1
|
Li Y, Liu Y, Yang B, Li G, Chu H. Polarizable atomic multipole-based force field for cholesterol. J Biomol Struct Dyn 2024; 42:7747-7757. [PMID: 37565356 DOI: 10.1080/07391102.2023.2245045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Cholesterol is one of the essential component of lipid in membrane. We present a polarizable atomic multipole force field (FF) for the molecular dynamic simulation of cholesterol. The FF building process follows the computational framework as the atomic multipole optimized energetics for biomolecular applications (AMOEBA) model. In this framework, the electronics parameters, including atomic monopole moments, dipole moments, and quadrupole moments calculated from ab initio calculations in the gas phase, are applied to represent the charge distribution. Furthermore, the many-body polarization is modeled by following the same pattern of distributed atomic polarizabilities. Then, the bilayers composed of two typical phospholipid molecules, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in a range of different cholesterol concentrations are built and implemented by molecular dynamics (MD) simulations based on the proposed polarizable FF. The simulation results are statistically analyzed to validate the feasibility of the proposed FF. The structural properties of the bilayers are calculated to compare with the related experimental values. The MD values show the same trend of experimental values changes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| | - Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| | - Boya Yang
- Dalian Municipal Central Hospital, Liaoning, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, China
| |
Collapse
|
2
|
Fenton NM, Qian L, Paine EG, Sharpe LJ, Brown AJ. A paREDOX in the control of cholesterol biosynthesis: Does the NADPH sensor and E3 ubiquitin ligase MARCHF6 protect mammalian cells during oxidative stress by controlling sterol biosynthesis? Bioessays 2024; 46:e2400073. [PMID: 38760877 DOI: 10.1002/bies.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Sterols and the reductant nicotinamide adenine dinucleotide phosphate (NADPH), essential for eukaryotic life, arose because of, and as an adaptation to, rising levels of molecular oxygen (O2). Hence, the NADPH and O2-intensive process of sterol biosynthesis is inextricably linked to redox status. In mammals, cholesterol biosynthesis is exquisitely regulated post-translationally by multiple E3 ubiquitin ligases, with membrane associated Really Interesting New Gene (RING) C3HC4 finger 6 (MARCHF6) degrading at least six enzymes in the pathway. Intriguingly, all these MARCHF6-dependent enzymes require NADPH. Moreover, MARCHF6 is activated by NADPH, although what this means for control of cholesterol synthesis is unclear. Indeed, this presents a paradox for how NADPH regulates this vital pathway, since NADPH is a cofactor in cholesterol biosynthesis and yet, low levels of NADPH should spare cholesterol biosynthesis enzymes targeted by MARCHF6 by reducing its activity. We speculate MARCHF6 helps mammalian cells adapt to oxidative stress (signified by low NADPH levels) by reducing degradation of cholesterogenic enzymes, thereby maintaining synthesis of protective cholesterol.
Collapse
Affiliation(s)
- Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lydia Qian
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Eloise G Paine
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Zhai L, Bonds AC, Smith CA, Oo H, Chou JCC, Welander PV, Dassama LMK. Novel sterol binding domains in bacteria. eLife 2024; 12:RP90696. [PMID: 38329015 PMCID: PMC10942540 DOI: 10.7554/elife.90696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Sterol lipids are widely present in eukaryotes and play essential roles in signaling and modulating membrane fluidity. Although rare, some bacteria also produce sterols, but their function in bacteria is not known. Moreover, many more species, including pathogens and commensal microbes, acquire or modify sterols from eukaryotic hosts through poorly understood molecular mechanisms. The aerobic methanotroph Methylococcus capsulatus was the first bacterium shown to synthesize sterols, producing a mixture of C-4 methylated sterols that are distinct from those observed in eukaryotes. C-4 methylated sterols are synthesized in the cytosol and localized to the outer membrane, suggesting that a bacterial sterol transport machinery exists. Until now, the identity of such machinery remained a mystery. In this study, we identified three novel proteins that may be the first examples of transporters for bacterial sterol lipids. The proteins, which all belong to well-studied families of bacterial metabolite transporters, are predicted to reside in the inner membrane, periplasm, and outer membrane of M. capsulatus, and may work as a conduit to move modified sterols to the outer membrane. Quantitative analysis of ligand binding revealed their remarkable specificity for 4-methylsterols, and crystallographic structures coupled with docking and molecular dynamics simulations revealed the structural bases for substrate binding by two of the putative transporters. Their striking structural divergence from eukaryotic sterol transporters signals that they form a distinct sterol transport system within the bacterial domain. Finally, bioinformatics revealed the widespread presence of similar transporters in bacterial genomes, including in some pathogens that use host sterol lipids to construct their cell envelopes. The unique folds of these bacterial sterol binding proteins should now guide the discovery of other proteins that handle this essential metabolite.
Collapse
Affiliation(s)
- Liting Zhai
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
| | - Amber C Bonds
- Department of Earth System Science, Stanford UniversityStanfordUnited States
| | - Clyde A Smith
- Department of Chemistry and Stanford Synchrotron Radiation Lightsource, Stanford UniversityStanfordUnited States
| | - Hannah Oo
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
| | | | - Paula V Welander
- Department of Earth System Science, Stanford UniversityStanfordUnited States
| | - Laura MK Dassama
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Department of Microbiology and Immunology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
4
|
Radkohl A, Schusterbauer V, Bernauer L, Rechberger GN, Wolinski H, Schittmayer M, Birner-Gruenberger R, Thallinger GG, Leitner E, Baeck M, Pichler H, Emmerstorfer-Augustin A. Human Sterols Are Overproduced, Stored and Excreted in Yeasts. Int J Mol Sci 2024; 25:781. [PMID: 38255855 PMCID: PMC10815178 DOI: 10.3390/ijms25020781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Sterols exert a profound influence on numerous cellular processes, playing a crucial role in both health and disease. However, comprehending the effects of sterol dysfunction on cellular physiology is challenging. Consequently, numerous processes affected by impaired sterol biosynthesis still elude our complete understanding. In this study, we made use of yeast strains that produce cholesterol instead of ergosterol and investigated the cellular response mechanisms on the transcriptome as well as the lipid level. The exchange of ergosterol for cholesterol caused the downregulation of phosphatidylethanolamine and phosphatidylserine and upregulation of phosphatidylinositol and phosphatidylcholine biosynthesis. Additionally, a shift towards polyunsaturated fatty acids was observed. While the sphingolipid levels dropped, the total amounts of sterols and triacylglycerol increased, which resulted in 1.7-fold enlarged lipid droplets in cholesterol-producing yeast cells. In addition to internal storage, cholesterol and its precursors were excreted into the culture supernatant, most likely by the action of ABC transporters Snq2, Pdr12 and Pdr15. Overall, our results demonstrate that, similarly to mammalian cells, the production of non-native sterols and sterol precursors causes lipotoxicity in K. phaffii, mainly due to upregulated sterol biosynthesis, and they highlight the different survival and stress response mechanisms on multiple, integrative levels.
Collapse
Affiliation(s)
- Astrid Radkohl
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Veronika Schusterbauer
- Bisy GmbH, 8200 Hofstaetten an der Raab, Austria
- Institute of Biomedical Informatics, Graz University of Technology, 8010 Graz, Austria
| | - Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gerald N. Rechberger
- Department of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1040 Vienna, Austria (R.B.-G.)
