1
|
Bahrami R, Quaranta S, Perdomo HD, Bonizzoni M, Khorramnejad A. Carry-over effects of Bacillus thuringiensis on tolerant Aedes albopictus mosquitoes. Parasit Vectors 2024; 17:456. [PMID: 39511654 PMCID: PMC11545555 DOI: 10.1186/s13071-024-06556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The biological larvicide Bacillus thuringiensis subsp. israelensis (Bti) represents a safe and effective alternative to chemical insecticides for mosquito control. Efficient control of mosquitoes implicates continuous and extensive application of Bti. This massive use of Bti imposes strong selective pressure, but the complex mode of action of the numerous synergistic Bti endotoxins lower the risk of the emergence of resistance. Although resistance to Bti has not been identified at the population level in nature, some larvae can survive Bti exposure, suggesting tolerance mechanisms. Here we investigated whether Bti-tolerant Aedes albopictus larvae experience any fitness costs. We also studied how this tolerance affects different aspects of the phenotype of the emerging adults that could be relevant for arboviral transmission. METHODS We exposed Ae. albopictus larvae to lethal concentration of Bti and studied the fitness and gut microbiota of tolerant larvae and their adult counterparts. We further compared the transcript abundance of nine key immunity genes in the gut of Bti-tolerant larvae and their emerging adults versus those not exposed to Bti. RESULTS Our results showed that Bti exposure has multifaceted impacts on Ae. albopictus mosquitoes during both larval and adult stages. The carry-over effect of Bti exposure on tolerant larvae manifested in reduced adult emergence rate, shorter lifespan, and decreased fecundity. Bti also alters the gut microbiota of both larvae and adults. We observed higher microbial diversity in Bti-tolerant larvae and changes in the richness of core microbiota. Bti infection and the altered microbiota triggered immune responses in the larval and adult guts. CONCLUSIONS The observed reduction in mosquito fitness and changes in the composition of the microbiota of adults emerging from tolerant larvae could negatively influence mosquito vectorial capacity. Understanding these impacts is crucial for evaluating the broader implications of Bti-based insecticides in mosquito control programs.
Collapse
|
2
|
Gao M, Zhong J, Lu L, Li Y, Zhang Z. Synergism of Cry1 Toxins by a Fusion Protein Derived from a Cadherin Fragment and an Antibody Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19689-19698. [PMID: 39189874 DOI: 10.1021/acs.jafc.4c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Synergistic factors can enhance the toxicity of Bt toxins and delay the development of Bt resistance. Previous research has demonstrated that a Helicoverpa armigera cadherin fragment (HaCad-TBR) increased the toxicity of Cry1Ac in Plutella xylostella larvae but did not have a synergistic effect on Cry1B, Cry1C, and Cry1F toxins. In this study, a fusion protein (HaCad-TBR-2D3 VL) derived from HaCad-TBR and a Bt Cry1-specific antibody peptide was expressed in Escherichia coli. The HaCad-TBR-2D3 VL enhanced Cry1Ac toxicity more efficiently in insects and Sf9 cells than HaCad-TBR and also significantly increased the toxicity of Cry1B, Cry1C, and Cry1F toxins in insects. Further investigation indicated that the improved stability in insect midguts and higher binding capacity with Bt toxins contributed to the enhanced synergism of HaCad-TBR-2D3 VL over HaCad-TBR. This study suggested that Bt antibody fragments can potentially broaden the synergistic range of Bt receptor fragments, providing a theoretical foundation for developing broad-spectrum synergists for other biopesticides.
Collapse
Affiliation(s)
- Meijing Gao
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianfeng Zhong
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lina Lu
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Li
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- State Key Laboratory Cultivation Base, Ministry of Science and Technology─Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
3
|
Palma L, Sauka DH, Berry C, Peralta C. Positive selection analysis of Cyt proteins from Bacillus thuringiensis: A conservative trend driven by negative (purifying) selection. Toxicon 2024; 247:107853. [PMID: 38972359 DOI: 10.1016/j.toxicon.2024.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/27/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Bacillus thuringiensis is a Gram-positive entomopathogenic bacterium that produces different pesticidal proteins: vegetative insecticidal proteins (Vpb1/Vpa2, Vip3, and Vpb4) during vegetative growth, which are secreted to the culture medium, and δ-endotoxins (Cry and Cyt) during sporulation, which accumulate into parasporal crystals. Cyt proteins are the smaller subset of δ-endotoxins targeting Diptera species. While Cry and Vip3 proteins undergo positive selection, our analysis suggests that Cyt proteins evolve following a conservative trend driven negative (purifying) selection.
Collapse
Affiliation(s)
- Leopoldo Palma
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, 1555, Argentina; Laboratorio de Control Biotecnológico de Plagas, Instituto BIOTECMED, Departamento de Genética, Universitat de València, Burjassot, València, 46100, Spain.
| | - Diego Herman Sauka
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMYZA), Hurlingham, Buenos Aires, 1686, Argentina
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Cecilia Peralta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, 1555, Argentina; Laboratorio de Control Biotecnológico de Plagas, Instituto BIOTECMED, Departamento de Genética, Universitat de València, Burjassot, València, 46100, Spain
| |
Collapse
|
4
|
Bryce-Sharron N, Nasiri M, Powell T, West MJ, Crickmore N. A Shared Receptor Suggests a Common Ancestry between an Insecticidal Bacillus thuringiensis Cry Protein and an Anti-Cancer Parasporin. Biomolecules 2024; 14:795. [PMID: 39062509 PMCID: PMC11274968 DOI: 10.3390/biom14070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Cry toxins, produced by the bacterium Bacillus thuringiensis, are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity; Cry41Aa is one such toxin. Cry41Aa has similarities to its insecticidal counterparts in both its 3-domain toxic core structure and pore-forming abilities, but how it has evolved to target human cells is a mystery. This work shows that some insecticidal Cry toxins can enhance the toxicity of Cry41Aa against hepatocellular carcinoma cells, despite possessing no intrinsic toxicity themselves. This interesting crossover is not limited to human cancer cells, as Cry41Aa was found to inhibit some Aedes-active Cry toxins in mosquito larval assays. Here, we present findings that suggest that Cry41Aa shares a receptor with several insecticidal toxins, indicating a stronger evolutionary relationship than their divergent activities might suggest.
Collapse
Affiliation(s)
| | | | | | | | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; (N.B.-S.); (M.N.); (T.P.); (M.J.W.)
| |
Collapse
|
5
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
6
|
Ioannou CS, Savvidou EC, Apocha L, Terblanche JS, Papadopoulos NT. Insecticide resistant mosquitoes remain thermal stress resistant, without loss of thermal plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169443. [PMID: 38114031 DOI: 10.1016/j.scitotenv.2023.169443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
A major component of mosquito's climate change response is their heat tolerance, and any ability to rapidly adjust to extreme environmental conditions through phenotypic plasticity. The excessive use of insecticides for the control of major mosquito species leads to resistant populations, however it is largely unclear if this concurrently impacts thermal stress resistance and their potential to adjust tolerance via phenotypic plasticity. Culex pipiens pipiens, Culex pipiens molestus and Aedes albopictus populations obtained from the same region were subjected for 12 generations to selection trials to larvicides Diflubenzuron (DFB) and Bacillus thuringiensis subsp. israelensis (Bti) to develop insecticide resistance. Adults emerging from the selected populations were acclimated at different temperatures and the upper and lower critical thermal limits (CTmax and CTmin) were estimated using dynamic thermal assays. In addition, the supercooling points (SCPs) of non-acclimated adults of resistant and control populations were determined. Our results revealed marked differences in thermal response among the three species, the different acclimation regimes and sexes. Aedes albopictus was more resistant in high than low temperatures compared to both Culex pipiens biotypes. Culex forms responded similarly to heat but differently to cold stress. In both forms, females responded better than males to all thermal stressors. Acclimation at higher and lower temperatures improves CTmax and CTmin values, respectively in both insecticide resistant and control populations of all three species. Overall, selection to insecticides did not affect the thermal performance of adults. Hence, insecticide-resistant mosquito populations perform similarly to untreated ones and are capable of readily adapting to new environmental changes rising concerns regarding their geographic range expansion and disease transmission globally.
Collapse
Affiliation(s)
- Charalampos S Ioannou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece
| | - Eleni C Savvidou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece
| | - Lemonia Apocha
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, South Africa
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece.
| |
Collapse
|
7
|
Takahashi H, Asakura M, Ide T, Hayakawa T. Mutational analysis of the transmembrane α4-helix of Bacillus thuringiensis mosquito-larvicidal Cry4Aa toxin. Curr Microbiol 2024; 81:80. [PMID: 38281302 PMCID: PMC10822788 DOI: 10.1007/s00284-023-03602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Mami Asakura
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Toru Ide
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Tohru Hayakawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan.
| |
Collapse
|
8
|
Rezende TMT, Menezes HSG, Rezende AM, Cavalcanti MP, Silva YMG, de-Melo-Neto OP, Romão TP, Silva-Filha MHNL. Culex quinquefasciatus Resistant to the Binary Toxin from Lysinibacillus sphaericus Displays a Consistent Downregulation of Pantetheinase Transcripts. Biomolecules 2023; 14:33. [PMID: 38254633 PMCID: PMC10813629 DOI: 10.3390/biom14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Culex quinquefasciatus resistance to the binary (Bin) toxin, the major larvicidal component from Lysinibacillus sphaericus, is associated with mutations in the cqm1 gene, encoding the Bin-toxin receptor. Downregulation of the cqm1 transcript was found in the transcriptome of larvae resistant to the L. sphaericus IAB59 strain, which produces both the Bin toxin and a second binary toxin, Cry48Aa/Cry49Aa. Here, we investigated the transcription profiles of two other mosquito colonies having Bin resistance only. These confirmed the cqm1 downregulation and identified transcripts encoding the enzyme pantetheinase as the most downregulated mRNAs in both resistant colonies. Further quantification of these transcripts reinforced their strong downregulation in Bin-resistant larvae. Multiple genes were found encoding this enzyme in Cx. quinquefasciatus and a recombinant pantetheinase was then expressed in Escherichia coli and Sf9 cells, with its presence assessed in the midgut brush border membrane of susceptible larvae. The pantetheinase was expressed as a ~70 kDa protein, potentially membrane-bound, which does not seem to be significantly targeted by glycosylation. This is the first pantetheinase characterization in mosquitoes, and its remarkable downregulation might reflect features impacted by co-selection with the Bin-resistant phenotype or potential roles in the Bin-toxin mode of action that deserve to be investigated.
