1
|
Jiang T, Wan G, Zhang H, Gyawali YP, Underbakke ES, Feng C. Mapping the Intersubunit Interdomain FMN-Heme Interactions in Neuronal Nitric Oxide Synthase by Targeted Quantitative Cross-Linking Mass Spectrometry. Biochemistry 2024; 63:1395-1411. [PMID: 38747545 DOI: 10.1021/acs.biochem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain-domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., Biochemistry, 2023, 62, 2232-2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yadav Prasad Gyawali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
2
|
Gyawali YP, Jiang T, Yang J, Zheng H, Liu R, Zhang H, Feng C. Differential superoxide production in phosphorylated neuronal nitric oxide synthase mu and alpha variants. J Inorg Biochem 2024; 251:112454. [PMID: 38100901 PMCID: PMC10843652 DOI: 10.1016/j.jinorgbio.2023.112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is regulated by phosphorylation in vivo, yet the underlying biochemical mechanisms remain unclear, primarily due to difficulty in obtaining milligram quantities of phosphorylated nNOS protein; detailed spectroscopic and rapid kinetics investigations require purified protein samples at a concentration in the range of hundreds microM. Moreover, the functional diversity of the nNOS isoform is linked to its splice variants. Also of note is that determination of protein phosphorylation stoichiometry remains as a challenge. To address these issues, this study first expanded a recent genetic code expansion approach to produce phosphorylated rat nNOSμ and nNOSα holoproteins through site-specific incorporation of phosphoserine (pSer) at residues 1446 and 1412, respectively; this site is at the C-terminal tail region, a NOS-unique regulatory element. A quantitative mass spectrometric approach was then developed in-house to analyze unphosphorylated peptides in phosphatase-treated and -untreated phospho-nNOS proteins. The observed pSer-incorporation efficiency consistently exceeded 80%, showing high pSer-incorporation efficiency. Notably, EPR spin trapping results demonstrate that under l-arginine-depleted conditions, pSer1412 nNOSα presented a significant reduction in superoxide generation, whereas pSer1446 nNOSμ exhibited the opposite effect, compared to their unphosphorylated counterparts. This suggests that phosphorylation at the C-terminal tail has a regulatory effect on nNOS uncoupling that may differ between variant forms. Furthermore, the methodologies for incorporating pSer into large, complex protein and quantifying the percentage of phosphorylation in recombinant purified protein should be applicable to other protein systems.
Collapse
Affiliation(s)
| | - Ting Jiang
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jing Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Rui Liu
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Haikun Zhang
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Adebayo A, Varzideh F, Wilson S, Gambardella J, Eacobacci M, Jankauskas SS, Donkor K, Kansakar U, Trimarco V, Mone P, Lombardi A, Santulli G. l-Arginine and COVID-19: An Update. Nutrients 2021; 13:nu13113951. [PMID: 34836206 PMCID: PMC8619186 DOI: 10.3390/nu13113951] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.
Collapse
Affiliation(s)
- Ayobami Adebayo
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Michael Eacobacci
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Valentina Trimarco
- Department of Neuroscience, "Federico II" University, 80131 Naples, Italy
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, "Federico II" University and International Translational Research and Medical Education (ITME) Consortium, 80100 Naples, Italy
| |
Collapse
|
4
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:biomedicines8080277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Wafiq Khondkar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
- Correspondence:
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|
5
|
Chennoufi R, Cabrié A, Nguyen NH, Bogliotti N, Simon F, Cinquin B, Tauc P, Boucher JL, Slama-Schwok A, Xie J, Deprez E. Light-induced formation of NO in endothelial cells by photoactivatable NADPH analogues targeting nitric-oxide synthase. Biochim Biophys Acta Gen Subj 2019; 1863:1127-1137. [PMID: 30986510 DOI: 10.1016/j.bbagen.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nitric-oxide synthases (NOS) catalyze the formation of NO using NADPH as electron donor. We have recently designed and synthesized a new series of two-photon absorbing and photoactivatable NADPH analogues (NT). These compounds bear one or two carboxymethyl group(s) on the 2'- or/and 3'-position(s) of the ribose in the adenosine moiety, instead of a 2'-phosphate group, and differ by the nature of the electron donor in their photoactivatable chromophore (replacing the nicotinamide moiety). Here, we addressed the ability of NTs to photoinduce eNOS-dependent NO production in endothelial cells. METHODS The cellular fate of NTs and their photoinduced effects were studied using multiphoton fluorescence imaging, cell viability assays and a BODIPY-derived NO probe for NO measurements. The eNOS dependence of photoinduced NO production was addressed using two NOS inhibitors (NS1 and L-NAME) targeting the reductase and the oxygenase domains, respectively. RESULTS We found that, two compounds, those bearing a single carboxymethyl group on the 3'-position of the ribose, colocalize with the Golgi apparatus (the main intracellular location of eNOS) and display high intracellular two-photon brightness. Furthermore, a eNOS-dependent photooxidation was observed for these two compounds only, which is accompanied by a substantial intracellular NO production accounting for specific photocytotoxic effects. CONCLUSIONS We show for the first time that NT photoactivation efficiently triggers electron flow at the eNOS level and increases the basal production of NO by endothelial cells. GENERAL SIGNIFICANCE Efficient photoactivatable NADPH analogues targeting NOS could have important implications for generating apoptosis in tumor cells or modulating NO-dependent physiological processes.
