1
|
Shrestha B, Sang J, Rimal S, Lee Y. Pharyngeal neuronal mechanisms governing sour taste perception in Drosophila melanogaster. eLife 2024; 13:RP101439. [PMID: 39660835 PMCID: PMC11634064 DOI: 10.7554/elife.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Jiun Sang
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Suman Rimal
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|
2
|
Chen L, Qiao B, Li H, Zhang P, Li Q. Protocol for generation of CRISPR-Cas9-mediated specific genomic insertion of P2A-Gal4 to reveal endogenous gene expression in Drosophila. STAR Protoc 2024; 5:103184. [PMID: 39180746 PMCID: PMC11388652 DOI: 10.1016/j.xpro.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 08/26/2024] Open
Abstract
Generating a transgene with a reporter inserted into the genome helps us study endogenous gene expression patterns in model organisms. Here, using Drosophila melanogaster, we present a protocol for generating a P2A-Gal4 insertion through CRISPR-Cas9-mediated homology recombination. We describe the design strategy, steps for constructing the injection plasmids, and the fly-cross scheme for screening the transformants from the G0 generation. This protocol can also be applied to introduce mutations or various genetic tools into the fly genome. For complete details on the use and execution of this protocol, please refer to Li et al.1.
Collapse
Affiliation(s)
- Limin Chen
- The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Benjiang Qiao
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Hong Li
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, Zhejiang 310003, China; The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Qiaoran Li
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
3
|
Nyberg KG, Navales FG, Keles E, Nguyen JQ, Hertz LM, Carthew RW. Robust and heritable knockdown of gene expression using a self-cleaving ribozyme in Drosophila. Genetics 2024; 227:iyae067. [PMID: 38701221 PMCID: PMC11304983 DOI: 10.1093/genetics/iyae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
The current toolkit for genetic manipulation in the model animal Drosophila melanogaster is extensive and versatile but not without its limitations. Here, we report a powerful and heritable method to knockdown gene expression in D. melanogaster using the self-cleaving N79 hammerhead ribozyme, a modification of a naturally occurring ribozyme found in the parasite Schistosoma mansoni. A 111-bp ribozyme cassette, consisting of the N79 ribozyme surrounded by insulating spacer sequences, was inserted into 4 independent long noncoding RNA genes as well as the male-specific splice variant of doublesex using scarless CRISPR/Cas9-mediated genome editing. Ribozyme-induced RNA cleavage resulted in robust destruction of 3' fragments typically exceeding 90%. Single molecule RNA fluorescence in situ hybridization results suggest that cleavage and destruction can even occur for nascent transcribing RNAs. Knockdown was highly specific to the targeted RNA, with no adverse effects observed in neighboring genes or the other splice variants. To control for potential effects produced by the simple insertion of 111 nucleotides into genes, we tested multiple catalytically inactive ribozyme variants and found that a variant with scrambled N79 sequence best recapitulated natural RNA levels. Thus, self-cleaving ribozymes offer a novel approach for powerful gene knockdown in Drosophila, with potential applications for the study of noncoding RNAs, nuclear-localized RNAs, and specific splice variants of protein-coding genes.
Collapse
Affiliation(s)
- Kevin G Nyberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Fritz Gerald Navales
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Eren Keles
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joseph Q Nguyen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura M Hertz
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Sang J, Dhakal S, Shrestha B, Nath DK, Kim Y, Ganguly A, Montell C, Lee Y. A single pair of pharyngeal neurons functions as a commander to reject high salt in Drosophila melanogaster. eLife 2024; 12:RP93464. [PMID: 38573740 PMCID: PMC10994663 DOI: 10.7554/elife.93464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Salt (NaCl), is an essential nutrient for survival, while excessive salt can be detrimental. In the fruit fly, Drosophila melanogaster, internal taste organs in the pharynx are critical gatekeepers impacting the decision to accept or reject a food. Currently, our understanding of the mechanism through which pharyngeal gustatory receptor neurons (GRNs) sense high salt are rudimentary. Here, we found that a member of the ionotropic receptor family, Ir60b, is expressed exclusively in a pair of GRNs activated by high salt. Using a two-way choice assay (DrosoX) to measure ingestion volume, we demonstrate that IR60b and two co-receptors IR25a and IR76b are required to prevent high salt consumption. Mutants lacking external taste organs but retaining the internal taste organs in the pharynx exhibit much higher salt avoidance than flies with all taste organs but missing the three IRs. Our findings highlight the vital role for IRs in a pharyngeal GRN to control ingestion of high salt.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Bhanu Shrestha
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Dharmendra Kumar Nath
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Yunjung Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Anindya Ganguly
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Li K, Guo Y, Wang Y, Zhu R, Chen W, Cheng T, Zhang X, Jia Y, Liu T, Zhang W, Jan LY, Jan YN. Drosophila TMEM63 and mouse TMEM63A are lysosomal mechanosensory ion channels. Nat Cell Biol 2024; 26:393-403. [PMID: 38388853 PMCID: PMC10940159 DOI: 10.1038/s41556-024-01353-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/10/2024] [Indexed: 02/24/2024]
Abstract
Cells sense physical forces and convert them into electrical or chemical signals, a process known as mechanotransduction. Whereas extensive studies focus on mechanotransduction at the plasma membrane, little is known about whether and how intracellular organelles sense mechanical force and the physiological functions of organellar mechanosensing. Here we identify the Drosophila TMEM63 (DmTMEM63) ion channel as an intrinsic mechanosensor of the lysosome, a major degradative organelle. Endogenous DmTMEM63 proteins localize to lysosomes, mediate lysosomal mechanosensitivity and modulate lysosomal morphology and function. Tmem63 mutant flies exhibit impaired lysosomal degradation, synaptic loss, progressive motor deficits and early death, with some of these mutant phenotypes recapitulating symptoms of TMEM63-associated human diseases. Importantly, mouse TMEM63A mediates lysosomal mechanosensitivity in Neuro-2a cells, indicative of functional conservation in mammals. Our findings reveal DmTMEM63 channel function in lysosomes and its physiological roles in vivo and provide a molecular basis to explore the mechanosensitive process in subcellular organelles.
Collapse
Affiliation(s)
- Kai Li
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Yanmeng Guo
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Yayu Wang
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Ruijun Zhu
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Wei Chen
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Tong Cheng
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Xiaofan Zhang
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Yinjun Jia
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Lily Yeh Jan
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Sang J, Dhakal S, Shrestha B, Nath DK, Kim Y, Ganguly A, Montell C, Lee Y. A single pair of pharyngeal neurons functions as a commander to reject high salt in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562703. [PMID: 37904986 PMCID: PMC10614918 DOI: 10.1101/2023.10.17.562703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Salt is an essential nutrient for survival, while excessive NaCl can be detrimental. In the fruit fly, Drosophila melanogaster, internal taste organs in the pharynx are critical gatekeepers impacting the decision to accept or reject a food. Currently, our understanding of the mechanism through which pharyngeal gustatory receptor neurons (GRNs) sense high salt are rudimentary. Here, we found that a member of the ionotropic receptor family, Ir60b, is expressed exclusively in a pair of GRNs activated by high salt. Using a two-way choice assay (DrosoX) to measure ingestion volume, we demonstrate that IR60b and two coreceptors IR25a and IR76b, are required to prevent high salt consumption. Mutants lacking external taste organs but retaining the internal taste organs in the pharynx exhibit much higher salt avoidance than flies with all taste organs but missing the three IRs. Our findings highlight the vital role for IRs in a pharyngeal GRN to control ingestion of high salt.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
- These authors contributed equally
| | - Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
- These authors contributed equally
| | - Bhanu Shrestha
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Dharmendra Kumar Nath
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Yunjung Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Anindya Ganguly
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA United States
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA United States
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
- Lead Contract
| |
Collapse
|
7
|
Steinmetz EL, Noh S, Klöppel C, Fuhr MF, Bach N, Raffael ME, Hildebrandt K, Wittling F, Jann D, Walldorf U. Generation of Mutants from the 57B Region of Drosophila melanogaster. Genes (Basel) 2023; 14:2047. [PMID: 38002990 PMCID: PMC10671637 DOI: 10.3390/genes14112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mutants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identified several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during development for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future.