Collapse
Affiliation(s)
- Tatiana M. T. Rezende
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Heverly S. G. Menezes
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Antonio M. Rezende
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Milena P. Cavalcanti
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Yuri M. G. Silva
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Osvaldo P. de-Melo-Neto
- Department of Microbiology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (A.M.R.); (M.P.C.); (O.P.d.-M.-N.)
| | - Tatiany P. Romão
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
| | - Maria Helena N. L. Silva-Filha
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife 50740-465, PE, Brazil; (T.M.T.R.); (H.S.G.M.); (Y.M.G.S.); (T.P.R.)
- National Institute for Molecular Entomology, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
9
|
Wang S, Guo Y, Sun Y, Weng M, Liao Q, Qiu R, Zou S, Wu S. Identification of two Bacillus thuringiensis Cry3Aa toxin-binding aminopeptidase N from Rhynchophorus ferrugineus (Coleoptera: Curculionidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:615-625. [PMID: 37466033 DOI: 10.1017/s0007485323000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rhynchophorus ferrugineus is a quarantine pest that mainly damages plants in tropical regions, which are essential economic resources. Cry3Aa has been used to control coleopteran pests and is known to be toxic to R. ferrugineus. The binding of the Cry toxin to specific receptors on the target insect plays a crucial role in the toxicological mechanism of Cry toxins. However, in the case of R. ferrugineus, the nature and identity of the receptor proteins involved remain unknown. In the present study, pull-down assays and mass spectrometry were used to identify two proteins of aminopeptidase N proteins (RfAPN2a and RfAPN2b) in the larval midguts of R. ferrugineus. Cry3Aa was able to bind to RfAPN2a (Kd = 108.5 nM) and RfAPN2b (Kd = 68.2 nM), as well as midgut brush border membrane vesicles (Kd = 482.5 nM). In silico analysis of both RfAPN proteins included the signal peptide and anchored sites for glycosyl phosphatidyl inositol. In addition, RfAPN2a and RfAPN2b were expressed in the human embryonic kidney 293T cell line, and cytotoxicity assays showed that the transgenic cells were not susceptible to activated Cry3Aa. Our results show that RfAPN2a and RfAPN2b are Cry3Aa-binding proteins involved in the Cry3Aa toxicity of R. ferrugineus. This study deepens our understanding of the action mechanism of Cry3Aa in R. ferrugineus larvae.
Collapse
Affiliation(s)
- Shaozhen Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan
| | - Yunzhu Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Mingqing Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Qiliao Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Ru Qiu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| |
Collapse
|
10
|
Šolinc G, Anderluh G, Podobnik M. Bacillus thuringiensis toxin Cyt2Aa forms filamentous oligomers when exposed to lipid membranes or detergents. Biochem Biophys Res Commun 2023; 674:44-52. [PMID: 37393643 DOI: 10.1016/j.bbrc.2023.06.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
The bacterium Bacillus thuringiensis (Bt) produces insecticidal proteins during the sporulation phase. These proteins are located in parasporal crystals consisting of two delta-endotoxin classes, crystal (Cry) and cytolytic (Cyt) toxins. In vitro, Cyt toxins show cytolytic activity against bacterial and a variety of insect and mammalian cells. They bind to cell membranes with unsaturated phospholipids and sphingomyelin. Although Bt and its parasporal crystals containing both Cry and Cyt toxins have been successfully used as bioinsecticides, the molecular mechanism of action of Cyt toxins is not yet fully understood. To address this, we exposed Cyt2Aa to lipid membranes and visualized membrane disruption process using cryo-electron microscopy. We observed two types of Cyt2Aa oligomers. First, Cyt2Aa forms smaller curved oligomers on the membrane surface that become linear over time, and detach when the membrane ruptures. Similar linear filamentous oligomers were also formed by Cyt2Aa in the presence of detergents without prior exposure to lipid membranes, which exhibited attenuated cytolytic activity. Furthermore, our data suggest that Cyt2Aa adopts different conformations between its monomeric and oligomeric forms. Overall, our results provide new evidence for a detergent-like mechanism of action of Cyt2Aa rather than the pore-forming model of target membrane disruption of this important class of insecticidal proteins.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia.
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Chen SWW, Teulon JM, Pellequer JL. Cry11Aa and Cyt1Aa exhibit different structural orders in crystal topography. J Mol Recognit 2023; 36:e3047. [PMID: 37474122 DOI: 10.1002/jmr.3047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Cry11Aa and Cyt1Aa are two pesticidal toxins produced by Bacillus thuringiensis subsp. israelensis. To improve our understanding of the nature of their oligomers in the toxic actions and synergistic effects, we performed the atomic force microscopy to probe the surfaces of their natively grown crystals, and used the L-weight filter to enhance the structural features. By L-weight filtering, molecular sizes of the Cry11Aa and Cyt1Aa monomers obtained are in excellent agreement with the three-dimensional structures determined by x-ray crystallography. Moreover, our results show that the layered feature of a structural element distinguishes the topographic characteristics of Cry11Aa and Cyt1Aa crystals, suggesting that the Cry11Aa toxin has a better chance than Cyt1Aa for multimerization and therefore cooperativeness of the toxic actions.
Collapse
Affiliation(s)
- Shu-Wen W Chen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- Rue Cyprien Jullin, Vinay, France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
12
|
Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus. Toxins (Basel) 2023; 15:toxins15030211. [PMID: 36977103 PMCID: PMC10054650 DOI: 10.3390/toxins15030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Aedes albopictus is a species of mosquito, originally from Southeast Asia, that belongs to the Culicidae family and the Dipteran insect order. The distribution of this vector has rapidly changed over the past decade, making most of the temperate territories in the world vulnerable to important human vector-borne diseases such as dengue, yellow fever, zika or chikungunya. Bacillus thuringiensis var. israeliensis (Bti)-based insecticides represent a realistic alternative to the most common synthetic insecticides for the control of mosquito larvae. However, several studies have revealed emerging resistances to the major Bti Crystal proteins such as Cry4Aa, Cry4Ba and Cry11Aa, making the finding of new toxins necessary to diminish the exposure to the same toxicity factors overtime. Here, we characterized the individual activity of Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa against A. albopictus and found a new protein, Cyt1A-like, that increases the activity of Cry11Aa more than 20-fold. Additionally, we demonstrated that Cyt1A-like facilitates the activity three new Bti toxins: Cry53-like, Cry56A-like and Tpp36-like. All in all, these results provide alternatives to the currently available Bti products for the control of mosquito populations and position Cyt proteins as enablers of activity for otherwise non-active crystal proteins.
Collapse
|
13
|
Carvalho KS, Rezende TMT, Romão TP, Rezende AM, Chiñas M, Guedes DRD, Paiva-Cavalcanti M, Silva-Filha MHNL. Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses 2022; 15:72. [PMID: 36680112 PMCID: PMC9866606 DOI: 10.3390/v15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis svar. israelensis (Bti) larvicides are effective in controlling Aedes aegypti; however, the effects of long-term exposure need to be properly evaluated. We established an Ae. aegypti strain that has been treated with Bti for 30 generations (RecBti) and is still susceptible to Bti, but females exhibited increased susceptibility to Zika virus (ZIKV). This study compared the RecBti strain to a reference strain regarding: first, the relative transcription of selected immune genes in ZIKV-challenged females (F30) with increased susceptibility detected in a previous study; then, the whole transcriptomic profile using unchallenged females (F35). Among the genes compared by RT-qPCR in the ZIKV-infected and uninfected females from RecBti (F30) and the reference strain, hop, domeless, relish 1, defensin A, cecropin D, and gambicin showed a trend of repression in RecBti infected females. The transcriptome of RecBti (F35) unchallenged females, compared with a reference strain by RNA-seq, showed a similar profile and only 59 differentially expressed genes were found among 9202 genes analyzed. Our dataset showed that the long-term Bti exposure of the RecBti strain was associated with an alteration of the expression of genes potentially involved in the response to ZIKV infection in challenged females, which is an important feature found under this condition.
Collapse
Affiliation(s)
- Karine S. Carvalho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | | | - Tatiany P. Romão
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Antônio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Marcos Chiñas
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
| | | | | | | |
Collapse
|
14
|
Biggel M, Jessberger N, Kovac J, Johler S. Recent paradigm shifts in the perception of the role of Bacillus thuringiensis in foodborne disease. Food Microbiol 2022; 105:104025. [DOI: 10.1016/j.fm.2022.104025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
|
15
|
Tetreau G, Sawaya MR, De Zitter E, Andreeva EA, Banneville AS, Schibrowsky NA, Coquelle N, Brewster AS, Grünbein ML, Kovacs GN, Hunter MS, Kloos M, Sierra RG, Schiro G, Qiao P, Stricker M, Bideshi D, Young ID, Zala N, Engilberge S, Gorel A, Signor L, Teulon JM, Hilpert M, Foucar L, Bielecki J, Bean R, de Wijn R, Sato T, Kirkwood H, Letrun R, Batyuk A, Snigireva I, Fenel D, Schubert R, Canfield EJ, Alba MM, Laporte F, Després L, Bacia M, Roux A, Chapelle C, Riobé F, Maury O, Ling WL, Boutet S, Mancuso A, Gutsche I, Girard E, Barends TRM, Pellequer JL, Park HW, Laganowsky AD, Rodriguez J, Burghammer M, Shoeman RL, Doak RB, Weik M, Sauter NK, Federici B, Cascio D, Schlichting I, Colletier JP. De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals. Nat Commun 2022; 13:4376. [PMID: 35902572 PMCID: PMC9334358 DOI: 10.1038/s41467-022-31746-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
| | - Elke De Zitter
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Elena A Andreeva
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Anne-Sophie Banneville
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Natalie A Schibrowsky
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Nicolas Coquelle
- Large-Scale Structures Group, Institut Laue-Langevin, F-38000, Grenoble, France
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Giorgio Schiro
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Pei Qiao
- Department of Chemistry, Texas A&M University, College Station, TX, 77845, USA
| | - Myriam Stricker
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Dennis Bideshi
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ninon Zala
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Irina Snigireva
- European Synchrotron Radiation Facility (ESRF), BP 220, 38043, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Ethan J Canfield
- Mass Spectrometry Core Facility, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mario M Alba
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | | | | | - Maria Bacia
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Amandine Roux
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | | | - François Riobé
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Olivier Maury
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Adrian Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Irina Gutsche
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Hyun-Woo Park
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Arthur D Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77845, USA
| | - Jose Rodriguez
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Manfred Burghammer
- European Synchrotron Radiation Facility (ESRF), BP 220, 38043, Grenoble, France
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Weik
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jacques-Philippe Colletier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France.