Collapse
Affiliation(s)
- Rahima Chennoufi
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Aimeric Cabrié
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Nhi Ha Nguyen
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Nicolas Bogliotti
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Françoise Simon
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Bertrand Cinquin
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Patrick Tauc
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Jean-Luc Boucher
- Laboratoire de "Chimie et Biochimie Pharmacologiques et Toxicologiques", CNRS UMR8601, Université Paris Descartes, 75270 Paris, France
| | - Anny Slama-Schwok
- Laboratoire de "Stabilité Génétique et Oncogénèse", CNRS UMR8200, Gustave Roussy, Université Paris-Saclay, 94607 Villejuif, France
| | - Juan Xie
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Eric Deprez
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France.
| |
Collapse
|
6
|
Li J, Zheng H, Feng C. Deciphering mechanism of conformationally controlled electron transfer in nitric oxide synthases. FRONT BIOSCI-LANDMRK 2018; 23:1803-1821. [PMID: 29772530 PMCID: PMC11167721 DOI: 10.2741/4674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron transfer is a fundamental process in life that is very often coupled to catalysis within redox enzymes through a stringent control of protein conformational movements. Mammalian nitric oxide synthase (NOS) proteins are redox flavo-hemoproteins consisting of multiple modular domains. The NOS enzyme is exquisitely regulated in vivo by its partner, the Ca2+ sensing protein calmodulin (CaM), to control production of nitric oxide (NO). The importance of functional domain motion in NOS regulation has been increasingly recognized. The significant size and flexibility of NOS is a tremendous challenge to the mechanistic studies. Herein recent applications of modern biophysical techniques to NOS problems have been critically analyzed. It is important to note that any current biophysical technique alone can only probe partial aspects of the conformational dynamics due to limitations in the technique itself and/or the sample preparations. It is necessary to combine the latest methods to comprehensively quantitate the key conformational aspects (conformational states and distribution, conformational change rates, and domain interacting interfaces) governing the electron transfer. This is to answer long-standing central questions about the NOS isoforms by defining how specific CaM-NOS interactions and regulatory elements underpin the distinct conformational behavior of the NOS isoform, which in turn determine unique electron transfer and NO synthesis properties. This review is not intended as comprehensive, but as a discussion of prospects that promise impact on important questions in the NOS enzymology field.
Collapse
Affiliation(s)
- Jinghui Li
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Changjian Feng
- University of New Mexico, MSC 09 5360, Albuquerque, NM 87131,
| |
Collapse
|
7
|
Haque MM, Ray SS, Stuehr DJ. Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics. J Biol Chem 2016; 291:23047-23057. [PMID: 27613870 DOI: 10.1074/jbc.m116.737361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
The activity of endothelial NO synthase (eNOS) is triggered by calmodulin (CaM) binding and is often further regulated by phosphorylation at several positions in the enzyme. Phosphorylation at Ser1179 occurs in response to diverse physiologic stimuli and increases the NO synthesis and cytochrome c reductase activities of eNOS, thereby enhancing its participation in biological signal cascades. Despite its importance, the mechanism by which Ser1179 phosphorylation increases eNOS activity is not understood. To address this, we used stopped-flow spectroscopy and computer modeling approaches to determine how the phosphomimetic mutation (S1179D) may impact electron flux through eNOS and the conformational behaviors of its reductase domain, both in the absence and presence of bound CaM. We found that S1179D substitution in CaM-free eNOS had multiple effects; it increased the rate of flavin reduction, altered the conformational equilibrium of the reductase domain, and increased the rate of its conformational transitions. We found these changes were equivalent in degree to those caused by CaM binding to wild-type eNOS, and the S1179D substitution together with CaM binding caused even greater changes in these parameters. The modeling indicated that the changes caused by the S1179D substitution, despite being restricted to the reductase domain, are sufficient to explain the stimulation of both the cytochrome c reductase and NO synthase activities of eNOS. This helps clarify how Ser1179 phosphorylation regulates eNOS and provides a foundation to compare its regulation by other phosphorylation events.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sougata Sinha Ray
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
8
|
Chang K, Guo T, Li P, Liu Y, Xu Y, Fang Y, Qian X. Novel Fluorescence Arginine Analogue as a Sensor for Direct Identification and Imaging of Nitric Oxide Synthase-like Enzymes in Plants. Sci Rep 2016; 6:32630. [PMID: 27586270 PMCID: PMC5009301 DOI: 10.1038/srep32630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide synthase like enzyme (NOS-like enzyme), which produces nitric oxide, participates in many biological processes. However it remains unidentified and highly controversial that plants do possess a NOS-like enzyme. In this paper, a novel arginine analogue NP1 was designed and developed for the direct identification and real time tracking of NOS-like enzymes in plant by fluorescence sensing. It could bind NOS-like enzyme efficiently and enter the cell successfully. In vivo fluorescence response results directly proved that NOS-like enzymes did exist in tobacco leaf and would be stimulated by pathogen infection, which also provided a useful chemical tool for the study of the function of NOS-like enzyme in plants.