Collapse
Affiliation(s)
- Eva Louise Steinmetz
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Zoology & Physiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building B2.1, D-66123 Saarbrücken, Germany
| | - Sandra Noh
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Christine Klöppel
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Martin F. Fuhr
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Nicole Bach
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Mona Evelyn Raffael
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Kirsten Hildebrandt
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Fabienne Wittling
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Doris Jann
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Medical Biochemistry & Molecular Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 45.2, D-66421 Homburg, Germany
| | - Uwe Walldorf
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| |
Collapse
|
8
|
Gupta K, Chakrabarti S, Janardan V, Gogia N, Banerjee S, Srinivas S, Mahishi D, Visweswariah SS. Neuronal expression in Drosophila of an evolutionarily conserved metallophosphodiesterase reveals pleiotropic roles in longevity and odorant response. PLoS Genet 2023; 19:e1010962. [PMID: 37733787 PMCID: PMC10547211 DOI: 10.1371/journal.pgen.1010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Evolutionarily conserved genes often play critical roles in organismal physiology. Here, we describe multiple roles of a previously uncharacterized Class III metallophosphodiesterase in Drosophila, an ortholog of the MPPED1 and MPPED2 proteins expressed in the mammalian brain. dMpped, the product of CG16717, hydrolyzed phosphodiester substrates including cAMP and cGMP in a metal-dependent manner. dMpped is expressed during development and in the adult fly. RNA-seq analysis of dMppedKO flies revealed misregulation of innate immune pathways. dMppedKO flies showed a reduced lifespan, which could be restored in Dredd hypomorphs, indicating that excessive production of antimicrobial peptides contributed to reduced longevity. Elevated levels of cAMP and cGMP in the brain of dMppedKO flies was restored on neuronal expression of dMpped, with a concomitant reduction in levels of antimicrobial peptides and restoration of normal life span. We observed that dMpped is expressed in the antennal lobe in the fly brain. dMppedKO flies showed defective specific attractant perception and desiccation sensitivity, correlated with the overexpression of Obp28 and Obp59 in knock-out flies. Importantly, neuronal expression of mammalian MPPED2 restored lifespan in dMppedKO flies. This is the first description of the pleiotropic roles of an evolutionarily conserved metallophosphodiesterase that may moonlight in diverse signaling pathways in an organism.
Collapse
Affiliation(s)
- Kriti Gupta
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sveta Chakrabarti
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Vishnu Janardan
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Nishita Gogia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sanghita Banerjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Swarna Srinivas
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Deepthi Mahishi
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sandhya S. Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
9
|
Liu J, Liu W, Thakur D, Mack J, Spina A, Montell C. Alleviation of thermal nociception depends on heat-sensitive neurons and a TRP channel in the brain. Curr Biol 2023; 33:2397-2406.e6. [PMID: 37201520 PMCID: PMC10330845 DOI: 10.1016/j.cub.2023.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Acute avoidance of dangerous temperatures is critical for animals to prevent or minimize injury. Therefore, surface receptors have evolved to endow neurons with the capacity to detect noxious heat so that animals can initiate escape behaviors. Animals including humans have evolved intrinsic pain-suppressing systems to attenuate nociception under some circumstances. Here, using Drosophila melanogaster, we uncovered a new mechanism through which thermal nociception is suppressed. We identified a single descending neuron in each brain hemisphere, which is the center for suppression of thermal nociception. These Epi neurons, for Epione-the goddess of soothing of pain-express a nociception-suppressing neuropeptide Allatostatin C (AstC), which is related to a mammalian anti-nociceptive peptide, somatostatin. Epi neurons are direct sensors for noxious heat, and when activated they release AstC, which diminishes nociception. We found that Epi neurons also express the heat-activated TRP channel, Painless (Pain), and thermal activation of Epi neurons and the subsequent suppression of thermal nociception depend on Pain. Thus, while TRP channels are well known to sense noxious temperatures to promote avoidance behavior, this work reveals the first role for a TRP channel for detecting noxious temperatures for the purpose of suppressing rather than enhancing nociception behavior in response to hot thermal stimuli.
Collapse
Affiliation(s)
- Jiangqu Liu
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Weiwei Liu
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dhananjay Thakur
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - John Mack
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Aidin Spina
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
10
|
Shrestha B, Aryal B, Lee Y. The taste of vitamin C in Drosophila. EMBO Rep 2023; 24:e56319. [PMID: 37114473 PMCID: PMC10240197 DOI: 10.15252/embr.202256319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamins are essential micronutrients, but the mechanisms of vitamin chemoreception in animals are poorly understood. Here, we provide evidence that vitamin C doubles starvation resistance and induces egg laying in Drosophila melanogaster. Our behavioral analyses of genetically engineered and anatomically ablated flies show that fruit flies sense vitamin C via sweet-sensing gustatory receptor neurons (GRNs) in the labellum. Using a behavioral screen and in vivo electrophysiological analyses of ionotropic receptors (IRs) and sweet-sensing gustatory receptors (GRs), we find that two broadly tuned IRs (i.e., IR25a and IR76b) and five GRs (i.e., GR5a, GR61a, GR64b, GR64c, and GR64e) are essential for vitamin C detection. Thus, vitamin C is directly detected by the fly labellum and requires at least two distinct receptor types. Next, we expand our electrophysiological study to test attractive tastants such as sugars, carboxylic acids, and glycerol. Our analysis elucidates the molecular basis of chemoreception in sweet-sensing GRNs.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence TechnologyKookmin UniversitySeoulKorea
| | - Binod Aryal
- Department of Bio & Fermentation Convergence TechnologyKookmin UniversitySeoulKorea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence TechnologyKookmin UniversitySeoulKorea
| |
Collapse
|
11
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
12
|
Shen R, Zheng K, Zhou Y, Chi X, Pan H, Wu C, Yang Y, Zheng Y, Pan D, Liu B. A dRASSF-STRIPAK-Imd-JAK/STAT axis controls antiviral immune response in Drosophila. Cell Rep 2022; 40:111143. [PMID: 35905720 DOI: 10.1016/j.celrep.2022.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 01/20/2023] Open
Abstract
Host antiviral immunity suffers strong pressure from rapidly evolving viruses. Identifying host antiviral immune mechanisms has profound implications for developing antiviral strategies. Here, we uncover an essential role for the tumor suppressor Ras-association domain family (RASSF) in Drosophila antiviral response. Loss of dRassf in fat body leads to increased vulnerability to viral infection and impaired Imd pathway activation accompanied by detrimental JAK/STAT signaling overactivation. Mechanistically, dRASSF protects TAK1, a key kinase of Imd pathway, from inhibition by the STRIPAK PP2A phosphatase complex. Activated Imd signaling then employs the effector Relish to interfere with the dimerization of JAK/STAT transmembrane receptor Domeless, therefore preventing excessive JAK/STAT signaling. Moreover, we find that RASSF and STRIPAK PP2A complex are also involved in antiviral response in human cell lines. Our study identifies an important role for RASSF in antiviral immunity and elucidates a dRASSF-STRIPAK-Imd-JAK/STAT signaling axis that ensures proper antiviral responses in Drosophila.
Collapse
Affiliation(s)
- Rui Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kewei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaofeng Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huimin Pan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengfang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yinan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
13
|
Zhang Y, Zhang YJ, Guo D, Wang LX, Niu CD, Wu SF, Zhang YV, Gao CF. Function of Transient Receptor Potential-Like Channel in Insect Egg Laying. Front Mol Neurosci 2022; 15:823563. [PMID: 35845607 PMCID: PMC9280367 DOI: 10.3389/fnmol.2022.823563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The transient receptor potential-like channel (TRPL) is a member of the transient receptor potential (TRP) channel family involved in regulating many fundamental senses, such as vision, pain, taste, and touch, in both invertebrates and vertebrates. Yet, the function of TRPL in other important biological processes remains unclear. We discover that TRPL regulates egg laying in two insect species, the brown planthopper, Nilaparvata lugens, and the fruit fly, Drosophila melanogaster. In both insects, trpl is expressed in the female reproductive organ. Loss of trpl leads to significantly defects in egg laying. In addition, TRPL is functionally interchangeable between the brown planthoppers and flies in egg laying. Altogether, our work uncovers a novel role played by TRPL in regulating egg laying and indicates TRPL as a potential pesticide target in brown planthoppers.
Collapse
Affiliation(s)
- Yan Zhang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Yi-Jie Zhang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Di Guo
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Li-Xiang Wang
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Chun-Dong Niu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Yali V. Zhang
- Monell Chemical Senses Center, Philadelphia, PA, United States
- *Correspondence: Yali V. Zhang,
| | - Cong-Fen Gao
- College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
- Cong-Fen Gao,
| |
Collapse
|
14
|
Srivastava A, Lu J, Gadalla DS, Hendrich O, Grönke S, Partridge L. The Role of GCN2 Kinase in Mediating the Effects of Amino Acids on Longevity and Feeding Behaviour in Drosophila. FRONTIERS IN AGING 2022; 3:944466. [PMID: 35821827 PMCID: PMC9261369 DOI: 10.3389/fragi.2022.944466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 02/03/2023]
Abstract
Restriction of amino acids in the diet can extend lifespan in diverse species ranging from flies to mammals. However, the role of individual amino acids and the underlying molecular mechanisms are only partially understood. The evolutionarily conserved serine/threonine kinase General Control Nonderepressible 2 (GCN2) is a key sensor of amino acid deficiency and has been implicated in the response of lifespan to dietary restriction (DR). Here, we generated a novel Drosophila GCN2 null mutant and analyzed its response to individual amino acid deficiency. We show that GCN2 function is essential for fly development, longevity and feeding behaviour under long-term, but not short-term, deprivation of all individual essential amino acids (EAAs) except for methionine. GCN2 mutants were longer-lived than control flies and showed normal feeding behaviour under methionine restriction. Thus, in flies at least two systems regulate these responses to amino acid deprivation. Methionine deprivation acts via a GCN2-independent mechanism, while all other EAA are sensed by GCN2. Combined deficiency of methionine and a second EAA blocked the response of GCN2 mutants to methionine, suggesting that these two pathways are interconnected. Wild type flies showed a short-term rejection of food lacking individual EAA, followed by a long-term compensatory increase in food uptake. GCN2 mutants also showed a short-term rejection of food deprived of individual EAA, but were unable to mount the compensatory long-term increase in food uptake. Over-expression of the downstream transcription factor ATF4 partially rescued the response of feeding behaviour in GCN2 mutants to amino acid deficiency. Phenotypes of GCN2 mutants induced by leucine and tryptophan, but not isoleucine, deficiency were partially rescued by ATF4 over-expression. The exact function of GCN2 as an amino acid sensor in vivo and the downstream action of its transcription factor effector ATF4 are thus context-specific with respect to the EAA involved.
