Hale M, Rawlings DJ, Jackson SW. The long and the short of it: insights into the cellular source of autoantibodies as revealed by B cell depletion therapy. Curr Opin Immunol 2018; 55:81-88. [PMID: 30390507 DOI: 10.1016/j.coi.2018.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
High titers of pathogenic autoantibodies are a hallmark of many autoimmune diseases. However, much remains unknown about the self-reactive plasma cells that are key mediators of disease. We propose a model in which the varying efficacy of precursor B cell depletion for the treatment of humoral autoimmunity can be explained by differences in the relative contributions of pathogenic antibodies by short-lived versus long-lived plasma cells. Beyond therapeutic considerations, this model suggests that we can infer the cellular source of disease-associated autoantibodies by the durability of serum titers following B cell depletion. Data from clinical trials and animal models across different autoimmune diseases may provide useful insights into the lifespan, lifestyle and fate of autoreactive plasma cells.
Collapse
Affiliation(s)
- Malika Hale
- Seattle Children's Research Institute, Seattle, WA, United States
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA, United States; Department of Immunology, University of Washington, School of Medicine, United States; Department of Pediatrics, University of Washington, School of Medicine, United States
| | - Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, United States; Department of Pediatrics, University of Washington, School of Medicine, United States.
| |
Collapse
|
47
|
Weisenburger T, von Neubeck B, Schneider A, Ebert N, Schreyer D, Acs A, Winkler TH. Epistatic Interactions Between Mutations of Deoxyribonuclease 1-Like 3 and the Inhibitory Fc Gamma Receptor IIB Result in Very Early and Massive Autoantibodies Against Double-Stranded DNA. Front Immunol 2018; 9:1551. [PMID: 30026744 PMCID: PMC6041390 DOI: 10.3389/fimmu.2018.01551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/22/2018] [Indexed: 01/02/2023] Open
Abstract
Autoantibodies against double-stranded DNA (anti-dsDNA) are a hallmark of systemic lupus erythematosus (SLE). It is well documented that anti-dsDNA reactive B lymphocytes are normally controlled by immune self-tolerance mechanisms operating at several levels. The evolution of high levels of IgG anti-dsDNA in SLE is dependent on somatic hypermutation and clonal selection, presumably in germinal centers from non-autoreactive B cells. Twin studies as well as genetic studies in mice indicate a very strong genetic contribution for the development of anti-dsDNA as well as SLE. Only few single gene defects with a monogenic Mendelian inheritance have been described so far that are directly responsible for the development of anti-dsDNA and SLE. Recently, among other mutations, rare null-alleles for the deoxyribonuclease 1 like 3 (DNASE1L3) and the Fc gamma receptor IIB (FCGR2B) have been described in SLE patients and genetic mouse models. Here, we demonstrate that double Dnase1l3- and FcgR2b-deficient mice in the C57BL/6 background exhibit a very early and massive IgG anti-dsDNA production. Already at 10 weeks of age, autoantibody production in double-deficient mice exceeds autoantibody levels of diseased 9-month-old NZB/W mice, a long established multigenic SLE mouse model. In single gene-deficient mice, autoantibody levels were moderately elevated at early age of the mice. Premature autoantibody production was accompanied by a spontaneous hyperactivation of germinal centers, early expansions of T follicular helper cells, and elevated plasmablasts in the spleen. Anti-dsDNA hybridomas generated from double-deficient mice show significantly elevated numbers of arginines in the CDR3 regions of the heavy-chain as well as clonal expansions and diversification of B cell clones with moderate numbers of somatic mutations. Our findings show a strong epistatic interaction of two SLE-alleles which prevent early and high-level anti-dsDNA autoantibody production. Both genes apparently synergize to keep in check excessive germinal center reactions evolving into IgG anti-dsDNA antibody producing B cells.
Collapse
Affiliation(s)
- Thomas Weisenburger
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Bettina von Neubeck
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Schneider
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Nadja Ebert
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Schreyer
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Acs
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
48
|
Muñoz LE, Leppkes M, Fuchs TA, Hoffmann M, Herrmann M. Missing in action-The meaning of cell death in tissue damage and inflammation. Immunol Rev 2018; 280:26-40. [PMID: 29027227 DOI: 10.1111/imr.12569] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Billions of cells die every day in higher organisms as part of the normal process of tissue homeostasis. During special conditions like in development, acute infections, mechanical injuries, and immunity, cell death is a common denominator and it exerts profound effects in the outcome of these scenarios. To prevent the accumulation of aged, superfluous, infected, damaged and dead cells, professional phagocytes act in a rapid and efficient manner to clear the battle field and avoid spread of the destruction. Neutrophils are the most abundant effector immune cells that extravasate into tissues and can turn injured tissues into gory battle fields. In peace times, neutrophils tend to patrol tissues without provoking inflammatory reactions. We discuss in this review actual and forgotten knowledge about the meaning of cell death during homeostatic processes and drive the attention to the importance of the action of neutrophils during patrolling and for the maintenance or recovery of the homeostatic state once the organism gets attacked or injured, respectively. In this fashion, we disclose several disease conditions that arise as collateral damage of physiological responses to death.