| |
Collapse
|
16
|
da Silva JS, Oliveira M, Viana JL, da Silva MC, Pinheiro VCS, Zilse GAC, Tadei WP. Cyt1Aa toxin gene frequency in Bacillus thuringiensis isolates and its relation with pathogenicity for vector mosquitoes. Acta Trop 2022; 233:106549. [PMID: 35671782 DOI: 10.1016/j.actatropica.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis produces several virulence factors, the main ones being the Cry and Cyt toxins, present in the parasporal body produced during sporulation. The Cyt toxins have mechanisms specific for mosquitoes and Cyt1Aa, the most studied cytolytic toxin, is effective for mosquito control by acting in synergism with Cry toxins. The goal of the present work was to study the frequency of the codifying gene for Cyt1Aa in B. thuringiensis native isolates acquired from samples of soil, insect and water, as well as to verify any possible genetic polymorphism. 1,448 B. thuringiensis strains were used for DNA extraction and PCR technique, all with the use of a primer that amplifies a fragment of 300 pairs of the cyt1Aa gene. The strains that showed amplification in the PCR reaction were sequenced and compared to each other and to the sequences available at Genbank. 32 (2.3%) strains of B. thuringiensis showed positive amplification for the cyt1Aa gene. The highest frequency of isolates with cyt1Aa gene was acquired from samples coming from the Cerrado biome, both isolates from soil and from insects, equally with 3.4%. The cyt1Aa gene sequencing highlighted that, for that 300 bp region, the gene is conserved and there is no single-base polymorphism.
Collapse
Affiliation(s)
- Joelma S da Silva
- Curso Ciências Naturais, Centro de Ciências de Codó, Universidade Federal do Maranhão, Avenida Dr. José Anselmo, 2008, São Sebastião, Codó, Maranhão, 65400-000, Brasil.
| | - Maxcilene Oliveira
- Laboratório de Entomologia Médica, Departamento de Química e Biologia, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão, Praça Duque de Caxias, s/n, Morro do Alecrim, Caxias, Maranhão, 65604-380, Brasil
| | - Juliete L Viana
- Universidade do Estado do Amazonas - UEA, Programa de Pós-graduação em Biodiversidade e Biotecnologia da Rede BIONORTE - PPG BIONORTE, Av. Carvalho Leal, 1777, Ed. Anexo, 4° andar, Cachoeirinha, CEP 69065001, Manaus, AM, Brasil
| | - Maria C da Silva
- Laboratório de Bactérias Entomopatogênicas e Marcadores Moleculares, Departamento de Química e Biologia, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão, Praça Duque de Caxias, s/n, Morro do Alecrim, Caxias, Maranhão, 65604-380, Brasil
| | - Valéria C S Pinheiro
- Laboratório de Entomologia Médica, Departamento de Química e Biologia, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão, Praça Duque de Caxias, s/n, Morro do Alecrim, Caxias, Maranhão, 65604-380, Brasil
| | - Gislene A C Zilse
- Grupo de Pesquisas em Abelhas, Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Entomologia, Avenida André Araújo, 2936, Petrópolis, Manaus, Amazonas, 69067-375, Brasil
| | - Wanderli P Tadei
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Entomologia, Avenida André Araújo, 2936, Petrópolis, Manaus, Amazonas, 69067-375, Brasil
| |
Collapse
|
17
|
Batool K, Alam I, Liu P, Shu Z, Zhao S, Yang W, Jie X, Gu J, Chen XG. Recombinant Mosquito Densovirus with Bti Toxins Significantly Improves Pathogenicity against Aedes albopictus. Toxins (Basel) 2022; 14:147. [PMID: 35202174 PMCID: PMC8879223 DOI: 10.3390/toxins14020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the Bacillus thuringiensis (Bti) toxin Cry11Aa domain II loop α8 and Cyt1Aa loop β6-αE peptides into the AeDNV genome to improve its mosquitocidal efficiency; protein expression was confirmed using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Recombinant plasmids were transfected into mosquito C6/36 cell lines, and the expression of specific peptides was detected through RT-PCR. A toxicity bioassay against the first instar Aedes albopictus larvae revealed that the pathogenic activity of recombinant AeDNV was significantly higher and faster than the wild-type (wt) viruses, and mortality increased in a dose-dependent manner. The recombinant viruses were genetically stable and displayed growth phenotype and virus proliferation ability, similar to wild-type AeDNV. Our novel results offer further insights by combining two mosquitocidal pathogens to improve viral toxicity for mosquito control.
Collapse
Affiliation(s)
- Khadija Batool
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Intikhab Alam
- College of Life Sciences, South China Agricultural University, Guangzhou 510515, China;
| | - Peiwen Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Zeng Shu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Wenqiang Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Xiao Jie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| |
Collapse
|
18
|
Ioannou CS, Hadjichristodoulou C, Mouchtouri VA, Papadopoulos NT. Effects of Selection to Diflubenzuron and Bacillus thuringiensis Var. Israelensis on the Overwintering Successes of Aedes albopictus (Diptera: Culicidae). INSECTS 2021; 12:822. [PMID: 34564261 PMCID: PMC8471009 DOI: 10.3390/insects12090822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
Aedes albopictus is an invasive mosquito species responsible for local transmission of chikungunya and dengue viruses in Europe. In the absence of available treatments, insecticides-based control remains one of the most important viable strategies to prevent emerging problems. Diflubenzuron (DFB) and Bacillus thuringiensis var. israelensis (Bti) are among the most commonly used larvicides for Ae. albopictus control with consequent concerns for the potential development of resistance. Studies on the resistance emergence in Ae. albopictus and its persistence in the wild to both DFB and Bti are essential for the efficient and sustainable planning of the control programmes. In this context, larvae from a recently laboratory established population were subjected to increasing selective pressure for nine successive generations using both DFB and Bti. The resistance levels and the overwintering success of the selected populations relative to control (colonies that received no selection) were determined. Results revealed an 8.5- and 1.6-fold increase on the resistance levels following selection with DFB and Bti, respectively. The selection process to both larvicides had no apparent impacts on the overwintering capability relative to control, suggesting the successful persistence of the selected individuals in the wild on an annual base.
Collapse
Affiliation(s)
- Charalampos S. Ioannou
- Laboratory of Hygiene & Epidemiology, Faculty of Medicine, School of Health Science, University of Thessaly, 41222 Larissa, Greece; (C.S.I.); (C.H.); (V.A.M.)
- Laboratory of Entomology & Agricultural Zoology, Department of Agriculture Crop. Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Christos Hadjichristodoulou
- Laboratory of Hygiene & Epidemiology, Faculty of Medicine, School of Health Science, University of Thessaly, 41222 Larissa, Greece; (C.S.I.); (C.H.); (V.A.M.)
| | - Varvara A. Mouchtouri
- Laboratory of Hygiene & Epidemiology, Faculty of Medicine, School of Health Science, University of Thessaly, 41222 Larissa, Greece; (C.S.I.); (C.H.); (V.A.M.)
| | - Nikos T. Papadopoulos
- Laboratory of Entomology & Agricultural Zoology, Department of Agriculture Crop. Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
19
|
Carvalho KDS, Guedes DRD, Crespo MM, de Melo-Santos MAV, Silva-Filha MHNL. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasit Vectors 2021; 14:379. [PMID: 34321098 PMCID: PMC8317411 DOI: 10.1186/s13071-021-04880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aedes aegypti can transmit arboviruses worldwide, and Bacillus thuringiensis svar. israelensis (Bti)-based larvicides represent an effective tool for controlling this species. The safety of Bti and lack of resistance have been widely reported; however, little is known regarding the impact of the extensive use of these larvicides on the life traits of mosquitoes. Therefore, this study investigated biological parameters, including susceptibility to arbovirus, of an Ae. aegypti strain (RecBti) subjected to 29 generations of exposure to Bti compared with the RecL reference strain. Methods The biological parameters of individuals reared under controlled conditions were compared. Also, the viral susceptibility of females not exposed to Bti during their larval stage was analysed by oral infection and followed until 14 or 21 days post-infection (dpi). Results RecBti individuals did not display alterations in the traits that were assessed (fecundity, fertility, pupal weight, developmental time, emergence rate, sex ratio and haematophagic capacity) compared to RecL individuals. Females from both strains were susceptible to dengue serotype 2 (DENV-2) and Zika virus (ZIKV). However, RecBti females showed significantly higher rates of ZIKV infection compared with RecL females at 7 (90% versus 68%, Chi-square: χ2 = 7.27, df = 1, P = 0.006) and 14 dpi (100% versus 87%, Chi-square: χ2 = 7.69, df = 1, P = 0.005) and for dissemination at 7 dpi (83.3% versus 36%, Fisher’s exact test: P < 0.0001, OR = 0.11, 95% CI 0.03–0.32). Quantification of DENV-2 and ZIKV viral particles produced statistically similar results for females from both strains. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not alter most of the evaluated biological parameters, except that RecBti females exhibited a higher vector susceptibility for ZIKV. This finding is related to a background of Bti exposure for several generations but not to a previous exposure of the tested females during the larval stage. This study highlights mosquito responses that could be associated with the chronic exposure to Bti in addition to the primary larvicidal effect elicited by this control agent. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04880-6.