Collapse
Affiliation(s)
| | - Jiongming Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Oliver Hendrich
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
15
|
Abstract
For four decades, genetically altered laboratory animals have provided invaluable information. Originally, genetic modifications were performed on only a few animal species, often chosen because of the ready accessibility of embryonic materials and short generation times. The methods were often slow, inefficient and expensive. In 2013, a new, extremely efficient technology, namely CRISPR/Cas9, not only made the production of genetically altered organisms faster and cheaper, but also opened it up to non-conventional laboratory animal species. CRISPR/Cas9 relies on a guide RNA as a 'location finder' to target DNA double strand breaks induced by the Cas9 enzyme. This is a prerequisite for non-homologous end joining repair to occur, an error prone mechanism often generating insertion or deletion of genetic material. If a DNA template is also provided, this can lead to homology directed repair, allowing precise insertions, deletions or substitutions. Due to its high efficiency in targeting DNA, CRISPR/Cas9-mediated genetic modification is now possible in virtually all animal species for which we have genome sequence data. Furthermore, modifications of Cas9 have led to more refined genetic alterations from targeted single base-pair mutations to epigenetic modifications. The latter offer altered gene expression without genome alteration. With this ever growing genetic toolbox, the number and range of genetically altered conventional and non-conventional laboratory animals with simple or complex genetic modifications is growing exponentially.
Collapse
|
16
|
Hildebrandt K, Kolb D, Klöppel C, Kaspar P, Wittling F, Hartwig O, Federspiel J, Findji I, Walldorf U. Regulatory modules mediating the complex neural expression patterns of the homeobrain gene during Drosophila brain development. Hereditas 2022; 159:2. [PMID: 34983686 PMCID: PMC8728971 DOI: 10.1186/s41065-021-00218-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The homeobox gene homeobrain (hbn) is located in the 57B region together with two other homeobox genes, Drosophila Retinal homeobox (DRx) and orthopedia (otp). All three genes encode transcription factors with important functions in brain development. Hbn mutants are embryonic lethal and characterized by a reduction in the anterior protocerebrum, including the mushroom bodies, and a loss of the supraoesophageal brain commissure. RESULTS In this study we conducted a detailed expression analysis of Hbn in later developmental stages. In the larval brain, Hbn is expressed in all type II lineages and the optic lobes, including the medulla and lobula plug. The gene is expressed in the cortex of the medulla and the lobula rim in the adult brain. We generated a new hbnKOGal4 enhancer trap strain by reintegrating Gal4 in the hbn locus through gene targeting, which reflects the complete hbn expression during development. Eight different enhancer-Gal4 strains covering 12 kb upstream of hbn, the two large introns and 5 kb downstream of the gene, were established and hbn expression was investigated. We characterized several enhancers that drive expression in specific areas of the brain throughout development, from embryo to the adulthood. Finally, we generated deletions of four of these enhancer regions through gene targeting and analysed their effects on the expression and function of hbn. CONCLUSION The complex expression of Hbn in the developing brain is regulated by several specific enhancers within the hbn locus. Each enhancer fragment drives hbn expression in several specific cell lineages, and with largely overlapping patterns, suggesting the presence of shadow enhancers and enhancer redundancy. Specific enhancer deletion strains generated by gene targeting display developmental defects in the brain. This analysis opens an avenue for a deeper analysis of hbn regulatory elements in the future.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Petra Kaspar
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: COS Heidelberg, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Fabienne Wittling
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Hemholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, 66123, Saarbrücken, Germany
| | - Olga Hartwig
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Hemholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, 66123, Saarbrücken, Germany
| | - Jannic Federspiel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - India Findji
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
17
|
Dhakal S, Sang J, Aryal B, Lee Y. Ionotropic receptors mediate nitrogenous waste avoidance in Drosophila melanogaster. Commun Biol 2021; 4:1281. [PMID: 34773080 PMCID: PMC8589963 DOI: 10.1038/s42003-021-02799-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
Ammonia and its amine-containing derivatives are widely found in natural decomposition byproducts. Here, we conducted biased chemoreceptor screening to investigate the mechanisms by which different concentrations of ammonium salt, urea, and putrescine in rotten fruits affect feeding and oviposition behavior. We identified three ionotropic receptors, including the two broadly required IR25a and IR76b receptors, as well as the narrowly tuned IR51b receptor. These three IRs were fundamental in eliciting avoidance against nitrogenous waste products, which is mediated by bitter-sensing gustatory receptor neurons (GRNs). The aversion of nitrogenous wastes was evaluated by the cellular requirement by expressing Kir2.1 and behavioral recoveries of the mutants in bitter-sensing GRNs. Furthermore, by conducting electrophysiology assays, we confirmed that ammonia compounds are aversive in taste as they directly activated bitter-sensing GRNs. Therefore, our findings provide insights into the ecological roles of IRs as a means to detect and avoid toxic nitrogenous waste products in nature.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Binod Aryal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
18
|
Hildebrandt K, Kübel S, Minet M, Fürst N, Klöppel C, Steinmetz E, Walldorf U. Enhancer analysis of the Drosophila zinc finger transcription factor Earmuff by gene targeting. Hereditas 2021; 158:41. [PMID: 34732265 PMCID: PMC8567707 DOI: 10.1186/s41065-021-00209-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many transcription factors are involved in the formation of the brain during the development of Drosophila melanogaster. The transcription factor Earmuff (Erm), a member of the forebrain embryonic zinc finger family (Fezf), is one of these important factors for brain development. One major function of Earmuff is the regulation of proliferation within type II neuroblast lineages in the brain; here, Earmuff is expressed in intermediate neural progenitor cells (INPs) and balances neuronal differentiation versus stem cell maintenance. Erm expression during development is regulated by several enhancers. RESULTS In this work we show a functional analysis of erm and some of its enhancers. We generated a new erm mutant allele by gene targeting and reintegrated Gal4 to make an erm enhancer trap strain that could also be used on an erm mutant background. The deletion of three of the previously analysed enhancers showing the most prominent expression patterns of erm by gene targeting resulted in specific temporal and spatial defects in defined brain structures. These defects were already known but here could be assigned to specific enhancer regions. CONCLUSION This analysis is to our knowledge the first systematic analysis of several large enhancer deletions of a Drosophila gene by gene targeting and will enable deeper analysis of erm enhancer functions in the future.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Sabrina Kübel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Clinical and Molecular Virology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Marie Minet
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Human Genetics, Saarland University, Building 60, 66421, Homburg/Saar, Germany
| | - Nora Fürst
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Genetics/Epigenetics, Saarland University, Building A2.4, 66123, Saarbrücken, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Eva Steinmetz
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
- Present address: Zoology and Physiology, Saarland University, Building B2.1, 66123, Saarbrücken, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
19
|
Chung S, Le TP, Vishwakarma V, Cheng YL, Andrew DJ. Isoform-specific roles of the Drosophila filamin-type protein Jitterbug (Jbug) during development. Genetics 2021; 219:iyab100. [PMID: 34173831 PMCID: PMC8860385 DOI: 10.1093/genetics/iyab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
Filamins are highly conserved actin-crosslinking proteins that regulate organization of the actin cytoskeleton. As key components of versatile signaling scaffolds, filamins are implicated in developmental anomalies and cancer. Multiple isoforms of filamins exist, raising the possibility of distinct functions for each isoform during development and in disease. Here, we provide an initial characterization of jitterbug (jbug), which encodes one of the two filamin-type proteins in Drosophila. We generate Jbug antiserum that recognizes all of the spliced forms and reveals differential expression of different Jbug isoforms during development, and a significant maternal contribution of Jbug protein. To reveal the function of Jbug isoforms, we create new genetic tools, including a null allele that deletes all isoforms, hypomorphic alleles that affect only a subset, and UAS lines for Gal4-driven expression of the major isoforms. Using these tools, we demonstrate that Jbug is required for viability and that specific isoforms are required in the formation of actin-rich protrusions including thoracic bristles in adults and ventral denticles in the embryo. We also show that specific isoforms of Jbug show differential localization within epithelia and that maternal and zygotic loss of jbug disrupts Crumbs (Crb) localization in several epithelial cell types.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thao Phuong Le
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vishakha Vishwakarma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yim Ling Cheng
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Li Q, Montell C. Mechanism for food texture preference based on grittiness. Curr Biol 2021; 31:1850-1861.e6. [PMID: 33657409 DOI: 10.1016/j.cub.2021.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
An animal's decision to accept or reject a prospective food is based only, in part, on its chemical composition. Palatability is also greatly influenced by textural features including smoothness versus grittiness, which is influenced by particle sizes. Here, we demonstrate that Drosophila melanogaster is endowed with the ability to discriminate particle sizes in food and uses this information to decide whether a food is appealing. The decision depends on a mechanically activated channel, OSCA/TMEM63, which is conserved from plants to humans. We found that tmem63 is expressed in a multidendritic neuron (md-L) in the fly tongue. Loss of tmem63 impairs the activation of md-L by mechanical stimuli and the ability to choose food based on particle size. These findings reveal the first role for this evolutionarily conserved, mechanically activated TMEM63 channel in an animal and provide an explanation of how flies can sense and behaviorally respond to the texture of food provided by particles.