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1040 Vienna, Austria (R.B.-G.)
| | - Gerhard G. Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, 8010 Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria;
| | - Melanie Baeck
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Acib—Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria
| | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Acib—Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria
| |
Collapse
|
5
|
Mudalungu CM, Mokaya HO, Tanga CM. Beneficial sterols in selected edible insects and their associated antibacterial activities. Sci Rep 2023; 13:10786. [PMID: 37402875 DOI: 10.1038/s41598-023-37905-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
Edible insects are increasingly gaining popularity as research reveals multiple benefits. However, the rediscovery of natural products from insects as medicinal agents has received limited attention. This study aimed at evaluating the diversity of sterols in extracts of nine edible insects and potential antibacterial activities. Dichloromethane extracts of these insects were analyzed using gas chromatography-mass spectrometry to identify important sterols, followed by evaluation of their anti-bacterial activities. Nineteen sterols were identified with the highest recorded in African fruit beetle [Pachnoda sinuata (47.37%)], crickets [Gryllus bimaculatus (36.84%) and Scapsipedus icipe (31.58%)]. Cholesterol was the most prevalent, except in black soldier fly (Hermetia illucens). Bioactivity revealed S. icipe as the most potent extract against Escherichia coli and Bacillus subtilis whereas G. bimaculatus was highest against Methicillin-susceptible Staphylococcus aureus 25923. These findings unravels the diversity of sterols in edible insects and their possible application in food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Cynthia Muhavi Mudalungu
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya.
| | - Hosea Oginda Mokaya
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya
| |
Collapse
|
6
|
Lee AK, Wei JH, Welander PV. De novo cholesterol biosynthesis in bacteria. Nat Commun 2023; 14:2904. [PMID: 37217541 PMCID: PMC10202945 DOI: 10.1038/s41467-023-38638-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Eukaryotes produce highly modified sterols, including cholesterol, essential to eukaryotic physiology. Although few bacterial species are known to produce sterols, de novo production of cholesterol or other complex sterols in bacteria has not been reported. Here, we show that the marine myxobacterium Enhygromyxa salina produces cholesterol and provide evidence for further downstream modifications. Through bioinformatic analysis we identify a putative cholesterol biosynthesis pathway in E. salina largely homologous to the eukaryotic pathway. However, experimental evidence indicates that complete demethylation at C-4 occurs through unique bacterial proteins, distinguishing bacterial and eukaryotic cholesterol biosynthesis. Additionally, proteins from the cyanobacterium Calothrix sp. NIES-4105 are also capable of fully demethylating sterols at the C-4 position, suggesting complex sterol biosynthesis may be found in other bacterial phyla. Our results reveal an unappreciated complexity in bacterial sterol production that rivals eukaryotes and highlight the complicated evolutionary relationship between sterol biosynthesis in the bacterial and eukaryotic domains.
Collapse
Affiliation(s)
- Alysha K Lee
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Jeremy H Wei
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Michellod D, Bien T, Birgel D, Violette M, Kleiner M, Fearn S, Zeidler C, Gruber-Vodicka HR, Dubilier N, Liebeke M. De novo phytosterol synthesis in animals. Science 2023; 380:520-526. [PMID: 37141360 PMCID: PMC11139496 DOI: 10.1126/science.add7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/03/2023] [Indexed: 05/06/2023]
Abstract
Sterols are vital for nearly all eukaryotes. Their distribution differs in plants and animals, with phytosterols commonly found in plants whereas most animals are dominated by cholesterol. We show that sitosterol, a common sterol of plants, is the most abundant sterol in gutless marine annelids. Using multiomics, metabolite imaging, heterologous gene expression, and enzyme assays, we show that these animals synthesize sitosterol de novo using a noncanonical C-24 sterol methyltransferase (C24-SMT). This enzyme is essential for sitosterol synthesis in plants, but not known from most bilaterian animals. Our phylogenetic analyses revealed that C24-SMTs are present in representatives of at least five animal phyla, indicating that the synthesis of sterols common to plants is more widespread in animals than currently known.
Collapse
Affiliation(s)
- Dolma Michellod
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149, Münster, Germany
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
| | - Marlene Violette
- Department of Plant and Microbial Biology NC State University, Raleigh, NC 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology NC State University, Raleigh, NC 27695, USA
| | - Sarah Fearn
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Caroline Zeidler
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | | | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
8
|
Pereira de Sa N, Del Poeta M. Sterylglucosides in Fungi. J Fungi (Basel) 2022; 8:1130. [PMID: 36354897 PMCID: PMC9698648 DOI: 10.3390/jof8111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying biophysical properties of cell membranes and altering immunogenicity of the cells. In fungi, SGs regulate different cell pathways to help overcome oxygen and pH challenges, as well as help to accomplish cell recycling and other membrane functions. At the same time, the level of these lipids is highly controlled, especially in wild-type fungi. In addition, modulating SGs metabolism is becoming a novel tool for vaccine and antifungal development. In the present review, we bring together multiple observations to emphasize the underestimated importance of SGs for fungal cell functions.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY 11794, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
9
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
10
|
Wang S, Kai M, Duan Y, Zhou Z, Fang RH, Gao W, Zhang L. Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cell-Membrane-Coated Metal-Organic-Framework Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202203115. [PMID: 35395111 DOI: 10.1002/anie.202203115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 11/06/2022]
Abstract
Metal-organic-framework nanoparticles (MOF NPs) have been increasingly used to encapsulate therapeutic enzymes for delivery. To better interface these MOF NPs with biological systems, researchers have coated them with natural cell membranes, enabling biomimicking properties suitable for innovative biomedical applications. Herein, we report that the enzymatic activity of cell-membrane-coated MOF NPs can be significantly enhanced by reducing membrane cholesterol content. We demonstrate such cholesterol-enzymatic activity correlation using zeolitic imidazolate framework-8 MOF NPs to encapsulate catalase, horseradish peroxidase, and organophosphate hydrolase, respectively. MOF NPs coated with membranes of human red blood cells or macrophages show similar outcomes, illustrating the broad applicability of this finding. The mechanistic investigation further reveals that reducing cholesterol levels effectively enhances membrane permeability likely responsible for the increased enzymatic activity. These results also imply a facile approach to tailoring the enzymatic activity of cell-membrane-coated MOF NPs by simply tuning the membrane cholesterol level.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Mingxuan Kai
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Wang S, Kai M, Duan Y, Zhou Z, Fang RH, Gao W, Zhang L. Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cell‐Membrane‐Coated Metal‐Organic‐Framework Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Mingxuan Kai
- Department of NanoEngineering Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Yaou Duan
- Department of NanoEngineering Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Zhidong Zhou
- Department of NanoEngineering Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Ronnie H. Fang
- Department of NanoEngineering Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Weiwei Gao
- Department of NanoEngineering Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| | - Liangfang Zhang
- Department of NanoEngineering Chemical Engineering Program and Moores Cancer Center University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
12
|
Daggubati V, Raleigh DR, Sever N. Sterol regulation of developmental and oncogenic Hedgehog signaling. Biochem Pharmacol 2022; 196:114647. [PMID: 34111427 PMCID: PMC8648856 DOI: 10.1016/j.bcp.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/03/2023]
Abstract
The Hedgehog (Hh) family of lipid-modified signaling proteins directs embryonic tissue patterning and postembryonic tissue homeostasis, and dysregulated Hh signaling drives familial and sporadic cancers. Hh ligands bind to and inhibit the tumor suppressor Patched and allow the oncoprotein Smoothened (SMO) to accumulate in cilia, which in turn activates the GLI family of transcription factors. Recent work has demonstrated that endogenous cholesterol and oxidized cholesterol derivatives (oxysterols) bind and modulate SMO activity. Here we discuss the myriad sterols that activate or inhibit the Hh pathway, with emphasis on endogenous 24(S),25-epoxycholesterol and 3β,5α-dihydroxycholest-7-en-6-one, and propose models of sterol regulation of SMO. Synthetic inhibitors of SMO have long been the focus of drug development efforts. Here, we discuss the possible utility of steroidal SMO ligands or inhibitors of enzymes involved in sterol metabolism as cancer therapeutics.