Collapse
Affiliation(s)
| | | | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
20
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
21
|
Tetreau G, Andreeva EA, Banneville AS, De Zitter E, Colletier JP. Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins? Toxins (Basel) 2021; 13:toxins13070441. [PMID: 34206749 PMCID: PMC8309801 DOI: 10.3390/toxins13070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
The development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, Bacillus thuringiensis (Bt) has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of Bt protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after. In this article, we explore whether the crystallization machinery of Bt can be hijacked as a means to produce (micro)crystalline formulations of proteins for three different applications: (i) to develop new bioinsecticidal formulations based on rationally improved crystalline toxins, (ii) to functionalize crystals with specific characteristics for biotechnological and medical applications, and (iii) to produce microcrystals of custom proteins for structural biology. By developing the needs of these different fields to figure out if and how Bt could meet each specific requirement, we discuss the already published and/or patented attempts and provide guidelines for future investigations in some underexplored yet promising domains.
Collapse
|
22
|
Short-Term Selection to Diflubenzuron and Bacillus thuringiensis Var. Israelensis Differentially Affects the Winter Survival of Culex pipiens f. Pipiens and Culex pipiens f. Molestus (Diptera: Culicidae). INSECTS 2021; 12:insects12060527. [PMID: 34204105 PMCID: PMC8228153 DOI: 10.3390/insects12060527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In Europe, Culex pipiens (Diptera: Culicidae) mosquito, the prime vector of West Nile virus, consists of two forms, named pipiens and molestus, that exhibit substantial differences in their biology, including overwintering behavior. Diflubenzuron (DFB) and Bacillus thuringiensis var. israelensis (Bti) are among the most widely used larvicides which pose major concerns for resistance development. In temperate areas, winter represents a very challenging period for the survival of many insects, including mosquitoes, and therefore potential fitness costs associated with insecticide selection may reduce their overwintering success. In this context, we investigated how short-term selection of Cx. pipiens f. pipiens and molestus forms to DFB and Bti affect their overwintering success. Our findings revealed that selection to both larvicides induced a high fitness cost in terms of reduced winter survival of Cx. pipiens f. molestus but not of pipiens form, suggesting potential differences in the persistence of the selected individuals in the wild from year to year. Abstract The Culex pipiens (Diptera: Culicidae) mosquito is of high medical importance as it is considered the prime vector of West Nile virus. In Europe, this species consists of two forms, named pipiens and molestus, that exhibit substantial differences in their overwintering biology. Diflubenzuron (DFB) and Bacillus thuringiensis var. israelensis (Bti) are two of the most used larvicides in mosquito control, including that of Culex pipiens. The high dependency on these two larvicides poses major concerns for resistance development. The evolution and stability of resistance to insecticides has been associated with fitness costs that may be manifested under stressful conditions, such as the winter period. This study investigated how short-term selection of pipiens and molestus forms to both larvicides affect their overwintering success. Larvae from each form were subjected to the same selective pressure (80% mortality) for three successive generations with DFB and Bti. At the end of this process, the winter survival between the selected populations and the controls (colonies without selection) was determined for each form. Selection to both larvicides significantly reduced the winter survival rates of molestus but not of pipiens form, indicating potential differences in the persistence of the selected individuals from year to year between the two forms.
Collapse
|
23
|
Wei J, Yang S, Zhou S, Liu S, Cao P, Liu X, Du M, An S. Suppressing calcineurin activity increases the toxicity of Cry2Ab to Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2021; 77:2142-2150. [PMID: 33336541 DOI: 10.1002/ps.6243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extensive planting of transgenetic Bacillus thuringiensis crops has driven the evolution of pest resistance to Cry1Ac. Adjustment of cropping structures has promoted further outbreak of Helicoverpa armigera in China. To control this pest, a combination of pyramiding RNA interference (RNAi) and Cry2Ab is considered a promising strategy for countering cross-resistance and enhancing the toxicity of Cry2Ab to cotton bollworm. We explored the possibility of using calcineurin (CAN) as a target RNAi gene, because it is involved in cotton bollworm responses to the toxicity of Cry2Ab. RESULTS Cry2Ab treatment led to a significant increase in HaCAN mRNA level and HaCAN activity. Suppression of HaCAN activity due to RNAi-mediated knockdown of HaCAN increased the susceptibility of midgut cells to Cry2Ab. The increase in HaCAN activity shown by heterologous expression of HaCAN reduced the cytotoxicity of Cry2Ab to Sf9 cells. Moreover, ingestion of HaCAN-specific inhibitor FK506 increased the toxicity of Cry2Ab in larvae. Interestingly, HaCAN does not function as a Cry2Ab direct binding protein that participates in Cry2Ab toxicity. CONCLUSIONS The results in this study provide evidence that suppression of HaCAN not only affected the development of the cotton bollworm, but also enhanced the toxicity of Cry2Ab to the pest. HaCAN is therefore an important candidate gene in cotton bollworm that can be targeted for pest control when the pest infests RNAi+Cry2Ab crops. Meanwhile, the mechanism of action of HaCAN in Cry2Ab toxicity suggested that protein dephosphorylation was involved. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuo Yang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuai Zhou
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaokai Liu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Pei Cao
- Kaifeng Agricultural Technology Extension Station, Kaifeng, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
24
|
Verduzco-Rosas LA, García-Suárez R, López-Tlacomulco JJ, Ibarra JE. Selection and characterization of two Bacillus thuringiensis strains showing nematicidal activity against Caenorhabditis elegans and Meloidogyne incognita. FEMS Microbiol Lett 2021; 368:6171021. [PMID: 33720297 DOI: 10.1093/femsle/fnaa186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bacillus thuringiensis has been widely used as a biological control agent against insect pests. Additionally, nematicidal strains have been under investigation. In this report, 310 native strains of B. thuringiensis against Caenorhabditis elegans were tested. Only the LBIT-596 and LBIT-107 strains showed significant mortality. LC50s of spore-crystal complexes were estimated at 37.18 and 31.89 μg/mL for LBIT-596 and LBIT-107 strains, respectively, while LC50s of partially purified crystals was estimated at 23.76 and 20.25 μg/mL for LBIT-596 and LBIT-107, respectively. The flagellin gene sequence and plasmid patterns indicated that LBIT-596 and LBIT-107 are not related to each other. Sequences from internal regions of a cry5B and a cyt1A genes were found in the LBIT-596 strain, while a cry21A, a cry14A and a cyt1A genes were found in the LBIT-107 strain. Genome sequence of the LBIT-107 strain showed new cry genes, along with other virulence factors, hence, total nematicidal activity of the LBIT-107 strain may be the result of a multifactorial effect. The highlight of this contribution is that translocation of spore-crystal suspensions of LBIT-107 into tomato plants inoculated at their rhizosphere decreased up to 90% the number of galls of Meloidogyne incognita, perhaps the most important nematode pest in the world.
Collapse
Affiliation(s)
- Luis A Verduzco-Rosas
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apartado postal 629, 36500 Irapuato, Gto. Mexico
| | - Rosalina García-Suárez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apartado postal 629, 36500 Irapuato, Gto. Mexico
| | - José J López-Tlacomulco
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apartado postal 629, 36500 Irapuato, Gto. Mexico
| | - Jorge E Ibarra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apartado postal 629, 36500 Irapuato, Gto. Mexico
| |
Collapse
|
25
|
Barbieri G, Ferrari C, Mamberti S, Gabrieli P, Castelli M, Sassera D, Ursino E, Scoffone VC, Radaelli G, Clementi E, Sacchi L, Ferrari E, Gasperi G, Albertini AM. Identification of a Novel Brevibacillus laterosporus Strain With Insecticidal Activity Against Aedes albopictus Larvae. Front Microbiol 2021; 12:624014. [PMID: 33679643 PMCID: PMC7925996 DOI: 10.3389/fmicb.2021.624014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial species able to produce proteins that are toxic against insects have been discovered at the beginning of the last century. However, up to date only two of them have been used as pesticides in mosquito control strategies targeting larval breeding sites: Bacillus thuringensis var. israelensis and Lysinibacillus sphaericus. Aiming to expand the arsenal of biopesticides, bacterial cultures from 44 soil samples were assayed for their ability to kill larvae of Aedes albopictus. A method to select, grow and test the larvicidal capability of spore-forming bacteria from each soil sample was developed. This allowed identifying 13 soil samples containing strains capable of killing Ae. albopictus larvae. Among the active isolates, one strain with high toxicity was identified as Brevibacillus laterosporus by 16S rRNA gene sequencing and by morphological characterization using transmission electron microscopy. The new isolate showed a larvicidal activity significantly higher than the B. laterosporus LMG 15441 reference strain. Its genome was phylogenomically characterized and compared to the available Brevibacillus genomes. Thus, the new isolate can be considered as a candidate adjuvant to biopesticides formulations that would help preventing the insurgence of resistance.
Collapse
Affiliation(s)
- Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Carolina Ferrari
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Stefania Mamberti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Emanuela Ursino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giacomo Radaelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Emanuela Clementi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Luciano Sacchi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Eugenio Ferrari
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandra M Albertini
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
A novel anti-dipteran Bacillus thuringiensis strain: Unusual Cry toxin genes in a highly dynamic plasmid environment. Appl Environ Microbiol 2021; 87:AEM.02294-20. [PMID: 33310715 PMCID: PMC8090892 DOI: 10.1128/aem.02294-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacillus thuringiensis emerged as a major bioinsecticide on the global market. It offers a valuable alternative to chemical products classically utilized to control pest insects. Despite the efficiency of several strains and products available on the market, the scientific community is always on the lookout for novel toxins that can replace or supplement the existing products. In this study, H3, a novel B. thuringiensis strain showing mosquitocidal activity, was isolated from Lebanese soil and characterized at an in vivo, genomic and proteomic levels. H3 parasporal crystal is toxic on its own but displays an unusual killing profile with a higher LC50 than the reference B. thuringiensis serovar israelensis crystal proteins. In addition, H3 has a different toxicity order: it is more toxic to Aedes albopictus and Anopheles gambiae than to Culex pipiens Whole genome sequencing and crystal analysis revealed that H3 can produce eleven novel Cry proteins, eight of which are assembled in genes with an orf1-gap-orf2 organization, where orf2 is a potential Cry4-type crystallization domain. Moreover, pH3-180, the toxin-carrying plasmid, holds a wide repertoire of mobile genetic elements that amount to ca 22% of its size., including novel insertion sequences and class II transposable elements Two other large plasmids present in H3 carry genetic determinants for the production of many interesting molecules - such as chitinase, cellulase and bacitracin - that may add up to H3 bioactive properties. This study therefore reports a novel mosquitocidal Bacillus thuringiensis strain with unusual Cry toxin genes in a rich mobile DNA environment.IMPORTANCE Bacillus thuringiensis, a soil entomopathogenic bacteria, is at the base of many sustainable eco-friendly bio-insecticides. Hence stems the need to continually characterize insecticidal toxins. H3 is an anti-dipteran B. thuringiensis strain, isolated from Lebanese soil, whose parasporal crystal contains eleven novel Cry toxins and no Cyt toxins. In addition to its individual activity, H3 showed potential as a co-formulant with classic commercialized B. thuringiensis products, to delay the emergence of resistance and to shorten the time required for killing. On a genomic level, H3 holds three large plasmids, one of which carries the toxin-coding genes, with four occurrences of the distinct orf1-gap-orf2 organization. Moreover, this plasmid is extremely rich in mobile genetic elements, unlike its two co-residents. This highlights the important underlying evolutionary traits between toxin-carrying plasmids and the adaptation of a B. thuringiensis strain to its environment and insect host spectrum.