Collapse
Affiliation(s)
- Qiaoran Li
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
21
|
Johnson DM, Wells MB, Fox R, Lee JS, Loganathan R, Levings D, Bastien A, Slattery M, Andrew DJ. CrebA increases secretory capacity through direct transcriptional regulation of the secretory machinery, a subset of secretory cargo, and other key regulators. Traffic 2021; 21:560-577. [PMID: 32613751 DOI: 10.1111/tra.12753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
Specialization of many cells, including the acinar cells of the salivary glands and pancreas, milk-producing cells of mammary glands, mucus-secreting goblet cells, antibody-producing plasma cells, and cells that generate the dense extracellular matrices of bone and cartilage, requires scaling up both secretory machinery and cell-type specific secretory cargo. Using tissue-specific genome-scale analyses, we determine how increases in secretory capacity are coordinated with increases in secretory load in the Drosophila salivary gland (SG), an ideal model for gaining mechanistic insight into the functional specialization of secretory organs. Our findings show that CrebA, a bZIP transcription factor, directly binds genes encoding the core secretory machinery, including protein components of the signal recognition particle and receptor, ER cargo translocators, Cop I and Cop II vesicles, as well as the structural proteins and enzymes of these organelles. CrebA directly binds a subset of SG cargo genes and CrebA binds and boosts expression of Sage, a SG-specific transcription factor essential for cargo expression. To further enhance secretory output, CrebA binds and activates Xbp1 and Tudor-SN. Thus, CrebA directly upregulates the machinery of secretion and additional factors to increase overall secretory capacity in professional secretory cells; concomitant increases in cargo are achieved both directly and indirectly.
Collapse
Affiliation(s)
- Dorothy M Johnson
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael B Wells
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca Fox
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joslynn S Lee
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Rajprasad Loganathan
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Abigail Bastien
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Li W, Liang J, Outeda P, Turner S, Wakimoto BT, Watnick T. A genetic screen in Drosophila reveals an unexpected role for the KIP1 ubiquitination-promoting complex in male fertility. PLoS Genet 2020; 16:e1009217. [PMID: 33378371 PMCID: PMC7802972 DOI: 10.1371/journal.pgen.1009217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/12/2021] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
A unifying feature of polycystin-2 channels is their localization to both primary and motile cilia/flagella. In Drosophila melanogaster, the fly polycystin-2 homologue, Amo, is an ER protein early in sperm development but the protein must ultimately cluster at the flagellar tip in mature sperm to be fully functional. Male flies lacking appropriate Amo localization are sterile due to abnormal sperm motility and failure of sperm storage. We performed a forward genetic screen to identify additional proteins that mediate ciliary trafficking of Amo. Here we report that Drosophila homologues of KPC1 and KPC2, which comprise the mammalian KIP1 ubiquitination-promoting complex (KPC), form a conserved unit that is required for the sperm tail tip localization of Amo. Male flies lacking either KPC1 or KPC2 phenocopy amo mutants and are sterile due to a failure of sperm storage. KPC is a heterodimer composed of KPC1, an E3 ligase, and KPC2 (or UBAC1), an adaptor protein. Like their mammalian counterparts Drosophila KPC1 and KPC2 physically interact and they stabilize one another at the protein level. In flies, KPC2 is monoubiquitinated and phosphorylated and this modified form of the protein is located in mature sperm. Neither KPC1 nor KPC2 directly interact with Amo but they are detected in proximity to Amo at the tip of the sperm flagellum. In summary we have identified a new complex that is involved in male fertility in Drosophila melanogaster.
Collapse
Affiliation(s)
- Weizhe Li
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Jinqing Liang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Stacey Turner
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Barbara T. Wakimoto
- Department of Biology, University of Washington Seattle, WA, United States of America
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hildebrandt K, Bach N, Kolb D, Walldorf U. The homeodomain transcription factor Orthopedia is involved in development of the Drosophila hindgut. Hereditas 2020; 157:46. [PMID: 33213520 PMCID: PMC7678101 DOI: 10.1186/s41065-020-00160-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background The Drosophila hindgut is commonly used model for studying various aspects of organogenesis like primordium establishment, further specification, patterning, and morphogenesis. During embryonic development of Drosophila, many transcriptional activators are involved in the formation of the hindgut. The transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, is expressed in the hindgut and nervous system of developing Drosophila embryos, but due to the lack of mutants no functional analysis has been conducted yet. Results We show that two different otp transcripts, a hindgut-specific and a nervous system-specific form, are present in the Drosophila embryo. Using an Otp antibody, a detailed expression analysis during hindgut development was carried out. Otp was not only expressed in the embryonic hindgut, but also in the larval and adult hindgut. To analyse the function of otp, we generated the mutant otp allele otpGT by ends-out gene targeting. In addition, we isolated two EMS-induced otp alleles in a genetic screen for mutants of the 57B region. All three otp alleles showed embryonic lethality with a severe hindgut phenotype. Anal pads were reduced and the large intestine was completely missing. This phenotype is due to apoptosis in the hindgut primordium and the developing hindgut. Conclusion Our data suggest that Otp is another important factor for hindgut development of Drosophila. As a downstream factor of byn Otp is most likely present only in differentiated hindgut cells during all stages of development rather than in stem cells.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Nicole Bach
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany.
| |
Collapse
|
24
|
Dobbelaere J, Schmidt Cernohorska M, Huranova M, Slade D, Dammermann A. Cep97 Is Required for Centriole Structural Integrity and Cilia Formation in Drosophila. Curr Biol 2020; 30:3045-3056.e7. [PMID: 32589908 DOI: 10.1016/j.cub.2020.05.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
Centrioles are highly elaborate microtubule-based structures responsible for the formation of centrosomes and cilia. Despite considerable variation across species and tissues within any given tissue, their size is essentially constant [1, 2]. While the diameter of the centriole cylinder is set by the dimensions of the inner scaffolding structure of the cartwheel [3], how centriole length is set so precisely and stably maintained over many cell divisions is not well understood. Cep97 and CP110 are conserved proteins that localize to the distal end of centrioles and have been reported to limit centriole elongation in vertebrates [4, 5]. Here, we examine Cep97 function in Drosophila melanogaster. We show that Cep97 is essential for formation of full-length centrioles in multiple tissues of the fly. We further identify the microtubule deacetylase Sirt2 as a Cep97 interactor. Deletion of Sirt2 likewise affects centriole size. Interestingly, so does deletion of the acetylase Atat1, indicating that loss of stabilizing acetyl marks impairs centriole integrity. Cep97 and CP110 were originally identified as inhibitors of cilia formation in vertebrate cultured cells [6], and loss of CP110 is a widely used marker of basal body maturation. In contrast, in Drosophila, Cep97 appears to be only transiently removed from basal bodies and loss of Cep97 strongly impairs ciliogenesis. Collectively, our results support a model whereby Cep97 functions as part of a protective cap that acts together with the microtubule acetylation machinery to maintain centriole stability, essential for proper function in cilium biogenesis.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Dea Slade
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
25
|
A Family of Auxiliary Subunits of the TRP Cation Channel Encoded by the Complex inaF Locus. Genetics 2020; 215:713-728. [PMID: 32434796 DOI: 10.1534/genetics.120.303268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
TRP channels function in many types of sensory receptor cells. Despite extensive analyses, an open question is whether there exists a family of auxiliary subunits, which could influence localization, trafficking, and function of TRP channels. Here, using Drosophila melanogaster, we reveal a previously unknown TRP interacting protein, INAF-C, which is expressed exclusively in the ultraviolet-sensing R7 photoreceptor cells. INAF-C is encoded by an unusual locus comprised of four distinct coding regions, which give rise to four unique single-transmembrane-containing proteins. With the exception of INAF-B, roles for the other INAF proteins were unknown. We found that both INAF-B and INAF-C are required for TRP stability and localization in R7 cells. Conversely, loss of just INAF-B greatly reduced TRP from other types of photoreceptor cells, but not R7. The requirements for TRP and INAF are reciprocal, since loss of TRP decreased the concentrations of both INAF-B and INAF-C. INAF-A, which is not normally expressed in photoreceptor cells, can functionally substitute for INAF-B, indicating that it is a third TRP auxiliary protein. Reminiscent of the structural requirements between Kv channels and KCNE auxiliary subunits, the codependencies of TRP and INAF depended on several transmembrane domains (TMDs) in TRP, and the TMD and the C-terminus of INAF-B. Our studies support a model in which the inaF locus encodes a family of at least three TRP auxiliary subunits.