Collapse
Affiliation(s)
- Kang Chang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tongtong Guo
- National Key Laboratory of Plant Molecular Genetics; Shanghai Institute of Plan Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | - Pengfei Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yin Liu
- National Key Laboratory of Plant Molecular Genetics; Shanghai Institute of Plan Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics; Shanghai Institute of Plan Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Li W, Chen L, Lu C, Elmore BO, Astashkin AV, Rousseau DL, Yeh SR, Feng C. Regulatory role of Glu546 in flavin mononucleotide-heme electron transfer in human inducible nitric oxide synthase. Inorg Chem 2013; 52:4795-801. [PMID: 23570607 DOI: 10.1021/ic3020892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) production by mammalian NO synthase (NOS) is believed to be regulated by the docking of the flavin mononucleotide (FMN) domain in one subunit of the dimer onto the heme domain of the adjacent subunit. Glu546, a conserved charged surface residue of the FMN domain in human inducible NOS (iNOS), is proposed to participate in the interdomain FMN/heme interactions [Sempombe et al. Inorg. Chem.2011, 50, 6869-6861]. In the present work, we further investigated the role of the E546 residue in the FMN-heme interdomain electron transfer (IET), a catalytically essential step in the NOS enzymes. Laser flash photolysis was employed to directly measure the FMN-heme IET kinetics for the E546N mutant of human iNOS oxygenase/FMN (oxyFMN) construct. The temperature dependence of the IET kinetics was also measured over the temperature range of 283-304 K to determine changes in the IET activation parameters. The E546N mutation was found to retard the IET by significantly raising the activation entropic barrier. Moreover, pulsed electron paramagnetic resonance data showed that the geometry of the docked FMN/heme complex in the mutant is basically the same as in the wild type construct, whereas the probability of formation of such a complex is about twice lower. These results indicate that the retarded IET in the E546N mutant is not caused by an altered conformation of the docked FMN/heme complex, but by a lower population of the IET-active conformation. In addition, the negative activation entropy of the mutant is still substantially lower than that of the holoenzyme. This supports a mechanism by which the FMN domain can modify the IET through altering probability of the docked state formation.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rational design of a fluorescent NADPH derivative imaging constitutive nitric-oxide synthases upon two-photon excitation. Proc Natl Acad Sci U S A 2012; 109:12526-31. [PMID: 22802674 DOI: 10.1073/pnas.1205645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report the structure-based design and synthesis of a unique NOS inhibitor, called nanoshutter NS1, with two-photon absorption properties. NS1 targets the NADPH site of NOS by a nucleotide moiety mimicking NADPH linked to a conjugated push-pull chromophore with nonlinear absorption properties. Because NS1 could not provide reducing equivalents to the protein and competed with NADPH binding, it efficiently inhibited NOS catalysis. NS1 became fluorescent once bound to NOS with an excellent signal-to-noise ratio because of two-photon excitation avoiding interference from the flavin-autofluorescence and because free NS1 was not fluorescent in aqueous solutions. NS1 fluorescence enhancement was selective for constitutive NOS in vitro, in particular for endothelial NOS (eNOS). Molecular dynamics simulations suggested that two variable residues among NOS isoforms induced differences in binding of NS1 and in local solvation around NS1 nitro group, consistent with changes of NS1 fluorescence yield. NS1 colocalized with eNOS in living human umbilical vein endothelial cells. Thus, NS1 constitutes a unique class of eNOS probe with two-photon excitation in the 800-950-nm range, with great perspectives for eNOS imaging in living tissues.
Collapse
|
11
|
Ghosh DK, Ray K, Rogers AJ, Nahm NJ, Salerno JC. FMN fluorescence in inducible NOS constructs reveals a series of conformational states involved in the reductase catalytic cycle. FEBS J 2012; 279:1306-17. [PMID: 22325715 DOI: 10.1111/j.1742-4658.2012.08525.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nitric oxide synthases (NOSs) produce NO as a molecular signal in the nervous and cardiovascular systems and as a cytotoxin in the immune response. NO production in the constitutive isoforms is controlled by calmodulin regulation of electron transfer. In the tethered shuttle model for NOS reductase function, the FMN domain moves between NADPH dehydrogenase and oxygenase catalytic centers. Crystal structures of neuronal NOS reductase domain and homologs correspond to an 'input state', with FMN in close contact with FAD. We recently produced two domain 'output state' (oxyFMN) constructs showing calmodulin dependent FMN domain association with the oxygenase domain. FMN fluorescence is sensitive to enzyme conformation and calmodulin binding. The inducible NOS (iNOS) oxyFMN construct is more fluorescent than iNOS holoenzyme. The difference in steady state fluorescence is rationalized by the observation of a series of characteristic states in the two constructs, which we assign to FMN in different environments. OxyFMN and holoenzyme share open conformations with an average lifetime of ~4.3 ns. The majority state in holoenzyme has a short lifetime of ~90 ps, probably because of FAD-FMN interactions. In oxyFMN about 25-30% of the FMN is in a state with a lifetime of 0.9 ns, which we attribute to quenching by heme in the output state. Occupancy of the output state together with our previous kinetic results yields a heme edge to FMN distance estimate of 12-15 Å. These results indicate that FMN fluorescence is a valuable tool to study conformational states involved in the NOS reductase catalytic cycle.