Collapse
Affiliation(s)
- Vikas Daggubati
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA,Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - David R. Raleigh
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Navdar Sever
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA,Corresponding author: Navdar Sever, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, LHRRB 405, Boston, MA 02115, USA, , Telephone: (617) 432-1612
| |
Collapse
|
13
|
Steck TL, Tabei SMA, Lange Y. A basic model for cell cholesterol homeostasis. Traffic 2021; 22:471-481. [PMID: 34528339 DOI: 10.1111/tra.12816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Cells manage their cholesterol by negative feedback using a battery of sterol-responsive proteins. How these activities are coordinated so as to specify the abundance and distribution of the sterol is unclear. We present a simple mathematical model that addresses this question. It assumes that almost all of the cholesterol is associated with phospholipids in stoichiometric complexes. A small fraction of the sterol is uncomplexed and thermodynamically active. It equilibrates among the organelles, setting their sterol level according to the affinity of their phospholipids. The activity of the homeostatic proteins in the cytoplasmic membranes is then set by their fractional saturation with uncomplexed cholesterol in competition with the phospholipids. The high-affinity phospholipids in the plasma membrane (PM) are filled to near stoichiometric equivalence, giving it most of the cell sterol. Notably, the affinity of the phospholipids in the endomembranes (EMs) is lower by orders of magnitude than that of the phospholipids in the PM. Thus, the small amount of sterol in the EMs rests far below stoichiometric capacity. Simulations match a variety of experimental data. The model captures the essence of cell cholesterol homeostasis, makes coherent a diverse set of experimental findings, provides a surprising prediction and suggests new experiments.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, Iowa, USA
| | - Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
14
|
Long H, Qiu X, Cao L, Han R. Discovery of the signal pathways and major bioactive compounds responsible for the anti-hypoxia effect of Chinese cordyceps. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114215. [PMID: 34033902 DOI: 10.1016/j.jep.2021.114215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypoxia will cause an increase in the rate of fatigue and aging. Chinese cordyceps, a parasitic Thitarodes insect-Ophiocordyceps sinensis fungus complex in the Qinghai-Tibet Plateau, has long been used to ameliorate human conditions associated with aging and senescence, it is principally applied to treat fatigue, night sweating and other symptoms related to aging, and it may play the anti-aging and anti-fatigue effect by improving the body's hypoxia tolerance. AIMS OF THE STUDY The present study investigated the anti-hypoxia activity of Chinese cordyceps and explore the main corresponding signal pathways and bioactive compounds. MATERIALS AND METHODS In this study, network pharmacology analysis, molecular docking, cell and whole pharmacodynamic experiments were hired to study the major signal pathways and the bioactive compounds of Chinese cordyceps for anti-hypoxia activity. RESULTS 17 pathways which Chinese cordyceps acted on seemed to be related to the anti-hypoxia effect, and "VEGF signal pathway" was one of the most important pathway. Chinese cordyceps improved the survival rate and regulated the targets related VEGF signal pathway of H9C2 cells under hypoxia, and also had significant anti-hypoxia effects to mice. Chorioallantoic membrane model experiment showed that Chinese cordyceps and the main constituents of (9Z,12Z)-octadeca-9,12-dienoic acid and cerevisterol had significant angiogenic activity in hypoxia condition. CONCLUSION Based on the results of network pharmacology and molecular docking analysis, cell and whole pharmacodynamic experiments, promoting angiogenesis by regulating VEGF signal pathway might be one of the mechanisms of anti-hypoxia effect of Chinese cordyceps, (9Z, 12Z)-octadeca-9,12-dienoic acid and cerevisterol were considered as the major anti-hypoxia bioactive compounds in Chinese cordyceps.
Collapse
Affiliation(s)
- Hailin Long
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Xuehong Qiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
15
|
Kim DH, Triet HM, Ryu SH. Regulation of EGFR activation and signaling by lipids on the plasma membrane. Prog Lipid Res 2021; 83:101115. [PMID: 34242725 DOI: 10.1016/j.plipres.2021.101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids on the plasma membrane are not only components of the membrane biophysical structures but also regulators of receptor functions. Recently, the critical roles of lipid-protein interactions have been intensively highlighted. Epidermal growth factor receptor (EGFR) is one of the most extensively studied receptors exhibiting various lipid interactions, including interactions with phosphatidylcholine, phosphatidylserine, phosphatidylinositol phosphate, cholesterol, gangliosides, and palmitate. Here, we review recent findings on how direct interaction with these lipids regulates EGFR activation and signaling, providing unprecedented insight into the comprehensive roles of various lipids in the control of EGFR functions. Finally, the current limitations in investigating lipid-protein interactions and novel technologies to potentially overcome these limitations are discussed.
Collapse
Affiliation(s)
- Do-Hyeon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
16
|
Lasunción MA, Martínez-Botas J, Martín-Sánchez C, Busto R, Gómez-Coronado D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem Pharmacol 2021; 196:114623. [PMID: 34052188 DOI: 10.1016/j.bcp.2021.114623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.
Collapse
Affiliation(s)
- Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Covadonga Martín-Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
17
|
Ge PY, Qi YY, Qu SY, Zhao X, Ni SJ, Yao ZY, Guo R, Yang NY, Zhang QC, Zhu HX. Potential Mechanism of S. baicalensis on Lipid Metabolism Explored via Network Pharmacology and Untargeted Lipidomics. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1915-1930. [PMID: 33976541 PMCID: PMC8106469 DOI: 10.2147/dddt.s301679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
Background S. baicalensis, a traditional herb, has great potential in treating diseases associated with aberrant lipid metabolism, such as inflammation, hyperlipidemia, atherosclerosis and Alzheimer’s disease. Aim of the Study To elucidate the mechanism by which S. baicalensis modulates lipid metabolism and explore the medicinal effects of S. baicalensis at a holistic level. Materials and Methods The potential active ingredients of S. baicalensis and targets involved in regulating lipid metabolism were identified using a network pharmacology approach. Metabolomics was utilized to compare lipids that were altered after S. baicalensis treatment in order to identify significantly altered metabolites, and crucial targets and compounds were validated by molecular docking. Results Steroid biosynthesis, sphingolipid metabolism, the PPAR signaling pathway and glycerolipid metabolism were enriched and predicted to be potential pathways upon which S. baicalensis acts. Further metabolomics assays revealed 14 significantly different metabolites were identified as lipid metabolism-associated elements. After the pathway enrichment analysis of the metabolites, cholesterol metabolism and sphingolipid metabolism were identified as the most relevant pathways. Based on the results of the pathway analysis, sphingolipid and cholesterol biosynthesis and glycerophospholipid metabolism were regarded as key pathways in which S. baicalensis is involved to regulate lipid metabolism. Conclusion According to our metabolomics results, S. baicalensis may exert its therapeutic effects by regulating the cholesterol biosynthesis and sphingolipid metabolism pathways. Upon further analysis of the altered metabolites in certain pathways, agents downstream of squalene were significantly upregulated; however, the substrate of SQLE was surprisingly increased. By combining evidence from molecular docking, we speculated that baicalin, a major ingredient of S. baicalensis, may suppress cholesterol biosynthesis by inhibiting SQLE and LSS, which are important enzymes in the cholesterol biosynthesis pathway. In summary, this study provides new insights into the therapeutic effects of S. baicalensis on lipid metabolism using network pharmacology and lipidomics.
Collapse
Affiliation(s)
- Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Simoni-Nieves A, Salas-Silva S, Chávez-Rodríguez L, Escobedo-Calvario A, Desoteux M, Bucio L, Souza V, Miranda-Labra RU, Muñoz-Espinosa LE, Coulouarn C, Gutiérrez-Ruiz MC, Marquardt JU, Gomez-Quiroz LE. The Consumption of Cholesterol-Enriched Diets Conditions the Development of a Subtype of HCC with High Aggressiveness and Poor Prognosis. Cancers (Basel) 2021; 13:cancers13071721. [PMID: 33917315 PMCID: PMC8038696 DOI: 10.3390/cancers13071721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary It is well known that non-alcoholic fatty liver disease is an important risk factor in the development of hepatocellular carcinoma, but the implication of cholesterol in this subject remains unclear, especially in western countries where its consumption is particularly elevated. This work provides evidence of a cholesterol-related transcriptional fingerprint and its implications in the progression and aggressiveness of hepatocellular carcinoma with remarkable interest in clinical practice. Abstract Non-alcoholic fatty liver disease (NAFLD) and progression to non-alcoholic steatohepatitis (NASH) result as a consequence of diverse conditions, mainly unbalanced diets. Particularly, high-fat and cholesterol content, as well as carbohydrates, such as those commonly ingested in Western countries, frequently drive adverse metabolic alterations in the liver and promote NAFLD development. Lipid liver overload is also one of the main risk factors for initiation and progression of hepatocellular carcinoma (HCC), but detailed knowledge on the relevance of high nutritional cholesterol remains elusive. We were aimed to characterize HCC development in mice fed with a Western diet (high in lipids and cholesterol) and to identify molecular alterations that define a subtype of liver cancer induced by lipid overload. Mice under western or high cholesterol diets more frequently developed tumors with a more aggressive phenotype than animals fed with a chow diet. Associated changes involved macrophage infiltration, angiogenesis, and stemness features. RNA-seq revealed a specific gene expression signature (Slc41a; Fabp5; Igdcc4 and Mthfd1l) resembling the adverse phenotypic features and poor clinical outcomes seen in patients with HCC. In conclusion; consumption of lipid enriched diets; particularly cholesterol; could accelerate HCC development with an aggressive phenotype and poor prognosis
Collapse
Affiliation(s)
- Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico; (A.S.-N.); (S.S.-S.); (L.C.-R.); (A.E.-C.)