Collapse
|
26
|
Sirt4 Modulates Oxidative Metabolism and Sensitivity to Rapamycin Through Species-Dependent Phenotypes in Drosophila mtDNA Haplotypes. G3-GENES GENOMES GENETICS 2020; 10:1599-1612. [PMID: 32152006 PMCID: PMC7202034 DOI: 10.1534/g3.120.401174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The endosymbiotic theory proposes that eukaryotes evolved from the symbiotic relationship between anaerobic (host) and aerobic prokaryotes. Through iterative genetic transfers, the mitochondrial and nuclear genomes coevolved, establishing the mitochondria as the hub of oxidative metabolism. To study this coevolution, we disrupt mitochondrial-nuclear epistatic interactions by using strains that have mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) from evolutionarily divergent species. We undertake a multifaceted approach generating introgressed Drosophila strains containing D. simulans mtDNA and D. melanogaster nDNA with Sirtuin 4 (Sirt4)-knockouts. Sirt4 is a nuclear-encoded enzyme that functions, exclusively within the mitochondria, as a master regulator of oxidative metabolism. We exposed flies to the drug rapamycin in order to eliminate TOR signaling, thereby compromising the cytoplasmic crosstalk between the mitochondria and nucleus. Our results indicate that D. simulans and D. melanogaster mtDNA haplotypes display opposite Sirt4-mediated phenotypes in the regulation of whole-fly oxygen consumption. Moreover, our data reflect that the deletion of Sirt4 rescued the metabolic response to rapamycin among the introgressed strains. We propose that Sirt4 is a suitable candidate for studying the properties of mitochondrial-nuclear epistasis in modulating mitochondrial metabolism.
Collapse
|
27
|
Yang B. Grand Challenges in Genome Editing in Plants. Front Genome Ed 2020; 2:2. [PMID: 34713211 PMCID: PMC8525352 DOI: 10.3389/fgeed.2020.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Bing Yang
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Donald Danforth Plant Science Center, St. Louis, MO, United States
| |
Collapse
|
28
|
Li N, Liu Q, Xiong Y, Yu J. Headcase and Unkempt Regulate Tissue Growth and Cell Cycle Progression in Response to Nutrient Restriction. Cell Rep 2020; 26:733-747.e3. [PMID: 30650363 PMCID: PMC6350942 DOI: 10.1016/j.celrep.2018.12.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/24/2018] [Accepted: 12/19/2018] [Indexed: 11/26/2022] Open
Abstract
Nutrient restriction (NR) decreases the incidence and growth of many types of tumors, yet the underlying mechanisms are not fully understood. In this study, we identified Headcase (Hdc) and Unkempt (Unk) as two NR-specific tumor suppressor proteins that form a complex to restrict cell cycle progression and tissue growth in response to NR in Drosophila. Loss of Hdc or Unk does not confer apparent growth advantage under normal nutrient conditions but leads to accelerated cell cycle progression and tissue overgrowth under NR. Hdc and Unk bind to the TORC1 component Raptor and preferentially regulate S6 phosphorylation in a TORC1-dependent manner. We further show that HECA and UNK, the human counterparts of Drosophila Hdc and Unk, respectively, have a conserved function in regulating S6 phosphorylation and tissue growth. The identification of Hdc and Unk as two NR-specific tumor suppressors provides insight into molecular mechanisms underlying the anti-tumorigenic effects of NR. The molecular mechanisms underlying nutrient restriction resistance remain unclear. Li et al. find that Hdc and Unk function in the mTOR signaling pathway to restrict tissue growth and cell cycle progression in response to nutrient restriction.
Collapse
Affiliation(s)
- Naren Li
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Qinfang Liu
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Yulan Xiong
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Jianzhong Yu
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| |
Collapse
|
29
|
Rimal S, Sang J, Poudel S, Thakur D, Montell C, Lee Y. Mechanism of Acetic Acid Gustatory Repulsion in Drosophila. Cell Rep 2020; 26:1432-1442.e4. [PMID: 30726729 DOI: 10.1016/j.celrep.2019.01.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/07/2018] [Accepted: 01/10/2019] [Indexed: 12/01/2022] Open
Abstract
The decision to consume or reject a food based on the degree of acidity is critical for animal survival. However, the gustatory receptors that detect sour compounds and influence feeding behavior have been elusive. Here, using the fly, Drosophila melanogaster, we reveal that a member of the ionotropic receptor family, IR7a, is essential for rejecting foods laced with high levels of acetic acid. IR7a is dispensable for repulsion of other acidic compounds, indicating that the gustatory sensation of acids occurs through a repertoire rather than a single receptor. The fly's main taste organ, the labellum, is decorated with bristles that house dendrites of gustatory receptor neurons (GRNs). IR7a is expressed in a subset of bitter GRNs rather than GRNs dedicated to sour taste. Our findings indicate that flies taste acids through a repertoire of receptors, enabling them to discriminate foods on the basis of acid composition rather than just pH.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Republic of Korea
| | - Jiun Sang
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Republic of Korea
| | - Seeta Poudel
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Republic of Korea
| | - Dhananjay Thakur
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
30
|
MiR-315 is required for neural development and represses the expression of dFMR1 in Drosophila melanogaster. Biochem Biophys Res Commun 2020; 525:469-476. [DOI: 10.1016/j.bbrc.2020.02.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 01/19/2023]
|
31
|
Troutwine B, Park A, Velez‐Hernandez ME, Lew L, Mihic SJ, Atkinson NS. F654A and K558Q Mutations in NMDA Receptor 1 Affect Ethanol‐Induced Behaviors in Drosophila. Alcohol Clin Exp Res 2019; 43:2480-2493. [DOI: 10.1111/acer.14215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/03/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Benjamin Troutwine
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - Annie Park
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | | | - Linda Lew
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - S. John Mihic
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| | - Nigel S. Atkinson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas
| |
Collapse
|
32
|
Maier D, Nagel AC, Kelp A, Preiss A. Protein Kinase D Is Dispensable for Development and Survival of Drosophila melanogaster. G3 (BETHESDA, MD.) 2019; 9:2477-2487. [PMID: 31142547 PMCID: PMC6686927 DOI: 10.1534/g3.119.400307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 02/03/2023]
Abstract
Members of the Protein Kinase D (PKD) family are involved in numerous cellular processes in mammals, including cell survival after oxidative stress, polarized transport of Golgi vesicles, as well as cell migration and invasion. PKD proteins belong to the PKC/CAMK class of serine/threonine kinases, and transmit diacylglycerol-regulated signals. Whereas three PKD isoforms are known in mammals, Drosophila melanogaster contains a single PKD homolog. Previous analyses using overexpression and RNAi studies indicated likewise multi-facetted roles for Drosophila PKD, including the regulation of secretory transport and actin-cytoskeletal dynamics. Recently, involvement in growth regulation has been proposed based on the hypomorphic dPKDH allele. We have generated PKD null alleles that are homozygous viable without apparent phenotype. They largely match control flies regarding fertility, developmental timing and weight. Males, but not females, are slightly shorter lived and starvation sensitive. Furthermore, migration of pole cells in embryos and border cells in oocytes appears normal. PKD mutants tolerate heat, cold and osmotic stress like the control but are sensitive to oxidative stress, conforming to the described role for mammalian PKDs. A candidate screen to identify functionally redundant kinases uncovered genetic interactions of PKD with Pkcδ, sqa and Drak mutants, further supporting the role of PKD in oxidative stress response, and suggesting its involvement in starvation induced autophagy and regulation of cytoskeletal dynamics. Overall, PKD appears dispensable for fly development and survival presumably due to redundancy, but influences environmental responses.