Collapse
Affiliation(s)
- Dipak K Ghosh
- Department of Medicine, Duke University, VA Medical Centers, Durham, NC, USA.
| | | | | | | | | |
Collapse
|
12
|
Li W, Fan W, Chen L, Elmore BO, Piazza M, Guillemette JG, Feng C. Role of an isoform-specific serine residue in FMN-heme electron transfer in inducible nitric oxide synthase. J Biol Inorg Chem 2012; 17:675-85. [PMID: 22407542 DOI: 10.1007/s00775-012-0887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/26/2012] [Indexed: 01/30/2023]
Abstract
In the crystal structure of a calmodulin (CaM)-bound FMN domain of human inducible nitric oxide synthase (NOS), the CaM-binding region together with CaM forms a hinge, and pivots on an R536(NOS)/E47(CaM) pair (Xia et al. J Biol Chem 284:30708-30717, 2009). Notably, isoform-specific human inducible NOS S562 and C563 residues form hydrogen bonds with the R536 residue through their backbone oxygens. In this study, we investigated the roles of the S562 and C563 residues in the NOS FMN-heme interdomain electron transfer (IET), the rates of which can be used to probe the interdomain FMN/heme alignment. Human inducible NOS S562K and C563R mutants of an oxygenase/FMN (oxyFMN) construct were made by introducing charged residues at these sites as found in human neuronal NOS and endothelial NOS isoforms, respectively. The IET rate constant of the S562K mutant is notably decreased by one third, and its flavin fluorescence intensity per micromole per liter is diminished by approximately 24 %. These results suggest that a positive charge at position 562 destabilizes the hydrogen-bond-mediated NOS/CaM alignment, resulting in slower FMN-heme IET in the mutant. On the other hand, the IET rate constant of the C563R mutant is similar to that of the wild-type, indicating that the mutational effect is site-specific. Moreover, the human inducible NOS oxyFMN R536E mutant was constructed to disrupt the bridging CaM/NOS interaction, and its FMN-heme IET rate was decreased by 96 %. These results demonstrated a new role of the isoform-specific serine residue of the key CaM/FMN(NOS) bridging site in regulating the FMN-heme IET (possibly by tuning the alignment of the FMN and heme domains).
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Feng C. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Coord Chem Rev 2012; 256:393-411. [PMID: 22523434 PMCID: PMC3328867 DOI: 10.1016/j.ccr.2011.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131 (USA) , Tel: 505-925-4326
| |
Collapse
|
14
|
Li W, Fan W, Elmore BO, Feng C. Effect of solution viscosity on intraprotein electron transfer between the FMN and heme domains in inducible nitric oxide synthase. FEBS Lett 2011; 585:2622-6. [PMID: 21803041 DOI: 10.1016/j.febslet.2011.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/15/2022]
Abstract
The FMN-heme intraprotein electron transfer (IET) kinetics in a human inducible NOS (iNOS) oxygenase/FMN construct were determined by laser flash photolysis as a function of solution viscosity (1.0-3.0 cP). In the presence of ethylene glycol or sucrose, an appreciable decrease in the IET rate constant value was observed with an increase in the solution viscosity. The IET rate constant is inversely proportional to the viscosity for both viscosogens. This demonstrates that viscosity, and not other properties of the added viscosogens, causes the dependence of IET rates on the solvent concentration. The IET kinetics results indicate that the FMN-heme IET in iNOS is gated by a large conformational change of the FMN domain. The kinetics and NOS flavin fluorescence results together indicate that the docked FMN/heme state is populated transiently.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
15
|
Sanae R, Kurokawa F, Oda M, Ishijima S, Sagami I. Thermodynamic analysis of interactions between cofactor and neuronal nitric oxide synthase. Biochemistry 2011; 50:1714-22. [PMID: 21244098 DOI: 10.1021/bi101575u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermodynamics of cofactor binding to the isolated reductase domain (Red) of nNOS and its mutants have been studied by isothermal titration calorimetry. The NADP(+) and 2',5'-ADP binding stoichiometry to Red were both 1:1, consistent with a one-site kinetic model instead of a two-site model. The binding constant (K(D) = 71 nM) and the large heat capacity change (ΔC(p) = -440 cal mol(-1) K(-1)) for 2',5'-ADP were remarkably different from those for NADP(+) (1.7 μM and -140 cal mol(-1) K(-1), respectively). These results indicate that the nicotinamide moiety as well as the adenosine moiety has an important role in binding to nNOS. They also suggest that the thermodynamics of the conformational change in Red caused by cofactor binding are significantly different from the conformational changes that occur in cytochrome c reductase, in which the nicotinamide moiety of the cofactor is not essential for binding. Analysis of the deletion mutant of the autoinhibitory helix (RedΔ40) revealed that the deletion resulted in a decrease in the binding affinity of 2',5'-ADP with more unfavorable enthalpy gain. In the case of RedCaM, which contains a calmodulin (CaM) binding site, the presence of Ca(2+)/CaM caused a 6.7-fold increase in the binding affinity for 2',5'-ADP that was mostly due to the favorable entropy change. These results are consistent with a model in which Ca(2+)/CaM induces a conformational change in NOS to a flexible "open" form from a "closed" form that locked by cofactor binding, and this change facilitates the electron transfer required for catalysis.