Collapse
Affiliation(s)
- Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Department of Internal Medicine 1 - Gastroenterology, Pulmonology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias A Fuchs
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
49
|
Fan W, Demers AJ, Wan Y, Li Q. Altered Ratio of T Follicular Helper Cells to T Follicular Regulatory Cells Correlates with Autoreactive Antibody Response in Simian Immunodeficiency Virus-Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018; 200:3180-3187. [PMID: 29610141 DOI: 10.4049/jimmunol.1701288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/04/2018] [Indexed: 01/10/2023]
Abstract
Individuals with chronic HIV-1 infection have an increased prevalence of autoreactive Abs. Many of the isolated HIV broadly neutralizing Abs from these individuals are also autoreactive. However, the underlying mechanism(s) that produce these autoreactive broadly neutralizing Abs remains largely unknown. The highly regulated coordination among B cells, T follicular helper (TFH) cells, and T follicular regulatory (TFR) cells in germinal centers (GCs) of peripheral lymphatic tissues (LTs) is essential for defense against pathogens while also restricting autoreactive responses. We hypothesized that an altered ratio of TFH/TFR cells in the GC contributes to the increased prevalence of autoreactive Abs in chronic HIV infection. We tested this hypothesis using a rhesus macaque (RM) SIV model. We measured the frequency of TFH cells, TFR cells, and GC B cells in LTs and anti-dsDNA and anti-phospholipid Abs from Indian RMs, with and without SIV infection. We found that the frequency of anti-dsDNA and anti-phospholipid Abs was much higher in chronically infected RMs (83.3% [5/6] and 66.7% [4/6]) than in acutely infected RMs (33.3% [2/6] and 18.6% [1/6]) and uninfected RMs (0% [0/6] and 18.6% [1/6]). The increased ratio of TFH/TFR cells in SIV infection correlated with anti-dsDNA and anti-phospholipid autoreactive Ab levels, whereas the frequency of TFR cells alone did not correlate with the levels of autoreactive Abs. Our results provide direct evidence that the ratio of TFH/TFR cells in LTs is critical for regulating autoreactive Ab production in chronic SIV infection and possibly, by extension, in chronic HIV-1 infection.
Collapse
Affiliation(s)
- Wenjin Fan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Andrew James Demers
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Yanmin Wan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
50
|
Rekvig OP. Systemic Lupus Erythematosus: Definitions, Contexts, Conflicts, Enigmas. Front Immunol 2018; 9:387. [PMID: 29545801 PMCID: PMC5839091 DOI: 10.3389/fimmu.2018.00387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an inadequately defined syndrome. Etiology and pathogenesis remain largely unknown. SLE is on the other hand a seminal syndrome that has challenged immunologists, biologists, genetics, and clinicians to solve its nature. The syndrome is characterized by multiple, etiologically unlinked manifestations. Unexpectedly, they seem to occur in different stochastically linked clusters, although single gene defects may promote a smaller spectrum of symptoms/criteria typical for SLE. There is no known inner coherence of parameters (criteria) making up the disease. These parameters are, nevertheless, implemented in The American College of Rheumatology (ACR) and The Systemic Lupus Collaborating Clinics (SLICC) criteria to classify SLE. Still, SLE is an abstraction since the ACR or SLICC criteria allow us to define hundreds of different clinical SLE phenotypes. This is a major point of the present discussion and uses "The anti-dsDNA antibody" as an example related to the problematic search for biomarkers for SLE. The following discussion will show how problematic this is: the disease is defined through non-coherent classification criteria, its complexity is recognized and accepted, its pathogenesis is plural and poorly understood. Therapy is focused on dominant symptoms or organ manifestations, and not on the syndrome itself. From basic scientific evidences, we can add substantial amount of data that are not sufficiently considered in clinical medicine, which may change the paradigms linked to what "The Anti-DNA antibody" is-and is not-in context of the imperfectly defined syndrome SLE.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|