Collapse
Affiliation(s)
- Dieter Maier
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anja C Nagel
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Alexandra Kelp
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anette Preiss
- Universität Hohenheim, Institut für Genetik (240A), Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
33
|
Johnson DM, Andrew DJ. Role of tbc1 in Drosophila embryonic salivary glands. BMC Mol Cell Biol 2019; 20:19. [PMID: 31242864 PMCID: PMC6595604 DOI: 10.1186/s12860-019-0198-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND CG4552/tbc1 was identified as a downstream target of Fork head (Fkh), the single Drosophila member of the FoxA family of transcription factors and a major player in salivary gland formation and homeostasis. Tbc1 and its orthologues have been implicated in phagocytosis, the innate immune response, border cell migration, cancer and an autosomal recessive form of non-degenerative Pontocerebellar hypoplasia. Recently, the mammalian Tbc1 orthologue, Tbc1d23, has been shown to bind both the conserved N-terminal domains of two Golgins (Golgin-97 and Golgin-245) and the WASH complex on endosome vesicles. Through this activity, Tbc1d23 has been proposed to link endosomally-derived vesicles to their appropriate target membrane in the trans Golgi (TGN). RESULTS In this paper, we provide an initial characterization of Drosophila orthologue, we call tbc1. We show that, like its mammalian orthologue, Tbc1 localizes to the trans Golgi. We show that it also colocalizes with a subset of Rabs associated with both early and recycling endosomes. Animals completely missing tbc1 survive, but females have fertility defects. Consistent with the human disease, loss of tbc1 reduces optic lobe size and increases response time to mechanical perturbation. Loss and overexpression of tbc1 in the embryonic salivary glands leads to secretion defects and apical membrane irregularities. CONCLUSIONS These findings support a role for tbc1 in endocytic/membrane trafficking, consistent with its activities in other systems.
Collapse
Affiliation(s)
- Dorothy M Johnson
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
34
|
Dystrobrevin is required postsynaptically for homeostatic potentiation at the Drosophila NMJ. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1579-1591. [PMID: 30904609 DOI: 10.1016/j.bbadis.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022]
Abstract
Evolutionarily conserved homeostatic systems have been shown to modulate synaptic efficiency at the neuromuscular junctions of organisms. While advances have been made in identifying molecules that function presynaptically during homeostasis, limited information is currently available on how postsynaptic alterations affect presynaptic function. We previously identified a role for postsynaptic Dystrophin in the maintenance of evoked neurotransmitter release. We herein demonstrated that Dystrobrevin, a member of the Dystrophin Glycoprotein Complex, was delocalized from the postsynaptic region in the absence of Dystrophin. A newly-generated Dystrobrevin mutant showed elevated evoked neurotransmitter release, increased bouton numbers, and a readily releasable pool of synaptic vesicles without changes in the function or numbers of postsynaptic glutamate receptors. In addition, we provide evidence to show that the highly conserved Cdc42 Rho GTPase plays a key role in the postsynaptic Dystrophin/Dystrobrevin pathway for synaptic homeostasis. The present results give novel insights into the synaptic deficits underlying Duchenne Muscular Dystrophy affected by a dysfunctional Dystrophin Glycoprotein complex.
Collapse
|
35
|
Andrew DJ, Chen EH, Manoli DS, Ryner LC, Arbeitman MN. Sex and the Single Fly: A Perspective on the Career of Bruce S. Baker. Genetics 2019; 212:365-376. [PMID: 31167898 PMCID: PMC6553822 DOI: 10.1534/genetics.119.301928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
Bruce Baker, a preeminent Drosophila geneticist who made fundamental contributions to our understanding of the molecular genetic basis of sex differences, passed away July 1, 2018 at the age of 72. Members of Bruce's laboratory remember him as an intensely dedicated, rigorous, creative, deep-thinking, and fearless scientist. His trainees also remember his strong commitment to teaching students at every level. Bruce's career studying sex differences had three major epochs, where the laboratory was focused on: (1) sex determination and dosage compensation, (2) the development of sex-specific structures, and (3) the molecular genetic basis for sex differences in behavior. Several members of the Baker laboratory have come together to honor Bruce by highlighting some of the laboratory's major scientific contributions in these areas.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Devanand S Manoli
- Department of Psychiatry, University of California, San Francisco, California 94158
- Weill Institute for Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, California 94158
| | - Lisa C Ryner
- Development Sciences Division, Roche Genentech, South San Francisco, California 94080
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
36
|
Zolotarev N, Georgiev P, Maksimenko O. Removal of extra sequences with I-SceI in combination with CRISPR/Cas9 technique for precise gene editing in Drosophila. Biotechniques 2019; 66:198-201. [DOI: 10.2144/btn-2018-0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The CRISPR/Cas9 system has recently emerged as a powerful tool for functional genomic studies and has been adopted for many organisms, including Drosophila. Previously, an efficient two-step strategy was developed to engineer the fly genome by combining CRISPR/Cas9 with recombinase-mediated cassette exchange (RMCE). This strategy allows the introduction of designed mutations into a gene of interest in vivo. However, the loxP or frt site remains in the edited locus. Here, we propose a modification of this approach for rapid and efficient seamless genome editing with CRISPR/Cas9 and site-specific recombinase-mediated integration (SSRMI) combined with recombination between homologous sequences induced by the rare-cutting endonuclease I-SceI. The induced homological recombination leads to the removal of the remaining extraneous sequences from the target locus.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Group of Molecular Organization of Genome, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| |
Collapse
|
37
|
Kunduri G, Turner-Evans D, Konya Y, Izumi Y, Nagashima K, Lockett S, Holthuis J, Bamba T, Acharya U, Acharya JK. Defective cortex glia plasma membrane structure underlies light-induced epilepsy in cpes mutants. Proc Natl Acad Sci U S A 2018; 115:E8919-E8928. [PMID: 30185559 PMCID: PMC6156639 DOI: 10.1073/pnas.1808463115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in Drosophila, owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase (cpes)-null mutants and fail to encapsulate the neuronal cell bodies in the Drosophila neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in cpes mutants and leads to the PSE phenotype.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702
| | | | - Yutaka Konya
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nagashima
- Electron Microscopy Laboratory, National Cancer Institute, Frederick, MD 21702
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Joost Holthuis
- Molecular Cell Biology Division, University of Osnabrück, 49074 Osnabrück, Germany
| | - Takeshi Bamba
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Usha Acharya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jairaj K Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702;
| |
Collapse
|
38
|
Parallel Genomic Engineering of Two Drosophila Genes Using Orthogonal attB/attP Sites. G3-GENES GENOMES GENETICS 2018; 8:3109-3118. [PMID: 30065043 PMCID: PMC6118320 DOI: 10.1534/g3.118.200565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Precise modification of sequences in the Drosophila melanogaster genome underlies the powerful capacity to study molecular structure-function relationships in this model species. The emergence of CRISPR/Cas9 tools in combination with recombinase systems such as the bacteriophage serine integrase ΦC31 has rendered Drosophila mutagenesis a straightforward enterprise for deleting, inserting and modifying genetic elements to study their functional relevance. However, while combined modifications of non-linked genetic elements can be easily constructed with these tools and classical genetics, the independent manipulation of linked genes through the established ΦC31-mediated transgenesis pipeline has not been feasible due to the limitation to one attB/attP site pair. Here we extend the repertoire of ΦC31 transgenesis by introducing a second pair of attB/attP targeting and transgenesis vectors that operate in parallel and independently of existing tools. We show that two syntenic orthologous genes, CG11318 and CG15556, located within a 25 kb region can be genomically engineered to harbor attPTT and attPCC sites. These landing pads can then independently receive transgenes through ΦC31-assisted integration and facilitate the manipulation and analysis of either gene in the same animal. These results expand the repertoire of site-specific genomic engineering in Drosophila while retaining the well established advantages and utility of the ΦC31 transgenesis system.