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
| | - Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico; (A.S.-N.); (S.S.-S.); (L.C.-R.); (A.E.-C.)
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
| | - Lisette Chávez-Rodríguez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico; (A.S.-N.); (S.S.-S.); (L.C.-R.); (A.E.-C.)
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
| | - Alejandro Escobedo-Calvario
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City 09340, Mexico; (A.S.-N.); (S.S.-S.); (L.C.-R.); (A.E.-C.)
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
| | - Matthis Desoteux
- Centre de Lutte contre le Cancer Eugène Marquis, Inserm, Univ Rennes, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, 35042 Rennes, France; (M.D.); (C.C.)
| | - Leticia Bucio
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City 14080, Mexico
| | - Verónica Souza
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City 14080, Mexico
| | - Roxana U. Miranda-Labra
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City 14080, Mexico
| | - Linda E. Muñoz-Espinosa
- Liver Unit, Department of Internal Medicine, “Dr. José E. González” University Hospital, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico;
| | - Cédric Coulouarn
- Centre de Lutte contre le Cancer Eugène Marquis, Inserm, Univ Rennes, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, 35042 Rennes, France; (M.D.); (C.C.)
| | - María Concepción Gutiérrez-Ruiz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City 14080, Mexico
| | - Jens U. Marquardt
- Department of Medicine I, University Hospital Schleswig-Holstein, 23562 Lübeck, Germany;
| | - Luis E. Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (L.B.); (V.S.); (R.U.M.-L.); (M.C.G.-R.)
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional, IIB, UNAM/Instituto Nacional de Cardiología Ignacio Chavez, Mexico City 14080, Mexico
- Correspondence: ; Tel./Fax: +55-58044730
| |
Collapse
|
19
|
Sun C, Zhang K, Yue J, Meng S, Zhang X. Deconstructing transcriptional variations and their effects on immunomodulatory function among human mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:53. [PMID: 33422149 PMCID: PMC7796611 DOI: 10.1186/s13287-020-02121-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cell (MSC)-based therapies are being actively investigated in various inflammatory disorders. However, functional variability among MSCs cultured in vitro will lead to distinct therapeutic efficacies. Until now, the mechanisms behind immunomodulatory functional variability in MSCs are still unclear. Methods We systemically investigated transcriptomic variations among MSC samples derived from multiple tissues to reveal their effects on immunomodulatory functions of MSCs. We then analyzed transcriptomic changes of MSCs licensed with INFγ to identify potential molecular mechanisms that result in distinct MSC samples with different immunomodulatory potency. Results MSCs were clustered into distinct groups showing different functional enrichment according to transcriptomic patterns. Differential expression analysis indicated that different groups of MSCs deploy common regulation networks in response to inflammatory stimulation, while expression variation of genes in the networks could lead to different immunosuppressive capability. These different responsive genes also showed high expression variability among unlicensed MSC samples. Finally, a gene panel was derived from these different responsive genes and was able to regroup unlicensed MSCs with different immunosuppressive potencies. Conclusion This study revealed genes with expression variation that contribute to immunomodulatory functional variability of MSCs and provided us a strategy to identify candidate markers for functional variability assessment of MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02121-8.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Kehua Zhang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianhui Yue
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shufang Meng
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xi Zhang
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| |
Collapse
|
20
|
Enhancement of infectivity of insect cell-derived La Crosse Virus by human serum. Virus Res 2020; 292:198228. [PMID: 33188797 DOI: 10.1016/j.virusres.2020.198228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022]
Abstract
Given the dual life cycle of arboviruses in insect and animal hosts and the importance of serum factors as a first line antiviral defense, we have examined the outcome of interactions between the arbovirus La Crosse Virus (LACV) and human serum. To mimic the life cycle between species, we used LACV derived from insect (I-LACV) and human keratinocyte (HaCaT) cells. Incubation of I-LACV with normal human serum did not result in neutralization, but instead stabilized I-LACV virions and enhanced the amount of infectious virus. Enhanced infectivity was also seen with heat-inactivated serum devoid of complement activity and with serum from a range of animals including mouse, ferret, and non-human primates. Depletion of antibodies from serum resulted in loss of enhancement of infectivity and sucrose gradient sedimentation assays showed IgG co-sedimenting with I-LACV particles. In agreement with our results with I-LACV, HaCaT-derived LACV was not neutralized by complement or antibodies in normal human serum. However, in contrast to I-LACV, HaCaT-derived LACV infectivity was stable when incubated alone and treatment with serum did not enhance infectivity. Our results indicate that LACV derived from insect cells differs substantially from virus derived from human cells, with I-LACV being dependent on serum factors to enhance infectivity. These findings suggest that understanding differential composition of insect versus animal cell-derived LACV may form the foundation for potential new antiviral approaches.
Collapse
|
21
|
Feltrin S, Ravera F, Traversone N, Ferrando L, Bedognetti D, Ballestrero A, Zoppoli G. Sterol synthesis pathway inhibition as a target for cancer treatment. Cancer Lett 2020; 493:19-30. [DOI: 10.1016/j.canlet.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
|
22
|
Sarkar P, Rao BD, Chattopadhyay A. Cell Cycle Dependent Modulation of Membrane Dipole Potential and Neurotransmitter Receptor Activity: Role of Membrane Cholesterol. ACS Chem Neurosci 2020; 11:2890-2899. [PMID: 32786305 DOI: 10.1021/acschemneuro.0c00499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a sequential multistep process essential for growth and proliferation of cells that make up multicellular organisms. A number of nuclear and cytoplasmic proteins are known to modulate the cell cycle. Yet, the role of lipids, membrane organization, and physical properties in cell cycle progression remains largely elusive. Membrane dipole potential is an important physicochemical property and originates due to the electrostatic potential difference within the membrane because of nonrandom arrangement of amphiphile dipoles and water molecules at the membrane interface. In this work, we explored the modulation of membrane dipole potential in various stages of the cell cycle in CHO-K1 cells. Our results show that membrane dipole potential is highest in the G1 phase relative to S and G2/M phases. This was accompanied by regulation of membrane cholesterol content in the cell cycle. The highest cholesterol content was found in the G1 phase with a considerable reduction in cholesterol in S and G2/M phases. Interestingly, we noted a similarity in the dependence of membrane dipole potential and cholesterol with progress of the cell cycle. In addition, we observed an increase in neutral lipid (which contains esterified cholesterol) content as cells progressed from the G1 to G2/M phase via the S phase of the cell cycle. Importantly, we further observed a cell cycle dependent reduction in ligand binding activity of serotonin1A receptors expressed in CHO-K1 cells. To the best of our knowledge, these results constitute the first report of cell cycle dependent modulation of membrane dipole potential and activity of a neurotransmitter receptor belonging to the G protein-coupled receptor family. We envision that understanding the basis of cell cycle events from a biophysical perspective would result in a deeper appreciation of the cell cycle and its regulation in relation to cellular function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Bhagyashree D. Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
23
|
Theodoropoulos PC, Wang W, Budhipramono A, Thompson BM, Madhusudhan N, Mitsche MA, McDonald JG, De Brabander JK, Nijhawan D. A Medicinal Chemistry-Driven Approach Identified the Sterol Isomerase EBP as the Molecular Target of TASIN Colorectal Cancer Toxins. J Am Chem Soc 2020; 142:6128-6138. [PMID: 32163279 DOI: 10.1021/jacs.9b13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TASIN (Truncated APC-Selective Inhibitors) compounds are selectively toxic to colorectal cancer cells with APC mutations, although their mechanism of action remains unknown. Here, we found that TASINs inhibit three enzymes in the postsqualene cholesterol biosynthetic pathway including EBP, DHCR7, and DHCR24. Even though all three of these enzymes are required for cholesterol biosynthesis, only inhibition of the most upstream enzyme, EBP, led to cancer cell death via depletion of downstream sterols, an observation that was confirmed by genetic silencing of EBP. Pharmacologic inhibition or genetic silencing of either DHCR7 or DHCR24 had no impact on cell viability. By using photoaffinity probes to generate a relationship between chemical structure and probe competition, we identified compounds that selectively inhibit either EBP or DHCR7. These studies identify EBP, but not downstream enzymes in the cholesterol biosynthetic pathway, as a target in APC mutant colorectal cancer and also have implications for the clinical development of highly selective EBP inhibitors.