Collapse
|
27
|
López-Molina S, do Nascimento NA, Silva-Filha MHNL, Guerrero A, Sánchez J, Pacheco S, Gill SS, Soberón M, Bravo A. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti. PLoS Pathog 2021; 17:e1009199. [PMID: 33465145 PMCID: PMC7846010 DOI: 10.1371/journal.ppat.1009199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered "net like" structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity.
Collapse
Affiliation(s)
- Samira López-Molina
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | | | | | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | - Jorge Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Sarjeet S. Gill
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, California, United States of America
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- * E-mail:
| |
Collapse
|
28
|
Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins (Basel) 2020; 12:toxins12120773. [PMID: 33291447 PMCID: PMC7762171 DOI: 10.3390/toxins12120773] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The control of dipteran pests is highly relevant to humans due to their involvement in the transmission of serious diseases including malaria, dengue fever, Chikungunya, yellow fever, zika, and filariasis; as well as their agronomic impact on numerous crops. Many bacteria are able to produce proteins that are active against insect species. These bacteria include Bacillus thuringiensis, the most widely-studied pesticidal bacterium, which synthesizes proteins that accumulate in crystals with insecticidal properties and which has been widely used in the biological control of insects from different orders, including Lepidoptera, Coleoptera, and Diptera. In this review, we summarize all the bacterial proteins, from B. thuringiensis and other entomopathogenic bacteria, which have described insecticidal activity against dipteran pests, including species of medical and agronomic importance.
Collapse
|
29
|
Wang Z, Wang K, Bravo A, Soberón M, Cai J, Shu C, Zhang J. Coexistence of cry9 with the vip3A Gene in an Identical Plasmid of Bacillus thuringiensis Indicates Their Synergistic Insecticidal Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14081-14090. [PMID: 33180493 DOI: 10.1021/acs.jafc.0c05304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacillus thuringiensis (Bt) strains may express several insecticidal proteins with synergistic features, achieving high insecticidal toxicity and delaying development of resistance in insect pests. Previous work showed that Cry9Aa and Vip3Aa proteins present synergistic activity against Chilo suppressalis. In this study, genome-wide analysis of 489 Bt genomes revealed that cry9A was associated with the vip3A gene in seven Bt strains. Among all Bt genomes analyzed, not a single strain was found to have the cry9A gene alone without the presence of the vip3A gene. The complete genome sequencing of two Bt strains, 4AP1 and 4AO1, revealed that cry9A and vip3A genes were located in the same plasmid in both strains. The genome context analysis suggested a recombination mechanism responsible for the insertion of the cry9A gene into the plasmid containing vip3A. The coexistence of Cry9A with Vip3A proteins in strain 4AP1 was confirmed by liquid chromatography-tandem mass spectrometry and western blot analyses. Furthermore, another Cry9 protein codified by the gene in the identical plasmid also showed synergistic activity with the Vip3A protein. Overall, our results support that cry9 genes coexisted with vip3A and that complete genome sequencing combined with protein expression analysis may be used to identify associations of insecticidal proteins with potential synergistic toxicity.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Kui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250, Mexico
| | - Jilin Cai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
30
|
Baranek J, Pogodziński B, Szipluk N, Zielezinski A. TOXiTAXi: a web resource for toxicity of Bacillus thuringiensis protein compositions towards species of various taxonomic groups. Sci Rep 2020; 10:19767. [PMID: 33188218 PMCID: PMC7666212 DOI: 10.1038/s41598-020-75932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Bioinsecticides consisting of different sets of Bacillus thuringiensis (Bt) Cry, Cyt and Vip toxins are broadly used in pest control. Possible interactions (synergistic, additive or antagonistic) between these proteins can not only influence the overall efficacy of certain Bt-based bioinsecticide, but also raise questions regarding environmental safety. Here, we assemble, summarize and analyze the outcomes of experiments published over 30 years, investigating combinatorial effects among Bt Cry, Cyt and Vip toxins. We collected the results on 118 various two-to-five-component combinations that have been bioassayed against 38 invertebrate species. Synergism, additive effect and antagonism was indicated in 54%, 32% and 14% of experiments, respectively. Synergism was noted most frequently for Cry/Cyt combinations, followed by Cyt/Vip and Cry/Cry. In Cry/Vip combinations, antagonism is more frequent and higher in magnitude compared to other categories. Despite a significant number of tested Bt toxin combinations, most of them have been bioassayed only against one pest species. To aid the research on Bt pesticidal protein activity, we present TOXiTAXi ( http://www.combio.pl/toxitaxi/ ), a universal database and a dedicated web tool to conveniently gather and analyze the existing and future bioassay results on biocidal activity of toxins against various taxonomic groups.
Collapse
Affiliation(s)
- Jakub Baranek
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Bartłomiej Pogodziński
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Norbert Szipluk
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
31
|
Ursino E, Albertini AM, Fiorentino G, Gabrieli P, Scoffone VC, Pellegrini A, Gasperi G, Di Cosimo A, Barbieri G. Bacillus subtilis as a host for mosquitocidal toxins production. Microb Biotechnol 2020; 13:1972-1982. [PMID: 32864888 PMCID: PMC7533320 DOI: 10.1111/1751-7915.13648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aedes albopictus transmits several arboviral infections. In the absence of vaccines, control of mosquito populations is the only strategy to prevent vector-borne diseases. As part of the search for novel, biological and environmentally friendly strategies for vector control, the isolation of new bacterial species with mosquitocidal activity represents a promising approach. However, new bacterial isolates may be difficult to grow and genetically manipulate. To overcome these limits, here we set up a system allowing the expression of mosquitocidal bacterial toxins in the well-known genetic background of Bacillus subtilis. As a proof of this concept, the ability of B. subtilis to express individual or combinations of toxins of Bacillus thuringiensis israelensis (Bti) was studied. Different expression systems in which toxin gene expression was driven by IPTG-inducible, auto-inducible or toxin gene-specific promoters were developed. The larvicidal activity of the resulting B. subtilis strains against second-instar Ae. albopictus larvae allowed studying the activity of individual toxins or the synergistic interaction among Cry and Cyt toxins. The expression systems here presented lay the foundation for a better improved system to be used in the future to characterize the larvicidal activity of toxin genes from new environmental isolates.
Collapse
Affiliation(s)
- Emanuela Ursino
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | | | - Giulia Fiorentino
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Paolo Gabrieli
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
- Present address:
Department of BiosciencesUniversità degli Studi di MilanoMilanoItaly
| | | | - Angelica Pellegrini
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Giuliano Gasperi
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Alessandro Di Cosimo
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Giulia Barbieri
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| |
Collapse
|
32
|
Guo Y, Carballar-Lejarazú R, Sheng L, Fang Y, Wang S, Liang G, Hu X, Wang R, Zhang F, Wu S. Identification and Characterization of Aminopeptidase-N as a Binding Protein for Cry3Aa in the Midgut of Monochamus alternatus (Coleoptera: Cerambycidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2259-2268. [PMID: 32623464 DOI: 10.1093/jee/toaa130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Bacillus thuringiensis Cry proteins have been widely used over the past decades for many different insect pests, which are safe for users and the environment. The coleopteran-specific Cry3Aa toxin from B. thuringiensis exhibits toxicity to the larvae of Monochamus alternatus. Receptors play a key role in the mechanisms underlying the toxic action of Cry. However, the binding receptor for Cry3Aa has yet to be identified in the midgut of M. alternatus larvae. Therefore, the aim of this study was to identify the receptor for Cry3Aa toxin in the brush border membrane vesicles (BBMVs) of M. alternatus larvae. Our results indicate that the Cry3Aa toxin binds to the BBMVs (Kd = 247 nM) of M. alternatus via a 107 kDa aminopeptidase N (APN) (Kd = 57 nM). In silico analysis of the APN protein predicted that an 18 amino acid sequence in the N-terminal acted as a signal peptide, and that the Asn residue, located at position 918 in the C-terminus is an anchored site for glycosyl phosphatidyl inositol. Further analysis showed that M. alternatus APN exhibits 75% homology to the APN from Anoplophora glabripenis. Our work, therefore, confirmed that APN, which is localized in the BBMVs in the midgut of M. alternatus larvae, acts as a binding protein for Cry3Aa toxins.
Collapse
Affiliation(s)
- Yajie Guo
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Liangjing Sheng
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Yan Fang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Shaozhen Wang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Guanghong Liang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Xia Hu
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Rong Wang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Feiping Zhang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Songqing Wu
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
33
|
Vieira-Neta MRA, Soares-da-Silva J, Viana JL, Silva MC, Tadei WP, Pinheiro VCS. Strain of Bacillus thuringiensis from Restinga, toxic to Aedes (Stegomyia) aegypti (Linnaeus) (Diptera, Culicidae). BRAZ J BIOL 2020; 81:872-880. [PMID: 33053121 DOI: 10.1590/1519-6984.228790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022] Open
Abstract
Bacillus thuringiensis is the most commonly used entomopathogen in the control of Aedes aegypti, which is a vector for different etiological agents that cause serious infections in humans. Several studies aim to isolate strains of this bacterium from different environments, with the perspective of selecting isolates with larvicidal activity for mosquitoes. Aiming at the insecticidal action of B. thuringiensis, the present study aimed to prospect B. thuringiensis of restinga and mangrove soils from the state of Maranhão, Brazil, with toxic potential for use in the biological control of Ae. aegypti. Bioassays were performed to determine the entomopathogenic activity of the bacilli against Ae. aegypti and lethal concentrations (LC50 and CL90) were estimated after the tests. Polymerase Chain Reaction and SDS-PAGE techniques were performed to verify the gene and protein content of the isolates, respectively. The soil of the mangrove and restinga ecosystems showed potential for obtaining B. thuringiensis. This isolate, in addition to having proteins with molecular mass similar to the toxins Cry and Cyt, also presented several diptera-specific genes cry and cyt, demonstrating that it has high potential to be used in the biological control of Ae. aegypti.