Collapse
|
39
|
Lee N, Park J, Bae YC, Lee JH, Kim CH, Moon SJ. Time-Lapse Live-Cell Imaging Reveals Dual Function of Oseg4, Drosophila WDR35, in Ciliary Protein Trafficking. Mol Cells 2018; 41:676-683. [PMID: 29983040 PMCID: PMC6078859 DOI: 10.14348/molcells.2018.0179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/27/2022] Open
Abstract
Cilia are highly specialized antennae-like organelles that extend from the cell surface and act as cell signaling hubs. Intraflagellar transport (IFT) is a specialized form of intracellular protein trafficking that is required for the assembly and maintenance of cilia. Because cilia are so important, mutations in several IFT components lead to human disease. Thus, clarifying the molecular functions of the IFT proteins is a high priority in cilia biology. Live imaging in various species and cellular preparations has proven to be an important technique in both the discovery of IFT and the mechanisms by which it functions. Live imaging of Drosophila cilia, however, has not yet been reported. Here, we have visualized the movement of IFT in Drosophila cilia using time-lapse live imaging for the first time. We found that NOMPB-GFP (IFT88) moves according to distinct parameters depending on the ciliary segment. NOMPB-GFP moves at a similar speed in proximal and distal cilia toward the tip (~0.45 μm/s). As it returns to the ciliary base, however, NOMPB-GFP moves at ~0.12 μm/s in distal cilia, accelerating to ~0.70 μm/s in proximal cilia. Furthermore, while live imaging NOMPB-GFP, we observed one of the IFT proteins required for retrograde movement, Oseg4 (WDR35), is also required for anterograde movement in distal cilia. We anticipate our time-lapse live imaging analysis technique in Drosophila cilia will be a good starting point for a more sophisticated analysis of IFT and its molecular mechanisms.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722,
Korea
| | - Jina Park
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722,
Korea
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812,
Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu 41940,
Korea
| | - Jung Ho Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722,
Korea
| |
Collapse
|
40
|
Neitzel LR, Broadus MR, Zhang N, Sawyer L, Wallace HA, Merkle JA, Jodoin JN, Sitaram P, Crispi EE, Rork W, Lee LA, Pan D, Gould KL, Page-McCaw A, Lee E. Characterization of a cdc14 null allele in Drosophila melanogaster. Biol Open 2018; 7:bio.035394. [PMID: 29945873 PMCID: PMC6078348 DOI: 10.1242/bio.035394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cdc14 is an evolutionarily conserved serine/threonine phosphatase. Originally identified in Saccharomyces cerevisiae as a cell cycle regulator, its role in other eukaryotic organisms remains unclear. In Drosophila melanogaster, Cdc14 is encoded by a single gene, thus facilitating its study. We found that Cdc14 expression is highest in the testis of adult flies and that cdc14 null flies are viable. cdc14 null female and male flies do not display altered fertility. cdc14 null males, however, exhibit decreased sperm competitiveness. Previous studies have shown that Cdc14 plays a role in ciliogenesis during zebrafish development. In Drosophila, sensory neurons are ciliated. We found that the Drosophila cdc14 null mutants have defects in chemosensation and mechanosensation as indicated by decreased avoidance of repellant substances and decreased response to touch. In addition, we show that cdc14 null mutants have defects in lipid metabolism and resistance to starvation. These studies highlight the diversity of Cdc14 function in eukaryotes despite its structural conservation. Summary: The Cdc14 phosphatase has been implicated in cell cycle regulation in S. cerevisiae. We show that Drosophila cdc14 mutants are viable, but exhibit defects in sperm competition, chemosensation, and mechanosensation.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew R Broadus
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nailing Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Leah Sawyer
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather A Wallace
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Julie A Merkle
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeanne N Jodoin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Poojitha Sitaram
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Emily E Crispi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William Rork
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura A Lee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Duojia Pan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
41
|
Bentzur A, Shmueli A, Omesi L, Ryvkin J, Knapp JM, Parnas M, Davis FP, Shohat-Ophir G. Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila. PLoS Genet 2018; 14:e1007328. [PMID: 29630598 PMCID: PMC5908198 DOI: 10.1371/journal.pgen.1007328] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/19/2018] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
Living in a social environment requires the ability to respond to specific social stimuli and to incorporate information obtained from prior interactions into future ones. One of the mechanisms that facilitates social interaction is pheromone-based communication. In Drosophila melanogaster, the male-specific pheromone cis-vaccenyl acetate (cVA) elicits different responses in male and female flies, and functions to modulate behavior in a context and experience-dependent manner. Although it is the most studied pheromone in flies, the mechanisms that determine the complexity of the response, its intensity and final output with respect to social context, sex and prior interaction, are still not well understood. Here we explored the functional link between social interaction and pheromone-based communication and discovered an odorant binding protein that links social interaction to sex specific changes in cVA related responses. Odorant binding protein 69a (Obp69a) is expressed in auxiliary cells and secreted into the olfactory sensilla. Its expression is inversely regulated in male and female flies by social interactions: cVA exposure reduces its levels in male flies and increases its levels in female flies. Increasing or decreasing Obp69a levels by genetic means establishes a functional link between Obp69a levels and the extent of male aggression and female receptivity. We show that activation of cVA-sensing neurons is sufficeint to regulate Obp69a levels in the absence of cVA, and requires active neurotransmission between the sensory neuron to the second order olfactory neuron. The cross-talk between sensory neurons and non-neuronal auxiliary cells at the olfactory sensilla, represents an additional component in the machinery that promotes behavioral plasticity to the same sensory stimuli in male and female flies. In this work, we used Drosophila melanogaster as a model organism to explore a basic question in neuroscience: why do different individuals experience the same sensory stimuli, such as smell differently, and moreover, why does one individual experience identical stimuli differently on different occasions? Focusing on sex specific behaviors in fruit flies, we identified odorant binding protein 69a (Obp69a) as a new player in the machinery that promotes behavioral plasticity to the same sensory stimuli in male and female flies.
Collapse
Affiliation(s)
- Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences and Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Anat Shmueli
- The Mina & Everard Goodman Faculty of Life Sciences and Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Liora Omesi
- The Mina & Everard Goodman Faculty of Life Sciences and Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences and Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Moshe Parnas
- Department of Physiology and Pharmacology Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Fred P. Davis
- HHMI Janelia Research Campus, Ashburn, VA, United States of America
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences and Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
42
|
Schmähling S, Meiler A, Lee Y, Mohammed A, Finkl K, Tauscher K, Israel L, Wirth M, Philippou-Massier J, Blum H, Habermann B, Imhof A, Song JJ, Müller J. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development 2018. [PMID: 29540501 PMCID: PMC5963871 DOI: 10.1242/dev.163808] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Drosophila Ash1 protein is a trithorax-group (trxG) regulator that antagonizes Polycomb repression at HOX genes. Ash1 di-methylates lysine 36 in histone H3 (H3K36me2) but how this activity is controlled and at which genes it functions is not well understood. We show that Ash1 protein purified from Drosophila exists in a complex with MRG15 and Caf1 that we named AMC. In Drosophila and human AMC, MRG15 binds a conserved FxLP motif near the Ash1 SET domain and stimulates H3K36 di-methylation on nucleosomes. Drosophila MRG15-null and ash1 catalytic mutants show remarkably specific trxG phenotypes: stochastic loss of HOX gene expression and homeotic transformations in adults. In mutants lacking AMC, H3K36me2 bulk levels appear undiminished but H3K36me2 is reduced in the chromatin of HOX and other AMC-regulated genes. AMC therefore appears to act on top of the H3K36me2/me3 landscape generated by the major H3K36 methyltransferases NSD and Set2. Our analyses suggest that H3K36 di-methylation at HOX genes is the crucial physiological function of AMC and the mechanism by which the complex antagonizes Polycomb repression at these genes. Highlighted Article: The trithorax group protein Ash1 and its regulator MRG15 form a multiprotein complex that maintains expression of HOX and other target genes by methylating histone H3 in their chromatin.
Collapse
Affiliation(s)
- Sigrun Schmähling
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Arno Meiler
- Max-Planck Institute of Biochemistry, Computational Biology, Am Klopferspitz 18 82152 Martinsried, Germany
| | - Yoonjung Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Biological Sciences, Daejeon 34141, Korea
| | - Arif Mohammed
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katja Finkl
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katharina Tauscher
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lars Israel
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Marc Wirth
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Bianca Habermann
- Max-Planck Institute of Biochemistry, Computational Biology, Am Klopferspitz 18 82152 Martinsried, Germany
| | - Axel Imhof
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Ji-Joon Song
- Korea Advanced Institute of Science and Technology (KAIST), Department of Biological Sciences, Daejeon 34141, Korea
| | - Jürg Müller
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
43
|
Bier E, Harrison MM, O'Connor-Giles KM, Wildonger J. Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics 2018; 208:1-18. [PMID: 29301946 PMCID: PMC5753851 DOI: 10.1534/genetics.117.1113] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/08/2017] [Indexed: 12/26/2022] Open
Abstract
Drosophila has long been a premier model for the development and application of cutting-edge genetic approaches. The CRISPR-Cas system now adds the ability to manipulate the genome with ease and precision, providing a rich toolbox to interrogate relationships between genotype and phenotype, to delineate and visualize how the genome is organized, to illuminate and manipulate RNA, and to pioneer new gene drive technologies. Myriad transformative approaches have already originated from the CRISPR-Cas system, which will likely continue to spark the creation of tools with diverse applications. Here, we provide an overview of how CRISPR-Cas gene editing has revolutionized genetic analysis in Drosophila and highlight key areas for future advances.
Collapse
Affiliation(s)
- Ethan Bier
- Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0349
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Kate M O'Connor-Giles
- Laboratory of Genetics and Laboratory of Cell and Molecular Biology, Wisconsin 53706
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
44
|
Korona D, Koestler SA, Russell S. Engineering the Drosophila Genome for Developmental Biology. J Dev Biol 2017; 5:jdb5040016. [PMID: 29615571 PMCID: PMC5831791 DOI: 10.3390/jdb5040016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023] Open
Abstract
The recent development of transposon and CRISPR-Cas9-based tools for manipulating the fly genome in vivo promises tremendous progress in our ability to study developmental processes. Tools for introducing tags into genes at their endogenous genomic loci facilitate imaging or biochemistry approaches at the cellular or subcellular levels. Similarly, the ability to make specific alterations to the genome sequence allows much more precise genetic control to address questions of gene function.