Collapse
|
24
|
Salehi B, Rescigno A, Dettori T, Calina D, Docea AO, Singh L, Cebeci F, Özçelik B, Bhia M, Dowlati Beirami A, Sharifi-Rad J, Sharopov F, C. Cho W, Martins N. Avocado-Soybean Unsaponifiables: A Panoply of Potentialities to Be Exploited. Biomolecules 2020; 10:E130. [PMID: 31940989 PMCID: PMC7023362 DOI: 10.3390/biom10010130] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Avocado and soybean unsaponifiables (ASU) constitute vegetable extracts made from fruits and seeds of avocado and soybean oil. Characterized by its potent anti-inflammatory effects, this ASU mixture is recommended to act as an adjuvant treatment for osteoarthritic pain and slow-acting symptomatic treatment of hip and knee osteoarthritis; autoimmune diseases; diffuse scleroderma and scleroderma-like states (e.g., morphea, sclerodactyly, scleroderma in bands). Besides, it was reported that it can improve the mood and quality of life of postmenopausal women in reducing menopause-related symptoms. This article aims to summarize the studies on biological effects of the avocado-soybean unsaponifiable, its chemical composition, pharmacotherapy as well as applications in auto-immune, osteoarticular and menopausal disorders. Finally, we will also discuss on its safety, toxicological and regulatory practices.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy; (A.R.); (T.D.)
| | - Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy; (A.R.); (T.D.)
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand 263643, India;
| | - Fatma Cebeci
- Department of Nutrition and Dietetics, Bayburt University, 69000 Bayburt, Turkey;
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, 34467 Istanbul, Turkey
| | - Mohammed Bhia
- Universal Scientific Education and Research Network (USERN), 1634764651 Tehran, Iran;
| | - Amirreza Dowlati Beirami
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran;
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 1991953381 Tehran, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003 Dushanbe, Tajikistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong 999077, China
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
25
|
Diao H, Chen N, Wang K, Zhang F, Wang YH, Wu R. Biosynthetic Mechanism of Lanosterol: A Completed Story. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongjuan Diao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Nanhao Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kai Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Yong-Heng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
26
|
Welander PV. Deciphering the evolutionary history of microbial cyclic triterpenoids. Free Radic Biol Med 2019; 140:270-278. [PMID: 31071437 DOI: 10.1016/j.freeradbiomed.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022]
Abstract
Cyclic triterpenoids are a class of lipids that have fascinated chemists, biologist, and geologist alike for many years. These molecules have diverse physiological roles in a variety of bacterial and eukaryotic organisms and a shared evolutionary ancestry that is reflected in the elegant biochemistry required for their synthesis. Cyclic triterpenoids are also quite recalcitrant and are preserved in sedimentary rocks where they are utilized as "molecular fossils" or biomarkers that can physically link microbial taxa and their metabolisms to a specific time or event in Earth's history. However, a proper interpretation of cyclic triterpenoid biosignatures requires a robust understanding of their function in extant organisms and in the evolutionary history of their biosynthetic pathways. Here, I review two potential cyclic triterpenoid evolutionary scenarios and the recent genetic and biochemical studies that are providing experimental evidence to distinguish between these hypotheses. The study of cyclic triterpenoids will continue to provide a wealth of information that can significantly impact the interpretation of lipid biosignatures in the rock record and provides a compelling model of how two natural repositories of evolutionary history available on Earth, the geologic record in sedimentary rocks and the molecular record in living organisms, can be linked.
Collapse
Affiliation(s)
- Paula V Welander
- Department of Earth System Science, Stanford University, 473 Via Ortega, Rm 140, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Abstract
Cholesterol is a key steroidal, lipid biomolecule found abundantly in plasma membranes of eukaryotic cells. It is an important structural component of cellular membranes and regulates membrane fluidity and permeability. Cholesterol is also essential for normal functioning of key proteins including ion-channels, G protein-coupled receptors (GPCRs), membrane bound steroid receptors, and receptor kinases. It is thought that cholesterol exerts its actions via specific binding to chiral proteins and lipids as well as through non-specific physiochemical interactions. Distinguishing between the specific and the non-specific interactions can be difficult. Although much remains unclear, progress has been made in recent years by utilizing ent-cholesterol, the enantiomer of natural cholesterol (nat-cholesterol) as a probe. Ent-Cholesterol is the non-superimposable mirror image of nat-cholesterol and exhibits identical physiochemical properties as nat-cholesterol. Hence, if the biological effects of cholesterol result solely due to membrane effects, it is expected that there will be no difference between ent-cholesterol and nat-cholesterol. However, when direct binding with chiral proteins and lipids is involved, the enantiomer is expected to potentially elicit significantly different, measurable effects due to formation of diastereomeric complexes. In this chapter, we have reviewed the literature related to ent-cholesterol and its use as a probe for various biophysical and biological interactions of cholesterol.
Collapse
|
28
|
Solsona-Vilarrasa E, Fucho R, Torres S, Nuñez S, Nuño-Lámbarri N, Enrich C, García-Ruiz C, Fernández-Checa JC. Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes. Redox Biol 2019; 24:101214. [PMID: 31108462 PMCID: PMC6526464 DOI: 10.1016/j.redox.2019.101214] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial cholesterol accumulation is a hallmark of alcoholic and non-alcoholic fatty liver diseases and impairs the function of specific solute carriers through changes in membrane physical properties. However, its impact on mitochondrial respiration and organization of respiratory supercomplexes has not been determined so far. Here we fed mice a cholesterol-enriched diet (HC) supplemented with sodium cholate to examine the effect of cholesterol in mitochondrial function. HC feeding increased liver cholesterol content, which downregulated Srebp2 and Hmgcr expression, while sodium cholate administration decreased Cyp7a1 and Cyp8b1 mRNA levels, suggesting the downregulation of bile acid synthesis through the classical pathway. HC-fed mice exhibited increased expression of Stard1 and Mln64 and enhanced mitochondrial free cholesterol levels (2–3 fold), leading to decreased membrane fluidity. Mitochondria from HC-fed mice displayed increased cholesterol loading in both outer and inner mitochondrial membranes. Cholesterol loading decreased complex I and complex II-driven state 3 respiration and mitochondrial membrane potential. Decreased respiratory and uncoupling control ratio from complex I was also observed after in situ enrichment of mouse liver mitochondria with cholesterol or enantiomer cholesterol, the mirror image of natural cholesterol. Moreover, in vivo cholesterol loading decreased the level of complex III2 and the assembly of respiratory supercomplexes I1+III2+IV and I1+III2. Moreover, HC feeding caused oxidative stress and mitochondrial GSH (mGSH) depletion, which translated in hepatic steatosis and liver injury, effects that were rescued by replenishing mGSH with GSH ethyl ester. Overall, mitochondrial cholesterol accumulation disrupts mitochondrial functional performance and the organization of respiratory supercomplexes assembly, which can contribute to oxidative stress and liver injury. Hepatic mitochondrial cholesterol enrichment impairs oxidative phosphorylation. Cholesterol accumulation perturbs mitochondrial membrane physical properties and morphology. Cholesterol loading disrupts the assembly of mitochondrial respiratory supercomplexes. In vivo mitochondrial cholesterol accumulation induces liver injury, which is prevented by GSH ethyl ester administration.