Collapse
Affiliation(s)
- M R A Vieira-Neta
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Biodiversidade, Ambiente e Saúde - PPGBAS, Caxias, MA, Brasil
| | - J Soares-da-Silva
- Universidade Federal do Maranhão - UFMA, Coordenação de Ciências Naturais/Biologia, Codó, MA, Brasil
| | - J L Viana
- Universidade do Estado do Amazonas - UEA, Programa de Pós-graduação em Biodiversidade e Biotecnologia da Rede BIONORTE - PPG BIONORTE, Manaus, AM, Brasil
| | - M C Silva
- Universidade Estadual do Maranhão - UEMA, Centro de Estudos Superiores de Caxias - CESC, Departamento de Química e Biologia, Caxias, MA, Brasil
| | - W P Tadei
- Instituto Nacional de Pesquisas da Amazônia - INPA, Laboratório de Malária e Dengue, Programa de Pós-graduação em Entomologia, Manaus, AM, Brasil
| | - V C S Pinheiro
- Universidade Estadual do Maranhão - UEMA, Centro de Estudos Superiores de Caxias - CESC, Departamento de Química e Biologia, Laboratório de Entomologia Médica - LABEM, Caxias, MA, Brasil
| |
Collapse
|
34
|
Vílchez S. Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins (Basel) 2020; 12:toxins12090600. [PMID: 32948025 PMCID: PMC7551160 DOI: 10.3390/toxins12090600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
3D-Cry toxins, produced by the entomopathogenic bacterium Bacillus thuringiensis, have been extensively mutated in order to elucidate their elegant and complex mechanism of action necessary to kill susceptible insects. Together with the study of the resistant insects, 3D-Cry toxin mutants represent one of the pillars to understanding how these toxins exert their activity on their host. The principle is simple, if an amino acid is involved and essential in the mechanism of action, when substituted, the activity of the toxin will be diminished. However, some of the constructed 3D-Cry toxin mutants have shown an enhanced activity against their target insects compared to the parental toxins, suggesting that it is possible to produce novel versions of the natural toxins with an improved performance in the laboratory. In this report, all mutants with an enhanced activity obtained by accident in mutagenesis studies, together with all the variants obtained by rational design or by directed mutagenesis, were compiled. A description of the improved mutants was made considering their historical context and the parallel development of the protein engineering techniques that have been used to obtain them. This report demonstrates that artificial 3D-Cry toxins made in laboratories are a real alternative to natural toxins.
Collapse
Affiliation(s)
- Susana Vílchez
- Institute of Biotechnology, Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
35
|
Onofre J, Pacheco S, Torres-Quintero MC, Gill SS, Soberon M, Bravo A. The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes. J Biol Chem 2020; 295:9606-9617. [PMID: 32444494 DOI: 10.1074/jbc.ra120.013869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
Bacillus thuringiensis subsp. israelensis produces crystal inclusions composed of three-domain Cry proteins and cytolytic Cyt toxins, which are toxic to different mosquito larvae. A key component is the Cyt toxin, which synergizes the activity of the other Cry toxins, thereby resulting in high toxicity. The precise mechanism of action of Cyt toxins is still debated, and two models have been proposed: the pore formation model and the detergent effect. Here, we performed a systematic structural characterization of the Cyt toxin interaction with different membranes, including in Aedes aegypti larval brush border membrane vesicles, small unilamellar vesicle liposomes, and rabbit erythrocytes. We examined Cyt1Aa insertion into these membranes by analyzing fluorescence quenching in solution and in the membrane-bound state. For this purpose, we constructed several Cyt1Aa variants having substitutions with a single cysteine residue in different secondary structures, enabling Cys labeling with Alexa Fluor 488 for quenching analysis using I-soluble quencher in solution and in the membrane-bound state. We identified the Cyt1Aa residues exposed to the solvent upon membrane insertion, predicting a possible topology of the membrane-inserted toxin in the different membranes. Moreover, toxicity assays with these variants revealed that Cyt1Aa exerts its insecticidal activity and hemolysis through different mechanisms. We found that Cyt1Aa exhibits variable interactions with each membrane system, with deeper insertion into mosquito larva membranes, supporting the pore formation model, whereas in the case of erythrocytes and small unilamellar vesicles, Cyt1Aa's insertion was more superficial, supporting the notion that a detergent effect underlies its hemolytic activity.
Collapse
Affiliation(s)
- Janette Onofre
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mary Carmen Torres-Quintero
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Sarjeet S Gill
- Cell Biology and Neuroscience Department, University of California, Riverside, California, USA
| | - Mario Soberon
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
36
|
Identification of Cyt2Ba from a New Strain of Bacillus thuringiensis and Its Toxicity in Bradysia difformis. Curr Microbiol 2020; 77:2859-2866. [PMID: 32621000 PMCID: PMC7452929 DOI: 10.1007/s00284-020-02018-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Abstract
Bradysia difformis is one of the most damaging pests in mushroom production in China. In this study, eight Bacillus thuringiensis strains were analyzed for insecticidal activity in B. difformis. The strain JW-1 showed the highest insecticidal activity against B. difformis larvae, but did not inhibit the mycelial growth of Pleurotus ostreatus and P. geesteranus. The 16S rRNA gene (1397 bp) and cyt2 gene (792 bp) were obtained from strain JW-1. The phylogenetic tree based on 16S rRNA gene and Cyt2 toxin showed that strain JW-1 was a member of B. thuringiensis and Cyt2 toxin belonged to Cyt2Ba toxin cluster. The Cyt2Ba toxin from strain JW-1 was overexpressed in E. coli as a fusion protein and the fusion protein (70 kDa) was purified by Ni-IDA affinity chromatography. The purified Cyt2Ba fusion protein was toxic to B. difformis larvae (LC50 was 2.25 ng/mL). The identification of Cyt2Ba from strain JW-1 and confirmation of the insecticidal activity of Cyt2Ba in B. difformis provided a new means of biological control of the important pest in mushroom production.
Collapse
|
37
|
Valtierra-de-Luis D, Villanueva M, Lai L, Williams T, Caballero P. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Bacillus thuringiensis ser. israelensis, for the Control of Aedes aegypti Larvae. Toxins (Basel) 2020; 12:toxins12060355. [PMID: 32485828 PMCID: PMC7354544 DOI: 10.3390/toxins12060355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis ser. israelensis (Bti) has been widely used as microbial larvicide for the control of many species of mosquitoes and blackflies. The larvicidal activity of Bti resides in Cry and Cyt δ-endotoxins present in the parasporal crystal of this pathogen. The insecticidal activity of the crystal is higher than the activities of the individual toxins, which is likely due to synergistic interactions among the crystal component proteins, particularly those involving Cyt1Aa. In the present study, Cry10Aa and Cyt2Ba were cloned from the commercial larvicide VectoBac-12AS® and expressed in the acrystalliferous Bt strain BMB171 under the cyt1Aa strong promoter of the pSTAB vector. The LC50 values for Aedes aegypti second instar larvae estimated at 24 hpi for these two recombinant proteins (Cry10Aa and Cyt2Ba) were 299.62 and 279.37 ng/mL, respectively. Remarkable synergistic mosquitocidal activity was observed between Cry10Aa and Cyt2Ba (synergistic potentiation of 68.6-fold) when spore + crystal preparations, comprising a mixture of both recombinant strains in equal relative concentrations, were ingested by A. aegypti larvae. This synergistic activity is among the most powerful described so far with Bt toxins and is comparable to that reported for Cyt1A when interacting with Cry4Aa, Cry4Ba or Cry11Aa. Synergistic mosquitocidal activity was also observed between the recombinant proteins Cyt2Ba and Cry4Aa, but in this case, the synergistic potentiation was 4.6-fold. In conclusion, although Cry10Aa and Cyt2Ba are rarely detectable or appear as minor components in the crystals of Bti strains, they represent toxicity factors with a high potential for the control of mosquito populations.
Collapse
Affiliation(s)
- Daniel Valtierra-de-Luis
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
| | - Maite Villanueva
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
- Bioinsectis SL, Avda Pamplona 123, 31192 Mutilva, Spain
| | - Liliana Lai
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
| | | | - Primitivo Caballero
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
- Bioinsectis SL, Avda Pamplona 123, 31192 Mutilva, Spain
- Institute for Multidisciplinary Applied Biology Research (IMAB), Universidad Pública de Navarra, 31006 Mutilva, Spain
- Correspondence:
| |
Collapse
|
38
|
The Cytocidal Spectrum of Bacillus thuringiensis Toxins: From Insects to Human Cancer Cells. Toxins (Basel) 2020; 12:toxins12050301. [PMID: 32384723 PMCID: PMC7291302 DOI: 10.3390/toxins12050301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a ubiquitous bacterium in soils, insect cadavers, phylloplane, water, and stored grain, that produces several proteins, each one toxic to different biological targets such as insects, nematodes, mites, protozoa, and mammalian cells. Most Bt toxins identify their particular target through the recognition of specific cell membrane receptors. Cry proteins are the best-known toxins from Bt and a great amount of research has been published. Cry are cytotoxic to insect larvae that affect important crops recognizing specific cell membrane receptors such as cadherin, aminopeptidase-N, and alkaline phosphatase. Furthermore, some Cry toxins such as Cry4A, Cry4B, and Cry11A act synergistically with Cyt toxins against dipteran larvae vectors of human disease. Research developed with Cry proteins revealed that these toxins also could kill human cancer cells through the interaction with specific receptors. Parasporins are a small group of patented toxins that may or may not have insecticidal activity. These proteins could kill a wide variety of mammalian cancer cells by recognizing specific membrane receptors, just like Cry toxins do. Surface layer proteins (SLP), unlike the other proteins produced by Bt, are also produced by most bacteria and archaebacteria. It was recently demonstrated that SLP produced by Bt could interact with membrane receptors of insect and human cancer cells to kill them. Cyt toxins have a structure that is mostly unrelated to Cry toxins; thereby, other mechanisms of action have been reported to them. These toxins affect mainly mosquitoes that are vectors of human diseases like Anopheles spp (malaria), Aedes spp (dengue, zika, and chikungunya), and Culex spp (Nile fever and Rift Valley fever), respectively. In addition to the Cry, Cyt, and parasporins toxins produced during spore formation as inclusion bodies, Bt strains also produce Vip (Vegetative insecticidal toxins) and Sip (Secreted insecticidal proteins) toxins with insecticidal activity during their vegetative growth phase.