Collapse
Affiliation(s)
- Dagmara Korona
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | - Stefan A Koestler
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| |
Collapse
|
45
|
Sokabe T, Chen HC, Luo J, Montell C. A Switch in Thermal Preference in Drosophila Larvae Depends on Multiple Rhodopsins. Cell Rep 2017; 17:336-344. [PMID: 27705783 DOI: 10.1016/j.celrep.2016.09.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 07/18/2016] [Accepted: 09/08/2016] [Indexed: 10/20/2022] Open
Abstract
Drosophila third-instar larvae exhibit changes in their behavioral responses to gravity and food as they transition from feeding to wandering stages. Using a thermal gradient encompassing the comfortable range (18°C to 28°C), we found that third-instar larvae exhibit a dramatic shift in thermal preference. Early third-instar larvae prefer 24°C, which switches to increasingly stronger biases for 18°C-19°C in mid- and late-third-instar larvae. Mutations eliminating either of two rhodopsins, Rh5 and Rh6, wiped out these age-dependent changes in thermal preference. In larvae, Rh5 and Rh6 are thought to function exclusively in the light-sensing Bolwig organ. However, the Bolwig organ was dispensable for the thermal preference. Rather, Rh5 and Rh6 were required in trpA1-expressing neurons in the brain, ventral nerve cord, and body wall. Because Rh1 contributes to thermal selection in the comfortable range during the early to mid-third-instar stage, fine thermal discrimination depends on multiple rhodopsins.
Collapse
Affiliation(s)
- Takaaki Sokabe
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Hsiang-Chin Chen
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Junjie Luo
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
46
|
Heterogeneity in the Drosophila gustatory receptor complexes that detect aversive compounds. Nat Commun 2017; 8:1484. [PMID: 29133786 PMCID: PMC5684318 DOI: 10.1038/s41467-017-01639-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/04/2017] [Indexed: 11/12/2022] Open
Abstract
Animals must detect aversive compounds to survive. Bitter taste neurons express heterogeneous combinations of bitter receptors that diversify their response profiles, but this remains poorly understood. Here we describe groups of taste neurons in Drosophila that detect the same bitter compounds using unique combinations of gustatory receptors (GRs). These distinct complexes also confer responsiveness to non-overlapping sets of additional compounds. While either GR32a/GR59c/GR66a or GR22e/GR32a/GR66a heteromultimers are sufficient for lobeline, berberine, and denatonium detection, only GR22e/GR32a/GR66a responds to strychnine. Thus, despite minimal sequence-similarity, Gr22e and Gr59c show considerable but incomplete functional overlap. Since the gain- or loss-of-function of Gr22e or Gr59c alters bitter taste response profiles, we conclude a taste neuron’s specific combination of Grs determines its response profile. We suspect the heterogeneity of Gr expression in Drosophila taste neurons diversifies bitter compound detection, improving animal fitness under changing environmental conditions that present a variety of aversive compounds. Taste sensilla are Drosophila sensory organs containing taste neurons, which have differential tuning for bitter compounds. Here, the authors systematically examine what combinations of gustatory receptor genes confer a specific taste response profile in different bitter taste neurons.
Collapse
|
47
|
Zhang X, Rui M, Gan G, Huang C, Yi J, Lv H, Xie W. Neuroligin 4 regulates synaptic growth via the bone morphogenetic protein (BMP) signaling pathway at the Drosophila neuromuscular junction. J Biol Chem 2017; 292:17991-18005. [PMID: 28912273 PMCID: PMC5672027 DOI: 10.1074/jbc.m117.810242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Indexed: 01/26/2023] Open
Abstract
The neuroligin (Nlg) family of neural cell adhesion molecules is thought to be required for synapse formation and development and has been linked to the development of autism spectrum disorders in humans. In Drosophila melanogaster, mutations in the neuroligin 1–3 genes have been reported to induce synapse developmental defects at neuromuscular junctions (NMJs), but the role of neuroligin 4 (dnlg4) in synapse development has not been determined. Here, we report that the Drosophila neuroligin 4 (DNlg4) is different from DNlg1–3 in that it presynaptically regulates NMJ synapse development. Loss of dnlg4 results in reduced growth of NMJs with fewer synaptic boutons. The morphological defects caused by dnlg4 mutant are associated with a corresponding decrease in synaptic transmission efficacy. All of these defects could only be rescued when DNlg4 was expressed in the presynapse of NMJs. To understand the basis of DNlg4 function, we looked for genetic interactions and found connections with the components of the bone morphogenetic protein (BMP) signaling pathway. Immunostaining and Western blot analyses demonstrated that the regulation of NMJ growth by DNlg4 was due to the positive modulation of BMP signaling by DNlg4. Specifically, BMP type I receptor thickvein (Tkv) abundance was reduced in dnlg4 mutants, and immunoprecipitation assays showed that DNlg4 and Tkv physically interacted in vivo. Our study demonstrates that DNlg4 presynaptically regulates neuromuscular synaptic growth via the BMP signaling pathway by modulating Tkv.
Collapse
Affiliation(s)
- Xinwang Zhang
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,the Department of Biology, Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Menglong Rui
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Guangmin Gan
- Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Cong Huang
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jukang Yi
- Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Huihui Lv
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Wei Xie
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China, .,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| |
Collapse
|
48
|
Perea D, Guiu J, Hudry B, Konstantinidou C, Milona A, Hadjieconomou D, Carroll T, Hoyer N, Natarajan D, Kallijärvi J, Walker JA, Soba P, Thapar N, Burns AJ, Jensen KB, Miguel-Aliaga I. Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia. EMBO J 2017; 36:3029-3045. [PMID: 28899900 PMCID: PMC5641678 DOI: 10.15252/embj.201696247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023] Open
Abstract
Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss‐of‐function disorders such as Hirschsprung disease.
Collapse
Affiliation(s)
- Daniel Perea
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Jordi Guiu
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | | | - Alexandra Milona
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Nina Hoyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Jukka Kallijärvi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - James A Walker
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Soba
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Kim B Jensen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark.,The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
49
|
Kim H, Jeong YT, Choi MS, Choi J, Moon SJ, Kwon JY. Involvement of a Gr2a-Expressing Drosophila Pharyngeal Gustatory Receptor Neuron in Regulation of Aversion to High-Salt Foods. Mol Cells 2017; 40:331-338. [PMID: 28535667 PMCID: PMC5463041 DOI: 10.14348/molcells.2017.0028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 11/27/2022] Open
Abstract
Regulation of feeding is essential for animal survival. The pharyngeal sense organs can act as a second checkpoint of food quality, due to their position between external taste organs such as the labellum which initially assess food quality, and the digestive tract. Growing evidence provides support that the pharyngeal sensory neurons regulate feeding, but much is still unknown. We found that a pair of gustatory receptor neurons in the LSO, a Drosophila adult pharyngeal organ which expresses four gustatory receptors, is involved in feeding inhibition in response to high concentrations of sodium ions. RNAi experiments and mutant analysis showed that the gustatory receptor Gr2a is necessary for this process. This feeding preference determined by whether a food source is perceived as appetizing or not is influenced by nutritional conditions, such that when the animal is hungry, the need for energy dominates over how appealing the food source is. Our results provide experimental evidence that factors involved in feeding function in a context-dependent manner.
Collapse
Affiliation(s)
- Haein Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - Yong Taek Jeong
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722,
Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - Jaekyun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722,
Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419,
Korea
| |
Collapse
|
50
|
Ni JD, Baik LS, Holmes TC, Montell C. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. Nature 2017; 545:340-344. [PMID: 28489826 PMCID: PMC5476302 DOI: 10.1038/nature22325] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 03/30/2017] [Indexed: 11/09/2022]
Abstract
Animals partition their daily activity rhythms through their internal circadian clocks, which are synchronized by oscillating day-night cycles of light. The fruit fly, Drosophila melanogaster, senses day/night cycles in part through rhodopsin-dependent light reception in the compound eye, and photoreceptor cells in the Hofbauer-Buchner (H-B) eyelet1. However, a more significant light entrainment pathway is mediated in central pacemaker neurons in the brain. The Drosophila circadian clock is extremely light sensitive. However, the only known light sensor in pacemaker neurons, the flavoprotein, cryptochrome (Cry)2,3, responds only to high levels of light in vitro4. These observations indicate the existence of an additional light-sensing pathway in fly pacemaker neurons5. Here, we identified an uncharacterized rhodopsin, Rh7, which functions in circadian light entrainment through circadian pacemaker neurons in the brain. The pacemaker neurons respond to violet light, which was dependent on Rh7. While loss of either cry or rh7 caused minor affects on photoentrainment, the defects in the double mutant were profound. The circadian photoresponse to constant light was impaired in the rh7 mutant, especially under dim light. The demonstration that Rh7 functions in circadian pacemaker neurons represents the first role for an opsin in the central brain.
Collapse
Affiliation(s)
- Jinfei D Ni
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA.,Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Lisa S Baik
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, USA.,Center for Circadian Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|