Collapse
Affiliation(s)
- Estel Solsona-Vilarrasa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Department of Biomedical Sciences, Medicine Faculty, Universitat de Barcelona (UB), Spain
| | - Raquel Fucho
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Susana Nuñez
- Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Natalia Nuño-Lámbarri
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Traslational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Carlos Enrich
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Biomedical Sciences, Medicine Faculty, Universitat de Barcelona (UB), Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; (e)Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; (e)Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
29
|
Silva LMR, Lütjohann D, Hamid P, Velasquez ZD, Kerner K, Larrazabal C, Failing K, Hermosilla C, Taubert A. Besnoitia besnoiti infection alters both endogenous cholesterol de novo synthesis and exogenous LDL uptake in host endothelial cells. Sci Rep 2019; 9:6650. [PMID: 31040348 PMCID: PMC6491585 DOI: 10.1038/s41598-019-43153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Besnoitia besnoiti, an apicomplexan parasite of cattle being considered as emergent in Europe, replicates fast in host endothelial cells during acute infection and is in considerable need for energy, lipids and other building blocks for offspring formation. Apicomplexa are generally considered as defective in cholesterol synthesis and have to scavenge cholesterol from their host cells for successful replication. Therefore, we here analysed the influence of B. besnoiti on host cellular endogenous cholesterol synthesis and on sterol uptake from exogenous sources. GC-MS-based profiling of cholesterol-related sterols revealed enhanced cholesterol synthesis rates in B. besnoiti-infected cells. Accordingly, lovastatin and zaragozic acid treatments diminished tachyzoite production. Moreover, increased lipid droplet contents and enhanced cholesterol esterification was detected and inhibition of the latter significantly blocked parasite proliferation. Furthermore, artificial increase of host cellular lipid droplet disposability boosted parasite proliferation. Interestingly, lectin-like oxidized low density lipoprotein receptor 1 expression was upregulated in infected endothelial hostcells, whilst low density lipoproteins (LDL) receptor was not affected by parasite infection. However, exogenous supplementations with non-modified and acetylated LDL both boosted B. besnoiti proliferation. Overall, current data show that B. besnoiti simultaneously exploits both, endogenous cholesterol biosynthesis and cholesterol uptake from exogenous sources, during asexual replication.
Collapse
Affiliation(s)
- Liliana M R Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Laboratory for Special Lipid Diagnostics/Center Internal Medicine/Building 26/UG 68, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Penny Hamid
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, 55281, Yogyakarta, Indonesia
| | - Zahady D Velasquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Frankfurter Str. 85-89, D-35392, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Frankfurter Str. 95, D-35392, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| |
Collapse
|
30
|
Mohid SA, Ghorai A, Ilyas H, Mroue KH, Narayanan G, Sarkar A, Ray SK, Biswas K, Bera AK, Malmsten M, Midya A, Bhunia A. Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids Surf B Biointerfaces 2019; 176:360-370. [PMID: 30658284 DOI: 10.1016/j.colsurfb.2019.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 01/20/2023]
Abstract
Two-dimensional (2D) tungsten disulfide (WS2) quantum dots offer numerous promising applications in materials and optoelectronic sciences. Additionally, the catalytic and photoluminescence properties of ultra-small WS2 nanoparticles are of potential interest in biomedical sciences. Addressing the use of WS2 in the context of infection, the present study describes the conjugation of two potent antimicrobial peptides with WS2 quantum dots, as well as the application of the resulting conjugates in antimicrobial therapy and bioimaging. In doing so, we determined the three-dimensional solution structure of the quantum dot-conjugated antimicrobial peptide by a series of high-resolution nuclear magnetic resonance (NMR) techniques, correlating this to the disruption of both model lipid and bacterial membranes, and to several key biological performances, including antimicrobial and anti-biofilm effects, as well as cell toxicity. The results demonstrate that particle conjugation enhances the antimicrobial and anti-biofilm potency of these peptides, effects inferred to be due to multi-dendate interactions for the conjugated peptides. As such, our study provides information on the mode-of-action of such conjugates, laying the foundation for their potential use in treatment and monitoring of infections.
Collapse
Affiliation(s)
- Sk Abdul Mohid
- Department of Biophysics, Bose Institute, Kolkata, 700054, India
| | - Arup Ghorai
- School of Nanoscience and Technology, IIT Kharagpur, Kharagpur, 721302, India
| | - Humaira Ilyas
- Department of Biophysics, Bose Institute, Kolkata, 700054, India
| | - Kamal H Mroue
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | | | - Abhisek Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Samit K Ray
- Department of Physics, IIT Kharagpur, Kharagpur, 721302, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Amal Kanti Bera
- Department of Biotechnology, IIT Madras, Chennai, 600036, India
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, SE-75232, Uppsala, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| | - Anupam Midya
- School of Nanoscience and Technology, IIT Kharagpur, Kharagpur, 721302, India.
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
31
|
Emmerstorfer-Augustin A, Wriessnegger T, Hirz M, Zellnig G, Pichler H. Membrane Protein Production in Yeast: Modification of Yeast Membranes for Human Membrane Protein Production. Methods Mol Biol 2019; 1923:265-285. [PMID: 30737745 DOI: 10.1007/978-1-4939-9024-5_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Approximately 30% of the genes in the human genome code for membrane proteins, and yet we know relatively little about these complex molecules. Therefore, the biochemical and structural characterization of this challenging class of proteins represents an important frontier in both fundamental research and advances in drug discovery. However, due to their unique physical properties and requirement for association with cellular membranes, expression in heterologous systems is often daunting. In this chapter we describe how to engineer the yeast Pichia pastoris to obtain humanized sterol compositions. By implementing some simple genetic engineering approaches, P. pastoris can be reprogrammed to mainly produce cholesterol instead of ergosterol. We show how to apply mass spectrometry to confirm the production of cholesterol instead of ergosterol and how we have further analyzed the strain by electron microscopy. Finally, we delineate how to apply and test the cholesterol-forming P. pastoris strain for functional expression of mammalian Na,K-ATPase α3β1 isoform. Na,K-ATPases have been shown to specifically interact with cholesterol and phospholipids, and, obviously, the presence of cholesterol instead of ergosterol was the key to stabilizing correct localization and activity of this ion transporter.
Collapse
Affiliation(s)
- Anita Emmerstorfer-Augustin
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Melanie Hirz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Graz, Austria
| | - Guenther Zellnig
- Institute of Plant Sciences, University of Graz, NAWI Graz, Graz, Austria
| | - Harald Pichler
- acib-Austrian Centre of Industrial Biotechnology, Graz, Austria. .,Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Graz, Austria.
| |
Collapse
|
32
|
The Age-dependent Elevation of miR-335-3p Leads to Reduced Cholesterol and Impaired Memory in Brain. Neuroscience 2018; 390:160-173. [DOI: 10.1016/j.neuroscience.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
|
33
|
Pichler H, Emmerstorfer-Augustin A. Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods 2018; 147:50-65. [DOI: 10.1016/j.ymeth.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
|
34
|
C-4 sterol demethylation enzymes distinguish bacterial and eukaryotic sterol synthesis. Proc Natl Acad Sci U S A 2018; 115:5884-5889. [PMID: 29784781 DOI: 10.1073/pnas.1802930115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sterols are essential eukaryotic lipids that are required for a variety of physiological roles. The diagenetic products of sterol lipids, sterane hydrocarbons, are preserved in ancient sedimentary rocks and are utilized as geological biomarkers, indicating the presence of both eukaryotes and oxic environments throughout Earth's history. However, a few bacterial species are also known to produce sterols, bringing into question the significance of bacterial sterol synthesis for our interpretation of sterane biomarkers. Recent studies suggest that bacterial sterol synthesis may be distinct from what is observed in eukaryotes. In particular, phylogenomic analyses of sterol-producing bacteria have failed to identify homologs of several key eukaryotic sterol synthesis enzymes, most notably those required for demethylation at the C-4 position. In this study, we identified two genes of previously unknown function in the aerobic methanotrophic γ-Proteobacterium Methylococcus capsulatus that encode sterol demethylase proteins (Sdm). We show that a Rieske-type oxygenase (SdmA) and an NAD(P)-dependent reductase (SdmB) are responsible for converting 4,4-dimethylsterols to 4α-methylsterols. Identification of intermediate products synthesized during heterologous expression of SdmA-SdmB along with 13C-labeling studies support a sterol C-4 demethylation mechanism distinct from that of eukaryotes. SdmA-SdmB homologs were identified in several other sterol-producing bacterial genomes but not in any eukaryotic genomes, indicating that these proteins are unrelated to the eukaryotic C-4 sterol demethylase enzymes. These findings reveal a separate pathway for sterol synthesis exclusive to bacteria and show that demethylation of sterols evolved at least twice-once in bacteria and once in eukaryotes.