Collapse
|
39
|
Anaya P, Onofre J, Torres-Quintero MC, Sánchez J, Gill SS, Bravo A, Soberón M. Oligomerization is a key step for Bacillus thuringiensis Cyt1Aa insecticidal activity but not for toxicity against red blood cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103317. [PMID: 31978588 PMCID: PMC7245338 DOI: 10.1016/j.ibmb.2020.103317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Bacillus thuringiensis (Bt) Cyt1Aa toxin shows toxicity to mosquitoes, to certain coleopteran pests and also to red blood cells (RBC). However, its mode of action in the different target cells is not well defined. This protein is a single α-β domain pore-forming toxin, where a β sheet is wrapped by two α-helices layers. The Cyt1Aa α-helix hairpin in the N-terminal has been proposed to be involved in initial membrane binding and oligomerization, while the β sheet inserts into the membrane to form a pore that lyze the cells. To determine the role of the N-terminal α-helix hairpin region of Cyt1Aa in its mode of action, we characterized different single point mutations located in helices α-1 and α-2. Eight cysteine substitutions in different residues were produced in Bt, and we found that three of them: Cyt1AaA65C, Cyt1AaL85C and Cyt1AaN89C, lost insecticidal toxicity against Aedes aegypti larvae but retained similar or increased hemolytic activity towards rabbit RBC. Analysis of toxin binding and oligomerization using Ae. aegypti midgut brush border membrane vesicles showed that the three Cyt1Aa mutants non-toxic to Ae. aegypti were affected in oligomerization. However, these mutants were still hemolytic. Our data shows that oligomerization of Cyt1Aa toxin is essential for its toxicity to Ae. aegypti but not for its toxicity against RBC indicating that the mode of action of Cyt1Aa is different in these distinct target membranes.
Collapse
Affiliation(s)
- Paulina Anaya
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Janette Onofre
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Mary Carmen Torres-Quintero
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Jorge Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Sarjeet S Gill
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| |
Collapse
|
40
|
Functional Bacillus thuringiensis Cyt1Aa Is Necessary To Synergize Lysinibacillus sphaericus Binary Toxin (Bin) against Bin-Resistant and -Refractory Mosquito Species. Appl Environ Microbiol 2020; 86:AEM.02770-19. [PMID: 32005737 DOI: 10.1128/aem.02770-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
The binary (Bin) toxin from Lysinibacillus sphaericus is effective to mosquito larvae, but its utilization is threatened by the development of insect resistance. Bin toxin is composed of the BinB subunit required for binding to midgut receptors and the BinA subunit that causes toxicity after cell internalization, mediated by BinB. Culex quinquefasciatus resistance to this toxin is caused by mutations that prevent expression of Bin toxin receptors in the midgut. Previously, it was shown that the Cyt1Aa toxin from Bacillus thuringiensis subsp. israelensis restores Bin toxicity to Bin-resistant C. quinquefasciatus and to Aedes aegypti larvae, which are naturally devoid of functional Bin receptors. Our goal was to elucidate the mechanism involved in Cyt1Aa synergism with Bin in such larvae. In vivo assays showed that the mixture of Bin toxin, or its BinA subunit, with Cyt1Aa was effective to kill resistant larvae. However, no specific binding interaction between Cyt1Aa and the Bin toxin, or its subunits, was observed. The synergy between Cyt1Aa and Bin toxins is dependent on functional Cyt1Aa, as demonstrated by using the nontoxic Cyt1AaV122E mutant toxin affected in oligomerization and membrane insertion, which was unable to synergize Bin toxicity in resistant larvae. The synergism correlated with the internalization of Bin or BinA into anterior and medium midgut epithelial cells, which occurred only in larvae treated with wild-type Cyt1Aa toxin. This toxin is able to overcome failures in the binding step involving BinB receptor by allowing the internalization of Bin toxin, or its BinA subunit, into the midgut cells.IMPORTANCE One promising management strategy for mosquito control is the utilization of a mixture of L. sphaericus and B. thuringiensis subsp. israelensis insecticidal toxins. From this set, Bin and Cyt1Aa toxins synergize and display toxicity to resistant C. quinquefasciatus and to A. aegypti larvae, whose midgut cells lack Bin toxin receptors. Our data set provides evidence that functional Cyt1Aa is essential for internalization of Bin or its BinA subunit into such cells, but binding interaction between Bin and Cyt1Aa is not observed. Thus, this mechanism contrasts with that for the synergy between Cyt1Aa and the B. thuringiensis subsp. israelensis Cry toxins, where active Cyt1Aa is not necessary but a specific binding between Cry and Cyt1Aa is required. Our study established the initial molecular basis of the synergy between Bin and Cyt1Aa, and these findings enlarge our knowledge of their mode of action, which could help to develop improved strategies to cope with insect resistance.
Collapse
|
41
|
Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nat Commun 2020; 11:1153. [PMID: 32123169 PMCID: PMC7052140 DOI: 10.1038/s41467-020-14894-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/08/2020] [Indexed: 11/08/2022] Open
Abstract
Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti. Structures determined under various pH/redox conditions illuminate the role played by previously uncharacterized disulfide-bridge and domain-swapped interfaces from crystal formation in Bti to dissolution in the larval mosquito midgut. Biochemical, toxicological and biophysical methods enable the deconvolution of key steps in the Cyt1Aa bioactivation cascade. We additionally show that the size, shape, production yield, pH sensitivity and toxicity of Cyt1Aa crystals grown in Bti can be controlled by single atom substitution. Bacillus thuringiensis israelensis (Bti) produces the naturally-crystalline proteinaceous toxin Cyt1Aa that is toxic to mosquito larvae. Here the authors grow recombinant nanocrystals of the Cyt1Aa protoxin in vivo and use serial femtosecond crystallography to determine its structure at different redox and pH conditions and by combining their structural data with further biochemical, toxicological and biophysical analyses provide mechanistic insights into the Cyt1Aa bioactivation cascade.
Collapse
|
42
|
Fayad N, Patiño-Navarrete R, Kambris Z, Antoun M, Osta M, Chopineau J, Mahillon J, El Chamy L, Sanchis V, Kallassy Awad M. Characterization and Whole Genome Sequencing of AR23, a Highly Toxic Bacillus thuringiensis Strain Isolated from Lebanese Soil. Curr Microbiol 2019; 76:1503-1511. [PMID: 31563972 DOI: 10.1007/s00284-019-01775-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
The demand for sustainable and eco-friendly control methods of pests and insects is increasing worldwide. From this came the interest in Bacillus thuringiensis, an entomopathogenic bacterium capable of replacing chemical pesticides. However, the possibility of pests developing resistance to a particular strain may impair its use, and there is a need to identify novel strains of this species as potential commercial biopesticides. B. thuringiensis sv. israelensis is one of the most successful serovars, widely commercialized for its activity against black fly and mosquito larvae. In this study, we isolated, characterized, and sequenced a new Lebanese B. thuringiensis sv. israelensis isolate, strain AR23. Compared to the commercialized reference strain AM65-52 (Vectobac®, Sumitomo), AR23 showed an increased activity against several mosquito species. The genomic analysis revealed that this strain, compared to AM65-52, possesses a simplified plasmid content and an additional functional cry4Ba coding gene that most likely accounts for the increased effectiveness of this strain in mosquito larvae killing.
Collapse
Affiliation(s)
- Nancy Fayad
- Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Rafael Patiño-Navarrete
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Zakaria Kambris
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mandy Antoun
- Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253/UM/ENSCM Université de Montpellier Campus Triolet, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
- Université de Nîmes, Rue Georges Salan, 30000, Nîmes, France
| | - Mike Osta
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Joel Chopineau
- Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253/UM/ENSCM Université de Montpellier Campus Triolet, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
- Université de Nîmes, Rue Georges Salan, 30000, Nîmes, France
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure El Chamy
- Génétique de La Drosophile Et Virulence Microbienne (GDVM), Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Vincent Sanchis
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Mireille Kallassy Awad
- Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon.
| |
Collapse
|
43
|
Batool K, Alam I, Jin L, Xu J, Wu C, Wang J, Huang E, Guan X, Yu XQ, Zhang L. CTLGA9 Interacts with ALP1 and APN Receptors To Modulate Cry11Aa Toxicity in Aedes aegypti. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8896-8904. [PMID: 31339308 DOI: 10.1021/acs.jafc.9b01840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mosquito Aedes aegypti is associated with the spread of many viral diseases in humans, including Dengue virus (DENVs), Yellow fever virus (YFV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). Bacillus thuringiensis (Bt) is widely used as a biopesticide, which produces Cry toxins for mosquito control. The Cry toxins bind mainly to important receptors, including alkaline phosphatase (ALP) and aminopeptidase-N (APN). This work investigated the function of a C-type lectin, CTLGA9, in A. aegypti in response to Cry toxins. Our results showed by far-western blot and ELISA methods that the CTLTGA9 protein interacted with brush border membrane vesicles (BBMVs) of A. aegypti larvae and with ALP1, APN, and Cry11Aa proteins. Furthermore, molecular docking showed overlapping binding sites in ALP1 and APN for binding to Cry11Aa and CTLGA9. The toxicity assays further demonstrated that CTLGA9 inhibited the larvicidal activity of Cry toxins. According to the results of molecular docking, CTLGA9 may compete with Cry11Aa for binding to ALP1 and APN receptors and thus decreases the mosquitocidal toxicity of Cry11Aa. Our results provide further insights into better understanding the mechanism of Cry toxins and help improve the Cry toxicity for mosquito control.