Collapse
Affiliation(s)
- Ryuhei Sanae
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | | | | | | | | |
Collapse
|
16
|
Maréchal A, Mattioli TA, Stuehr DJ, Santolini J. NO synthase isoforms specifically modify peroxynitrite reactivity. FEBS J 2010; 277:3963-73. [DOI: 10.1111/j.1742-4658.2010.07786.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Welland A, Daff S. Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain. FEBS J 2010; 277:3833-43. [PMID: 20718865 DOI: 10.1111/j.1742-4658.2010.07787.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM) activates the constitutive isoforms of mammalian nitric oxide synthase by triggering electron transfer from the reductase domain FMN to the heme. This enables the enzymes to be regulated by Ca(2+) concentration. CaM exerts most of its effects on the reductase domain; these include activation of electron transfer to electron acceptors, and an increase in the apparent rate of flavin reduction by the substrate NADPH. It has been shown that the former is caused by a transition from a conformationally locked form of the enzyme to an open form as a result of CaM binding, improving FMN accessibility, but the latter effect has not been explained satisfactorily. Here, we report the effect of ionic strength and isotopic substitution on flavin reduction. We found a remarkable correlation between the rate of steady-state turnover of the reductase domain and the rate of flavin reduction over a range of different ionic strengths. The reduction of the enzyme by NADPH was biphasic, and the amplitudes of the phases determined through global analysis of stopped-flow data correlated with the proportions of enzyme known to exist in the open and closed conformations. The different conformations of the enzyme molecule appeared to have different rates of reaction with NADPH. Thus, proximity of FMN inhibits hydride transfer to the FAD. In the CaM-free enzyme, slow conformational motion (opening and closing) limits turnover. It is now clear that this motion also controls hydride transfer during steady-state turnover, by limiting the rate at which NADPH can access the FAD.
Collapse
Affiliation(s)
- Andrew Welland
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
18
|
Guan ZW, Haque MM, Wei CC, Garcin ED, Getzoff ED, Stuehr DJ. Lys842 in neuronal nitric-oxide synthase enables the autoinhibitory insert to antagonize calmodulin binding, increase FMN shielding, and suppress interflavin electron transfer. J Biol Chem 2009; 285:3064-75. [PMID: 19948738 DOI: 10.1074/jbc.m109.000810] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys(842)) lies within a putative CaM binding helix in the middle of the AI. We investigated its role by substituting residues that neutralize (Ala) or reverse (Glu) the charge at Lys(842). Compared with wild type nNOS, the mutant enzymes had greater cytochrome c reductase and NADPH oxidase activities in the CaM-free state, were able to bind CaM at lower calcium concentration, and had lower rates of heme reduction and NO synthesis in one case (K842A). Moreover, stopped-flow spectrophotometric experiments with the nNOS reductase domain indicate that the CaM-free mutants had faster flavin reduction kinetics and had less shielding of their FMN subdomains compared with wild type and no longer increased their level of FMN shielding in response to NADPH binding. Thus, Lys(842) is critical for the known functions of the AI and also enables two additional functions of the AI as newly identified here: suppression of electron transfer to FMN and control of the conformational equilibrium of the nNOS reductase domain. Its effect on the conformational equilibrium probably explains suppression of catalysis by the AI.
Collapse
Affiliation(s)
- Zhi-Wen Guan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
19
|
Xia C, Misra I, Iyanagi T, Kim JJP. Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase. J Biol Chem 2009; 284:30708-17. [PMID: 19737939 DOI: 10.1074/jbc.m109.031682] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOSs) catalyze the conversion of l-arginine to nitric oxide and citrulline. There are three NOS isozymes, each with a different physiological role: neuronal NOS, endothelial NOS, and inducible NOS (iNOS). NOSs consist of an N-terminal oxygenase domain and a C-terminal reductase domain, linked by a calmodulin (CaM)-binding region. CaM is required for NO production, but unlike other NOS isozymes, iNOS binds CaM independently of the exogenous Ca(2+) concentration. We have co-expressed CaM and the FMN domain of human iNOS, which includes the CaM-binding region. The Ca(2+)-bound protein complex (CaCaMxFMN) forms an air-stable semiquinone when reduced with NADPH and reduces cytochrome c when reconstituted with the iNOS FAD/NADPH domain. We have solved the crystal structure of the CaCaMxFMN complex in four different conformations, each with a different relative orientation, between the FMN domain and the bound CaM. The CaM-binding region together with bound CaM forms a hinge, pivots on the conserved Arg(536), and regulates electron transfer from FAD to FMN and from FMN to heme by adjusting the relative orientation and distance among the three cofactors. In addition, the relative orientations of the N- and C-terminal lobes of CaM are also different among the four conformations, suggesting that the flexibility between the two halves of CaM also contributes to the fine tuning of the orientation/distance between the redox centers. The data demonstrate a possible mode for precise control of electron transfer by altering the distance and orientation of redox centers in a protein displaying domain movement.
Collapse
Affiliation(s)
- Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
20
|
Sempombe J, Elmore BO, Sun X, Dupont A, Ghosh DK, Guillemette JG, Kirk ML, Feng C. Mutations in the FMN domain modulate MCD spectra of the heme site in the oxygenase domain of inducible nitric oxide synthase. J Am Chem Soc 2009; 131:6940-1. [PMID: 19405537 DOI: 10.1021/ja902141v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.