Collapse
|
35
|
Cirmena G, Franceschelli P, Isnaldi E, Ferrando L, De Mariano M, Ballestrero A, Zoppoli G. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Lett 2018; 425:13-20. [PMID: 29596888 DOI: 10.1016/j.canlet.2018.03.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Oncogenic alteration of the cholesterol synthesis pathway is a recognized mechanism of metabolic adaptation. In the present review, we focus on squalene epoxidase (SE), one of the two rate-limiting enzymes in cholesterol synthesis, retracing its history since its discovery as an antimycotic target to its description as an emerging metabolic oncogene by amplification with clinical relevance in cancer. We review the published literature assessing the association between SE over-expression and poor prognosis in this disease. We assess the works demonstrating how SE promotes tumor cell proliferation and migration, and displaying evidence of cancer cell demise in presence of human SE inhibitors in in vitro and in vivo models. Taken together, robust scientific evidence has by now accumulated pointing out SE as a promising novel therapeutic target in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| | - Gabriele Zoppoli
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
36
|
Banta AB, Wei JH, Gill CCC, Giner JL, Welander PV. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase. Proc Natl Acad Sci U S A 2017; 114:245-250. [PMID: 28028245 PMCID: PMC5240688 DOI: 10.1073/pnas.1617231114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cyclic triterpenoids are a broad class of polycyclic lipids produced by bacteria and eukaryotes. They are biologically relevant for their roles in cellular physiology, including membrane structure and function, and biochemically relevant for their exquisite enzymatic cyclization mechanism. Cyclic triterpenoids are also geobiologically significant as they are readily preserved in sediments and are used as biomarkers for ancient life throughout Earth's history. Isoarborinol is one such triterpenoid whose only known biological sources are certain angiosperms and whose diagenetic derivatives (arboranes) are often used as indicators of terrestrial input into aquatic environments. However, the occurrence of arborane biomarkers in Permian and Triassic sediments, which predates the accepted origin of angiosperms, suggests that microbial sources of these lipids may also exist. In this study, we identify two isoarborinol-like lipids, eudoraenol and adriaticol, produced by the aerobic marine heterotrophic bacterium Eudoraea adriatica Phylogenetic analysis demonstrates that the E. adriatica eudoraenol synthase is an oxidosqualene cyclase homologous to bacterial lanosterol synthases and distinct from plant triterpenoid synthases. Using an Escherichia coli heterologous sterol expression system, we demonstrate that substitution of four amino acid residues in a bacterial lanosterol synthase enabled synthesis of pentacyclic arborinols in addition to tetracyclic sterols. This variant provides valuable mechanistic insight into triterpenoid synthesis and reveals diagnostic amino acid residues to differentiate between sterol and arborinol synthases in genomic and metagenomic datasets. Our data suggest that there may be additional bacterial arborinol producers in marine and freshwater environments that could expand our understanding of these geologically informative lipids.
Collapse
Affiliation(s)
- Amy B Banta
- Department of Earth System Science, Stanford University, Stanford, CA 94305
| | - Jeremy H Wei
- Department of Earth System Science, Stanford University, Stanford, CA 94305
| | - Clare C C Gill
- Department of Earth System Science, Stanford University, Stanford, CA 94305
| | - José-Luis Giner
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
| |
Collapse
|
37
|
Jafurulla M, Chattopadhyay A. Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. Methods Mol Biol 2017; 1583:21-39. [PMID: 28205164 DOI: 10.1007/978-1-4939-6875-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.
Collapse
Affiliation(s)
- Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
38
|
Wei JH, Yin X, Welander PV. Sterol Synthesis in Diverse Bacteria. Front Microbiol 2016; 7:990. [PMID: 27446030 PMCID: PMC4919349 DOI: 10.3389/fmicb.2016.00990] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria produced demethylated and saturated sterol products even though they lacked homologs of the eukaryotic proteins required for these modifications emphasizing that several aspects of bacterial sterol synthesis are still completely unknown.
Collapse
Affiliation(s)
| | | | - Paula V. Welander
- Department of Earth System Science, Stanford UniversityStanford, CA, USA
| |
Collapse
|
39
|
Shao W, Machamer CE, Espenshade PJ. Fatostatin blocks ER exit of SCAP but inhibits cell growth in a SCAP-independent manner. J Lipid Res 2016; 57:1564-73. [PMID: 27324795 DOI: 10.1194/jlr.m069583] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of cellular lipid homeostasis and activate expression of genes required for fatty acid, triglyceride, and cholesterol synthesis and uptake. SREBP cleavage activating protein (SCAP) plays an essential role in SREBP activation by mediating endoplasmic reticulum (ER)-to-Golgi transport of SREBP. In the Golgi, membrane-bound SREBPs are cleaved sequentially by the site-1 and site-2 proteases. Recent studies have shown a requirement for the SREBP pathway in the development of fatty liver disease and tumor growth, making SCAP a target for drug development. Fatostatin is a chemical inhibitor of the SREBP pathway that directly binds SCAP and blocks its ER-to-Golgi transport. In this study, we determined that fatostatin blocks ER exit of SCAP and showed that inhibition is independent of insulin-induced gene proteins, which function to retain the SCAP-SREBP complex in the ER. Fatostatin potently inhibited cell growth, but unexpectedly exogenous lipids failed to rescue proliferation of fatostatin-treated cells. Furthermore, fatostatin inhibited growth of cells lacking SCAP Using a vesicular stomatitis virus glycoprotein (VSVG) trafficking assay, we demonstrated that fatostatin delays ER-to-Golgi transport of VSVG. In summary, fatostatin inhibited SREBP activation, but fatostatin additionally inhibited cell proliferation through both lipid-independent and SCAP-independent mechanisms, possibly by general inhibition of ER-to-Golgi transport.
Collapse
Affiliation(s)
- Wei Shao
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carolyn E Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
40
|
Allhusen JS, Kimball DR, Conboy JC. Structural Origins of Cholesterol Accelerated Lipid Flip-Flop Studied by Sum-Frequency Vibrational Spectroscopy. J Phys Chem B 2016; 120:3157-68. [PMID: 26978577 DOI: 10.1021/acs.jpcb.6b01254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The unique structure of cholesterol and its role in modulating lipid translocation (flip-flop) were examined using sum-frequency vibrational spectroscopy (SFVS). Two structural analogues of cholesterol--cholestanol and cholestene--were examined to explore the influence of ring rigidity and amphiphilicity on controlling distearoylphosphocholine (DSPC) flip-flop. Kinetic rates for DSPC flip-flop were determined as a function of sterol concentration and temperature. All three sterols increased the rate of DSPC flip-flop in a concentration-dependent manner following the order cholestene > cholestanol > cholesterol. Rates of DSPC flip-flop were used to calculate the thermodynamic activation free energy barrier (ΔG(‡)) in the presence of cholesterol, cholestanol, and cholestene. The acyl chain gauche content of DSPC, mean lipid area, and membrane compressibility were correlated to observed trends in ΔG(‡). ΔG(‡) for DSPC flip-flop showed a strong positive correlation with the molar compression modulus (K*) of the membrane, influenced by the type and concentration of the sterol added. Interestingly, cholesterol is distinctive in maintaining invariant membrane compressibility over the range of 2-10 mol %. The results in this study demonstrate that the compression modulus of a membrane plays a significant role in moderating ΔG(‡) and the kinetics of native, protein-free, lipid translocation in membranes.