Collapse
Affiliation(s)
- Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Intikhab Alam
- Key Laboratory of Genetics, Breeding and Comprehensive Utilization of Crops, Ministry of Education, College of Crop Science , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , People's Republic of China
| | - Liang Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Jin Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Chenxu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Junxiang Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Enjiong Huang
- Fujian International Travel Healthcare Center , 350001 Fuzhou , Fujian , People's Republic of China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics , University of Missouri , Kansas City , Missouri 64110 , United States
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Lab of Biopesticides and Chemical Biology, MOE , Fujian Agriculture and Forestry University , 350002 Fuzhou , Fujian , PR China
| |
Collapse
|
44
|
de Bortoli CP, Jurat-Fuentes JL. Mechanisms of resistance to commercially relevant entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2019; 33:56-62. [PMID: 31358196 DOI: 10.1016/j.cois.2019.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/29/2023]
Abstract
Bacteria represent the most commercially successful entomopathogenic microbial group, with most commercialized insecticides containing gram-positive bacteria in the Bacillaceae family. Resistance to entomopathogenic bacteria threatens sustainable agriculture, and information on the mechanisms and genes involved is vital to develop management practices aimed at reducing this risk. We provide an integrative summary on mechanisms responsible for resistance to commercialized entomopathogenic bacteria, including information on resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt crops). The available experimental evidence identifies alterations in binding of insecticidal proteins to receptors in the host as the main mechanism for high levels of resistance to entomopathogenic bacteria.
Collapse
Affiliation(s)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
45
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
46
|
Zribi Zghal R, Frikha F, Elleuch J, Darriet F, Chandre F, Jaoua S, Tounsi S. The combinatory effect of Cyt1Aa flexibility and specificity against dipteran larvae improves the toxicity of Bacillus thuringensis kurstaki toxins. Int J Biol Macromol 2019; 123:42-49. [PMID: 30391590 DOI: 10.1016/j.ijbiomac.2018.10.226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/15/2022]
Abstract
Cyt1A98 is a novel cytolytic protein, from BUPM98 Bacillus thuringiensis strain, characterized by its synergistic activity with B. thuringiensis kurstaki toxins against lepidopteran larvae. In this study, we evidenced that Cyt1A98 improves the toxicity of B. thuringiensis kurstaki toxins against Aedes aegypti larvae. In fact, the strain BNS3pHTcyt1A98 exhibited a larvicidal activity of about 849-fold of that of BNS3pHTBlue against A. aegypti. The molecular and biochemical characterizations, of cyt1A98 gene and its product, were achieved. Cyt1A98 had an LC50 value of about 126.56 mg l-1 against A. aegypti larvae. Compared to Cyt1Aa of B. thuringiensis israelensis, Cyt1A98 amino acid sequence harbours three substitutions of three conserved amino acids among Cyt1Aa family members (Ser42Pro, Pro82Ala, Met188Thr). The Cyt1A98 protein structural analysis evidenced more flexibility than Cyt1Aa. According to the high fluctuation observed for the residue Pro42, the amino acid at position 42 is implicated in the flexibility property of Cyt1Aa especially for the αC and αD helices, involved in the penetration into the cell membrane. The toxicity improvement could be probably due to the higher flexibility combined with the specific affinity toward dipteran larvae. The Cyt1A/B. thuringiensis kurstaki Cry toxins model provides a potential molecular genetic strategy for an efficient bioinsecticide.
Collapse
Affiliation(s)
- Raida Zribi Zghal
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.
| | - Fakher Frikha
- Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Frédéric Darriet
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC (UM1-UM2-CNRS 5290-IRD 224) Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Laboratoire de Lutte contre les Insectes Nuisibles (LIN), Montpellier, France
| | - Fabrice Chandre
- Institut de Recherche pour le Développement (IRD), UMR MIVEGEC (UM1-UM2-CNRS 5290-IRD 224) Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Laboratoire de Lutte contre les Insectes Nuisibles (LIN), Montpellier, France
| | - Samir Jaoua
- Biological & Environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
47
|
Shabbir MZ, Zhang T, Wang Z, He K. Transcriptome and Proteome Alternation With Resistance to Bacillus thuringiensis Cry1Ah Toxin in Ostrinia furnacalis. Front Physiol 2019; 10:27. [PMID: 30774599 PMCID: PMC6367224 DOI: 10.3389/fphys.2019.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Asian corn borer (ACB), Ostrinia furnacalis can develop resistance to transgenic Bacillus thuringiensis (Bt) maize expressing Cry1Ah-toxin. However, the mechanisms that regulate the resistance of ACB to Cry1Ah-toxin are unknown. Objective: In order to understand the molecular basis of the Cry1Ah-toxin resistance in ACB, “omics” analyses were performed to examine the difference between Cry1Ah-resistant (ACB-AhR) and susceptible (ACB-BtS) strains of ACB at both transcriptional and translational levels. Results: A total of 7,007 differentially expressed genes (DEGs) and 182 differentially expressed proteins (DEPs) were identified between ACB-AhR and ACB-BtS and 90 genes had simultaneous transcription and translation profiles. Down-regulated genes associated with Cry1Ah resistance included aminopeptidase N, ABCC3, DIMBOA-induced cytochrome P450, alkaline phosphatase, glutathione S-transferase, cadherin-like protein, and V-ATPase. Whereas, anti-stress genes, such as heat shock protein 70 and carboxylesterase were up-regulated in ACB-AhR, displaying that a higher proportion of genes/proteins related to resistance was down-regulated compared to up-regulated. The Kyoto encyclopedia of genes and genomes (KEGG) analysis mapped 578 and 29 DEGs and DEPs, to 27 and 10 pathways, respectively (P < 0.05). Furthermore, real-time quantitative (qRT-PCR) results based on relative expression levels of randomly selected genes confirmed the “omics” response. Conclusion: Despite the previous studies, this is the first combination of a study using RNA-Seq and iTRAQ approaches on Cry1Ah-toxin binding, which led to the identification of longer length of unigenes in ACB. The DEGs and DEPs results are valuable for further clarifying Cry1Ah-mediated resistance.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Carvalho KDS, Crespo MM, Araújo AP, da Silva RS, de Melo-Santos MAV, de Oliveira CMF, Silva-Filha MHNL. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Parasit Vectors 2018; 11:673. [PMID: 30594214 PMCID: PMC6311009 DOI: 10.1186/s13071-018-3246-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/29/2018] [Indexed: 01/13/2023] Open
Abstract
Background Bacillus thuringiensis svar. israelensis (Bti) is an effective and safe biolarvicide to control Aedes aegypti. Its mode of action based on four protoxins disfavors resistance; however, control in endemic areas that display high mosquito infestation throughout the year requires continuous larvicide applications, which imposes a strong selection pressure. Therefore, this study aimed to investigate the effects of an intensive Bti exposure on an Ae. aegypti strain (RecBti), regarding its susceptibility to Bti and two of its protoxins tested individually, to other control agents temephos and diflubenzuron, and its profile of detoxifying enzymes. Methods The RecBti strain was established using a large egg sample (10,000) from Recife city (Brazil) and more than 290,000 larvae were subjected to Bti throughout 30 generations. Larvae susceptibility to larvicides and the activity of detoxifying enzymes were determined by bioassays and catalytic assays, respectively. The Rockefeller strain was the reference used for these evaluations. Results Bti exposure yielded an average of 74% mortality at each generation. Larvae assessed in seven time points throughout the 30 generations were susceptible to Bti crystal (resistance ratio RR ≤ 2.8) and to its individual toxins Cry11Aa and Cry4Ba (RR ≤ 4.1). Early signs of altered susceptibility to Cry11Aa were detected in the last evaluations, suggesting that this toxin was a marker of the selection pressure imposed. RecBti larvae were also susceptible (RR ≤ 1.6) to the other control agents, temephos and diflubenzuron. The activity of the detoxifying enzymes α- and β-esterases, glutathione-S-transferases and mixed-function oxidases was classified as unaltered in larvae from two generations (F19 and F25), except for a β-esterases increase in F25. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not evolve into resistance to the crystal, and no cross-resistance with temephos and diflubenzuron were recorded, which supports their sustainable use with Bti for integrated control practices. The unaltered activity of most detoxifying enzymes suggests that they might not play a major role in the metabolism of Bti toxins, therefore resistance by this mechanism is unlikely to occur. This study also highlights the need to establish suitable criteria to classify the status of larval susceptibility/resistance. Electronic supplementary material The online version of this article (10.1186/s13071-018-3246-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife, PE, 50740-465, Brazil
| | - Ana Paula Araújo
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Recife, PE, 50740-465, Brazil
| | | | | | | | | |
Collapse
|
49
|
Susceptible and mCry3A resistant corn rootworm larvae killed by a non-hemolytic Bacillus thuringiensis Cyt1Aa mutant. Sci Rep 2018; 8:17805. [PMID: 30546034 PMCID: PMC6292897 DOI: 10.1038/s41598-018-36205-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/16/2018] [Indexed: 11/12/2022] Open
Abstract
The western corn rootworm (WCR) Diabrotica virgifera virgifera causes substantial damage in corn. Genetically modified (GM) plants expressing some Bacillus thuringiensis (Bt) insecticidal Cry proteins efficiently controlled this pest. However, changes in WCR susceptibility to these Bt traits have evolved and identification of insecticidal proteins with different modes of action against WCR is necessary. We show here for the first time that Cyt1Aa from Bt exhibits toxicity against WCR besides to the dipteran Aedes aegypti larvae. Cyt1Aa is a pore-forming toxin that shows no cross-resistance with mosquitocidal Cry toxins. We characterized different mutations in helix α-A from Cyt1Aa. Two mutants (A61C and A59C) exhibited reduced or absent hemolytic activity but retained toxicity to A. aegypti larvae, suggesting that insecticidal and hemolytic activities of Cyt1Aa are independent activities. These mutants were still able to form oligomers in synthetic lipid vesicles and to synergize Cry11Aa toxicity. Remarkably, mutant A61C showed a five-fold increase insecticidal activity against mosquito and almost 11-fold higher activity against WCR. Cyt1Aa A61C mutant was as potent in killing WCR that were selected for resistance to mCry3A as it was against unselected WCR indicating that this toxin could be a useful resistance management option in the control of WCR.
Collapse
|
50
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|