Collapse
Affiliation(s)
- Joseph Sempombe
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Feng C, Tollin G. Regulation of interdomain electron transfer in the NOS output state for NO production. Dalton Trans 2009:6692-700. [PMID: 19690675 DOI: 10.1039/b902884f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is still much that is unknown about how nitric oxide (NO) biosynthesis by NO synthase (NOS) isoform is tightly regulated at the molecular level. This is remarkable because deviated NO production in vivo has been implicated in an increasing number of diseases that currently lack effective treatments, including stroke and cancer. Given the significant public health burden of these diseases, the NOS enzyme family is a key target for development of new pharmaceuticals. Three NOS isoforms, inducible, endothelial and neuronal NOS (iNOS, eNOS and nNOS, respectively), achieve their key biological functions via stringent regulations of interdomain electron transfer (IET) processes. Unlike iNOS, eNOS and nNOS isoforms are controlled by calmodulin (CaM) binding through facilitating catalytically significant IET processes. The CaM-modulated NOS output state is an IET-competent complex between the flavin mononucleotide (FMN) domain and the catalytic heme domain. The output state facilitates the catalytically essential FMN-heme IET, and thereby enables NO production by NOS. Due to lack of reliable techniques for specifically determining the inter-domain FMN-heme interactions and their direct effects on the catalytic heme center, the molecular mechanism that underlies the output state formation remains elusive. The recent developments in our understanding of mechanisms of the NOS output state formation that are driven by a combination of molecular biology, laser flash photolysis, and spectroscopic techniques are the subject of this perspective.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
22
|
Ilagan RP, Tejero J, Aulak KS, Ray SS, Hemann C, Wang ZQ, Gangoda M, Zweier JL, Stuehr DJ. Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase. Biochemistry 2009; 48:3864-76. [PMID: 19290671 DOI: 10.1021/bi8021087] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthases (NOS) are modular, calmodulin- (CaM-) dependent, flavoheme enzymes that catalyze oxidation of l-arginine to generate nitric oxide (NO) and citrulline. During catalysis, the FMN subdomain cycles between interaction with an NADPH-FAD subdomain to receive electrons and interaction with an oxygenase domain to deliver electrons to the NOS heme. This process can be described by a three-state, two-equilibrium model for the conformation of the FMN subdomain, in which it exists in two distinct bound states (FMN-shielded) and one common unbound state (FMN-deshielded). We studied how each partner subdomain, the FMN redox state, and CaM binding may regulate the conformational equilibria of the FMN module in rat neuronal NOS (nNOS). We utilized four nNOS protein constructs of different subdomain composition, including the isolated FMN subdomain, and determined changes in the conformational state by measuring the degree of FMN shielding by fluorescence, electron paramagnetic resonance, or stopped-flow spectroscopic techniques. Our results suggest the following: (i) The NADPH-FAD subdomain has a far greater capacity to interact with the FMN subdomain than does the oxygenase domain. (ii) CaM binding has no direct effects on the FMN subdomain. (iii) CaM destabilizes interaction of the FMN subdomain with the NADPH-FAD subdomain but does not measurably increase its interaction with the oxygenase domain. Our results imply that a different set point and CaM regulation exists for either conformational equilibrium of the FMN subdomain. This helps to explain the unique electron transfer and catalytic behaviors of nNOS, relative to other dual-flavin enzymes.
Collapse
Affiliation(s)
- Robielyn P Ilagan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Bettie Sue Siler Masters
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| |
Collapse
|
24
|
Venkatakrishnan P, Nakayasu ES, Almeida IC, Miller RT. Absence of nitric-oxide synthase in sequentially purified rat liver mitochondria. J Biol Chem 2009; 284:19843-55. [PMID: 19372221 DOI: 10.1074/jbc.m109.003301] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Data, both for and against the presence of a mitochondrial nitric-oxide synthase (NOS) isoform, is in the refereed literature. However, irrefutable evidence has not been forthcoming. In light of this controversy, we designed studies to investigate the existence of the putative mitochondrial NOS. Using repeated differential centrifugation followed by Percoll gradient fractionation, ultrapure, never frozen rat liver mitochondria and submitochondrial particles were obtained. Following trypsin digestion and desalting, the mitochondrial samples were analyzed by nano-HPLC-coupled linear ion trap-mass spectrometry. Linear ion trap-mass spectrometry analyses of rat liver mitochondria as well as submitochondrial particles were negative for any peptide from any NOS isoform. However, recombinant neuronal NOS-derived peptides from spiked mitochondrial samples were easily detected, down to 50 fmol on column. The protein calmodulin (CaM), absolutely required for NOS activity, was absent, whereas peptides from CaM-spiked samples were detected. Also, l-[(14)C]arginine to l-[(14)C]citrulline conversion assays were negative for NOS activity. Finally, Western blot analyses of rat liver mitochondria, using NOS (neuronal or endothelial) and CaM antibodies, were negative for any NOS isoform or CaM. In conclusion, and in light of our present limits of detection, data from carefully conducted, properly controlled experiments for NOS detection, utilizing three independent yet complementary methodologies, independently as well as collectively, refute the claim that a NOS isoform exists within rat liver mitochondria.
Collapse
|
25
|
Intraprotein electron transfer in inducible nitric oxide synthase holoenzyme. J Biol Inorg Chem 2008; 14:133-42. [PMID: 18830722 DOI: 10.1007/s00775-008-0431-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 09/09/2008] [Indexed: 01/13/2023]
Abstract
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in NO synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN-heme IET in a truncated two-domain construct (oxyFMN) of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present (Feng et al. J. Am. Chem. Soc. 128, 3808-3811, 2006). Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme, and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 +/- 5 and 35 +/- 3 s(-1), respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in neuronal NOS.