Collapse
Affiliation(s)
- John S Allhusen
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Dylan R Kimball
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - John C Conboy
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
41
|
Kepczynski M, Róg T. Functionalized lipids and surfactants for specific applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2362-2379. [PMID: 26946243 DOI: 10.1016/j.bbamem.2016.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101, Tampere, Finland; Department of Physics, Helsinki University, P.O. Box 64, FI 00014 Helsinki, Finland.
| |
Collapse
|
42
|
Yamauchi Y, Yokoyama S, Chang TY. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis. J Lipid Res 2015; 57:77-88. [PMID: 26497474 DOI: 10.1194/jlr.m063784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/28/2023] Open
Abstract
Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Shinji Yokoyama
- Nutritional Health Science Research Center and Department of Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Ta-Yuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
43
|
Benesch MG, Lewis RN, McElhaney RN. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2015; 191:123-35. [DOI: 10.1016/j.chemphyslip.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
44
|
Hamid PH, Hirzmann J, Kerner K, Gimpl G, Lochnit G, Hermosilla CR, Taubert A. Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication. Vet Res 2015; 46:100. [PMID: 26395984 PMCID: PMC4579583 DOI: 10.1186/s13567-015-0230-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/04/2015] [Indexed: 11/10/2022] Open
Abstract
During first merogony Eimeria bovis forms large macromeronts in endothelial host cells containing >120 000 merozoites I. During multiplication, large amounts of cholesterol are indispensable for the enormous offspring membrane production. Cholesterol auxotrophy was proven for other apicomplexan parasites. Consequently they scavenge cholesterol from their host cell apparently in a parasite-specific manner. We here analyzed the influence of E. bovis infection on endothelial host cell cholesterol metabolism and found considerable differences to other coccidian parasites. Overall, free cholesterol significantly accumulated in E. bovis infected host cells. Furthermore, a striking increase of lipid droplet formation was observed within immature macromeronts. Artificial host cell lipid droplet enrichment significantly improved E. bovis merozoite I production confirming the key role of lipid droplet contents for optimal parasite proliferation. The transcription of several genes being involved in both, cholesterol de novo biosynthesis and low density lipoprotein-(LDL) mediated uptake, was significantly up-regulated at a time in infected cells suggesting a simultaneous exploitation of these two cholesterol acquisition pathways. E. bovis scavenges LDL-derived cholesterol apparently through significantly increased levels of surface LDL receptor abundance and LDL binding to infected cells. Consequently, LDL supplementation significantly improved parasite replication. The up-regulation of the oxidized LDL receptor 1 furthermore identified this scavenger receptor as a key molecule in parasite-triggered LDL uptake. Moreover, cellular cholesterol processing was altered in infected cells as indicated by up-regulation of cholesterol-25-hydroxylase and sterol O-acyltransferase. Overall, these results show that E. bovis considerably exploits the host cell cholesterol metabolism to guarantee its massive intracellular growth and replication.
Collapse
Affiliation(s)
- Penny H Hamid
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Joerg Hirzmann
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus LiebigUniversity Giessen, Frankfurter Str. 85-89, D-35392, Giessen, Germany.
| | - Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Department of Biochemistry, Johann-Joachim-Becherweg 30, D-55099, Mainz, Germany.
| | - Guenter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Friedrichstr. 24, D-35392, Giessen, Germany.
| | - Carlos R Hermosilla
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| |
Collapse
|
45
|
A central theory of biology. Med Hypotheses 2015; 85:49-57. [PMID: 25911556 DOI: 10.1016/j.mehy.2015.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/25/2015] [Accepted: 03/21/2015] [Indexed: 12/27/2022]
Abstract
The history of physiologic cellular-molecular interrelationships can be traced all the way back to the unicellular state by following the pathway formed by lipids ubiquitously accommodating calcium homeostasis, and its consequent adaptive effects on oxygen uptake by cells, tissues and organs. As a result, a cohesive, mechanistically integrated view of physiology can be formulated by recognizing the continuum comprising conception, development, physiologic homeostasis and death mediated by soluble growth factor signaling. Seeing such seemingly disparate processes as embryogenesis, chronic disease and dying as the gain and subsequent loss of cell-cell signaling provides a novel perspective for physiology and medicine. It is emblematic of the self-organizing, self-referential nature of life, starting from its origins. Such organizing principles obviate the pitfalls of teleologic evolution, conversely providing a way of resolving such seeming dichotomies as holism and reductionism, genotype and phenotype, emergence and contingence, proximate and ultimate causation in evolution, cells and organisms. The proposed approach is scale-free and predictive, offering a Central Theory of Biology.
Collapse
|
46
|
Lorbek G, Perše M, Jeruc J, Juvan P, Gutierrez-Mariscal FM, Lewinska M, Gebhardt R, Keber R, Horvat S, Björkhem I, Rozman D. Lessons from hepatocyte-specific Cyp51 knockout mice: impaired cholesterol synthesis leads to oval cell-driven liver injury. Sci Rep 2015; 5:8777. [PMID: 25739789 PMCID: PMC4350092 DOI: 10.1038/srep08777] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
We demonstrate unequivocally that defective cholesterol synthesis is an independent determinant of liver inflammation and fibrosis. We prepared a mouse hepatocyte-specific knockout (LKO) of lanosterol 14α-demethylase (CYP51) from the part of cholesterol synthesis that is already committed to cholesterol. LKO mice developed hepatomegaly with oval cell proliferation, fibrosis and inflammation, but without steatosis. The key trigger was reduced cholesterol esters that provoked cell cycle arrest, senescence-associated secretory phenotype and ultimately the oval cell response, while elevated CYP51 substrates promoted the integrated stress response. In spite of the oval cell-driven fibrosis being histologically similar in both sexes, data indicates a female-biased down-regulation of primary metabolism pathways and a stronger immune response in males. Liver injury was ameliorated by dietary fats predominantly in females, whereas dietary cholesterol rectified fibrosis in both sexes. Our data place defective cholesterol synthesis as a focus of sex-dependent liver pathologies.
Collapse
Affiliation(s)
- Gregor Lorbek
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Juvan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Francisco M Gutierrez-Mariscal
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Lewinska
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Horvat
- 1] Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia [2] National Institute of Chemistry, Ljubljana, Slovenia
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
47
|
Haubrich BA, Singha UK, Miller MB, Nes CR, Anyatonwu H, Lecordier L, Patkar P, Leaver DJ, Villalta F, Vanhollebeke B, Chaudhuri M, Nes WD. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J Lipid Res 2014; 56:331-41. [PMID: 25424002 DOI: 10.1194/jlr.m054643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Craigen R Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Hosanna Anyatonwu
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Laurence Lecordier
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - David J Leaver
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409 Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Benoit Vanhollebeke
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
48
|
|
49
|
Bandari S, Chakraborty H, Covey DF, Chattopadhyay A. Membrane dipole potential is sensitive to cholesterol stereospecificity: implications for receptor function. Chem Phys Lipids 2014; 184:25-9. [PMID: 25219773 DOI: 10.1016/j.chemphyslip.2014.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022]
Abstract
Dipole potential is the potential difference within the membrane bilayer, which originates due to the nonrandom arrangement of lipid dipoles and water molecules at the membrane interface. Cholesterol, an essential lipid in higher eukaryotic membranes, has previously been shown to increase membrane dipole potential. In this work, we explored the effect of stereoisomers of cholesterol, ent-cholesterol and epi-cholesterol, on membrane dipole potential, monitored by the dual wavelength ratiometric approach utilizing the probe di-8-ANEPPS. Our results show that cholesterol and ent-cholesterol share comparable ability in increasing membrane dipole potential. In contrast, epi-cholesterol displays a slight reduction in membrane dipole potential. Our results constitute the first report on the effect of stereoisomers of cholesterol on membrane dipole potential, and imply that an extremely subtle change in sterol structure can significantly alter the dipolar field at the membrane interface. These results assume relevance in the context of differential abilities of these stereoisomers of cholesterol in supporting the activity of the serotonin1A receptor, a representative G protein-coupled receptor. The close correlation between membrane dipole potential and receptor activity provides new insight in receptor-cholesterol interaction in terms of stereospecificity. We envision that membrane dipole potential could prove to be a sensitive indicator of lipid-protein interactions in biological membranes.
Collapse
Affiliation(s)
- Suman Bandari
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Douglas F Covey
- Departments of Developmental Biology, Anesthesiology, Psychiatry and The Taylor Family Institute for Innovative Psychiatry Research, WA University in St. Louis Medical School, St. Louis, MO 63110, USA
| | | |
Collapse
|
50
|
A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1941-9. [PMID: 24704414 DOI: 10.1016/j.bbamem.2014.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/20/2022]
Abstract
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.
Collapse
|