Collapse
|
26
|
Welland A, Garnaud PE, Kitamura M, Miles CS, Daff S. Importance of the domain-domain interface to the catalytic action of the NO synthase reductase domain. Biochemistry 2008; 47:9771-80. [PMID: 18717591 DOI: 10.1021/bi800787m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calmodulin (CaM) activates NO synthase (NOS) by binding to a 20 amino acid interdomain hinge in the presence of Ca (2+), inducing electrons to be transferred from the FAD to the heme of the enzyme via a mobile FMN domain. The activation process is influenced by a number of structural features, including an autoinhibitory loop, the C-terminal tail of the enzyme, and a number of phosphorylation sites. Crystallographic and other recent experimental data imply that the regulatory elements lie within the interface between the FAD- and FMN-binding domains, restricting the movement of the two cofactors with respect to each other. Arg1229 of rat neuronal NOS is a conserved residue in the FAD domain that forms one of only two electrostatic contacts between the domains. Mutation of this residue to Glu reverses its charge and is expected to induce an interdomain repulsion, allowing the importance of the interface and domain-domain motion to be probed. The charge-reversal mutation R1229E has three dramatic effects on catalysis: (i) hydride transfer from NADPH to FAD is activated in the CaM-free enzyme, (ii) FAD to FMN electron transfer is inhibited in both forms, and (iii) electron transfer from FMN to the surrogate acceptor cytochrome c is activated in the CaM-free enzyme. As a result, during steady-state turnover with cytochrome c, calmodulin now deactivates the enzyme and causes cytochrome c-dependent inhibition. Evidently, domain-domain separation is large enough in the mutant to accommodate another protein between the cofactors. The effects of this single charge reversal on three distinct catalytic events illustrate how each is differentially dependent on the enzyme conformation and support a model for catalytic motion in which steps i, ii, and iii occur in the hinged open, closed, and open states, respectively. This model is also likely to apply to related enzymes such as cytochrome P450 reductase.
Collapse
Affiliation(s)
- Andrew Welland
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | | | |
Collapse
|
27
|
Feng C, Roman LJ, Hazzard JT, Ghosh DK, Tollin G, Masters BSS. Deletion of the autoregulatory insert modulates intraprotein electron transfer in rat neuronal nitric oxide synthase. FEBS Lett 2008; 582:2768-72. [PMID: 18625229 DOI: 10.1016/j.febslet.2008.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
Comparative CO photolysis kinetics studies on wild-type and autoregulatory (AR) insert-deletion mutant of rat nNOS holoenzyme were conducted to directly investigate the role of the unique AR insert in the catalytically significant FMN-heme intraprotein electron transfer (IET). Although the amplitude of the IET kinetic traces was decreased two- to three-fold, the AR deletion did not change the rate constant for the calmodulin-controlled IET. This suggests that the rate-limiting conversion of the electron-accepting state to a new electron-donating (output) state does not involve interactions with the AR insert, but that AR may stabilize the output state once it is formed.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, United States.
| | | | | | | | | | | |
Collapse
|
28
|
Robinet JJ, Cho KB, Gauld JW. A density functional theory investigation on the mechanism of the second half-reaction of nitric oxide synthase. J Am Chem Soc 2008; 130:3328-34. [PMID: 18293966 DOI: 10.1021/ja072650+] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory methods have been employed to systematically investigate the overall mechanism of the second half-reaction of nitric oxide synthases. The initial heme-bound hydrogen peroxide intermediate previously identified is found to first undergo a simple rotation about its O-O peroxide bond. Then, via a "ping-pong" peroxidase-like mechanism the -O(in)H- proton is transferred back onto the substrate's -NO oxygen then subsequently onto the outer oxygen of the resulting Fe(heme)-OOH species. As a result, O(out) is released as H2O with concomitant formation of a compound I-type (Fe(heme)-O) species. Formation of the final citrulline and NO products can then be achieved in one step via a tetrahedral transition structure resulting from direct attack of the Fe(heme)-O moiety at the substrate's guanidinium carbon center. The possible role of alternative mechanisms involving a protonated compound II-type species or an initial transfer of only the -NH- hydrogen of the =NHOH+ group of N(omega)-hydroxy-L-arginine is also discussed.
Collapse
Affiliation(s)
- Jesse J Robinet
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | | | | |
Collapse
|
29
|
Iyanagi T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. ACTA ACUST UNITED AC 2007; 260:35-112. [PMID: 17482904 DOI: 10.1016/s0074-7696(06)60002-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes that catalyze the biotransformation of drugs and xenobiotics are generally referred to as drug-metabolizing enzymes (DMEs). DMEs can be classified into two main groups: oxidative or conjugative. The NADPH-cytochrome P450 reductase (P450R)/cytochrome P450 (P450) electron transfer systems are oxidative enzymes that mediate phase I reactions, whereas the UDP-glucuronosyltransferases (UGTs) are conjugative enzymes that mediate phase II enzymes. Both enzyme systems are localized to the endoplasmic reticulum (ER) where a number of drugs are sequentially metabolized. DMEs, including P450s and UGTs, generally have a highly plastic active site that can accommodate a wide variety of substrates. The P450 and UGT genes constitute a supergene family, in which UGT proteins are encoded by distinct genes and a complex gene. Both the P450 and UGT genes have evolved to diversify their functions. This chapter reviews advances in understanding the structure and function of the P450R/P450 and UGT enzyme systems. In particular, the coordinate biotransformation of xenobiotics by phase I and II enzymes in the ER membrane is examined.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| |
Collapse
|
30
|
Feng C, Tollin G, Hazzard JT, Nahm NJ, Guillemette JG, Salerno JC, Ghosh DK. Direct measurement by laser flash photolysis of intraprotein electron transfer in a rat neuronal nitric oxide synthase. J Am Chem Soc 2007; 129:5621-9. [PMID: 17425311 DOI: 10.1021/ja068685b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intraprotein interdomain electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Our previous laser flash photolysis studies have provided a direct determination of the kinetics of IET between the FMN and heme domains in truncated oxyFMN constructs of rat neuronal NOS (nNOS) and murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present [Feng, C. J.; Tollin, G.; Holliday, M. A.; Thomas, C.; Salerno, J. C.; Enemark, J. H.; Ghosh, D. K. Biochemistry 2006, 45, 6354-6362. Feng, C. J.; Thomas, C.; Holliday, M. A.; Tollin, G.; Salerno, J. C.; Ghosh, D. K.; Enemark, J. H. J. Am. Chem. Soc. 2006, 128, 3808-3811]. Here, we report the kinetics of IET between the FMN and heme domains in a rat nNOS holoenzyme in the presence and absence of added CaM using laser flash photolysis of CO dissociation in comparative studies on partially reduced NOS and a single domain NOS oxygenase construct. The IET rate constant in the presence of CaM is 36 s-1, whereas no IET was observed in the absence of CaM. The kinetics reported here are about an order of magnitude slower than the kinetics in a rat nNOS oxyFMN construct with added CaM (262 s-1). We attribute the slower IET between FMN and heme in the holoenzyme to the additional step of dissociation of the FMN domain from the reductase complex before reassociation with the oxygenase domain to form the electron-transfer competent output state complex. This work provides the first direct measurement of CaM-controlled electron transfer between catalytically significant redox couples of FMN and heme in a nNOS holoenzyme.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Panda SP, Gao YT, Roman LJ, Martásek P, Salerno JC, Masters BSS. The role of a conserved serine residue within hydrogen bonding distance of FAD in redox properties and the modulation of catalysis by Ca2+/calmodulin of constitutive nitric-oxide synthases. J Biol Chem 2006; 281:34246-57. [PMID: 16966328 DOI: 10.1074/jbc.m601041200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the neuronal nitric-oxide synthase (nNOS) NADPH/FAD binding domain indicated that Ser-1176 is within hydrogen bonding distance of Asp-1393 and the O4 atom of FAD and is also near the N5 atom of FAD (3.7 A). This serine residue is conserved in most of the ferredoxin-NADP+ reductase family of proteins and is important in electron transfer. In the present study, the homologous serines of both nNOS (Ser-1176) and endothelial nitric-oxide synthase (eNOS) (Ser-942) were mutated to threonine and alanine. Both substitutions yielded proteins that exhibited decreased rates of electron transfer through the flavin domains, in the presence and absence of Ca2+/CaM, as measured by reduction of potassium ferricyanide and cytochrome c. Rapid kinetics measurements of flavin reduction of all the mutants also showed a decrease in the rate of flavin reduction, in the absence and presence of Ca2+/CaM, as compared with the wild type proteins. The serine to alanine substitution caused both nNOS and eNOS to synthesize NO more slowly; however, the threonine mutants gave equal or slightly higher rates of NO production compared with the wild type enzymes. The midpoint redox potential measurements of all the redox centers revealed that wild type and threonine mutants of both nNOS and eNOS are very similar. However, the redox potentials of the FMN/FMNH* couple for alanine substitutions of both nNOS and eNOS are >100 mV higher than those of wild type proteins and are positive. These data presented here suggest that hydrogen bonding of the hydroxyl group of serine or threonine with the isoalloxazine ring of FAD and with the amino acids in its immediate milieu, particularly nNOS Asp-1393, affects the redox potentials of various flavin states, influencing the rate of electron transfer.
Collapse
Affiliation(s)
- Satya Prakash Panda
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
32
|
Feng C, Thomas C, Holliday MA, Tollin G, Salerno JC, Ghosh DK, Enemark JH. Direct measurement by laser flash photolysis of intramolecular electron transfer in a two-domain construct of murine inducible nitric oxide synthase. J Am Chem Soc 2006; 128:3808-11. [PMID: 16536556 DOI: 10.1021/ja0578606] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intersubunit intramolecular electron transfer (IET) from FMN to heme is essential in the delivery of electrons required for O2 activation in the heme domain and the subsequent nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation that serves as the input state for reduction of FMN by electrons from NADPH and FAD in the reductase domain. To favor formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct murine inducible nitric oxide synthase (iNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of the IET between the FMN and heme domains in this construct was directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single domain heme oxygenase constructs.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Masters BSS. The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases. Biochem Biophys Res Commun 2005; 338:507-19. [PMID: 16246311 DOI: 10.1016/j.bbrc.2005.09.165] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 09/29/2005] [Indexed: 11/17/2022]
Abstract
This mini-review will reflect the perspective of its author on two fields of research, which have merged as the result of the insights of investigators whose work has influenced both areas immeasurably. It cannot be overlooked, however, that the research activities of many during a period of over five decades have produced the chemical and biological bases for the exciting discoveries now encompassing the cytochromes P450 and their redox partners, and the three isoforms of nitric oxide synthase as they function in their respective biological milieux. Following the remarkable discovery that, indeed, molecular oxygen can be adducted to organic molecules by enzymatic systems and that such processes require a supply of reducing equivalents, it is the purpose of this review to provide a chart, with some of its detours, of the road that followed in the pursuit of interesting biological phenomena involving these two major oxygenation systems. It is not intended to be a balanced review and apologies must be offered in advance to those whose contributions may be overlooked or simply were not directly germane to the development of the author's journey.
Collapse
Affiliation(s)
- Bettie Sue Siler Masters
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, Texas 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|